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The noise-activated diffusion of a classical particle in spatially periodic two-dimensional~2D! systems is
studied by solving the corresponding Fokker-Planck equation. The particle is subjected to a periodic determin-
istic force, to a frictional force, and to a Gaussian white noise. The solution is obtained by extending to 2D the
matrix-continued-fraction method for a quite general potential shape. The 2D diffusion coefficient is then
numerically calculated for the square egg-carton potential; the analysis is performed over different friction and
energy-barrier regimes. Several approximations are compared with the exact numerical results. In particular,
the usual 1D diffusion-path approximation is discussed, showing that 2D effects are always present, becoming
more and more relevant with decreasing friction. At high friction, a good analytical approximation is shown;
on the contrary, none of the available approximations gives satisfactory results in intermediate- and low-
damping regimes, which are typical in adatom diffusion on crystal surfaces.@S1063-651X~96!06711-6#

PACS number~s!: 05.40.1j, 05.60.1w, 82.20.Fd

I. INTRODUCTION

Noise-activated diffusion in spatially periodic potentials is
a topic of great interest in many scientific areas of physics,
chemistry, and biophysics@1–3#.

In recent years much effort has been devoted to the study
of one-dimensional~1D! systems, in many different cases:
Klein-Kramers equation, both at high and low friction@3–8#,
saw-tooth potentials@9#, fluctuating barriers@10,11#, and sys-
tems with time-dependent periodic perturbations@12#. Even
in one dimension, the calculation of the relevant statistical
quantities must be performed numerically, with the excep-
tion of limiting cases, where exact analytical results are usu-
ally available@13–15#.

The Brownian motion in periodic potentials has been
much less studied in multidimensional systems. The main
results are approximated formulas for the diffusion coeffi-
cient at high friction@16# or at high-intermediate friction and
high barriers@17#. More studied is the escape rate from mul-
tidimensional metastable or bistable wells; this problem has
been studied in connection with the theory of chemical reac-
tions both by analytical methods@18–20# and Langevin
simulations@21#. The two-dimensional periodic case is of
particular relevance, for example, in surface science where
the adatom mobility in the surface plane controls the dynam-
ics of many processes involving mass transport.

The main goal of this paper is the study of the Fokker-
Planck dynamics of a classical particle in a two-dimensional
coupled periodic potential. The particle is subjected to three
forces: a periodic deterministic force, derived from the po-
tentialV(r ), a frictional force (h is the friction coefficient!,
and a white noise, related to the friction via the fluctuation-
dissipation theorem@22#. In these conditions, the phase-
space probability densityf satisfies a four-variable Fokker-
Planck equation~FPE!, which is the Klein-Kramers equation
in two-dimensional space:
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wherer5(x,y), v5(vx ,vy), andm are the position, the ve-
locity, and the mass,F is the periodic deterministic force,
T is the temperature, andh is the friction. In the presence of
anx-y coupling in the potential, the dynamic problem cannot
be separated into two independent one-dimensional prob-
lems, each giving a two-variable FPE.

The FPE will be solved by extending to four variables the
matrix-continued-fraction method~MCFM! @3,23#. In this
way, the Green function of the FPE and the dynamic struc-
ture factorSs can be obtained. FromSs , the diffusion coef-
ficient, the velocity correlation function, and the mean-
square displacement may be computed via Kubo relations
@22,24,25#. It has been recently shown that the jump rate and
the probability distribution of the jump lengths in a periodic
system can also be derived fromSs @7,26#. The method em-
ployed here is quite general; it can be applied to different
lattices, position-dependent friction@6#, tilted potentials@27#,
and memory friction@28#. In this paper we will analyze in
detail the results concerning the diffusion coefficientD, in
the case of a square lattice and of homogeneous friction. The
potentialV(r ) is chosen in the egg-carton shape~see Fig. 1!

V~x,y!522g0~cosx1cosy!12g1cosxcosy.

The egg-carton potential depends on two parameters,g0 and
g1, which give the amplitudes of the decoupled and coupled
part, respectively. The egg-carton shape is the simplest
choice in order to study genuine 2D effects. In fact at
g150 the potential is trivially decoupled and the 2D prob-
lem factorizes into two independent 1D problems; atg050
the potential is again decoupled but rotated byp/4. The cou-
pling term is responsible for the energy transfer between the
x and y degrees of freedom and leads to qualitatively new
dynamical features in the case of Hamiltonian systems. In
these conservative systems, the motion in the egg-carton po-
tential has been widely studied and regular and enhanced
diffusion have been found depending on the strength of the
x-y coupling and on the energy of the particle@29,30#. In
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order to model more realistic systems the noise has to be
added; in the dissipative systems conventional diffusion al-
ways takes place, but the effects of the coupling may be
relevant. In the dissipative regime, the diffusion coefficient
has been calculated by Chen and Ying@31# for an anisotropic
coupled potential of centered rectangular symmetry. Here we
study the egg-carton potential where the amplitude of the
diffusion barriers and the strength of thex-y coupling can be
easily and independently changed.

For simplicity, diffusion is usually treated in the 1D pic-
ture, here named ‘‘diffusion-path approximation’’~DPA!,
obtained by considering the most probable diffusion path
connecting the minima via the saddle points. Our first goal is
then the investigation of possible dimensional effects, by
comparison between our 2D exact results and 1D treatments.
The topic is particularly important, for example, in surface
diffusion at crystals. As shown by the authors@6,32,33#, the
FPE can describe the diffusion at crystals in every friction
and barrier regime, from energy-controlled to spatial-
controlled diffusion and from activated to unactivated diffu-
sion. In principle the DPA can be calculated at every friction.
Then, by solving the FPE in a wide damping range, dimen-
sional effects are studied both at high- and low-friction val-
ues. The importance of the low- and intermediate-damping
regimes has been recently highlighted by many experimental
and theoretical works on surface diffusion@6,33–41#.

