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The nonequilibrium density matrix technique is utilized to study the incoherent transfer of a quantum
particle coupled to a fluctuating environment. The dynamics of the environment is assumed to split into two
different types of molecular motions. The first type is associated with low-amplitude vibrations forming a
thermal bath~TB!. High-amplitude displacements of separated molecular groups define the second type and
create stochastic fields for acting on the transferred particle. Specifying the TB by a set of harmonic oscillators
and the stochastic fields by a dichotomic process averaged kinetic equations were derived. These equations
enable us to construct a rate constants expressions and to find the steady-state populations for a quantum
particle. Regimes of enhanced or reduced particle transfer are discussed in detail in relation to the character-
istics of the stochastic field and the TB.@S1063-651X~96!07211-X#

PACS number~s!: 02.50.Ey, 02.50.Wp, 05.20.Dd, 05.60.1w

I. INTRODUCTION

Transfer properties of a molecular system embedded in a
condensed medium are determined by the interplay of dy-
namic and dissipative processes@1–10#. Concentrating on a
local-state representation of a quantum particle moving in
the molecular system under consideration the dynamic pro-
cesses are characterized by the energy of the intrasite particle
localization and the intersite coupling resulting in quantum
jumps of the particle between neighboring sites. In contrast,
the dissipative action of the environment can be attributed to
several kinds of nuclear motions. These motions may differ
significantly in their characteristic time scales and, therefore,
may influence the particle transfer in different ways. First of
all, one can set off from all possible motions the low-
amplitude, nuclear vibrations forming a thermal bath~TB!.
Due to very fast relaxational processes with typical time con-
stantstv in the order of 10

211210213 s the vibrational states
forming the TB are populated according to an equilibrium
statistical distribution. Since the characteristic time scale of
the transfer processDt fulfills the inequalityDt@tv , the TB
can be described by an equilibrium density matrix.

Considering high-amplitude twisted and flipping motions
of separate molecular groups or conformational fluctuations
with the typical timesth@tv this equilibrium description
does not hold. For instance, one may find in proteins values
of th of 10

282 10210 s @11,12#. As a result, the rearrange-
ment of these molecular groups creates stochastic fields
which can be characterized by mean lifetimest j ~or mean
escape frequenciesn j5t j

21) of the molecular groups related
to the mean time they spent in the certain sitesj . Remem-
bering the inequalitytv!Dt;th introduced for the transfer
processes of interest the environment has to be simulated by
the TB and the stochastic fields, but not by the stochastic
fields alone.

To study systems where such a combined influence of a
stochastic field and a TB has to be considered the method of
the nonequilibrium density matrix~NDM! is utilized @13–

21#. Redfield@22# and Bloch@23# were apparently the first
who tried to derive a generalized kinetic equation~GKE! for
the description of quantum transitions in a two-level system
~TLS! interacting with a TB and a time-dependent field. A
generalization of the Redfield-Bloch approach to the case of
discontinuous stochastic fields was advocated by Burstein,
Zharikov, and Temkin@24# and others@25–27# in a semiphe-
nomenological way. An attempt to take into account, in an
exact manner, the influence of the environment was under-
taken in different papers~to mention a few we refer on Refs.
@25–28#!. In these papers, the environment was only consid-
ered by a time-dependent random field.

The correct treatment of dissipative processes is based on
theensemble averagingwith respect to the equilibrium states
of the TB. Such a scheme was often used in combination
with the Born approximation@29–31#, either for a weak
system-TB interaction or for the case of strong coupling, i.e.,
in the so–called noninteracting blip approximation~NIBA !
@10,32–34#. In the present paper we generalize the scheme of
the ensemble averaging taking into account the stochastic
processes.

The paper is organized as follows. In Sec.II the general
treatment is presented including the derivation of the exact
averaged GKE. The solution of the GKE describing a TLS
under the action of a stochastic field is explained in Sec. III.
Section IV deals with the simultaneous incorporation of a
stochastic field and a TB. The paper ends with a discussion
of the influence of the equilibrium and nonequilibrium part
of an environment on the transfer of a quantum particle
~Sec.V!.

II. KINETIC EQUATIONS FOR THE AVERAGED
DENSITY MATRIX OF A QUANTUM SYSTEM

To derive the GKE valid for the averaged NDM,

s~ t !5r~ t ![TrBrSB~ t !, ~1!
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whererSB is the NDM of the quantum system plus the TB;
the trace operation TrB has to be carried out with respect to
the TB states, andŌ denotes the averagingO with respect to
the stochastic fields; we divide the total HamiltonianH(t)
into three parts

H~ t !5HS~ t !1HB1V. ~2!

The first part

HS~ t !5H01Hf~ t !, ~3!

consists of the Hamiltonian of the quantum system of interest
~the main dynamic part! H0 and the partHf(t) including the
action of the stochastic fields. The Hamiltonian of the TB,
HB , describes the vibrational states of the environment. In
the harmonic approximation it reads

HB5(
l

\v l~bl
1bl1 1/2!, ~4!

where v l is the frequency of thel th bath mode and,
bl

1(bl) denote the respective creation~annihilation! opera-
tors. Introducing an expansion in the localized statesun& we
get for the system HamiltonianH0 and the system-TB inter-
actionV the following general form@7,21,29–32#:

H05(
m,n

Hm,n um& ^nu, V5(
nn8

F̂nn8 un& ^n8u. ~5!

Here,F̂nn8 is the operator of generalized force introduced by
the TB.

A. Averaged forms of the GKE

Starting with the Liouville equation

i ṙSB~ t !5L~ t !rSB~ t !, ~6!

where L(t)[\21@H(t), . . . #, and the initial factorization
rSB(0)5r(0)rB where

rB5exp~2HB /kBT!/TrBexp~2HB /kBT! ~7!

is the TB equilibrium density matrix, in accord with defini-
tion ~1!, one obtains the followingexactform of the desired
NDM:

s~ t !5SD~ t,0!SR~ t,0!r~0!. ~8!

