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Quantum particle transfer in a system with a discontinuous modulation of the intersite coupling
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The nonequilibrium density matrix technique is utilized to study the incoherent transfer of a quantum
particle coupled to a fluctuating environment. The dynamics of the environment is assumed to split into two
different types of molecular motions. The first type is associated with low-amplitude vibrations forming a
thermal bath(TB). High-amplitude displacements of separated molecular groups define the second type and
create stochastic fields for acting on the transferred particle. Specifying the TB by a set of harmonic oscillators
and the stochastic fields by a dichotomic process averaged kinetic equations were derived. These equations
enable us to construct a rate constants expressions and to find the steady-state populations for a quantum
particle. Regimes of enhanced or reduced particle transfer are discussed in detail in relation to the character-
istics of the stochastic field and the TE51063-651X96)07211-X

PACS numbse(s): 02.50.Ey, 02.50.Wp, 05.20.Dd, 05.6Qv

I. INTRODUCTION 21]. Redfield[22] and Bloch[23] were apparently the first
who tried to derive a generalized kinetic equati@&KE) for
Transfer properties of a molecular system embedded in the description of quantum transitions in a two-level system
condensed medium are determined by the interplay of dy¢TLS) interacting with a TB and a time-dependent field. A
namic and dissipative procesdds-10. Concentrating on a generalization of the Redfield-Bloch approach to the case of
local-state representation of a quantum particle moving irdiscontinuous stochastic fields was advocated by Burstein,
the molecular system under consideration the dynamic proZharikov, and Temkin24] and other$25—-27 in a semiphe-
cesses are characterized by the energy of the intrasite partid®menological way. An attempt to take into account, in an
localization and the intersite coupling resulting in quantumexact manner, the influence of the environment was under-
jumps of the particle between neighboring sites. In contrasttaken in different paperdo mention a few we refer on Refs.
the dissipative action of the environment can be attributed t25—28). In these papers, the environment was only consid-
several kinds of nuclear motions. These motions may diffeered by a time-dependent random field.
significantly in their characteristic time scales and, therefore, The correct treatment of dissipative processes is based on
may influence the particle transfer in different ways. First oftheensemble averagingith respect to the equilibrium states
all, one can set off from all possible motions the low- of the TB. Such a scheme was often used in combination
amplitude, nuclear vibrations forming a thermal b&fiB). with the Born approximatiorf29—-31], either for a weak
Due to very fast relaxational processes with typical time consystem-TB interaction or for the case of strong coupling, i.e.,
stantsr, in the order of 101'— 10 **s the vibrational states in the so—called noninteracting blip approximatidiBA)
forming the TB are populated according to an equilibrium[10,32—34. In the present paper we generalize the scheme of
statistical distribution. Since the characteristic time scale ofhe ensemble averaging taking into account the stochastic
the transfer processt fulfills the inequalityAt> 7, , the TB  processes.
can be described by an equilibrium density matrix. The paper is organized as follows. In Sec.ll the general
Considering high-amplitude twisted and flipping motionstreatment is presented including the derivation of the exact
of separate molecular groups or conformational fluctuationgveraged GKE. The solution of the GKE describing a TLS
with the typical timesr,> 7, this equilibrium description under the action of a stochastic field is explained in Sec. IIl.
does not hold. For instance, one may find in proteins value$ection IV deals with the simultaneous incorporation of a
of 7, of 1078— 10195 [11,17. As a result, the rearrange- stochastic field and a TB. The paper ends with a discussion
ment of these molecular groups creates stochastic fielddf the influence of the equilibrium and nonequilibrium part
which can be characterized by mean lifetimgs(or mean of an environment on the transfer of a quantum particle
escape frequencieg= 7, *) of the molecular groups related (Sec.V).
to the mean time they spent in the certain siteRemem-
bering the inequalityr, <At~ 7, introduced for the transfer
processes of interest the environment has to be simulated by
the TB and the stochastic fields, but not by the stochastic
fields alone. To derive the GKE valid for the averaged NDM,
To study systems where such a combined influence of a
stochastic field and a TB has to be considered the method of o
the nonequilibrium density matrikNDM) is utilized [13— o(t)=p(t)=Trgpgg(t), (1)

II. KINETIC EQUATIONS FOR THE AVERAGED
DENSITY MATRIX OF A QUANTUM SYSTEM
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wherepgg is the NDM of the quantum system plus the TB; respectively. In Eq9), (10) T denotes Dyson’s chronologi-
the trace operation Erhas to be carried out with respect to cal operator, and
the TB states, an® denotes the averaging with respect to A A
the stochastic fields; we divide the total Hamiltonielit) Li(t)=Sp*(t,00e™8'L;(t)e~ "-8'Sp(t,0),
into three parts
—z—1 —%-1
H(O=H(t) + Hy +V. @ Li(t)=A"[H;(t),...], Lg=A {Hg,...]. 1D
Equation(8) splits the evolution of the NDM into a part of
the averaged dynamic behavipria the averaged Hamil-
Ho(t)=Ho+H (1), 3) tonianHD(t)E_HS(t)+<V>[3_], qnd into the part of the_ aver-
aged relaxational behaviofvia the averaged deviations
consists of the Hamiltonian of the quantum system of interesH;(t)=H(t) —H(t) + V—(V)g where(V)g=TrgpgV].
(the main dynamic partH, and the partd;(t) including the For the practical calculations, one needs the appropriate
action of the stochastic fields. The Hamiltonian of the TB,expansion procedure with respect to the deviatidnd). It
Hg, describes the vibrational states of the environment. Ins possible to show from the exact for8) that in the im-

The first part

the harmonic approximation it reads portant case of the Born approximation, the averaged matrix
o(t) can be found from the following integro—differential
Ho= fio(bi b+ 1/2), 4) master equation
[
i ’ ! ’ ' ’
where o, is the frequency of thelth bath mode and, U(t):_'LD(t)U(t)_fOKO(t't Jo(thdt’, (12

b;"(b,) denote the respective creatigannihilation opera-
tors. Introducing an expansion in the localized stdteéswe  where the kernel
get for the system HamiltoniaHd , and the system-TB inter-

actionV the following general forn}7,21,29-32 Ko(t,t)=Tra[L;()Sp(t,t" Yexp{—iLg(t—t")}L;(t") pg]
(

HO:mE,n Himn [m) (nl, VZHEn, Fow M ('] ) can be calculated if one specifies the averaging procedure

R valid for the stochastic process under consideration.
Here,F . is the operator of generalized force introduced by The form(12) of a GKE is appropriate for the description
the TB. of quantum systems when the reverse damping ﬁﬁeof

the kernel(13) or the energy-level differenceA exceed
A. Averaged forms of the GKE modulations caused by the stochastic field and the TB. It
should be underlined that EqL2) is valid for any relation
between the amplitudes and frequencies of the discontinuous
©6) stochastic field.