The exact numerical calculations will be compared also
with two different approximations whose validity is re-
stricted to limited parameter ranges.

At high friction, in the Smoluchowski limit, a ‘‘quasi-
2D’’ approximation is derived in the framework of the linear

response theory. The diffusion coefficient~along thex direc-
tion, for instance! in the quasi-2D approximation is obtained
by generalizing to two dimensions the method presented by
Güntheret al. @15# for deriving the exact 1D result@14#.

At intermediate and low friction, the numerical results
will be compared to those of the 2D-jump model@42#. In the
latter model, the diffusion coefficient is expressed by

D5 1
4 ^ l 2&r j , ^ l 2& being the mean-square jump length, and

r j the total jump rate. Activated diffusion is assumed and
then the validity of the picture is restricted to high potential
barriers. A simple evaluation of^ l 2& is possible if the damp-
ing is not too low. In this regime, the diffusion proceeds only
by single jumps@25,33# and the mean-square displacement is
given bya2, wherea is the lattice spacing. Following Langer
@17,18,43#, the rate is calculated as a 2D extension of Kram-
ers’s @44# result in the spatially limited diffusion regime.

The paper is organized as follows. In Sec. II the 2D
MCFM is outlined for a general coupled potentialV(r ). Sec-
tion III contains a brief description of the potential actually
used in the numerical calculations. Section IV contains the
results; in subsection A the Smoluchowski limit is consid-
ered, whereas subsection B deals with the intermediate- and
low-friction regimes. The conclusions are outlined in Sec. V.

II. THE MATRIX-CONTINUED-FRACTION METHOD

In this section the MCFM@3,23# is first extended to the
2D case to obtain the time-dependent solution of the FPE
@Eq. ~1.1!# in a coupled periodic potentialV(r ).

A square lattice of spacinga and homogeneous friction
h are here considered for simplicity and, as in the 1D case
@25#, the following dimensionless variables are introduced:
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With this choice forr , the unit cell goes from2p to p and
from 21/2 to11/2 in the real and reciprocal axes, respec-
tively. In the following the dimensionless variables in Eq.
~2.1! will be rewritten without overline and in the FPE,
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the Fokker-Planck~FP! operator becomes
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Let us introduce now the operators

FIG. 1. The egg-carton potential in a lattice cell. The upper and
lower panels correspond tog051, g150.5 andg051, g151, re-
spectively. The latter case presents a flat channel.
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whereb andb†, as well asb andb†, are the well-known
annihilation and creation operators for the harmonic oscilla-
tor in quantum mechanics, corresponding to the variables
vx or vy , respectively. It is useful to recall the properties of
these operators when applied to harmonic oscillator eigen-
functionscn(v):

b†bcn~v !5ncn~v !, b†cn~v !5An11cn11~v !,

bcn~v !5Ancn21~v !, cn~v !5
~b†!n

An!
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c0~v !5
1
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expS 2

v2

4 D . ~2.5!

With the aid of definitions~2.4! the FP operator can be
rewritten as

LFP52c0~vy!c0~vx!expS 2
V~r !

2 D $bD1b†D̂1bD1b†D̂

1gb†b1gb†b%expSV~r !

2 Dc0
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21~vx!. ~2.6!

The dynamic structure factorSs is the Fourier transform
with respect to time of the characteristic functionSs @24#.
The latter can be calculated if one knows the stationary prob-
ability density Pst and the conditional probability density
Pc :
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The Boltzmann distribution
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satisfies the required normalization condition
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The conditional probabilityPc(r,v,t/r0 ,v0,0) of having
the particle inr ,v at timet, if it was in r0 ,v0 at time 0, is the
Green function of the probability densityf (r,v,t), that means
the solution of the FPE@Eq. ~2.2!# with initial d condition in
both position and velocity.

The nonperiodic time-dependent solution of the FPE can
be expanded in Bloch functions as
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where f̃ is a periodic function ofr ; then f̃ (k,r,v ,t) is further
expanded in Fourier series as for space variables and in Her-
mite functionscm(vx), cn(vy) as for velocity variables:
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In order to obtain a solution of the FPE with initiald
condition, it is sufficient to impose that

f̃ ~k,r ,v,0!exp~ ik–r !5d~r2r0!d~v2v0!. ~2.13!

Consequently, the coefficientsc of Eq. ~2.12! at time t50
have the following form:
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The coefficients at timet can be connected with the coeffi-
cients at timet50 introducing the functionsG:

cm
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Gmi
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rs j~k,0!. ~2.15!

Using Eqs.~2.11!, ~2.12!, ~2.14!, and~2.15!, the result for
the conditional probability is
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Inserting Eqs.~2.8! and ~2.16! in Eq. ~2.7! we get
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whereq5(qx ,qy)5(jx1 l x ,jy1 l y), 21/2,jx<1/2,21/2,jy<1/2, andl x , l y are integers, and
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In Eq. ~2.17! only theG functions havingn5m5 i5 j50 are involved due to the orthonormalization properties of the Hermite
functions. IfV(r ) is an even function of bothx andy, all the integralsMph are real.