Here, the pure dynamic and the averaged relaxation matrixes
read

SD~ t,t8!5T̂expH 2 i E
t8

t

LD~t!dtJ ,
LD~ t ![\21@HD~ t !, . . . #, ~9!

and

SR~ t,t8!5TrBexp$2 iL B~ t2t8!%T̂expH 2 i E
t8

t

L i
t~t!dtJ rB ,

~10!

respectively. In Eqs.~9!, ~10! T̂ denotes Dyson’s chronologi-
cal operator, and

Li
t~ t !5SD

21~ t,0!eiLBtLi~ t !e
2 iLBtSD~ t,0!,

Li~ t ![\21@Hi~ t !, . . . #, LB[\21@HB , . . . #. ~11!

Equation~8! splits the evolution of the NDM into a part of
the averaged dynamic behavior@via the averaged Hamil-
tonianHD(t)[H̄S(t)1^V&B], and into the part of the aver-
aged relaxational behavior@via the averaged deviations
Hi(t)[Hf(t)2Hf(t)1V2^V&B where^V&B5TrBrBV#.

For the practical calculations, one needs the appropriate
expansion procedure with respect to the deviationsHi(t). It
is possible to show from the exact form~8! that in the im-
portant case of the Born approximation, the averaged matrix
s(t) can be found from the following integro–differential
master equation

ṡ~ t !52 iL D~ t !s~ t !2E
0

t

K0~ t,t8!s~ t8!dt8, ~12!

where the kernel

K0~ t,t8!5TrB@Li~ t !SD~ t,t8!exp$2 iL B~ t2t8!%Li~ t8!rB#
~13!

can be calculated if one specifies the averaging procedure
valid for the stochastic process under consideration.

The form~12! of a GKE is appropriate for the description
of quantum systems when the reverse damping timetd

21 of
the kernel ~13! or the energy-level differencesD exceed
modulations caused by the stochastic field and the TB. It
should be underlined that Eq.~12! is valid for any relation
between the amplitudes and frequencies of the discontinuous
stochastic field.

B. The stochastic form of the GKE

At strong stochastic field one must find a GKE which
goes beyond the second order with respect to the deviation
Hf(t)2H̄ f(t). Using the approach given in Refs.@15,19,29#
and introducing the Born approximation with respect to
DV5V2^V&B one obtains

ṙ~ t !52 iL S~ t !r~ t !2E
0

t

G~ t,t8!r~ t8!dt8. ~14!

Here, the density matrix of a quantum systemr(t), as well
as the superoperatorLS(t)[\21@„HS(t)1^V&B…, . . . # and
the relaxation matrix

G~ t,t8!5TrB@LVS~ t,t8!LVrB#, ~LV[\21@DV, . . . # !,
~15!

are random operator functionals. The evolution matrix

S~ t,t8!5S0~ t,t8!exp$2 iL B~ t2t8!% ~16!

of Eq. ~15! is expressed through the random dynamic matrix
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S0~ t,t8!5T̂expH 2 i E
t8

t

LS~t!dtJ . ~17!

In contrast to the GKE~12! for the averaged NDM
s(t)5 r̄(t), the approximate master equation~14! represents
a stochastic GKE for a nonaveraged NDMr(t) where, how-
ever, the stochastic field is taken into consideration in an
exact manner.„For equations like Eq.~14! the averaging
procedure has been discussed in a number of papers, see
Refs.@25,28–30,32,35#….

Despite non-Markovian properties of Eq.~14! non-
Markovian contributions only become of some importance if
one introduces higher-order approximations with respect to
DV ~see, for instance, Refs.@19,21,29,36#!. Practically, the
approximationr(t8)'r(t) is valid if the characteristic time
td of the kernelG(t,t8) in Eq. ~14! satisfies the inequality
td!t r @37#. Here,t r determines the time scale of the relax-
ation behavior ofr(t) initiated by the interactionV. This
statement has been proven by Oppenheimet al. @38# for a
TLS interacting with a TB. Ifz denotes the effective cou-
pling constant between the TB and the quantum system,
G(t,t8) is proportional to z2. Consequently, we get
t r

21;z2td , and the Markov approximation is valid for
(ztd)

2! 1. The inequality (ztd)
2! 1 simultaneously char-

acterizes the applicability of the Markov and the Born ap-
proximation only if the characteristic timet0 of the pure
dynamic processes exceedstd . If D is a typical energy dif-
ference in the considered quantum system~or as the fre-
quency of an external field! we may writet0;D21, and the
condition tdD! 1 must also be valid. IftdD@ 1 the Born
approximation is correct because ofD@t r

21, but the appli-
cability of the Markov approximation is questionable. Nev-
ertheless, one can apply the Markov approximation to the
GKE already averaged on the time scaleDt;D21 of a fast
dynamic process. For the example of a transfer process in the
TLS all quantitiesz,td ,D will be specified in Sec. IV.

To proceed further we change to a representation of the
GKE ~14! in the localized stateun&. In the tetradic represen-
tation the GKE reads

ṙmn~ t !52 i (
m8n8

H Lmn;m8n8~ t !rm8n8~ t !

2E
0

t

Gmn;m8n8~ t,t8!rm8n8~ t8!dt8J , ~18!

where the stochastic dynamic and relaxation matrices are
given by their matrix elements

Lmn;m8n8~ t !5
1

\
$@HS~ t !1^V&B#mm8dn8n

2@HS~ t !1^V&B#n8ndmm8% ~19!

and

Gmn;m8n8~ t,t8!5
1

\2S rr 8$Kmr;r 8m8~ t2t8!Srn;r 8n8~ t,t8!

1Kn8r 8;rn@2~ t2t8!#Smr;m8r 8~ t,t8!

2Krn;r 8m8~ t2t8!Smr;r 8n8~ t,t8!

2Kn8r 8;mr@2~ t2t8!#Srn;m8r 8~ t,t8!%,

~20!

respectively. The correlation function

Kab;a8b8~ t2t8!5^DF̂abDF̂a8b8
t2t8&B ~21!

of the force fluctuations DF̂ab5F̂ab2^F̂ab&B with
DF̂ab

t 5exp(2 iL Bt)DF̂ab determines the action of the TB on
the relaxation process in a quantum system whereas the dy-
namic corrections of the relaxation process are defined by the
stochastic matrix elements

Sab;a8b8~ t,t8!5^auS0~ t,t8!ĝa8b8ub&. ~22!