Starting with the Liouville equation

ipse()=L(t)psgt),

where L(t)=#4"[H(t), ...], and the initial factorization

pse(0)=p(0)pg Where B. The stochastic form of the GKE

7) At strong stochastic field one must find a GKE which
goes beyond the second order with respect to the deviation

is the TB equilibrium density matrix, in accord with defini- H¢(t) —H¢(t). Using the approach given in Refd5,19,29
tion (1), one obtains the followingxactform of the desired and introducing the Born approximation with respect to

PB= exq - HB/kBT)/TI’BeX[I( - HB/kBT)

NDM: AV=V—(V)g one obtains
t)=Sp(1,00Sx(1,0)p(0). 8 - : o,
(=S (LAS(LBe(0) ® p(O=—iLd0p()- [ TttIpar. (s
Here, the pure dynamic and the averaged relaxation matrixes
read

Here, the density matrix of a quantum systefit), as well
as the superoperatdrg(t)=# "1 (Hg(t)+(V)g), ...] and

~ t
SD(t,t’):Texp{ —if LD(r)dr}, the relaxation matrix
t/
_ L(t,t")=Trg[LyS(t,t")Lypsl, (Ly=r YAV, ...]),
Lp(t)=A""Hp(1), ...], C) (15)
and are random operator functionals. The evolution matrix
~ t N ’ H ’
sR(t,t'):TrBexp{—iLB(t—t')}TeXp[—if LiT(T)dT]pB, S(t,t")=So(t,t")exp{ —iL g(t—t")} (16)
t/

(10 of Eq. (15) is expressed through the random dynamic matrix
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N [t 1
So(t,t,)ZTeX%_|ft,Ls(T)dT). (17) an;mrn/(t,t/): h_izrr’{Kmr;r’m’(t_t,)srn;r’n’(t't’)
+Kn’r’;rn[_(t_t,)]smr;m’r’(tatl)
In contrast to the GKE(12) for the averaged NDM ~Kenrrm (t=1)Smpep e (1)
o(t) =p(t), the approximate master equatidd) represents ' '
a stochastic GKE for a nonaveraged NQi(t) where, how- —Knrerimd = (=) 1Sim;mr e (1,17},
ever, the stochastic field is taken into consideration in an (20)

exact manner(For equations like Eq(14) the averaging
procedure has been discussed in a number of papers, segpectively. The correlation function
Refs.[25,28-30,32,3p.

Despite non-Markovian properties of Ec(;L4) non- Kab;a’b’(t_t,):<AFabAF:’tr>B (21)
Markovian contributions only become of some importance if
one introduces higher-order approximations with respect Qs the force fluctuations A,“:ab:ﬁab_““:ab)B with
AV (see, for instance, Ref§19,21,29,3%. Practically, the AI‘:tab: exp(—iLBt)AIEab determines the action of the TB on

- N X o N
approximationp(t')~p(t) is valid if the characteristic time the relaxation process in a quantum system whereas the dy-

7q Of the kemell'(t,t") in Eq. (14) satisfies the inequality 5 yie corrections of the relaxation process are defined by the
79<7; [37]. Here, 7, determines the time scale of the relax- ;- < matrix elements

ation behavior ofp(t) initiated by the interactiorV. This

statement has been proven by Oppenheiral. [38] for a ()= AT

TLS interacting with a TB. If{ denotes the effective cou- Saar (L) =(@ISo(tt) Yaror[D) @

pling constant between the TB and the quantum systenthis fact demonstrates the complex behavior of relaxation
I'(t,t’) is proportional to {°. Consequently, we get processes in a quantum system interacting simultaneously
7, 1~ %74, and the Markov approximation is valid for with a TB and a stochastic field.

({79)%< 1. The inequality {74)?< 1 simultaneously char- To average Eq(14) [or its tetradic form(18)] one has to
acterizes the applicability of the Markov and the Born ap-specify both the stochastic process and the quantum system.
proximation only if the characteristic time, of the pure In the problem under consideration we choose the discon-
dynamic processes exceetls. If A is a typical energy dif- tinuous Markovian kangaroo proce@&P) [24,25,29,3% To
ference in the considered quantum syst@n as the fre- specify a transfer process one has to note that it consists of
quency of an external fieldve may writer,~A "1, and the  elementary jumps between different sites of particle localiza-
condition 74A< 1 must also be valid. If4A> 1 the Born tion. Therefore, we will concentrate in the remaining part of
approximation is correct because &% rr’l, but the appli- the paper on a detailed investigation of particle transitions in
cability of the Markov approximation is questionable. Nev-a TLS.

ertheless, one can apply the Markov approximation to the

GKE already averaged on the time scale~A ! of a fast Ill. RESTRICTION ON THE INFLUENCE

dynamic process. For the example of a transfer process in the OF THE STOCHASTIC FIELD

TLS all quantitiesZ, 74,A will be specified in Sec. IV.