The Laplace transformS̃s(q,z) of the characteristic functionSs(q,t) then takes the form

S̃s~q,z!5
1

4p2N (
p,h52`

`

(
r ,s52`

`

G̃00
ph0rs0~j,z!Mp2 l x ,h2 l y

M r2 l x ,s2 l y
* . ~2.19!

Ss(q,t) being an even function of time, the dynamic structure factorSs(q,v) is given by
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with z5 iv.
In the following we derive a recurrence relation for theG̃00

ph0rs0(j,z). As a first step, we insert Eqs.~2.11! and~2.12! in Eq.
~2.2! and using Eqs.~2.5! and ~2.6! we get an equation for the coefficientsc:
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In obtaining Eq.~2.22!, the properties of the operators defined in Eqs.~2.4! have been applied tocm(vx), while the sum on
n index is still present; as it will be clear in the following, this is one way for getting a tridiagonal recurrence relationship.
Inserting Eq.~2.24! in ~2.23! and remembering the definitions of the operators~2.4! and the properties~2.5!, Q, Q(1), and
Q(2) can be written as
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Fx(r ) andFy(r ), and consequentlyQ, Q
(1), andQ(2), are

completely determined by the potentialV(r ).
Inserting Eq.~2.15! in Eq. ~2.22! one obtains a corre-

sponding recurrence relation for theG functions:

]Gmi
phnrs j~k,t !

]t
5 (

d50

`

(
a,b52`

`

$Qm
~2 !phnabdGm21,i

abdrs j~k,t !

1Qm
phnabdGmi

abdrs j~k,t !

1Qm
~1 !phnabdGm11,i

abdrs j~k,t !%. ~2.27!

The indicesp, h, r , and s are integers varying between
2` and ` whereas the integersn, j vary between 0 and
`. In order to obtain a numerical result, it is necessary to
truncate the recurrence relation, i.e., to chooseP, H, R, S,
N, andJ so that

2P<p<P, 2H<h<H, 0<n<N,

2R<r<R, 2S<s<S, 0< j<J. ~2.28!

Eq. ~2.27! can be identified with a tridiagonal relationship
@25# if the objects labeled by (p, h, n) and (r , s, j ) are
rearranged according to two indicesu andv @28#; a possible
rearrangement is
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and a similar rearrangement is introduced for the summed up
indices. Taking

~p,h,n!→u, ~r ,s, j !→v, ~a,b,d!→w,

Eq. ~2.27! can in fact be written as
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The upper indices label the matrix elements whereas the
lower ones label the matrices. In matrix notation, one obtains
the following tridiagonal recurrence relationship for the ma-
trix G:
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Considering the Laplace transform of Eq.~2.31! with i50,
one obtains
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which can be solved by standard methods@3#. The solution is
written as a continued fraction,

G̃00~k,z!

5„zI1B2B~1 !
ˆzI1A1B22B~1 !@zI12A1B23B~1 !

3~zI13A1B2••• !21B~2 !#21B~2 !
‰

21B~2 !
…

21,

~2.33!

where the matricesB(2), B(1), B are defined as

Qm
~2 !52AmB~2 !,

Qm
~1 !52Am11B~1 !,

Qm52mA2B, ~2.34!

A is the matrix obtained by rearranging the indices of
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Aphnrs j5gdprdhsdn j, ~2.35!

and I is the identity matrix.
From Eq.~2.33! it is possible to obtain all theG̃00

ph0rs0 in
the expression of the dynamic structure factor@Eq. ~2.21!#.

If the 2D potential V(x,y) is decoupled @V(x,y)
5V1(x)1V2(y)], the 2D problem factorizes into two 1D
independent problems. The 1D problem has been treated in
detail in a previous work by the same authors@25#.

In a square lattice, the diffusion tensor is isotropic, so
only one diffusion coefficient is to be considered. The latter
can be derived from the well-known Green-Kubo relation-
ship @24#:

D5p lim
v→0

v2 lim
q→0

Ss~q,v!

q2
, ~2.36!

whereq5Aqx21qy
2, and, with no loss of generality,D can be

evaluated for diffusion along thex axis, i.e., atqy50.

III. THE 2D COUPLED POTENTIAL

In the following we present the explicit results for the
egg-carton potential:

V~x,y!522g0~cosx1cosy!12g1cosx cosy. ~3.1!

Dimensionless units are employed and the potential is nor-
malized as in Eq.~2.1!. This model potential, which looks
like an egg carton, has a square symmetry and is often intro-
duced in the study of the nonlinear dynamics of a classical
particle moving conservatively in a periodic field of force
@29,30#. At g150 the potential is trivially decoupled; at
g050 the potential is again decoupled but rotated byp/4. In
Fig. 1 the potential is represented in the unit cell. Ifg0 and
g1 are positive andg1<g0 there are four minima at the cor-
ners of the cell, one central maximum, and saddle points at
the midpoints of the edges. The difference of potential en-
ergy between minima and saddle points~i.e., the energy bar-
rier! Eb is given by

Eb54~g02g1!. ~3.2!

In the extreme case of very strongx-y coupling (g15g0),
the energy barriers vanish and the minima are connected by a
network of flat channels~lower panel of Fig. 1!. Around the
minima, the frequencies related to the curvatures are

va5sa5A2~g02g1!, ~3.3!

at the saddle points the curvature related tovc is unstable
and we have

vc5A2~g02g1!, sc5A2~g01g1!. ~3.4!

In the presence ofx-y coupling, the channel width is not
constant; the channel is narrower at the saddle point
(sa,sc).