This fact demonstrates the complex behavior of relaxation
processes in a quantum system interacting simultaneously
with a TB and a stochastic field.

To average Eq.~14! @or its tetradic form~18!# one has to
specify both the stochastic process and the quantum system.
In the problem under consideration we choose the discon-
tinuous Markovian kangaroo process~KP! @24,25,29,39#. To
specify a transfer process one has to note that it consists of
elementary jumps between different sites of particle localiza-
tion. Therefore, we will concentrate in the remaining part of
the paper on a detailed investigation of particle transitions in
a TLS.

III. RESTRICTION ON THE INFLUENCE
OF THE STOCHASTIC FIELD

Neglecting the coupling to the TB we haveG(t,t8)5 0.
The formal solution of Eq.~14! for the noise averaged NDM
follows as

s~ t !5s0~ t !5S0~ t,0!r~0!, ~23!

where the stochastic field will be specified to a nonsymmet-
ric dichotomous one. The remaining problem concerns the
correct averaging of the dynamic matrixS0(t,0).

It is necessary to note here that in the standard treatment
one finds the quantitys(t)5 r̄(t) by averaging Eq.~14! for
the special caseG(t,t8)5 0 ~see details, for instance, in pa-
pers @28–30,32# and especially@40#!. Unfortunately, this
procedure only yields an exact result for a symmetric di-
chotomous process. For the case of a nonsymmetric dichoto-
mous process one can use a technique proposed by Brissaud
and Frish@39#. Below we will follow this approach.

A. General form of the averaged NDM

Let R(t)[S0(t,0). Since the stochastic matrix~17! obeys
the necessary condition introduced in the approach of Bris-
saud and Frish, the matrixR(t) can be found from its
Laplace transform
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R̃~p!5A~p!1nA~p!@ n̄I2n2A~p!#21nA~p!. ~24!

For the dichotomous process under consideration we have

n lA~p!5(
j51

2

Wj

n j
l

~p1n j !I1 iL j
, ~L j[\21@Hj , . . . # !,

n̄5(
j51

2

Wjn j5 2n1n2 /~n11n2!, ~25!

where the probabilitiesW1,25n2,1/(n11n2) are given by the
escape frequenciesn1 ,n2. The HamiltonianHj ( j5 1,2) is
the possible realization of the TLS Hamiltonian

HS~ t !5 (
n51,2

Enun&^nu1\l~ t !~ u1&^2u1u2&^1u! ~26!

if the fluctuating intersite coupling strengthl(t) is replaced
by its realizationsl1 and l2. Using the representation
um&5u6& where

Hj5 (
mm8

Hmm8
~ i ! um&^m8u,

H11
~ j ! 5«1

~ j !cos2w j1«2
~ j !sin2w j ,

H22
~ j ! 5«1

~ j !sin2w j1«2
~ j !cos2w j , ~27!

H12
~ j ! 5H21

~ j ! 52 1
2 \D jsin2w j ,

andw j52(21) jw, w5(x12x2)/2,

«a
~ j !5

1

2
@E11E22~21!a\D j #, D j5Av0

21 4l j
2,

~\v0[E12E2>0!, ~28!

tanx j5\ul j u/~«1
~ j !2E2!, ~29!

one can derive the following expression for the averaged
matrix ~25!

n lA~p!5S zl al bl cl

al ul cl 2al

bl cl wl 2bl

cl 2al 2bl zl

D . ~30!

The various matrix elements read

zl5(
j
Wjn j

la j , al5(
j
Wjn j

lb j , bl5(
j
Wjn j

l b̃ j ,

cl5(
j
Wjn j

lg j , ul5(
j
Wjn j

ld j , wl5(
j
Wjn j

l d̃ j ,

~31!

where the following shortenings have been introduced:

a j5Dj
21@~p1n j !

21 f j
21 2gj

2#,

b j52 iD j
21gj~p1n j2 i f j !,

g j5 2Dj
21gj

2 , d j5Dj
21@~p1n j !~p1n j2 i f j !12gj

2#,
~32!

Dj5~p1n j !@~p1n j !
21D j

2#.

The quantitiesb̃ j and d̃ j are obtained fromb j and d j , re-
spectively, in substituting2 i by i . ~Note, that the conditions
b̃5b* and d̃5d* are not fulfilled sincep is a complex
quantity!. In Eq. ~32! the quantities

gj5
1
2D jsin2w j , f j5D jcos2w j ~33!

determine the pecularities of the stochastic process via the
relations between realizationsl j of the intersite random cou-
pling l(t) and the specific frequencyv0[(E12E2)/\.
Equations~24!, ~30!, ~31!, ~32!, and ~33! specify the exact
expression for the Laplace transformR̃(p) of the desired
matrixR(t) itself. A detailed inspection shows that each ma-
trix element ofR̃(p) is defined as a proper rational fraction
and, in addition, the denominator’s rootspj of these matrix
elements are given as simple roots. As a result, the time
behavior ofR(t) is determined by a sum of terms containing
multipliers exp(pjt).

Below we specify the evolution processes in a TLS to the
case of degenerated levels, i.e.,v05 0, and to the strongly
nondegenerated casev0@ul j u.

B. The case of the degenerated TLS

In accordance with Eqs.~28! and ~29!, at v05 0 and
l j> 0 we obtainx j5p/4 andw j5 0 for both realizations,
l1 and l2, of the intersite coupling strengthl(t). Since
g j5 0, b j5 0 the matrix~30! is reduced to the simple form
with the following nonvanishing elements:

R̃11;11~p!5R̃22;22~p!5
1

p
,

R̃12;12~p!5
1

n11n2

2p~n11n2!1~n11n2!
214i ~n1l11n2l2!

~p1 2il1!~p1n21 2il2!1~p1 2il2!~p1n11 2il1!
. ~34!
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@R̃21;21(p) follows from R̃12;12(p) in substitutingi by
2 i #. From Eq.~34! one finds immediately the polesp05 0
andp1,252g62 iV6 of the matrixR̃(p) and, thus, the ana-
lytic form of the matrixR(t). The damping factorsg6 as
well as the effective frequenciesV6 given by the expres-
sions

g65
1

2 S n6Arcos
a

2 D ,
V65~l11l2!6

1

2
Arsin

a

2
, ~35!

where the quantities

r5A@n22 4~l12l2!
2#214~n12n2!