To proceed further we change to a representation of the Neglecting the coupling to the TB we ha¥t,t’)= 0.
GKE (14) in the localized statén). In the tetradic represen- | N€ formal solution of Eq(14) for the noise averaged NDM

tation the GKE reads follows as
o(t)=oo(t)=Sp(t,0)p(0), (23
prr(t)=—1 2 [Lmn;m;n;(t)pm,n;(t) where the stochastic field will be specified to a nonsymmet-
m'n’ ric dichotomous one. The remaining problem concerns the
t correct averaging of the dynamic mati$(t,0).
—f Inemn (68 prre (1) dE (18 It is necessary to note here that in the standard treatment
0 one finds the quantity(t) = p(t) by averaging Eq(14) for

the special casE(t,t") = 0 (see details, for instance, in pa-
pers [28-30,32 and especially[40]). Unfortunately, this
where the s_tochas_tic dynamic and relaxation matrices argrocedure only yields an exact result for a symmetric di-
given by their matrix elements chotomous process. For the case of a nonsymmetric dichoto-
mous process one can use a technique proposed by Brissaud
L and Frish[39]. Below we will follow this approach.
L (1) ﬁ{[HS(t)+<V>B]mm’ Onn A. General form of the averaged NDM
—[Hs(t) +{V)g]n'nOmmr } (19 Let R(t)=Sy(t,0). Since the stochastic matrix7) obeys
the necessary condition introduced in the approach of Bris-
saud and Frish, the matriR(t) can be found from its
and Laplace transform
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R(p)=A(p)+ vA(p)[v1— ?A(p)] vA(p). (24

[ [ 1%
=2 Wprjey, a=2 Wirjg;, b= WiB;,
For the dichotomous process under consideration we have . . .

2 ~

v _ I _ I _ I
' = U B =7l CI_Z Wjviy;, ul—Z W,v;é;, W|—Z W;v; 6,

yA(p)_JZ,l Wigrrin (L=t TR D, = Y — Wi7) = V)

(31

2 . . . .

=S W,v,= 20105l (v 4 1), (25 where the following shortenings have been introduced:

=1

a;=D; [(p+v)?+fi+ 297],
where the probabilitiesV, ,= v, ,/(v,+ v,) are given by the
escape frequencies, ,v,. The HamiltonianH; (j= 1,2) is Bj=—inlgj(p+ vi—if;),
the possible realization of the TLS Hamiltonian
yj=2D;'g?,  &=D; '[(p+v)(p+y—if))+297],
(32)
He()= D Eqln){n|+AN)(|1)(2]+]2)(1]) (26)
S nSio nl >< | | >< | | >< | DJ:(p+V1)[(p+V1)2+AJZ]
if the fluctuating intersite coupling strengit{t) is replaced  The quantitiesﬁj and’g}. are obtained fromg; and &, , re-
by its realizationsk; and A,. Using the representation spectively, in substituting-i by i. (Note, that the conditions
|n)=|%) where B=p* and 6=6* are not fulfilled sincep is a complex
. quantity). In Eq. (32) the quantities
Hi=2 HU )],
' )
4 . . gi=3A;sin2¢;, f.=A;cos2p; (33
HQL=8(1”CO§¢J~+8(2”Sin2¢j, b . ! . .
determine the pecularities of the stochastic process via the

HY. = 8(1J)Sin2‘Pj + 8(2”0052901 ) 27 relations between realizations of the intersite random cou-
_ ) pling A(t) and the specific frequencwo=(E;—E))/%.
HY. =HY, = —35A;sin2¢;, Equations(24), (30), (31), (32), and(33) specify the exact
RPN o expression for the Laplace transforR(p) of the desired
ande;j=—(-1)¢, ¢=(x17x2)/2, matrix R(t) itself. A detailed inspection shows that each ma-
1 trix element ofR(p) is defined as a proper rational fraction
82)=§[El+ E,—(—1)%hA;], Aj=Vwg+ 47, and, in addition, the denominator’s roqss of these matrix
elements are given as simple roots. As a result, the time
(hwe=E,—E,>0), (28) behavi_or ofR(t) is determined by a sum of terms containing
multipliers expfjt).
tany; =%|\;|/(e, V- Ey), (29) Below we specify the evolution processes in a TLS to the

case of degenerated levels, i.eg= 0, and to the strongly
one can derive the following expression for the averagediondegenerated caﬁ%>|)\j|.

matrix (25)
a a by ¢ B. The case of the degenerated TLS
JA(D)= a W G T _ (30) In accordance with Eqs(28) and (29), at wy,= 0 and
by ¢ w Db \j= 0 we obtainy;=m/4 and ;= 0 for both realizations,
¢ —a -b z N1 and \,, of the intgrsite poupling strength(';). Since
¥j= 0, B;= 0 the matrix(30) is reduced to the simple form
The various matrix elements read with the following nonvanishing elements:
- ~ 1
Ritv;++(P)=R__.__(p)= B,
~ 2p(V1+ V2)+(V1+ V2)2+4i(1/1)\1+ Vz)\z)
Ri—+-(P)= (34)

V1+ Vo (p+ 2')\1)(p+ V2+ 2|)\2)+(p+ 2|)\2)(p+ V1+ 2')\1) ’
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[R_.._.(p) follows from R, _., _(p) in substitutingi by 2(v1—v2)(A1—\y)
—i]. From EQq.(34) one finds immediately the polgs= 0 tana= 12— 40\ ,—\p)|
andp, ;= — y- —iQ. of the matrixR(p) and, thus, the ana-

lytic form of the matrixR(t). The damping factorsy.. as  (gfiect the dependence of the transfer process on the ampli-
well as the effective frequencied. given by the expres- yqes), ), as well as frequencies, , v, of the discontinu-

sions ous stochastic field. Expressioné35) are valid for
1 N ’=4(\;—\,)? and w/2=a=0. If v><4(\;—\,)?, one
7+:_(Vi \/Fcos—), has to substitute « by #—a (we choose

2 2 V1>V2, )\1_)\2>O)

1 Let the particle stay at site 1 fdr=0. With the reverse
Qiz()\l'F)\z)i—\/FSinE, (35) Laplac_:e transform gnd Eq$34), (350 we may derive t_he
2 2 following expressions for the level populations

Na(t)= t). In the basis of the stat¢a)=| =), one finds
where the quantities a(t)=044(t) ¢R)=|*)

r=V[v?= 4\ 1= Np)? 1P+ 4(v1—v2)%(A1—\p)?, N ()=3Riss (D=3, N_(H)=3R__.__()=3.
(37
1 36
=gt (36 Alternatively, in the basis of localized statgs we have

Ny(t)= %1[R++;++(t)+R——;——(t)+R+—;+—(t)+R—+;—+(t)]
:E+ ;{eyt (v + 1;2)2+2(vl+1/2)\/Fcos(i)cos<ﬂ_t+z
2 8(v,+ Vz)\/F 2 2

+2 —e 7!

