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Noise-activated diffusion in the egg-carton potential

G. Caratti, R. Ferrando, R. Spadacini, and G. E. Tommei
Centro di Fisica delle Superfici e delle Basse Temperature del Consiglio Nazionale delle Ricerche
and Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica dell’ UniversiaGenova,
via Dodecaneso 33, 16146 Genova, ltaly
(Received 20 February 1996

The noise-activated diffusion of a classical particle in spatially periodic two-dimensi@balsystems is
studied by solving the corresponding Fokker-Planck equation. The particle is subjected to a periodic determin-
istic force, to a frictional force, and to a Gaussian white noise. The solution is obtained by extending to 2D the
matrix-continued-fraction method for a quite general potential shape. The 2D diffusion coefficient is then
numerically calculated for the square egg-carton potential; the analysis is performed over different friction and
energy-barrier regimes. Several approximations are compared with the exact numerical results. In particular,
the usual 1D diffusion-path approximation is discussed, showing that 2D effects are always present, becoming
more and more relevant with decreasing friction. At high friction, a good analytical approximation is shown;
on the contrary, none of the available approximations gives satisfactory results in intermediate- and low-
damping regimes, which are typical in adatom diffusion on crystal surff84€63-651X96)06711-§

PACS numbe(s): 05.40:+j, 05.60+w, 82.20.Fd

I. INTRODUCTION wherer = (X,y), v=(vy,vy), andm are the position, the ve-
locity, and the massk is the periodic deterministic force,
Noise-activated diffusion in spatially periodic potentials is T is the temperature, ang is the friction. In the presence of
a topic of great interest in many scientific areas of physicsanx-y coupling in the potential, the dynamic problem cannot
chemistry, and biophysids-3]. be separated into two independent one-dimensional prob-
In recent years much effort has been devoted to the studgms, each giving a two-variable FPE.
of one-dimensiona(1D) systems, in many different cases:  The FPE will be solved by extending to four variables the
Klein-Kramers equation, both at high and low frictif$+§], matrix-continued-fraction method@MCFM) [3,23. In this
saw-tooth potentialf], fluctuating barrier§10,11, and sys-  \yay the Green function of the FPE and the dynamic struc-

tems with time-dependent periodic perturbatiphg]. Even ture factorS, can be obtained. Fro,, the diffusion coef-

Inugggtiglsmriﬂssltogéthgrfoarlr%lggt'r?gmogritgae"rel\?v\i/t?]n:hsgaetféga_icient, the velocity correlation function, and the mean-
q 2 P s psquare displacement may be computed via Kubo relations
tion of limiting cases, where exact analytical results are usuE22 24,23, It has been recently shown that the jump rate and
ally available[13-15. el y jJump

The Brownian motion in periodic potentials has beenthe probability distributiqn of the jump lengths in a periodic
much less studied in muItidiraensionaﬁ) systems. The mairfyStem can also be derived frdfg [7,26]. The method em-
results are approximated formulas for the diffusion Coe1‘fi-pl‘3}/"3‘d here. IS quite general;. It. can pe apphed.to different
cient at high friction[ 16] or at high-intermediate friction and lattices, position-dependent fricti¢], tilted potentiald 27],
high barrierd17]. More studied is the escape rate from mul-and memory friction28]. In this paper we will analyze in
tidimensional metastable or bistable wells; this problem hagletail the results concerning the diffusion coefficiéntin
been studied in connection with the theory of chemical reacthe case of a square lattice and of homogeneous friction. The
tions both by analytical methodsl8—20 and Langevin PotentialV(r) is chosen in the egg-carton shajsee Fig. 1
simulations[21]. The two-dimensional periodic case is of

particular relevance, for example, in surface science where V(X,y) = = 2go(COSX+ COY/) + 201 COXCOY/ .
the adatom mobility in the surface plane controls the dynam- _
ics of many processes involving mass transport. The egg-carton potential depends on two parameggrand