With the potential~3.1! the quantities~2.26! result:
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g1
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With the aid of Eqs.~3.5!, ~2.21!, ~2.25!, and ~2.33! the
dynamic structure factor can be evaluated as a function of
g, g0, andg1.

IV. RESULTS

The general features of the behavior of the diffusion co-
efficient with varying frictiong are represented in Fig. 2.
The logarithm ofDg5D/D0 is plotted as a function of the
logarithm of g at different couples of the potential param-
etersg0 andg1. Three distinct regions can be clearly distin-
guished, pointing out three friction regimes. Moving from
the right to the left, a region is first found whereDg is g
independent and thereforeD behaves as the inverse friction.
This region can be labeled as the high-friction or Smolu-
chowski regime. Giveng0 and g1, it is always possible to
choose a sufficiently highg such that the Smoluchowski
equation is adequate to describe the dynamics. The Smolu-
chowski equation can be solved numerically by the MCFM

FIG. 2. General behavior ofD as a function ofg. The four
curves correspond to g050.6, g150.3; g051, g150.5;
g051.4, g150.4; andg052, g151. Three friction regimes are
indicated: high friction~HF!, intermediate friction~IF!, and low
friction ~LF!.
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too @45#. In the central region, at intermediate values of the
friction, ln(Dg) exhibits a knee from a constant value to a
decreasing behavior asg is decreased. This region will be
referred to as the intermediate-friction regime and corre-
sponds to the Kramers turnover region. The low-friction re-
gime in the left is characterized by an evident decrease of
ln(Dg). As g takes on lower values, the diffusion coefficient
is no longer simply proportional to the inverse friction. Be-
low the knee, the diffusion tends to be energy controlled: the
energy of the diffusing particle is almost conserved along the
trajectory for long times~of the order ofg21).

The results for the diffusion coefficient will be presented
and discussed separately in the different damping regimes.
The exact numerical results will be compared to those of
different approximations. The overdamped regime will be
examined first.

A. The high-friction regime

As stated above, the overdamped regime is the one in
which the probability density in the configuration space can
be obtained also by solving the simpler Smoluchowski equa-
tion instead of the FPE. The Smoluchowski limit is obtained
from the FPE by lettingg→` at fixed potential; in this limit
D/D05Dg tends to a constant~see Fig. 2!.

In Figs. 3 and 4,Dg is studied as a function of the cou-
pling parameterg1 at fixedg0. In all the following figures,
the 2D FPE exact results will be represented by black dots.
D increases with increasingg1, that is, as the potential goes
from the decoupled (g150) to the strongly coupled case
(g15g0). Furthermore, a comparison between Fig. 3~where
g050.5) and Fig. 4 (g052) shows that, at fixedg1, the
lowestD corresponds to the highestg0. In all cases the be-
havior ofD is in agreement with the corresponding behavior
of the potential barrierEb @see Eq.~3.2!#. Eb is in fact raised
either by increasingg0 or by decreasingg1.

The Smoluchowski regime is easier for what concerns
analytical calculations. In fact, in 1D, an exact analytical
formula for D was obtained a long time ago@13#. In a
coupled multidimensional potential an exact formula is not
available. However, it is possible to generalize the methods
leading to the exact 1D result and to obtain analytical 2D
approximations. In the following we treat two different ap-
proximations, which are both compared to the exact numeri-
cal results.

The first approximation is the DPA. In the DPA, the 2D
problem is restricted to a 1D problem by considering the
minimum-energy path connecting the wells with the saddle
points ~which coincides with thex axis in our case!. The
latter problem is exactly solved at high friction by means of
a well-known result@14,15#:

DDPA5
a2D0

E
0

a

dxexp@bU~x!#E
0

a

dxexp@2bU~x!#

,

~4.1!

where

D05kBT/mh, ~4.2!

b5(kBT)
21, and U(x)5V(x,0). In normalized units,

D05g21 and

DDPA5
1

gI 0
2~z!

, ~4.3!

where I 0(z) is the modified Bessel function of order zero
@46# andz52(g02g1).

The second approximation, called in the following the
‘‘quasi-2D’’ approximation, can be derived by generalizing
to a 2D potentialV(r ) the method proposed by Gu¨nther
et al. @15# for the 1D case. Here the derivation of the
quasi-2D approximation is sketched. When a uniform exter-
nal forceF0 is applied along thex axis, there will be a mean

FIG. 3. Diffusion coefficient in the Smoluchowski limit as a
function of thex-y coupling g1 at fixed g050.5. The black dots
correspond to the exact numerical results; the dashed line to the
diffusion-path approximation@Eqs.~4.1!–~4.3!# and the dash-dotted
line to DQ2 @Eqs.~4.6! and ~4.7!#.

FIG. 4. The same as in Fig. 3, but at higherg0 (g053). The
energy barrierEb ranges from 12kBT ~at g153) to 0.
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velocity vd in the direction of the force,vd5mF0, where
m is the mobility of the particle. The drift velocityvd can be
calculated as

vd5

E
cell
dydxn~r !v~r !

E
cell
dydxn~r !