(62
01e2)

(04
> (v1+v2)2—2(vl+v2)\/FCOS§

2(1/1_ VZ)()\l_)\Z)—'_(Vl—'_ V2) \/FSIF%) sin

XC05<Q+I+§)+ 2 2(1/1_Vz)()\l_)\z)_(vl"‘Vz)\/FSing)Sin(Q+t+g ], Nz(t): 1_Nl(t) (38)
|
In Fig. 1, the typical picture of the evolution process in a o_()=[o._(D]*.

TLS is given for the case®< 4(\;—\,)?. One clearly ob-
serves the difference between the symmetrig=(v,) and  Here, the longitudinal and transverse rate constaptand

the asymmetric £, # v,) influence of the dichotomous sto- K. , respectively, are expressed by the root mean-square de-
chastic field. In particular, this asymmetry of the stochasticviation o5 , as
process generally favors the coherent character of the particle

2 _ 2
transfer in the TLS. e ok — 20w o Viva(M— o)t (41)
I L V2+ wé’ N 41/2
C. The case of the strongly nondegenerated TLS Similar expressions had been derived earlier for a symmetric

dichotomic processy;=v,=v at a Kubo number when
0)2\/1/2< 1 (see[42,43). However, our estimations show that

the expressiori41) holds not only ato?/1?< 1 but also at
4

Providing the inequalitywy>X;, the energy levels:{
and 8(21) of the delocalized statdsee Eq.(28)] are nearly
identical with the level€; andE; of the localized states. In= ™ 2F" = > o )
accordance with Eq(29) it follows x;~ 0. Therefore, the o3/ (v*+ wp) < 1 when oy v*<w,. This allows us to draw
quantities sigp; in Egs.(31)—(33) can be used as small ex- the important conclusion. Even though the stochastic field
pansion parameters. As an example, we present analytic riitiates a damping process, it only leads to an eql_Jipartition
sults being valid av;<w, and at any relations between the of level population, i.e.N; () =N(«)= 1/2. And this eq-
frequenciesv, v, and the intersite couplings; ,\,, i.e., at uipartition does not depend on the energy difference
any value of the respective Kubo numb&7,40,41. Ac- E;—Ea

cording to this expansion procedure we get
IV. SIMULTANEOUS ACTION OF THE STOCHASTIC

N ()~Ny(t)~ 1/2+[p13(0) — 1/2]lexp{ —Kkt}, (39 FIELD AND THE THERMAL BATH

In this section we will investigate the influence of a sto-
o _()=~a(t)=~p0)expg —iwetlexp{—k, t}, (40)  chastic field on relaxation processes initiated by the coupling
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1.00 - the dynamic model, the stochastic field, and the coupling to
E U Vitv,=1 the TB. As in the foregoing section we consider the case of
§ ' i =25 A,=0.2 the degenerated and strongly nondegenerated TLS. In addi-
0.80 4 | tion, we restrict ourselves to the weak-coupling limit with
, ] respect to the TB, i.ex<\?. The case of a strong cou-
S 0.60 pling to the TB was already considered[B2)].
-2 0.
«©
'_g: A. The case of the degenerated TLS
8*0'40 Sincewy= 0, the coherent part of the transfer in the TLS

is determined by the quantities;= 2\;. The condition
<A2 of a weak coupling to the B c0|nC|des with the
condmon necessary to apply the Born approximation. To be
1 more concrete we further specify the correlation function
T e T e N B0 60 " 3500 (43) to the case of a fast c_zlecaWode_I estl_matlons of th_e
scaled time spectral strengtl46) result in decay times in the ps region
[38].) In accordance with the results of Sec. Il B non—
FIG. 1. Dependence of the level populatiia(t) on timet (in ~ Markovian effects are not essential in E4s4) and (18) if
arbitrary units in the case of a degenerated TLS for the differentthe conditionr; '~ «k?ry< 74 '~7;* is valid. Below we put
jump frequencies; and v,. The jump amplitudes; and\,, and (K 7,)%< 1, and hence, one can apply the Markov approxi-
the autocorrelation time of the fluctuations: 2/(v, + v,) are fixed.  mation for the time scale of the order of. If ’Tb >)\ the
condition (x;7,)?< 1 replaces the inequality| <)\2 wh|ch
to a TB. To specify the coupling to the TB we choose anholds in the case of the Born approximation. BeS|des the
expression known from the spin-boson mofie0]. Hence, inequality (x;7,)2<< 1 allows us to extend the upper limit to
the system-TB interactiofb) will be fixed by the operator o in Egs.(14) and(18). This supposition is in line with the
F, of generalized forces according to discussion given in Sec. Il B.
A further problem is related to the noise averaging of Eq.
(14). 1t is well known that the decouplingl(t)p(t)
=T(t)p(t) is correct at small Kubo numbers, i.e., at
(420 \jv;'< 1. However, it is possible to show the following

h l ttebath mod |mportant property. If in the absence of any system-TB in-
riere,x serves as the coupling constant to ath mode. teraction, relaxation does not occur despite the presence of

Noting Egs.(4), (5), (20), anc_i(21) it bgcomes obvious that the stochastic field, the decoupling is valid at any relation
all elements of the relaxation matrik(t,t’) can be ex- between\ . and v-

d by the sinal lation f ) i - We take notice of this property in solv-
pressed by the single correlation function ing the equations for the level populations in the basis of the

delocalized stateks+) and|—). From Egs.(20), (21), (42),
and (43) we may derive that Eq14) splits off into two sets
) , ‘ of equations. The first set determines the level populations
=2 k(@) ™+ @ +n(w))e” 7], 43  p, . (1),p__(1)= 1—p. (), whereas the second one is
' valid for the coherencep, _(t),p_.(t). In the stochastic
where equation

0.20 3

Fan'=Fndny, Fi1= —ﬁzzﬁzﬁZI Kby +by).