The main goal of this paper is the study of the Fokker-g1, Which give the amplitudes of the decoupled and coupled
Planck dynamics of a classical particle in a two-dimensionapart, respectively. The egg-carton shape is the simplest
coupled periodic potential. The particle is subjected to thre€¢hoice in order to study genuine 2D effects. In fact at
forces: a periodic deterministic force, derived from the po-g1=0 the potential is trivially decoupled and the 2D prob-
tential V(r), a frictional force @ is the friction coefficient ~ lem factorizes into two independent 1D problemspgt0
and a white noise, related to the friction via the fluctuation-the potential is again decoupled but rotatedrsg. The cou-
dissipation theorenf22]. In these conditions, the phase- pling term is responsible for the energy transfer between the
space probability density satisfies a four-variable Fokker- x andy degrees of freedom and leads to qualitatively new
Planck equatiotiFPB), which is the Klein-Kramers equation dynamical features in the case of Hamiltonian systems. In

in two-dimensional space: these conservative systems, the motion in the egg-carton po-
tential has been widely studied and regular and enhanced
ﬂ: —v. a_f_ir) ﬁ+ i(vf kB_Tf9_f> (1.1) diffusion have been found depending on the strength of the

at o m v Tov m adv)’ x-y coupling and on the energy of the parti¢29,30. In
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response theory. The diffusion coefficigatong thex direc-
tion, for instancgin the quasi-2D approximation is obtained
by generalizing to two dimensions the method presented by
TR Guntheret al. [15] for deriving the exact 1D resuftL4].
/0'9;&4"‘3“:‘&‘}‘\\ . : At intermediate and low friction, the numerical results

g ST . .
AR KSR N : will be compared to those of the 2D-jump mod@é2]. In the

latter model, the diffusion coefficient is expressed by
D=3(1%r;, (I?) being the mean-square jump length, and
rj the total jump rate. Activated diffusion is assumed and
then the validity of the picture is restricted to high potential
barriers. A simple evaluation df?) is possible if the damp-
ing is not too low. In this regime, the diffusion proceeds only
by single jumpg25,33 and the mean-square displacement is
given bya?, wherea is the lattice spacing. Following Langer
[17,18,43, the rate is calculated as a 2D extension of Kram-
ers’s[44] result in the spatially limited diffusion regime.

The paper is organized as follows. In Sec. Il the 2D
MCFM is outlined for a general coupled potentifr). Sec-
tion Il contains a brief description of the potential actually
used in the numerical calculations. Section IV contains the
results; in subsection A the Smoluchowski limit is consid-
ered, whereas subsection B deals with the intermediate- and
low-friction regimes. The conclusions are outlined in Sec. V.

V(x,y)

Il. THE MATRIX-CONTINUED-FRACTION METHOD
FIG. 1. The egg-carton potential in a lattice cell. The upper and

lower panels correspond wy=1, g;=0.5 andgo,=1, g;=1, re- In this section the MCFM 3,23 is first extended to the
spectively. The latter case presents a flat channel. 2D case to obtain the time-dependent solution of the FPE
[Eqg. (1.1)] in a coupled periodic potentid(r).

order to model more realistic systems the noise has to be 'A; s?]u?re lar:t'?; ?f dS?e:CIri]r?l ?|m|jt horr]r:jogen(iano?; fr1|(|:3t|on
added; in the dissipative systems conventional diffusion a7 @re here considered for SIMpIcCity and, as € case

ways takes place, but the effects of the coupling may bé25], the following dimensionless variables are introduced:
relevant. In the dissipative regime, the diffusion coefficient

has been calculated by Chen and Y[Bd] for an anisotropic _ 2m  __2m \/kB\T o \/W
coupled potential of centered rectangular symmetry. Here we r=—r, t=—\/—+t, v=1\/——=V,
study the egg-carton potential where the amplitude of the a a m KT
diffusion barriers and the strength of tkey coupling can be

easily and independently changed.