2~l12l2!
2,

n5
1

2
~n11n2!, ~36!

tana5
2~n12n2!~l12l2!

un22 4~l12l2!
2u

reflect the dependence of the transfer process on the ampli-
tudesl1 ,l2 as well as frequenciesn1 ,n2 of the discontinu-
ous stochastic field. Expressions~35! are valid for
n2>4(l12l2)

2 and p/2>a>0. If n2<4(l12l2)
2, one

has to substitute a by p2a ~we choose
n1>n2 , l12l2.0).

Let the particle stay at site 1 fort50. With the reverse
Laplace transform and Eqs.~34!, ~35! we may derive the
following expressions for the level populations
Na(t)[saa(t). In the basis of the statesum&5u6&, one finds

N1~ t !5 1
2 R11;11~ t !5 1

2 , N2~ t !5 1
2 R22;22~ t !5 1

2 .
~37!

Alternatively, in the basis of localized statesun& we have

N1~ t !5 1
4 @R11;11~ t !1R22;22~ t !1R12;12~ t !1R21;21~ t !#

5
1

2
1

1

8~n11n2!Ar
H e2g2tF S ~n11n2!

212~n11n2!Arcos
a

2 D cosS V2t1
a

2 D
12S 2~n12n2!~l12l2!1~n11n2!Arsin

a

2 D sinS V2t1
a

2 D G2e2g1tF S ~n11n2!
222~n11n2!Arcos

a

2 D
3cosS V1t1

a

2 D1 2S 2~n12n2!~l12l2!2~n11n2!Arsin
a

2 D sinS V1t1
a

2 D G J , N2~ t !5 12N1~ t !. ~38!

In Fig. 1, the typical picture of the evolution process in a
TLS is given for the casen2, 4(l12l2)

2. One clearly ob-
serves the difference between the symmetric (n15n2) and
the asymmetric (n1Þn2) influence of the dichotomous sto-
chastic field. In particular, this asymmetry of the stochastic
process generally favors the coherent character of the particle
transfer in the TLS.

C. The case of the strongly nondegenerated TLS

Providing the inequalityv0@l j , the energy levels«1
( j )

and «2
( j ) of the delocalized states@see Eq.~28!# are nearly

identical with the levelsE1 andE2 of the localized states. In
accordance with Eq.~29! it follows x j' 0. Therefore, the
quantities sinw j in Eqs. ~31!–~33! can be used as small ex-
pansion parameters. As an example, we present analytic re-
sults being valid atn j,v0 and at any relations between the
frequenciesn1 ,n2 and the intersite couplingsl1 ,l2, i.e., at
any value of the respective Kubo number@37,40,41#. Ac-
cording to this expansion procedure we get

N1~ t !'N1~ t !' 1/21@r11~0!21/2#exp$2kit%, ~39!

s12~ t !'s12~ t !'r12~0!exp$2 iv0t%exp$2k't%, ~40!

s21~ t !5@s12~ t !#* .

Here, the longitudinal and transverse rate constantski and
k' , respectively, are expressed by the root mean-square de-
viation sl

2 , as

ki5 2k'5
4sl

2n

n21v0
2 , S sl

2[
n1n2~l12l2!

2

4n2 D . ~41!

Similar expressions had been derived earlier for a symmetric
dichotomic process,n15n25n at a Kubo number when
sl
2/n2! 1 ~see@42,43#!. However, our estimations show that

the expression~41! holds not only atsl
2/n2! 1 but also at

sl
2/(n21v0

2)! 1 whensl
2n2!v0

4. This allows us to draw
the important conclusion. Even though the stochastic field
initiates a damping process, it only leads to an equipartition
of level population, i.e.,N1(`)5N2(`)5 1/2. And this eq-
uipartition does not depend on the energy difference
E12E2.

IV. SIMULTANEOUS ACTION OF THE STOCHASTIC
FIELD AND THE THERMAL BATH

In this section we will investigate the influence of a sto-
chastic field on relaxation processes initiated by the coupling
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to a TB. To specify the coupling to the TB we choose an
expression known from the spin-boson model@10#. Hence,
the system-TB interaction~5! will be fixed by the operator
F̂nn8 of generalized forces according to

F̂nn85F̂ndnn8, F̂152F̂2[F̂5\(
l

k l~bl
11bl !.

~42!

Here,k l serves as the coupling constant to thel th bath mode.
Noting Eqs.~4!, ~5!, ~20!, and~21! it becomes obvious that
all elements of the relaxation matrixG(t,t8) can be ex-
pressed by the single correlation function

K~t!5K* ~2t!5^DF̂DF̂t&B

5(
l

k l
2@n~v l !e

iv lt1„11n~v l !…e
2 iv lt#, ~43!

where

n~v l !5@exp~\v l /kBT!2 1#21 ~44!

denotes the Bose distribution function. For the sake of con-
venience we rewrite the correlation function~43! as

K~t!5
1

2pE0
`

@n~v!eivt1„11n~v!…e2 ivt#J~v!dv,

~45!

whereJ(v) is the spectral strength of the TB@10,34,38#,

J~v!5 2p(
l

k l
2d~v2v l !, ~v> 0!. ~46!

The frequency dependence can be specified in relating this
quantity to different models of an environment~see, e.g., the
examples in@34,38,44#!.

All types of further approximations strongly depend on
the relation between the various parameters following from

the dynamic model, the stochastic field, and the coupling to
the TB. As in the foregoing section we consider the case of
the degenerated and strongly nondegenerated TLS. In addi-
tion, we restrict ourselves to the weak-coupling limit with
respect to the TB, i.e.,k l

2!l j
2. The case of a strong cou-

pling to the TB was already considered in@32#.