K(r)=K*(—7)=(AFAF7)g

n(w)=[expfio, /kgT)— 1] * (44) pi+()==T1(D)p, . () +T2(t)p_ (1), (47)

denotes the Bose distribution function. For the sake of conthe relaxation parameters
venience we rewrite the correlation functiof) as

1 ©
L | P0= gz ik e-ts, o
K(r)= ﬂjo [N(w)e'*™+ (1 +n(w))e "I (w)dw, 0

(45) +K(t—t)S ;.. (t,t)], (48)

whereJ(w) is the spectral strength of the TRO0,34,3§, .
Ty(t)= hz CAUIK*(t-t)S_ . (tt)

J(w)= 2772 K|25(cu—w|), (w=0). (46) +K(t=t)S, _.,_(t,t))]

The frequency dependence can be specified in relating thare expressed by the elements of the stochastic dynamic ma-
guantity to different models of an environmegee, e.g., the trix Sy(t,t") [see Eq.(22)], and by the correlation function
examples in34,38,44). (43) of the TB.p, ,(t) is constant if the coupling to the TB

All types of further approximations strongly depend on has been neglectddee Eq(37)]. The relaxation parameters
the relation between the various parameters following froml"((t) and I';(t) are retarded stochastic functionals of the
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intersite coupling\ (t). Besides, they also incorporate the 1 1 ({ v+,
dissipative influence of the TB . Resulting from this, thel(w)=— lim — 5 77)
relaxation constants define a rather complicated stochastic 7777%+0\/F
process with unknown properties. Nevertheless, one can con- _ :
clude that the time scale of the stochastic evolution of x[(w Q,)sm(a/2)2+(y,+1;)(;os{a/2)
I';(t) andT »(t) should correspond to the time scale?. (0=Q_ )+ (y-+n)
To obtain the noise averaged equat{dB) the decoupling (0—Q.)sin(a/2) + (v, + p)cod al2)
_ = (0=Q )+ (y:+7)°
Lj(1) p (=T (1) p () (49
- 2V1)\1+ V2)\2
could be used. It works at small Kubo numbers of the in- Vit vy

duced stochastic process representedl’bgt) and I'5(t).

The Kubo number could be defined Kg=ATI'/v, where

AT is the mean-square amplitude of the fluctuations of the

relaxation parameters. Sindg;(t), I',(t)>0 at any time (w—Q,)cog al2)—(y.+ n)sin(al2)

t, itis clear thatAI' cannot overcome,‘l. Hence, we have - (0—Q. )%+ (v, +17)2

Kr~1/v7,<1, and the validity condition of the decoupling * LA

(49) corresponds to the fast fluctuations)dft) on the time  This expression is valid for i+ v,)2= 16(\;—\,)2. If

scale of the averaged relaxation process. Note, however, thgy + ;,,)2< 16(\,—\,)2 one has to replace by 7— a. In

the decoupling is valid at any relation between the frequengq. (53) we may puty= 0 at arbitrary relations between

ciesv; and the amplitudes; of the dichotomic field. parametersv; and \;, except the cases\;~\, and
According to the averaging procedure given in Sec. lll B},2s. 4(\,—\,)2, wheny_~ 0.

we obtainSy(t,t')=R(t—t’) and, hence, we may write in The solution of Eq(50) simply reads

Eq. (48) [in accordance with EQ.(34)] S,_.._(t,t")

=M(t—t'), andS_,._ (t,t')=M*(t—t’). Since the noise N=(D)=N()+[N-(0) =N () Jex — (ks +ko)t], (54)

averaged kernels in Eq&48) depend on the time difference

(0—Q_)cog al2)—(y_+ p)sin(al2)
% (-0 )2+ (y_+7)?

} . (53

t—t’, the averaged quantitigg=T'j(t) do not depend on with

timet. As a result, the stochastic equati@y) is reduced to K, K,

the averaged rate equation N ()= m N_()= Kk, (55)
N, ()= —(k;+ ko) N, (1) + Ky, (500  The transition ratek=k;+k,, as well as the equilibrium

populations depend on the characteristic parameters of the
stochastic fieldy; and\;, [through the functiorl (w)] and
on the coupling to the TH,, [through the spectral strength
J(w)]. If the stochastic alternation of the intersite coupling is
o reduced to the special casg=\,=\, the spectral function
ky= fo doJ(@)[I(0)(1 +n(e)+1(=-w)n(w)], of the dichotomic process reducesl{@)= 6(w— 2\), and
(51 We have

with the noise averaged rate constants

ki=J(2M)[1+n(20)],  ke=J(2M)n(2N).  (56)

K= fo doJ(o)[l(0)n(w)+1(— o)1 +n(w))]. This equation together with Eq44) demonstrate that the
ratio £(T)=N, ()/N_() between the equilibrium popula-
tions (55) reduces to the standard Boltzmann’s factor

The spectral strength(w) is given by Eq.(46) and we had
introduced E(T)=ky/ky=n(2N)/[1 +n(2\)]=exp(—2AN KgT).
(57)

()= EReM(w), Let us analyze the case where the intersite coupling obeys
™ stochastic properties. We will do that for the special case of
a symmetric dichotomic process. Putting in E@J)
_ " v1=v,=v, atA1# \, we find two types of the spectral func-
M(w)= lim f dre” 7€ ™M (7). (52)  tion,

n—+0 0

(w)=

1
A comparison betweeﬁ(w) and the quantitie$34) shows VP — 4N1—\y)?
thatM(w)=R; _., _(—iw), and, hence, the stochastic char-

acteristics are represented by the following structure of the 7—(”_27—)2 _ 7+(V—27+)2
spectral functiorl (») of the dichotomic process: (0=Q)+y2 (0—Q)"+v%