For simplicity, diffusion is usually treated in the 1D pic- y= i‘ /1,7, V_(ﬁ:w F()= 2 @
ture, here named “diffusion-path approximationDPA), 2m N kgT kgT 2m kgT
obtained by considering the most probable diffusion path 2.0

connecting the minima via the saddle points. Our first goal is
then the investigation of possible dimensional effects, b
comparison between our 2D exact results and 1D treatmen
The topic is particularly important, for example, in surface
diffusion at crystals. As shown by the auth¢632,33, the
FPE can describe the diffusion at crystals in every friction
and barrier regime, from energy-controlled to spatial-
controlled diffusion and from activated to unactivated diffu- af(rv,t)
sion. In principle the DPA can be calculated at every friction. Y
Then, by solving the FPE in a wide damping range, dimen-
sional effects are studied both at high- and low-friction val-
ues. The importance of the low- and intermediate-dampinghe Fokker-PlanckFP) operator becomes
regimes has been recently highlighted by many experimental
and theoretical works on surface diffusip®33—-41.

The exact numerical calculations will be compared also
with two different approximations whose validity is re- Lep=—V: ar "oV + Yov
stricted to limited parameter ranges.

At high friction, in the Smoluchowski limit, a “quasi-
2D approximation is derived in the framework of the linear  Let us introduce now the operators

Mwith this choice forr, the unit cell goes from- 7 to 7 and

om —1/2 to +1/2 in the real and reciprocal axes, respec-
tively. In the following the dimensionless variables in Eg.
(2.2) will be rewritten without overline and in the FPE,

=L|:pf(l’,V,t), (22)
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Jd 1 ~ 4 1 m m
D=5+§Fx(r), D=5—§Fx(r), N= B dx B dyexd —V(r)], (2.9
g 1 -~ 9 1 satisfies the required normalization condition
A=W+§Fy(r), A=W—§Fy(r),
f_ dvxf_ dvyJ_ dxf_ dyPg(rv)=1. (2.10
b= J +EU bTZ—i"r‘lv
vy 2 X vy 2 X . - .
The conditional probabilityP.(r,v,t/rq,vg,0) of having
the particle inr,v at timet, if it was inrg,vq at time 0, is the
J 1 N d Green function of the probability densifyr,v,t), that means
B= ﬁy”ﬁvy' B == WYJF S0y (24 the solution of the FPEEq. (2.2)] with initial & condition in

whereb andb®, as well asg and 87, are the well-known

both position and velocity.
The nonperiodic time-dependent solution of the FPE can

annihilation and creation operators for the harmonic oscillabe €xpanded in Bloch functions as
tor in quantum mechanics, corresponding to the variables

vy Or vy, respectively. It is useful to recall the properties of

these operators when applied to harmonic oscillator eigen-

functions ¢,(v):

bToyn(v)=n¢n(v), b gn(v)=Vn+1¢n,1(v),

(bH)"
bhn(v)=VNin_1(v),  Pn(v)= tho(v),
_ 1 v2
o(v) = Zn 4eXp( - Z) . (2.5

With the aid of definitiong2.4) the FP operator can be
rewritten as

V(r) - -
Lep=— 'ﬁo(Uy)l!’o(Ux)eXl{ - T){bD+bTD+ﬁA+,3TA

V(r)

+yb'b+ VBTB}GXD( T) Yo (v g (vy). (2.6

The dynamic structure fact@® is the Fourier transform
with respect to time of the characteristic functidn [24].

112 2
f(r,v,t)=fﬁllzdkxfillzdkyf(k,r,v,t)exp(ik-r),
(2.11

wheref is a periodic function of; then?(k,r,v,t) is further
expanded in Fourier series as for space variables and in Her-
mite functionsy(vy), ¥n(vy) as for velocity variables:

o)

~ 1
f(k,r,V,t):Zlﬂo(vx)lﬂo(vy)ex4— 2

Xphz m%O C&hn(kvt)wm(vx)’pn(vy)

— o0

Xexp(ipx)exp(ihy). (2.12

In order to obtain a solution of the FPE with initial
condition, it is sufficient to impose that