, ~4.4!

wheren(r ) is the density of particles,v(r ) is thex compo-
nent of the local velocity, and the integrals are extended over
the unit square cell of spacinga. When no external force is
applied, the equilibrium density of particles is
neq(r )5n0exp@2bV(r )# (b51/kBT). In the presence of a
small F0, n(r ).neq(r ) and the normalization factor in Eq.
~4.4! follows immediately. The evaluation of the numerator
is approximated and requires subtler considerations. The in-
tegrand is the density of current of particles in thex direction
J(r )5n(r )v(r ). To perform the integration over the cell, we
first keepy fixed and then we integrate overy. Assuming
that at fixedy the diffusive motion in thex direction can be
treated as one dimensional,J(r ) must be x independent
along the path, as in the strictly 1D case@15#, that is,
J(r )5J(y). The further step allowing us to perform the in-
tegration overy is the observation that the work done by the
external force when the particle moves over a spacinga at
fixed y must equal the work dissipated by the friction force
acting on the particle:

F0a5mhE
0

a

dxv~r !. ~4.5!

An expression forvd follows easily from these consider-
ations; the mobilitym is extracted and, finally, the diffusion
coefficient in the quasi-2D approximationDQ2 is obtained as
DQ25kBTm:

DQ25D0a
2

E
0

a

dyF E
0

a

dxexp@bV~r !#G21

E
0

a

dyE
0

a

dxexp@2bV~r !#
. ~4.6!

This expression was derived by Ala-Nissila and Ying@16# by
different methods. In normalized units and with the potential
~3.1!, the quasi-2D approximation gives

gDQ25

E
0

p

dyexp~2g0cosy!I 0
21~z!

E
0

p

dyexp~2g0cosy!I 0~z!

, ~4.7!

whereR5g1 /g0, andz52g0(12Rcosy).
Let us compare the approximations with the exact results.

In the figures, the DPA corresponds to the dashed lines and
DQ2 to the dash-dotted lines.

DDPA andD coincide only if g150. The 2D decoupled
problem splits in fact then into two independent 1D prob-
lems. At nonvanishingg1, DDPA always overestimates the
diffusion coefficient and the disagreement becomes more and

more important as thex-y coupling is increased~see Figs. 3
and 4!. DQ2 is a much better approximation, especially at
small coupling. In fact,D andDQ2 practically coincide when
the values ofg1 are small compared withg0. The difference
betweenD andDQ2 becomes more relevant as the coupling
parameterg1 is increased andDQ2 always underestimates
the diffusion coefficient at everyg1Þ0.

Since all approximations are worse at highx-y coupling,
we shall examine as a special case the situation of maximum
coupling (g15g0), corresponding to flat channels. The flat
channel gets narrower with increasingg0 and, consequently,
the diffusion coefficientD has a decreasing behavior~see
Fig. 5!. The DPA gives in this case the constant value
DDPA5D051/g, as expected from Einstein’s relationship
for free diffusion. The quasi-2D approximation instead re-
produces the decreasing behavior and gives fairly accurate
results. The deviations from the exact result are not very
large up to the highest values ofg1 reported in Fig. 5. Any-
way, a more accurate investigation at high couplings will
now be carried on.

The asymptotic behavior ofDQ2 at very high couplings in
the flat channel case can be evaluated from Eq.~4.7! taking
the limit g1→` wheng15g0. It can be shown thatDQ2g
vanishes as

DQ2g5
1

A1Blng1
. ~4.8!

The coefficientsA andB can be extracted from the data in
Fig. 6; it turns out thatA51.70,B50.250.

In Fig. 6, both (Dg)21 and (DQ2g)
21 are plotted as a

function of lng1 (g15g0). The behavior of (DQ2g)
21 is, as

expected, linear in lng1 at highg1. What is more interesting,
however, is the result concerning the exact diffusion coeffi-
cient in the limit of very highx-y coupling. From the results
in Fig. 6, (Dg)21 also appears to have an asymptotic loga-
rithmic dependence on the couplingg1. This suggests that
Dg should vanish in the limit of infinite coupling in the same
way asDQ2. Assuming that the asymptotic behavior ofDg
is also given by Eq.~4.8!, the parametersA andB can be
extracted from the data in Fig. 6. It turns out thatA51.48,

FIG. 5. High-friction diffusion coefficient in the flat-channel
case (g05g1). Symbols as in Figs. 3 and 4.
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B50.186. From these values, it follows that the ratio
DQ2 /D should tend to the asymptotic limitDQ2 /D50.744.
The DPA approximation, instead, gives in the flat-channel
case the coupling-independent resultDDPAg51 and is there-
fore asymptotically wrong at highx-y couplings.

A diffusion problem with some similarity with our flat-
channel case was studied by Zwanzig@47#, who considered
the high-friction motion of a Brownian particle in a 2D chan-
nel with periodically varying width. In the case considered
by Zwanzig, no potential is present in the channel and the
particle is subjected only to the geometrical constraint of a
nonconstant channel width. The effective diffusion coeffi-
cient is always smaller than Einstein’s relationship. Ein-
stein’s result is recovered exclusively for a rectangular chan-
nel. In fact, when the channel width changes periodically
along thex direction, the particle can wander along they
direction before finding its way through the ‘‘bottlenecks.’’
This makes the motion in thex direction slower and there-
fore the diffusion coefficient is smaller. Our results for mo-
tion in a flat channel are qualitatively in agreement with the
results obtained by Zwanzig, as the diffusion coefficient is
always lowered with respect to the result given by the Ein-
stein relation@Eq. ~4.2!#.

B. The intermediate- and low-friction regimes

In this section we will present the results for the diffusion
coefficient in the intermediate- and low-friction regimes.