(58)
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and 0.60 -
E vi=v,=0.5
o) ” w0t O— 20 I(&z))50 : =25 Ap=0.2
w)=— . =
2mAN—Np)2— 12 (0= Q )*+(v/2)? ]
wt+ Q- 20, 0.40 3
- 2 2| (59 ]
(0—Q )+ (vI2) E
0.30 3
Equation(58) is valid for v?= 4(\;—\,)?, whereas Eq(59) ]
is correct in the case’< 4(\;— \,)?. In both equations we 0.20 1
introduced the following shortenings: E
0.10 3
Q=N1+h;,  y=2=3(rE1P— 41—\, RN
1 0.00 EHy|\||\|:||_||_|||_|||1ru|||v||||Trrr||||(|u||vvrr
Q. =0+ 1Ja(N—\y)7—02 (60) 0.00 1.00 2.00 3.00 4.00 5.00

At a high frequency of a dichotomic field, when

v?> 4(\;—\,)%  expression (58) reduces to |(w) FIG. 2. Dependence of the spectral functi) (solid line)
=d(w—1Q) and the intersite coupling is given as the sumandi(— w) (dashed ling Eq.(59), on the frequenc (in arbitrary
N1+ \, of the possible amplitudes of the stochastic field. Asunits).

a result, the transition rates are given by Eff) with sub-

stitution of ) by 2\. In other words, the symmetric high- populations is determined by the ratio of the spectral func-
frequency dichotomic field does not break the equilibriumtions of the dichotomic process only, i.e., by

ratio between the forward and the backward transition rates

initiated by a coupling to TB. This is not the case in the (- Q) [(Qo— Q)2+ Y2 [(Qo— Q)2+ 2]
opposite limit of a low frequency of the dichotomic field, &(0)= () TG T Y AT T T SN AT
when »2< 4(\;—\,)2. Here the form(59) reduces to (o) [(Qo+ Q)7+ 72 1o+ Q)7+ 77 ]

1(0)=(12)[ 8(w— 20,)+ 3(w— 21,)], and the evolution (63
process is achieved in two independent ways governed by, ENEY
the intersite coupling strengths; and A, without any o =(A1712)% and by
switching among them. It follows from Ed51) that in a -0
low-frequency field the transition rates are £0)= ( . ;))
1(Qo
1
k=5 2 I(2A)[1+n(2\)], _[(Qo— Q)2+ (»12)*][(Qp— 1)+ (v/2)?]
e [(Qo+ Q)2+ (12 Z][(Qp+ Q)2+ (v/2)7]
1 (64)
ko=5 2 J(2\)N(2\)), (61)
25

at ¥2<4(\;—\,)2. Both expressions(93) and (94), have
their minimum atQ=Q4 or Q. =0, and increase up to 1

and, hence, the equilibrium ratio between both is only hen> 0, or 0. >0, respectively
=310 =>310, .

achieved in the case when one value of the spectral streng Such a behavior may allow us fo propose a specific

exceeds the other. mechanism for a control of the transitions between extended
To obtain analytic results for the rate constants at an ar-

. g tates. This control can be achieved by varying the frequen-
bitrary stochastic field frequency, one needs to know the S .
total frequency dependence of the spectral strerfih) cies () and (). through the amplitudes, and\, of the

. dichotomous field. Additionally, in the frequency region
based on a model of the TB. If, however, the coupling to the ', 2 ;
TB is large at a separate quantum mode of frequency < 4(A,—);)" the control of the ratid,/k, can be real-

c .

w=Q,, the spectral strengtld(w) may be reduced to Yzfg 4b)3: i\)\vazrlatltcr)]n oi) thf zf{equgncf '2):A ctuall)é, ]I=Et

J(w)= 2w25(w—Qy), where? is the square of the effec- ¥ N( 1~ A2) T eN B2+ A, - Shg, andodor

tive coupling atw;=,. A substitution of this form of 2, ~Q, 0r ) _~{, we have

J(w) into Eqgs.(51) results in the following rate expressions: Kk, n(Qg)+&(0)
2 0

== (65)

ky=2m?[ (1 +n(Qo)(Qo) +n(Qo)I (— Q)]
(62)
ko= 27Z2[N(Q)1 (Qg) + (1 +Nn(QI(— Q)] with £(0)< 1. In particular, whem(Qy)>£(0), the ratio
(65 is transformed to the Boltzmann factor
The plots of the function$(w) and|(— ), given in Fig.2, Kk,/k;=exp(=%Qq/ksT). If one suddenly increases the am-
show that in a wide frequency region the functigw) con-  plitudes \; so that Q.>, but < 4N ;—\y)? or
siderably exceed$(— ). So, at a low temperature, when v?= 4(\;—\,)?, the factors¢(0) and&(T) are comparable
n(Qp)<< 1 andn(Qy)1(Qg)<<I(—Qp), the ratio of the level to 1, and the forward and backward transition rates equal one
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FIG. 3. (a) Dependence of the transition rates(solid line) and
k, (dashed ling and(b) dependence of the rati§(T) Eg. (65), of
the steady-state populations of tbgenstateon the amplitude of
fluctuations N\, in the case of a degenerated TLS\;E3,
0,=0.1, andv;=r,=0.1). In(b), the solid line corresponds to the
temperaturel =0.1, and the dashed line correspondsTte0. All
quantities are given in arbitrary units.
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pA) =0 ()=0n(t) — o t)=—[o, () +o_, ()] it is
necessary to average the set of stochastic equations

(b+(t)> 1 0 ) 1 -1
_ = +T,
p_+ (D) 0 -1 -1 1
% p+—(1)
p—+(t)

with respect to realizations of(t) =\ ,\,. Since the relax-
ation rate

i2)\(t)<

(67)