T(k,r,v,00expliker) = 8(r—ro)S(v—vp). (2.13

The latter can be calculated if one knows the stationary proponsequently, the coefficienss of Eq. (2.12 at timet=0

ability density Py and the conditional probability density
P.:

Es(q,t)=J dvxf dvyJ dUOXJ dvoyJ dxg

<[ ayo[ " ax|” dyputrowo

X Po(r,v,t/rg,vo,00exd —ig-(r—rg)]. (2.7

The Boltzmann distribution

1
Ps(o.Vo) = ¥6(vod ¥o(voy)exiL —V(ro)],  (2.8)

with

have the following form:

1 m(vox) ¥n(voy) p(V(ro)> .
phn — y _
Cm " (k.0) 2m ’ﬁO(UOx)lﬂO(UOy) X 2 exiL—1(p
+ k) Xolexg —i(h+ky)yo]. (2.19

The coefficients at timé can be connected with the coeffi-
cients at timet=0 introducing the function&:

cPM(k,ty= 2, DX GEMMSik,t)clSi(k,0).

i,j=0r,s=—»

(2.1

Using Egs.(2.11), (2.12), (2.14), and(2.15), the result for
the conditional probability is
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o

L oo v )exd—V(/2] & <
T2 Tolvon Folvoy X~ VT Zluia o Y1200 Yi(Von) V() n(vy)

P.(r,v,t/rq,ve,0)0=

xfmdkxjmdk 2 2 exl —i(r +koXolexd —i(s+ky)Yo]

-1/2 -12 p,h=—o r,s=—c
X exli (p+ k) xlexdi(h+k,)ylGP"I(k,t). (2.1

Inserting Eqs(2.8) and(2.16) in Eq. (2.7) we get

Sda=7 B0 EOMp i ha MEy o s (2.17

h=—w r,s=—w

whereq=(qy,q,) = (&t 1x, &y 1), —1/2<§,<1/2, —1/2<¢,<1/2, andl,, |, are integers, and

M = f_:dXJ_:dyeXr< - ?) exp(ipx)exp(ihy). (2.18

In Eq. (2.17) only theG functions havinqp=m=i=j =0 are involved due to the orthonormalization properties of the Hermite
functions. IfV(r) is an even function of botk andy, all the integralsM ,, are real.
The Laplace transforr,(q,z) of the characteristic functioB ((q,t) then takes the form

nés(q,Z)I (§,2)Mp-y h- IMr sy (2.19

h=—ow r,s=—»

2.4(q,t) being an even function of time, the dynamic structure fa8gg, ») is given by

1 ~
Si(g,0)= _Re[Sy(q,iw)}, (2.20

and we finally obtain

E 2 GB £, 2Mp 1 n MPy o l, (2.21)

p,h=—w r,s=—x

S4(0,0)= 7=

with z=iw.
In the following we derive a recurrence relation for @égorso(g,z). As a first step, we insert EqR.11) and(2.12 in Eq.
(2.2 and using Egs(2.5 and(2.6) we get an equation for the coefficierts

aCfSJ(k t) . - (=)rsjphn.phn rsjphn.phn (+)rsjphn.phn
ot 2 2, (Qn Rkt + QPR )+ QT PMERT (k). (2.22
where
rsjphn 1 * ” W ;
m :Wj,mdvyf,def,wdy'//i(vy)exq_'(r+kX)X]
X ex —i(s+ky)y]Qmin(vy)exdi(p+kx]expi(h+ky)y],
. 1 © T T
Q"= [ oy [ ax |7 dyw(oy x5+ koxlext —i(+ ky)YIQL Wi(vy)
xexdi(p+kyx]exdi(h+ky)y], (2.23
and

Qnm=—(my+BA+B"A+yB'B),
Q\.)=—ymD, Q\"'=—m+1D. (2.24
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In obtaining Eq.(2.22), the properties of the operators defined in HGs4) have been applied t¢,(v,), while the sum on

n index is still present; as it will be clear in the following, this is one way for getting a tridiagonal recurrence relationship.
Inserting EqQ.(2.24) in (2.23 and remembering the definitions of the operai@s) and the propertie€2.5), Q, Q(*), and