A. The case of the degenerated TLS

Sincev05 0, the coherent part of the transfer in the TLS
is determined by the quantitiesD j5 2l j . The condition
k l
2!D j

2 of a weak coupling to the TB coincides with the
condition necessary to apply the Born approximation. To be
more concrete we further specify the correlation function
~43! to the case of a fast decay.~Model estimations of the
spectral strength~46! result in decay times in the ps region
@38#.! In accordance with the results of Sec. II B non–
Markovian effects are not essential in Eqs.~14! and ~18! if
the conditiont r

21;k l
2td!td

21'tb
21 is valid. Below we put

(k ltb)
2! 1, and, hence, one can apply the Markov approxi-

mation for the time scale of the order oft r . If tb
21@l j the

condition (k ltb)
2! 1 replaces the inequalityk l

2!l j
2 which

holds in the case of the Born approximation. Besides, the
inequality (k ltb)

2! 1 allows us to extend the upper limit to
` in Eqs.~14! and ~18!. This supposition is in line with the
discussion given in Sec. II B.

A further problem is related to the noise averaging of Eq.
~14!. It is well known that the decouplingG(t)r(t)
5Ḡ(t) r̄(t) is correct at small Kubo numbers, i.e., at
l jn j

21! 1. However, it is possible to show the following
important property. If in the absence of any system-TB in-
teraction, relaxation does not occur despite the presence of
the stochastic field, the decoupling is valid at any relation
betweenl j andn j . We take notice of this property in solv-
ing the equations for the level populations in the basis of the
delocalized statesu1& and u2&. From Eqs.~20!, ~21!, ~42!,
and~43! we may derive that Eq.~14! splits off into two sets
of equations. The first set determines the level populations
r11(t),r22(t)5 12r11(t), whereas the second one is
valid for the coherencesr12(t),r21(t). In the stochastic
equation

ṙ11~ t !52G1~ t !r11~ t !1G2~ t !r22~ t !, ~47!

the relaxation parameters

G1~ t !5
1

\2E
0

`

dt8@K* ~ t2t8!S12;12~ t,t8!

1K~ t2t8!S21;21~ t,t8!#, ~48!

G2~ t !5
1

\2E
0

`

dt8@K* ~ t2t8!S21;21~ t,t8!

1K~ t2t8!S12;12~ t,t8!#

are expressed by the elements of the stochastic dynamic ma-
trix S0(t,t8) @see Eq.~22!#, and by the correlation function
~43! of the TB.r11(t) is constant if the coupling to the TB
has been neglected@see Eq.~37!#. The relaxation parameters
G1(t) and G2(t) are retarded stochastic functionals of the

FIG. 1. Dependence of the level populationN1(t) on time t ~in
arbitrary units! in the case of a degenerated TLS for the different
jump frequenciesn1 andn2. The jump amplitudesl1 andl2, and
the autocorrelation time of the fluctuationst52/(n11n2) are fixed.
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intersite couplingl(t). Besides, they also incorporate the
dissipative influence of the TB . Resulting from this, the
relaxation constants define a rather complicated stochastic
process with unknown properties. Nevertheless, one can con-
clude that the time scale of the stochastic evolution of
G1(t) andG2(t) should correspond to the time scalen21.

To obtain the noise averaged equation~48! the decoupling

Gj~ t !rmm~ t !'Ḡj~ t !r̄mm~ t ! ~49!

could be used. It works at small Kubo numbers of the in-
duced stochastic process represented byG1(t) and G2(t).
The Kubo number could be defined asKG5DG/n, where
DG is the mean-square amplitude of the fluctuations of the
relaxation parameters. SinceG1(t), G2(t).0 at any time
t, it is clear thatDG cannot overcomet r

21. Hence, we have
KG'1/nt r!1, and the validity condition of the decoupling
~49! corresponds to the fast fluctuations ofl(t) on the time
scale of the averaged relaxation process. Note, however, that
the decoupling is valid at any relation between the frequen-
ciesn j and the amplitudesl j of the dichotomic field.

According to the averaging procedure given in Sec. III B
we obtainS̄0(t,t8)5R(t2t8) and, hence, we may write in
Eq. ~48! @in accordance with Eq.~34!# S̄12;12(t,t8)
5M (t2t8), andS̄21;21(t,t8)5M* (t2t8). Since the noise
averaged kernels in Eqs.~48! depend on the time difference
t2t8, the averaged quantitieskj[Ḡj (t) do not depend on
time t. As a result, the stochastic equation~47! is reduced to
the averaged rate equation

Ṅ1~ t !52~k11k2!N1~ t !1k2 , ~50!

with the noise averaged rate constants

k15E
0

`

dv J~v!@ I ~v!„11n~v!…1I ~2v!n~v!#,

~51!

k25E
0

`

dv J~v!@ I ~v!n~v!1I ~2v!„11n~v!…#.

The spectral strengthJ(v) is given by Eq.~46! and we had
introduced

I ~v!5
1

p
ReM̃ ~v!,

M̃ ~v!5 lim
h→10

E
0

`

dt e2hteivtM ~t!. ~52!

A comparison betweenM̃ (v) and the quantities~34! shows
thatM̃ (v)5R̃12;12(2 iv), and, hence, the stochastic char-
acteristics are represented by the following structure of the
spectral functionI (v) of the dichotomic process:

I ~v!5
1

p
lim

h→10

1

Ar H S n11n2
2

1h D
3F ~v2V2!sin~a/2!1~g21h!cos~a/2!

~v2V2!21~g21h!2

2
~v2V1!sin~a/2!1~g11h!cos~a/2!

~v2V1!21~g11h!2 G
1S v2 2

n1l11n2l2

n11n2
D

3F ~v2V2!cos~a/2!2~g21h!sin~a/2!

~v2V2!21~g21h!2

2
~v2V1!cos~a/2!2~g11h!sin~a/2!

~v2V1!21~g11h!2 G J . ~53!

This expression is valid for (n11n2)
2> 16(l12l2)

2. If
(n11n2)

2< 16(l12l2)
2 one has to replacea by p2a. In

Eq. ~53! we may puth5 0 at arbitrary relations between
parametersn j and l j , except the casesl1'l2 and
n2@ 4(l12l2)

2, wheng2' 0.
The solution of Eq.~50! simply reads

N6~ t !5N6~`!1@N6~0!2N6~`!#exp@2~k11k2!t#, ~54!

with

N1~`!5
k2

k11k2
, N2~`!5

k1
k11k2

. ~55!