I' =lim,_ oJ(w)coth i w/2kgT) (68
is only expressed through the stren¢dé) and, hence, is not
a stochastic quantity, the s@7) is similar to the equations
for p,(t) andp,(t) derived and solved earlier in R€f30].
[To take advantage of the corresponding results one has to
identify 2A(t)=Ly+ a(t), 2I', =¢ in Egs. (67).] For this
reason we do not present the solutions of &T), but com-
ment on the main physical results. First of all, we refer to the
fact that the definite form of the relaxation term in E7)
follows from the application of the Born and the Markov
approximation. Necessary conditions for these approxima-
tions have been discussed at the end of Sec. Il B and at the
beginning of Sec. IV A. We add only that there is no need in
carrying out a decoupling procedure that of Edd4) since
I', is a nonstochastic quantity. Besides, the Born approxima-
tion is always valid ifI’;, <\; at any relations betweex;
andv. The Markov approximation is not only correct for the
general relationry<< rr~l“jl, but also for the more specific
condition 74<< vfl,)\j’l. The last one follows from the fact
that after carrying out the average procedure the characteris-
tic time scale ofp, _(t) is determined either by.' or
(O

Our second comment is related to the asymptotic behavior
of the level populations in the degenerated TLS. The station-
ary populationsN;()=011(°) and N,()=o0,,() are
equal to one another, and the forward and backward transi-

another, i.e.k,/k;= 1. Typical examples of the stochastic tion rates(here, the transfer ratesoincide. Moreover, be-
field influence on the forward and backward transition ratesause the stochastic field influences the forward and back-

are shown in Fig. 3.

ward transfer rates in the same manner, one can only control

The above given analysis of the level-population evolu-the total transfer process. Finally, by virtue of the Born ap-
tion was formulated in the basis of the extended stateproximation the general solution of E¢7) can easily be
|+),|—). However, in the degenerated case the localized andbtained from Eq(38) since Eq.(38) is in fact the solution

extended states fulfill the following relations:
[XH === =112 +[2)(2 =0y,
[ === (1K = [2)(2)) =~ 0, (66)
[ == 1= = =12l =[2) (1) =—ioy,

where z}j are the Pauli matrices. Therefore, the ratesk,

of Eq.(67) with ', = 0. If I'; # O butI', <\, the solution

of Eq. (67) coincides with that of Eq(38) where the substi-
tution of y.=vy.+TI, for y. must be performed. Thus the
minor role of the coupling to the TB in the degenerated TLS
and in the framework of the Born approximation is clearly
seen. Only in the special case of a high-frequency stochastic
field, i.e., at v*> 4(\;—\,)?, when y,~v, y_~0,
y_=T", , the damping process, accompanying the transfer,
depends on I, [see Eqg. (389) at a=~ 0, when

and other related expressions simultaneously describe tte, ~Q_=Q,y_—y_~T, ,y.—7y,.~v]. However, the

evolution of the quantity p,(t)=o(t)=01x(t) + op(t)

role of the coupling to the TB in the presence of a stochastic

=N, (t)—N_(t). But to obtain the evolution of the averaged field is different for the transition processes between ex-

coherency

—o_+(1)]

py(t)=oy(t)=i[o1t) = oau(t) ]=i[o. (1)
as well as the population

tended states of the TLS and for the transfer with strong

difference coupling to the TB31].
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B. The case of the strongly nondegenerated TLS As a result of the Born approximation the solution of the
non-Markovian master equatiqi@2) coincides with the ex-

Providing the inequalitywg>\; one can use the averaged !
g quato=1 g pression

GKE (12): In such a manner, the rather difficult procedure to
average the GKH14) can be circumvented. To obtain a

; ; r-r r\-
detailed picture of the transfer process we carry out calcula- g,(t)= — 1 2, o,(0)+ 1 -2 exd — (1 + )t
tions at an arbitrary relation betwees, and v;. For this [+ I+0,
reason we cannot restrict ourselves to the Markov approxi- (74)

mation. But, we apply the Born approximation with respect

' T 5 which is true in the long-time limit. In Eq.74) the forward
to the system-TB interaction, i.e., we put fy)“<< 1 where

(T"y) and backwardI(,) rates of the transfer are given by the

7o~ @o- ) expressions
To find the kernel13) one should take into account that
the dynamic matrix9) is not a stochastic operator. Accord- r,= 8(ﬁw0)23(w0)[1 +n(wo)]+ky2,
ing to Egs.(4), (7), and(42) the quantity(V)g vanishes and
the averaged interstate coupling strength, r,= S(Wwo)z\](wo)n(wo)ﬁ—k“/z (75)
MO=N= (N1t Nov)/(v1+ 1)), (69 k; denotes the longitudinal rate constant associated with a

pure stochastic influence on the trangfere Eqs(39), (40)],
and J(wy) is the spectral strength of the TB given by Eq.
(46). Equationg74), (75 demonstrate that the steady popu-

is independent of time, also the Hamiltoniét, does not
depend on time. As a result, the mat(® has a diagonal

form lations N, ()=Ny()=T,/(T;+T,) and N_()
/ _ , _ ~N,()=T,/(I'1+T,), depend essentially on the relation
Sp(t,t 4= ttHl__.__=1, 70 2 1 17r2 . .
[So(tt) ]+ =[So(t)]- (70 between the two kinds of damping processes. This observa-
£t ] e =[So(tt)]* .. tion can be done despite the fact of the additive contribution
[So(t )] - - =[S (NI of the transfer from two kinds of damping processes initiated
=exd —i(ey—e_)(t—t")/h]. by a coupling to the TB and an interaction with a stochastic
field.
The eigenvalues:, of the HamiltonianHp==2 ,& | ){ | The ratio
are given in Eq. (280 where the quantities
a= 1,2, s(agl,z, A; are substituted byu==, €,-15, g(T)ENl(w):E: N(wo) + B (76
A=(w3+ 4\?)'? respectively. Thesigenstatenf Hp, may Ny(®) Ty 1+4+n(we)+p’

be written as|u)=2,u,n|n) where with accord to the in-

equality wo>\; we have 2

g

2 2
wgt v

O\

A J@o)