Q™) can be written as

QRIPMN= — y(n+m) 8P 8" —i (h+k) T Ynd "1+ Jn+ 18— FEDTONT (ngin Tl (n+ 1800,
Q" IP"= =y (p ko) 871" S FR,

Qg:)rsjphn: —Jm+ 15jn[i(p+ kx)épr5h5+ % Fg—f,h—s] (2.2

if we define (p,h,n)—u, (r,s,j)—v, (a,b,d)—w,

1 (= Eq. (2.27 can in fact be written as
Fp rh=s_ mj dxf dyFy(r)exdi(p—r)x] 9.(2.27) : wri

|(k t)

xexdi(h—s)y], —2 {QL MG (K, t) + QUG (K, t)
1 T T (+)uw
FQ"'h_5=mLdef_wdyFX(r)exp[i(p—r)x] +Qm Gt 1i(k, O} (2.30
) The upper indices label the matrix elements whereas the
Xexgi(h—s)y]. (2.26  |ower ones label the matrices. In matrix notation, one obtains

N _ the following tridiagonal recurrence relationship for the ma-
Fy(r) andF(r), and consequentl®, Q*), andQ("), are iy G-

completely determined by the potentié(r).
Inserting Eqg.(2.19 in Eqg. (2.22 one obtains a corre- 9G (K1)

sponding recurrence relation for tig functions: =Q% G- 1i(K,t) + QuGrmi(k, 1)

ot
phanJ o o
ﬁG (k t) — 2 2 {Q( phnabdGabdlrSJ(k t) +Q m+1|(k t) (2-31)
ot d=0 a,b=— B
Considering the Laplace transform of Eg.31) with i=0,
+QPMabEaRdrS K, 1) one obtains
+Qn PERI kG Y 229

2Gmo(K,2) — Gino(k,0)=Qly "Gy 1.d(K,2) + QuGrmo(K,2)

The indicesp, h, r, and s are integers varying between

—o and o whereas the integens, j vary between 0 and +Qm m+1°(k 2), (232
. In order to obtain a numerical result, it is necessary to

truncate the recurrence relation, i.e., to choBsH, R, S,

N, andJ so that

which can be solved by standard meth@8ls The solution is
written as a continued fraction,

—P<p<P, —-H=<h<H, O=ns=N, Goo(k,2)
=(z1+B-B"{zl+A+B-2B" [zl +2A+B—3B'"
— =r<c —S<<g<< =1
Rsr=R, Sss<§, 0O=j=J. (2.28 X (21+3A+B— ) 1B 1B} 1Ry
Eqg. (2.27) can be identified with a tridiagonal relationship (2.33
[25] if the objects labeled by, h, n) and (, s, j) are
rearranged according to two indicesandv [28]; a possible  \yhere the matriceB(™), B(*), B are defined as
rearrangement is

(=) — _ (-)
U=(h+H)(2P+1)+(p+P+1)+n(2P+1)(2H+1), Qpy'=—mB",
p=(5+S)(2R+1)+(r +R+1)+](2R+1)(2S+1), Qi'=—Vm+1B"",
22
229 Qn=—mA-B, (2.39

and a similar rearrangement is introduced for the summed up
indices. Taking A is the matrix obtained by rearranging the indices of
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APhnrsj— 75pf5h55nj' (2.35

the expression of the dynamic structure fadiq. (2.21)].

If the 2D potential V(x,y) is decoupled[V(X,Yy) 4L
=V,(x)+V5(y)], the 2D problem factorizes into two 1D
independent problems. The 1D problem has been treated in  -1.5 |
detail in a previous work by the same authf2s].