The transition rate,k5k11k2, as well as the equilibrium
populations depend on the characteristic parameters of the
stochastic field,n j andl j , @through the functionI (v)# and
on the coupling to the TBk l , @through the spectral strength
J(v)#. If the stochastic alternation of the intersite coupling is
reduced to the special casel15l25l, the spectral function
of the dichotomic process reduces toI (v)5d(v2 2l), and
we have

k15J~2l!@11n~2l!#, k25J~2l!n~2l!. ~56!

This equation together with Eq.~44! demonstrate that the
ratio j(T)[N1(`)/N2(`) between the equilibrium popula-
tions ~55! reduces to the standard Boltzmann’s factor

j~T!5k2 /k15n~2l!/@11n~2l!#5exp~22\l/kBT!.
~57!

Let us analyze the case where the intersite coupling obeys
stochastic properties. We will do that for the special case of
a symmetric dichotomic process. Putting in Eq.~53!
n15n25n, atl1Þl2 we find two types of the spectral func-
tion,

I ~v!5
1

pAn22 4~l12l2!
2

3F g2~n2g2!

~v2V!21g2
2 2

g1~n2g1!

~v2V!21g1
2 G ~58!
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and

I ~v!5
n

2pA4~l12l2!
22n2

F v1V2 2V2

~v2V2!21~n/2!2

2
v1V2 2V1

~v2V1!21~n/2!2G . ~59!

Equation~58! is valid forn2> 4(l12l2)
2, whereas Eq.~59!

is correct in the casen2< 4(l12l2)
2. In both equations we

introduced the following shortenings:

V5l11l2 , g65 1
2 ~n6An22 4~l12l2!

2!,

V65V6 1
2A4~l12l2!

22n2. ~60!

At a high frequency of a dichotomic field, when
n2@ 4(l12l2)

2, expression ~58! reduces to I (v)
5d(v2V) and the intersite coupling is given as the sum
l11l2 of the possible amplitudes of the stochastic field. As
a result, the transition rates are given by Eq.~56! with sub-
stitution of V by 2l. In other words, the symmetric high-
frequency dichotomic field does not break the equilibrium
ratio between the forward and the backward transition rates
initiated by a coupling to TB. This is not the case in the
opposite limit of a low frequency of the dichotomic field,
when n2! 4(l12l2)

2. Here the form ~59! reduces to
I (v)5(1/2)@d(v2 2l1)1d(v2 2l2)#, and the evolution
process is achieved in two independent ways governed by
the intersite coupling strengthsl1 and l2 without any
switching among them. It follows from Eq.~51! that in a
low-frequency field the transition rates are

k15
1

2 (
j51,2

J~2l j !@11n~2l j !#,

k25
1

2 (
j51,2

J~2l j !n~2l j !, ~61!

and, hence, the equilibrium ratio between both is only
achieved in the case when one value of the spectral strength
exceeds the other.

To obtain analytic results for the rate constants at an ar-
bitrary stochastic field frequencyn, one needs to know the
total frequency dependence of the spectral strengthJ(v)
based on a model of the TB. If, however, the coupling to the
TB is large at a separate quantum mode of frequency
v l5V0, the spectral strengthJ(v) may be reduced to
J(v)5 2pz2d(v2V0), wherez2 is the square of the effec-
tive coupling atv l5V0. A substitution of this form of
J(v) into Eqs.~51! results in the following rate expressions:

k152pz2@„11n~V0!…I ~V0!1n~V0!I ~2V0!#,
~62!

k25 2pz2@n~V0!I ~V0!1„11n~V0!…I ~2V0!#.

The plots of the functionsI (v) and I (2v), given in Fig.2,
show that in a wide frequency region the functionI (v) con-
siderably exceedsI (2v). So, at a low temperature, when
n(V0)! 1 andn(V0)I (V0)!I (2V0), the ratio of the level

populations is determined by the ratio of the spectral func-
tions of the dichotomic process only, i.e., by

j~0!5
I ~2V0!

I ~V0!
5

@~V02V!21g1
2 #@~V02V!21g2

2 #

@~V01V!21g1
2 #@~V01V!21g2

2 #
,

~63!

at n2>(l12l2)
2, and by

j~0!5
I ~2V0!

I ~V0!

5
@~V02V2!21~n/2!2#@~V02V1!21~n/2!2#

@~V01V2!21~n/2!2#@~V01V1!21~n/2!2#

~64!

at n2,4(l12l2)
2. Both expressions,~93! and ~94!, have

their minimum atV5V0 or V65V0, and increase up to 1
whenV@V0 or V6@V0, respectively.

Such a behavior may allow us to propose a specific
mechanism for a control of the transitions between extended
states. This control can be achieved by varying the frequen-
cies V and V6 through the amplitudesl1 and l2 of the
dichotomous field. Additionally, in the frequency region
n2, 4(l12l2)

2 the control of the ratiok2 /k1 can be real-
ized by a variation of the frequencyn. Actually, let
n2! 4(l12l2)

2, then V1' 2l1 , V2' 2l2, and for
V1'V0, or V2'V0, we have

j~T!5
k2
k1

'
n~V0!1j~0!

11n~V0!
, ~65!

with j(0)! 1. In particular, whenn(V0)@j(0), the ratio
~65! is transformed to the Boltzmann factor
k2 /k15exp(2\V0 /kBT). If one suddenly increases the am-
plitudes l j so that V6@V0 but n2, 4(l12l2)

2 or
n2> 4(l12l2)

2, the factorsj(0) andj(T) are comparable
to 1, and the forward and backward transition rates equal one

FIG. 2. Dependence of the spectral functionI (v) ~solid line!
andI (2v) ~dashed line!, Eq. ~59!, on the frequencyv ~in arbitrary
units!.
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another, i.e.,k2 /k15 1. Typical examples of the stochastic
field influence on the forward and backward transition rates
are shown in Fig. 3.

The above given analysis of the level-population evolu-
tion was formulated in the basis of the extended states
u1&,u2&. However, in the degenerated case the localized and
extended states fulfill the following relations:

u1&^1u2u2&^2u5u1&^2u1u2&^1u[ŝx ,

u1&^2u1u2&^1u52~ u1&^1u2u2&^2u![2ŝz , ~66!

u1&^2u2u2&^1u52~ u1&^2u2u2&^1u![2 i ŝy ,

where ŝ j are the Pauli matrices. Therefore, the ratesk1 ,k2
and other related expressions simultaneously describe the
evolution of the quantity r̄x(t)[sx(t)5s12(t)1s21(t)
5N1(t)2N2(t). But to obtain the evolution of the averaged
coherency r̄y(t)[sy(t)5 i @s12(t)2s21(t)#5 i @s12(t)
2s21(t)# as well as the population difference

r̄z(t)[sz(t)5s11(t)2s22(t)52@s12(t)1s21(t)# it is
necessary to average the set of stochastic equations

S ṙ12~ t !