14

1
P=3

U,1~0,4+06,-8ins, U,,~—6,.sin6+45,_ . (71)

n2

varies in a broad range. It starts at the Boltzmann factor

Here sirﬁw(ﬁwo)<1. If we additionally take into consider- i ; > |
exp(—fwg/kgT), if the interaction with the TB largely ex-

ation the inequality £, 7o) 2< 1, the mixture between the av- o )
eraged Ievelqpopu)I/a(fclio(r)st(t) ando__(t), and the aver- ceeds the stochastic field influence, and ends up at 1, if the

aged coherences, (t) and o, (t) appears in higher stochastic field influence dominates. For the spectral strength

. 2
approximations with respect 4 only. In the framework of W& may writeJ(wo)~ koD (wo), wherexo andD(wo) are,
the Born approximation this mixing is omitted, and the GKE "eSpectively, the main coupling to the TB and the density of

(12), determining the quantities(t)=o, . (t)—o_ _(t) the bath s_tates neas, = wo. Thg boundaries of 2this2 region
~ o 4(t) — o,A1), reduces to the following master equation: for & are given by the inequalitie’D (wg) > (v/ wg) o}, and

(vl wd) 02> ?D(wg), where {=(Mwg) K, is the effective
coupling to the TB. Figure 4 displays the dependence of the

i t v ’ ’
o)~ _4f0dt [4sirf K (t—1") + Q(t—1")] ratio (76) on the parameters of the stochastic field.

t
X co§ wo(t—t')]o,(t") —16i sinzaf dt’Ky(t—t') V. CONCLUSIONS

° The present paper has been devoted to clarifing the influ-
XsiM wg(t—t")]. (72 ence of two fundamentally different kinds of nuclear motions

_ . on quantum transitions. One type of nuclear motions is given
The correlation functior(43) and the root-mean-square de- by low-amplitude vibrations of the environment which are
viation o2 from Eq. (41) are represented through the corre-fast and which are assumed to be populated according to an

lation functions equilibrium distribution. Following the standard treatment of
such vibrational motion we attribute these vibrations to a

Kga(m)= 1K(n)=K(=7)], (73 thermal(heaj bath. Such an assumption cannot be used on
- the time scale of the transition process to characterize the

Q(7)=X\( T))\(o)_)g:gfexp(_ V7). high-amplitude twisting and flipping motions of large, sepa-

rate molecular groups of the environment. The motion of
related to the TB and the stochastic field, respectively. each group exhibits a stochastic behavior and has been simu-
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1.00 5 transferring quantum particléhe quantum system in the

3 general cage practically does not influence the high-
amplitude nuclear motions and, thus, these motions are com-
pletely independent on the state of the quantum system.
Since they have a stochastic character their action on the
quantum particle can be understood as the action of an ex-
ternal stochastic field. On the time scal¢ of the transfer
process the stochastic fields produced by the high-amplitude
nuclear motions are nonequilibrium external fields. This is
the reason for their description by means of a stochastic pro-
cess instead of choosing a distribution function for their
characterization.

In the case of the low-amplitude motions one observes an
intensive energy exchange between the quantum system and
°~0% 00 0.20 o040 0.0 o AR this part of the environment. Owing to such an exchange and
' relative amplitude due to the fast relaxation within vibrational states, the TB

supports the stationary Boltzmann ratio between correspond-

FIG. 4. Dependence of the rat#(T) Eq. (76), of the steady NG populations and results in the irreversibility of the trans-
populations of the localized states on the relative amplitude of flucfer. It is precisely the equilibrium energy exchange and the
tuations,o, /X at the autocorrelation time=1/», in the case of a Stochastic influence on a quantum particle that forms the
nondegenerated TLBw,=0.1, J(w)=0.0001,%w/kgT= 4]. Al Specific ratio between the steady populatigsee, for in-

quantities are given in arbitrary units. stance, Eqs(65) and(76)].
The stochastic behavior of the environmental degrees of

freedom can appear on the time scale of the transfer process

lated by a stochastic field. Each kind of these two types off’ e.g., macromolecular structures contain specific molecular
nuclear motion requires their own specific averaging proce9roups controlling different transport pathways. As an ex-
dure if one derives related GKE. ample, we mention the flipping tyrosine ring embedded into

The averaging over the fast, low-amplitude nuclear vibra2n electron pathway45], which statistically changes the
tions is equivalent to the ensemble averaging over the TElOnor-acceptor intersite coupling stren¢6]. In numerous
states, and, hence, the ratio between any steady-state pofiPersisee, for instance, Refi47]) the motion of such sepa-

lation of the energy levels in the considered system coincidef€d groups has been described in the framework of the
with the Boltzmann factor exp{As/ksT). The averaging stochastic theory. The description of high-amplitude nuclear

with respect to the high-amplitude nuclear motions is re_motions in using discontinuous stochastic fields is the sim-

duced to the averaging with respect to the realizations of th8!€St way to take these motions into consideration. Such an
stochastic parameters of the quantum sysfienthe consid- approach does not desire the introduction of a specific

ered case of the transfer to the intersite coupling strengthi@miltonian to include the above mentioned degrees of free-
\(t)]. As a result, one can describe the influence of high-dom' One must find only the physical model to determine the

amplitude nuclear motions similar to external stochastic@MPlitudes and frequencies of the stochastic parameters for
fields. l.e., one can include the specific stochastic propertied'® de?wed .quafntum system ratrller tlhan to 30'“;—' trt‘e equa-
of the environment directly into the Hamiltonian of a quan- NS of motion for separated molecular groups of the envi-

tum system through corresponding parameters. ronment. Such an approach was first proposed by Anderson

In contrast to the TB action, the stochastic field does not#8] and Kubo[49].
lead to the Boltzmann equilibrium ratio between steady-state
populations but results in an equidistribution of occupation

o o o
e o [=-]
[=] o [=]

ratio of populations
o
I
o

probability of the localized energy levels of a quantum sys- ACKNOWLEDGMENTS
tem. This behavior appears despite the consideration of a
nonzero energy difference between the quantum sfates We gratefully acknowledge the support of this work

Eqg. (39)]. This distinction can be explained by the semiclas-by the VolkswagerStiftungof the Federal Republic of Ger-
sical nature of the high-amplitude nuclear motions. Themany.
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