The effect of thex-y coupling at a fixedg is first exam-
ined. At moderate damping (g50.5),Dg ~black dots in Fig.
7! has the same qualitative behavior at fixedg0 (g051) as in
the high-friction regime.D increases as the coupling param-
eter g1 varies from 0 tog0, that is as the potential barrier
Eb @Eq. ~3.2!# goes from its maximum value 4g0 to 0, re-
spectively.

At fixed g0 andg1, an accurate investigation of the diffu-
sion coefficient as a function of the friction is presented in

Fig. 8. The potential barrier is rather high,Eb54kBT
(g051.5, g150.5) andDg is always less than one, as is to
be expected sinceDg is the ratio between the diffusion co-
efficient and Einstein’s free diffusion coefficient. A strong
decrease is shown going towards the lowest values ofg. At
the highestg ’s, say g>5, Dg tends to a constant value;
thereforeD behaves like 1/g towards the moderate-high fric-
tion values.

The diffusion along a flat channel is examined, as at high
damping, as a particular case. In Figs. 9 and 10 all symbols

FIG. 6. Asymptotic behavior of the inverse diffusion coefficient
at high friction in the flat-channel case (g05g1). DQ2 ~dash-dotted
line! vanishes as in Eq.~4.8! at highg1; the exact numerical results
display the same kind of behavior.

FIG. 7. Diffusion coefficient at intermediate friction (g50.5) as
a function of thex-y coupling g1 at fixed g051. The black dots
correspond to the exact numerical results; the dashed line to the
diffusion-path approximation@Eqs.~4.1!–~4.3!# and the dotted line
to DJM @Eq. ~4.12!#.

FIG. 8. Diffusion coefficient as a function of the frictiong in
the turnover region and below.g0 and g1 are chosen to give a
sufficiently high-energy barrier (Eb54kBT) that the jump-diffusion
regime holds. Symbols as in Fig. 7.
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refer to the exact numerical results. In Fig. 9, the effect of
raisingg15g0, that is, of narrowing the channel, is studied at
three different values ofg (g50.125,g51, g55). Dg is
correspondingly found to have a decreasing behavior. At
nonvanishingg1, Dg is smaller than Einstein’s value, and
the strongest differences are obtained at the lowest friction.

In Fig. 10,Dg is plotted as a function of the friction at
three different values of the parameterg0 ~black dots:
g05g150.5, squares: g05g150.7; open circles:
g05g151). As in Fig. 8,D behaves as the inverse power of
the friction at the highest dampings and rapidly decreases
with decreasing friction. At the sameg, the lowest values of

Dg are obtained at the highestg0, i.e., when the channel is
narrower.

The presence of anx-y coupling therefore has the effect
of making the diffusive motion slower. The diffusion coeffi-
cient is smaller and this is more evident at low friction. In
fact, in the coupled case, long straight trajectories are less
favored than in the decoupled case. The effect is evident
even at small couplings.

The coupled potential~3.1! has been studied by different
groups @29,30# in the investigation of chaotic diffusion in
Hamiltonian systems. They noticed that without the coupling
term, the corresponding Hamiltonian is integrable and no
diffusive and chaotic motion is observed. The presence of
the coupling allows instead an energy exchange between the
x andy degrees of freedom. This happens however small the
coupling is and the results remain qualitatively unchanged,
as long as the coupling is different from zero@29#. In the
presence of coupling, either ‘‘normal’’ or ‘‘anomalous’’ dif-
fusion can take place, according to the strength of the cou-
pling, although the system is conservative. Their consider-
ations cannot of course be directly compared with the results
we have presented in this paper, since we are dealing with a
different problem: in Refs.@29,30# diffusion arises determin-
istically, while here the diffusive motion is due to random
and friction forces. It is anyway worth noticing that our non-
conservative system, in the limitg→0, is equivalent to an
ensemble of conservative systems, whose weights are given
by Boltzmann factors.

In the low-damping regime no exact analytical 2D results
are available; even in 1D, in the low-friction expansion of
the solution of the 1D FPE@3#, only the leading terms are
known analytically, providing a good approximation exclu-
sively at extremely low damping@6#. Approximations for the
2D diffusion coefficient are provided, anyway, by the DPA
and the 2D-jump model. In the following we will discuss
these approximations and their validity as resulting from the
comparison with FPE 2D exact results.

As said in the Introduction, the DPA is not restricteda
priori to a particular range of the friction or of the potential
amplitudes. The one-dimensional diffusion coefficientDDPA
can be obtained solving the FPE in the effective 1D potential
experienced by the diffusing particle if the motion could be
restricted only to the most favorable trajectory that is in our
caseU(x)5V(x,0). The resulting 1D problem is then nu-
merically solved. The details of the method leading to the
solution of the FPE with a 1D potential have been published
elsewhere@6#; here we only recall that the computing efforts
are far lighter in the 1D case than in two coupled dimen-
sions.

DPA results have been compared withD at intermediate
and low friction, too, and, as in the previous high-friction
figures, they are represented by a dashed line. As in the high-
friction case,DDPA overestimates the diffusion coefficient;
the deviations are even more relevant~compare Fig. 7 with
Figs. 3 and 4!. In fact, the DPA gives worse and worse
results with decreasing friction. This is evident from Fig. 8
and panel ~a! of Fig. 11, where the relative difference
CDPA5(DDPA2D)/D is plotted as a function ofg. CDPA is
nearly independent ofg at the highest-friction values~in the
case presented here, it is about 0.3! but it strongly increases
wheng,0.5. The DPA can therefore lead to relevant errors

FIG. 9. Diffusion coefficient in the flat-channel case (g05g1) as
a function ofg1. The different symbols correspond to three values
of the frictiong, as indicated in the figure.