ṙ21~ t !
D 52F i2l~ t !S 1 0

0 21D 1G'S 1 21

21 1 D G
3S r12~ t !

r21~ t !D ~67!

with respect to realizations ofl(t)5l1 ,l2. Since the relax-
ation rate

G'5 limv→0J~v!coth~\v/2kBT! ~68!

is only expressed through the strength~46! and, hence, is not
a stochastic quantity, the set~67! is similar to the equations
for rz(t) and ry(t) derived and solved earlier in Ref.@30#.
@To take advantage of the corresponding results one has to
identify 2l(t)[L01a(t), 2G'5j in Eqs. ~67!.# For this
reason we do not present the solutions of Eq.~67!, but com-
ment on the main physical results. First of all, we refer to the
fact that the definite form of the relaxation term in Eq.~67!
follows from the application of the Born and the Markov
approximation. Necessary conditions for these approxima-
tions have been discussed at the end of Sec. II B and at the
beginning of Sec. IV A. We add only that there is no need in
carrying out a decoupling procedure that of Eq.~44! since
G' is a nonstochastic quantity. Besides, the Born approxima-
tion is always valid ifG'!l j at any relations betweenl j
andn. The Markov approximation is not only correct for the
general relationtd!t r;G'

21, but also for the more specific
conditiontd!n21,l j

21. The last one follows from the fact
that after carrying out the average procedure the characteris-
tic time scale ofr̄12(t) is determined either byg6

21 or
V6

21.
Our second comment is related to the asymptotic behavior

of the level populations in the degenerated TLS. The station-
ary populationsN1(`)[s11(`) and N2(`)[s22(`) are
equal to one another, and the forward and backward transi-
tion rates~here, the transfer rates! coincide. Moreover, be-
cause the stochastic field influences the forward and back-
ward transfer rates in the same manner, one can only control
the total transfer process. Finally, by virtue of the Born ap-
proximation the general solution of Eq.~67! can easily be
obtained from Eq.~38! since Eq.~38! is in fact the solution
of Eq. ~67! with G'5 0. If G'Þ 0 butG'!l j , the solution
of Eq. ~67! coincides with that of Eq.~38! where the substi-
tution of g̃65g61G' for g6 must be performed. Thus the
minor role of the coupling to the TB in the degenerated TLS
and in the framework of the Born approximation is clearly
seen. Only in the special case of a high-frequency stochastic
field, i.e., at n2@ 4(l12l2)

2, when g1'n, g2' 0,
g̃25G' , the damping process, accompanying the transfer,
depends on G' @see Eq. ~38! at a' 0, when
V1'V25V,g2→g̃2'G' ,g1→g̃1'n#. However, the
role of the coupling to the TB in the presence of a stochastic
field is different for the transition processes between ex-
tended states of the TLS and for the transfer with strong
coupling to the TB@31#.

FIG. 3. ~a! Dependence of the transition ratesk1 ~solid line! and
k2 ~dashed line!, and~b! dependence of the ratioj(T) Eq. ~65!, of
the steady-state populations of theeigenstateson the amplitude of
fluctuations l2 in the case of a degenerated TLS (l153,
V050.1, andn15n250.1). In ~b!, the solid line corresponds to the
temperatureT50.1, and the dashed line corresponds toT50. All
quantities are given in arbitrary units.
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B. The case of the strongly nondegenerated TLS

Providing the inequalityv0@l j one can use the averaged
GKE ~12!: In such a manner, the rather difficult procedure to
average the GKE~14! can be circumvented. To obtain a
detailed picture of the transfer process we carry out calcula-
tions at an arbitrary relation betweenv0 and n j . For this
reason we cannot restrict ourselves to the Markov approxi-
mation. But, we apply the Born approximation with respect
to the system-TB interaction, i.e., we put (k lt0)

2! 1 where
t0

21;v0.
To find the kernel~13! one should take into account that

the dynamic matrix~9! is not a stochastic operator. Accord-
ing to Eqs.~4!, ~7!, and~42! the quantitŷ V&B vanishes and
the averaged interstate coupling strength,

l̄~ t ![l̄5~l1n21l2n1!/~n11n2!, ~69!

is independent of time, also the HamiltonianHD does not
depend on time. As a result, the matrix~9! has a diagonal
form

@SD~ t,t8!#11;115@SD~ t,t8!#22;225 1, ~70!

@SD~ t,t8!#12;125@SD~ t,t8!#21;21*

5exp@2 i ~«12«2!~ t2t8!/\#.

The eigenvalues«m of the HamiltonianHD5(m«mum&^mu
are given in Eq. ~28! where the quantities
a5 1,2, «a51,2

( j ) , D j are substituted bym56, «m51.2,
D5(v0

21 4l2)1/2, respectively. Theeigenstatesof HD may
be written asum&5(numnun& where with accord to the in-
equalityv0@l j we have

um1'dm11dm2sind, um2'2dm1sind1dm2 . ~71!

Here sind'(l̄/v0)!1. If we additionally take into consider-
ation the inequality (k lt0)

2! 1, the mixture between the av-
eraged level populationss11(t) ands22(t), and the aver-
aged coherencess12(t) and s21(t) appears in higher
approximations with respect toV only. In the framework of
the Born approximation this mixing is omitted, and the GKE
~12!, determining the quantitiessz(t)5s11(t)2s22(t)
's11(t)2s22(t), reduces to the following master equation:

ṡz~ t !'24E
0

t

dt8@4sin2dKs~ t2t8!1Q~ t2t8!#

3cos@v0~ t2t8!#sz~ t8!216i sin2dE
0

t

dt8Ka~ t2t8!

3sin@v0~ t2t8!#. ~72!