FIG. 10. Diffusion coefficient in the flat-channel case
(g05g1) as a function ofg. The different symbols correspond to
three values ofg1, as indicated in the figure.
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at low friction. The disagreement with the DPA is even more
important for flat channels~Figs. 9 and 10! where
DDPAg51 at every friction. As an example, at the lowest
friction considered here,g50.125, we obtainedDg50.27 at
g05g151; the DPA would then lead to an error of about a
factor 4.

We can conclude that at low damping the DPA overesti-
mates the diffusion coefficient more dramatically than in the
high-friction regime. Dimensional effects become more and
more important with decreasing friction, and cannot be ne-
glected at all forg below the turnover~typically placed be-
tweeng51 andg50.5) even at small coupling.

As mentioned in the Introduction, the hopping model@42#
is the standard approach to diffusion@25,39,40#. The 2D-
jump model provides a good description of the migration
mechanism at high potential barriers. In this picture the dif-
fusion coefficient is given by

D5 1
4 ^ l 2&r j5^ l 2&r j

~1! , ~4.9!

where ^ l 2& is the mean-square jump length,r j is the total
jump rate taking into account the four different escape direc-
tions, andr j

(1) is the directional escape rate over a saddle
point. Equation~4.9! is correct at high barriers, indepen-
dently of the friction, butr j and ^ l 2& cannot be evaluateda
priori in every friction regime. If the friction is not too low,
one can expect that the diffusive motion consists of hops
between nearest-neighbor lattice sites~single jumps! and
^ l 2& is simply given by the squared lattice spacing

^ l 2&.a2, ~4.10!

but at low damping long jumps become important
@6,7,33,41,48# and the evaluation of̂ l 2& is not trivial
@25,33#. The directional rater j

(1) can be approximated by a
2D extension of Kramers’s@44# high-friction result
@11,17,18,43#:

r j
~1!5

1

2p

vasa
sc

FA11
g2

4vc
22

g

2vc
Gexp~2Eb!.

~4.11!

In Eq. ~4.11! Eb is the dimensionless potential barrier and
va ,sa andvc ,sc are the vibrational frequencies related to
the curvatures of the potential near the minimum and near
the saddle point, respectively. The validity of Eq.~4.11! is
not limited to the Smoluchowski limit but it can be extended
down to values of the friction around the turnover. Taking
into account these results and Eqs.~3.2!–~3.4!, the diffusion
coefficient in the jump model~JM! is finally obtained as

DJM5p2r j52A2p
g02g1

Ag01g1
FA11

g2

8~g02g1!

2
g

A8~g02g1!
Gexp@24~g02g1!#. ~4.12!

In the limit of infinite friction, the formula provided by the
JM coincides with the high-barrier limit of the quasi-2D ap-
proximation@Eq. ~4.7!#.

DJM is represented in Figs. 7 and 8 by a dotted line. Fig-
ure 7 shows that Eq.~4.12! is appropriate even at intermedi-
ate friction (g50.5), as long as the potential barriers are
sufficiently high. From our results,DJM can be considered a
reasonable approximation wheng02g1>0.5. If this differ-
ence becomes smaller, i.e., atEb<2kBT, Eq. ~4.12! can no
longer be correct, as shown by the same authors in the 1D
case@25#, both by numerical calculations and by qualitative
arguments about some typical time scales.

Considerations about the range of validity of the hopping
description develop also from an examination of Fig. 12,
where the logarithm of the exact diffusion coefficientD is
plotted as a function of the potential barrierEb . Both g and
g0 are fixed (g50.5, g051). According to the usual phe-
nomenological Arrhenius law

D5DAexp~2Eb!, ~4.13!

whereDA is a prefactor weakly dependent on temperature. If
lnD is plotted as a function ofEb , a linear behavior is ex-
pected at least in a limited range of temperatures. Figure 12
shows that at low barriers significant deviations from the
Arrhenius law are possible and the diffusion may become
unactivated. In this case the model of migration taking place
by activated hops is certainly not appropriate. The linear be-
havior of lnD, and therefore the JM, is recovered only at high
barriers.

At a fixed and high potential barrier,DJM is a worse ap-
proximation as the friction is decreased, as shown in Fig. 8
and stressed in panel~b! of Fig. 11, where the relative dif-
ferenceCJM5(DJM2D)/D is represented. The deviations of
DJM from the exact result are to be imputed both to the poor
evaluation ofr j

(1) and of ^ l 2& in Eq. ~4.9!. The estimation

FIG. 11. Relative errors CDPA5(DDPA2D)/D and
CJM5(DJM2D)/D at fixedg0 andg1 as functions of the friction.
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~4.11! for r j
(1) loses its validity at low friction, and at the

same time the evaluation of the mean-square jump length is
far more complicated than Eq.~4.10! in the low-damping
regime, where the particle can jump over more than one
lattice spacing.

Finally, a few words about the computational effort re-
quired for the evaluation ofD. The number of iterations in
the matrix continued fraction~2.33! increases towards low
g; larger matrices are needed both with decreasingg and
with increasingg01g1. For instance, the following trunca-
tions @see Eq.~2.28!# are sufficient for a precision better than
1%: atg052, g151, andg51000P5H58,N51 and one
iteration in the continued fraction; atg050.6, g150.3, and
g51000 P5H55, N51 and one iteration; atg050.6,
g150.3, andg51 P5H55, N56 and six iterations.

V. CONCLUSIONS

Our motivation for the present work was twofold. First,
we intended to study the dynamics of nonlinear 2D periodic
systems in the dissipative case. The nonlinear dynamics of a
classical particle moving conservatively in a 2D field of
force exhibits chaos and enhanced diffusion@29,30#; these
dynamical features do not survive in the more realistic case
of noise-assisted diffusion, but the investigation of the very-
low-friction regime remains of great interest. Secondly we
wanted to extend to 2D the Fokker-Planck model of adatom
surface diffusion@6,32,33,36,41,49#. Adatom diffusion on
crystal surfaces is obviously a multidimensional problem and
at least two coupled dimensions must be taken into account
to study dimensional effects. Moreover both experiments and
molecular dynamics simulations indicated that typical fric-
tion values are around and below the Kramers turnover~the
knee region in Fig. 2!. So the dynamical investigation must
cover a wide damping range in order to give a reasonable
description of surface diffusion.

In this paper we have presented a detailed investigation of
the noise-activated diffusion of a classical particle moving in

a two-dimensional coupled periodic potential on a square
lattice. The Fokker-Planck equation has been numerically
solved and the diffusion coefficient has been calculated in a
wide range of theory parameters: the strength of the friction,
the x-y coupling parameter, and the amplitude of the poten-
tial barriers along the diffusion path. At high friction, results
are easily obtained by the MCFM up to barriers of 10kBT
and more~see Fig. 4, for instance! and with strong coupling
~see Fig. 6!. We stress that, for our model potential, the
stronger is the coupling the lower is the barrier~which is
proportional tog02g1); the computational effort increases
with the sumg01g1. The calculations become cumbersome
at lower friction. However, it is possible to explore the jump-
diffusion regime~at Eb.4kBT–5kBT) well below the turn-
over point, down to a friction regime~aroundg50.1) where
the single-jump model is no longer correct and long jumps
should be likely. A shortcoming of our numerical method is
that, at low friction, barriers greater than 4kBT–5kBT cannot
be studied by a reasonable computational effort. Many sys-
tems in surface diffusion are characterized by higher barriers
at the temperatures of the experiments; however there are
several systems which present rather low barriers@for in-
stance, Na/Cu~100! @34#, CO on different faces of Ni and Pt,
noble gases on metals, etc.@50# #, which are of fewkBT at
room temperature or somewhat above.

Numerical results have been obtained for the egg-carton
potential which may be considered representative of the
large class of potentials where the more favorable diffusion
trajectories are straight lines. In particular, both high and low
friction have been considered; the effect of thex-y coupling
has been discussed in detail. At high friction, the exact nu-
merical results have been compared to those of two analyti-
cal approximations: the diffusion-path and the quasi-2D ap-
proximation. The diffusion-path approximation reduces the
2D problem to one dimension and neglects the effect of the
x-y coupling; it turns out that this approximation strongly
overestimates the diffusion coefficient at large couplings. For
instance, in the case of a flat channel, the diffusion-path ap-
proximation reduces to the Einstein relation and does not
depend on the coupling while the exact result tends to zero in
the limit of infinite coupling. On the contrary, the quasi-2D
approximation always gives rather good results, even in the
case of extremely strong coupling. The quasi-2D approxima-
tion has been derived by fixing the value of one coordinate
and by solving the diffusion problem along the other coordi-
nate as if it were strictly one dimensional. This is expected to
be essentially correct if all important diffusion trajectories
occur on straight lines. Therefore the quasi-2D approxima-
tion is expected to give good results when the minima and
the saddle points lie on straight lines, as it happens in the
lattice considered in the present paper. In a honeycomb lat-
tice @51,52#, this is not the case and one could expect a worse
agreement between the quasi-2D approximation and the ex-
act data.

At intermediate and low friction the effect of the coupling
is even stronger in reducing the diffusion coefficient; thus the
diffusion-path approximation is not reliable even at small
couplings. In the presence of coupling, it is difficult for the
diffusing particle to perform long and straight inertial trajec-
tories: the coupling allows the energy transfer between the
x andy degrees of freedom. More intuitively, in our model

FIG. 12. Arrhenius plot of the diffusion coefficient at interme-
diate friction (g50.5).
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potential, the channel width is smaller at the saddle points
than at the minima and this reduces the possibility of long
straight flights. In these regimes, there are no good analytical
estimates covering the full parameter range. At high potential
barriers, it is possible to compare the exact results with those
of the jump-diffusion model; the latter is satisfactory down
to the turnover region. Below the turnover, long jumps are
activated and the mean-square jump length cannot be easily
evaluated; neglecting long jumps strongly underestimates the
diffusion coefficient.

Finally, we remark that the numerical method developed
in this paper can be easily generalized to position-dependent
friction and tilted potentials@6,27#. In the same framework,
different classes of kinetic equations, such as the linearized

Boltzmann equation with Bhatnagar-Gross-Krook kernel
@53# or Skinner-Wolynes equations@54#, can be treated
@3,55#. Our method leads to exact numerical results, which
may be used to test analytical or numerical approximations
obtained by different methods~for instance, finite-barrier
corrections@56#!. The method gives the full dynamic struc-
ture factor, from which all relevant correlation functions, the
escape rate, and the jump-probability distribution can be de-
rived @7#. At low friction and high barriers the MCFM be-
comes inefficient; the investigation of noise-activated diffu-
sion in this regime is still an open problem and the
development of different methods~e.g., Langevin simula-
tions, reactive-flux method! may be useful.
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