The correlation function~43! and the root-mean-square de-
viation sl

2 from Eq. ~41! are represented through the corre-
lation functions

Ks,a~t![ 1
2 @K~t!6K~2t!#, ~73!

Q~t!5l~t!l~0!2l̄25sl
2exp~2nt!.

related to the TB and the stochastic field, respectively.

As a result of the Born approximation the solution of the
non-Markovian master equation~72! coincides with the ex-
pression

sz~ t !52
G12G2

G11G2
1Fsz~0!1

G12G2

G11G2
Gexp@2~G11G2!t#

~74!

which is true in the long-time limit. In Eq.~74! the forward
(G1) and backward (G2) rates of the transfer are given by the
expressions

G15 8~ l̄/v0!
2J~v0!@11n~v0!#1ki/2,

G25 8~ l̄/v0!
2J~v0!n~v0!1ki/2. ~75!

ki denotes the longitudinal rate constant associated with a
pure stochastic influence on the transfer@see Eqs.~39!, ~40!#,
and J(v0) is the spectral strength of the TB given by Eq.
~46!. Equations~74!, ~75! demonstrate that the steady popu-
lations N1(`)'N1(`)5G2 /(G11G2) and N2(`)
'N2(`)5G1 /(G11G2), depend essentially on the relation
between the two kinds of damping processes. This observa-
tion can be done despite the fact of the additive contribution
of the transfer from two kinds of damping processes initiated
by a coupling to the TB and an interaction with a stochastic
field.

The ratio

j~T![
N1~`!

N2~`!
5

G2

G1
5

n~v0!1b

11n~v0!1b
, ~76!

b[
1

4

v0
2

v0
21n2 S sl

l̄
D 2 n

J~v0!

varies in a broad range. It starts at the Boltzmann factor
exp(2\v0 /kBT), if the interaction with the TB largely ex-
ceeds the stochastic field influence, and ends up at 1, if the
stochastic field influence dominates. For the spectral strength
we may writeJ(v0)'k0

2D(v0), wherek0 andD(v0) are,
respectively, the main coupling to the TB and the density of
the bath states nearv l5v0. The boundaries of this region
for j are given by the inequalitiesz2D(v0)@(n/v0

2)sl
2 and

(n/v0
2)sl

2@z2D(v0), where z[(l̄/v0)k0 is the effective
coupling to the TB. Figure 4 displays the dependence of the
ratio ~76! on the parameters of the stochastic field.

V. CONCLUSIONS

The present paper has been devoted to clarifing the influ-
ence of two fundamentally different kinds of nuclear motions
on quantum transitions. One type of nuclear motions is given
by low-amplitude vibrations of the environment which are
fast and which are assumed to be populated according to an
equilibrium distribution. Following the standard treatment of
such vibrational motion we attribute these vibrations to a
thermal~heat! bath. Such an assumption cannot be used on
the time scale of the transition process to characterize the
high-amplitude twisting and flipping motions of large, sepa-
rate molecular groups of the environment. The motion of
each group exhibits a stochastic behavior and has been simu-

54 4735QUANTUM PARTICLE TRANSFER IN A SYSTEM WITH . . .



lated by a stochastic field. Each kind of these two types of
nuclear motion requires their own specific averaging proce-
dure if one derives related GKE.

The averaging over the fast, low-amplitude nuclear vibra-
tions is equivalent to the ensemble averaging over the TB
states, and, hence, the ratio between any steady-state popu-
lation of the energy levels in the considered system coincides
with the Boltzmann factor exp(2D«/kBT). The averaging
with respect to the high-amplitude nuclear motions is re-
duced to the averaging with respect to the realizations of the
stochastic parameters of the quantum system@in the consid-
ered case of the transfer to the intersite coupling strength
l(t)#. As a result, one can describe the influence of high-
amplitude nuclear motions similar to external stochastic
fields. I.e., one can include the specific stochastic properties
of the environment directly into the Hamiltonian of a quan-
tum system through corresponding parameters.

In contrast to the TB action, the stochastic field does not
lead to the Boltzmann equilibrium ratio between steady-state
populations but results in an equidistribution of occupation
probability of the localized energy levels of a quantum sys-
tem. This behavior appears despite the consideration of a
nonzero energy difference between the quantum states@see
Eq. ~39!#. This distinction can be explained by the semiclas-
sical nature of the high-amplitude nuclear motions. The

transferring quantum particle~the quantum system in the
general case! practically does not influence the high-
amplitude nuclear motions and, thus, these motions are com-
pletely independent on the state of the quantum system.
Since they have a stochastic character their action on the
quantum particle can be understood as the action of an ex-
ternal stochastic field. On the time scaleDt of the transfer
process the stochastic fields produced by the high-amplitude
nuclear motions are nonequilibrium external fields. This is
the reason for their description by means of a stochastic pro-
cess instead of choosing a distribution function for their
characterization.

In the case of the low-amplitude motions one observes an
intensive energy exchange between the quantum system and
this part of the environment. Owing to such an exchange and
due to the fast relaxation within vibrational states, the TB
supports the stationary Boltzmann ratio between correspond-
ing populations and results in the irreversibility of the trans-
fer. It is precisely the equilibrium energy exchange and the
stochastic influence on a quantum particle that forms the
specific ratio between the steady populations@see, for in-
stance, Eqs.~65! and ~76!#.

The stochastic behavior of the environmental degrees of
freedom can appear on the time scale of the transfer process
if, e.g., macromolecular structures contain specific molecular
groups controlling different transport pathways. As an ex-
ample, we mention the flipping tyrosine ring embedded into
an electron pathway@45#, which statistically changes the
donor-acceptor intersite coupling strength@46#. In numerous
papers~see, for instance, Ref.@47#! the motion of such sepa-
rated groups has been described in the framework of the
stochastic theory. The description of high-amplitude nuclear
motions in using discontinuous stochastic fields is the sim-
plest way to take these motions into consideration. Such an
approach does not desire the introduction of a specific
Hamiltonian to include the above mentioned degrees of free-
dom. One must find only the physical model to determine the
amplitudes and frequencies of the stochastic parameters for
the desired quantum system rather than to solve the equa-
tions of motion for separated molecular groups of the envi-
ronment. Such an approach was first proposed by Anderson
@48# and Kubo@49#.
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