In a square lattice, the diffusion tensor is isotropic, so
only one diffusion coefficient is to be considered. The latter
can be derived from the well-known Green-Kubo relation-
ship[24]:

7~ 05 F 1 |
o~ [ [
1 1
and| is the identity matrix. _ 9/ of LF ! IF ! HF
From Eq.(2.33 it is possible to obtain all th&i°"C in C os | ! :
: |
i

D==lim wzlimss—(qﬁ, (2.36
w—0 q—0 q \‘Ij :1.
whereq= o2+ g3, and, with no loss of generality can be In(y)

evaluated for diffusion along the axis, i.e., atg,=0.
FIG. 2. General behavior dD as a function ofy. The four

lll. THE 2D COUPLED POTENTIAL curves - correspond 10 go=0.6, 9:=0.3; Go=1, 9,.=05;
0o=1.4, g,=0.4; andgo=2, g,=1. Three friction regimes are

In the following we present the explicit results for the indicated: high friction(HF), intermediate friction(IF), and low

egg-carton potential: friction (LF).
V(X,y)= —2gy(cox+cogy) +2g,coxcoy. (3.1 FPrh=s— _jgod"(oPrHi— 6P 1)
Dimensionless units are employed and the potential is nor- +i %5h,s+l( SPrHi_ gpr—1y

malized as in Eq(2.1). This model potential, which looks

like an egg carton, has a square symmetry and is often intro-

duced in the study of the nonlinear dynamics of a classical gl 2o ghs—Lgprl gpr-1y
particle moving conservatively in a periodic field of force 2

[29,30. At g,;=0 the potential is trivially decoupled; at

go=0 the potential is again decoupled but rotateds#s. In Ff}_"h_sz —iggdPT(sMst— sy
Fig. 1 the potential is represented in the unit cellgfand
g, are positive andyj; <g, there are four minima at the cor- gl 5p THL(ghstl_ ghis—1)

ners of the cell, one central maximum, and saddle points at

the midpoints of the edges. The difference of potential en-

ergy between minima and saddle poifits., the energy bar- 91 5p 1 ghstio ghs—1y, (3.5
rier) E, is given by

E,=4(go—g1). (3.2 With the aid of Egs(3.9), (2.21), (2.295, and(2.33 thg
dynamic structure factor can be evaluated as a function of

In the extreme case of very stromgy coupling @;=go),  * 90 andgs.
the energy barriers vanish and the minima are connected by a
network of flat channelflower panel of Fig. L Around the IV. RESULTS

minima, the frequencies related to the curvatures are . . .
q The general features of the behavior of the diffusion co-

efficient with varying frictiony are represented in Fig. 2.
®a=Sa3=V2(go~ 1), 33 The logarithm ofD y=D/D, is plotted as a function of the
) ) logarithm of y at different couples of the potential param-
at the saddle points the curvature relatedstois unstable etersg, andg,. Three distinct regions can be clearly distin-
and we have guished, pointing out three friction regimes. Moving from
the right to the left, a region is first found wheBey is y
0c=V2(9o—91), Sc=V2(got+d1). (3.4  independent and therefole behaves as the inverse friction.
This region can be labeled as the high-friction or Smolu-
In the presence ok-y coupling, the channel width is not chowski regime. Giverg, and g4, it is always possible to
constant; the channel is narrower at the saddle pointhoose a sufficiently highy such that the Smoluchowski
(5a<Sse). equation is adequate to describe the dynamics. The Smolu-
With the potential(3.1) the quantitieg2.26) result: chowski equation can be solved numerically by the MCFM
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FIG. 4. The same as in Fig. 3, but at highey (go=3). The

FIG. 3. Diffusion coefficient in the Smoluchowski limit as a energy barrie, ranges from 18,T (atg;=3) to 0.

function of thex-y coupling g, at fixed go=0.5. The black dots
correspond to the exact numerical results; the dashed line to the

diffusion-path approximatiofEgs.(4.1)—(4.3)] and the dash-dotted The_ Smoluchowski regime is_ easier for what concerns
line to Do, [Eqs.(4.6) and (4.7)]. analytical calculations. In fact, in 1D, an exact analytical

formula for D was obtained a long time agd3]. In a

) . . coupled multidimensional potential an exact formula is not
too [45]. In the central region, at intermediate values of theyyjjable. However, it is possible to generalize the methods
friction, In(D ) exhibits a knee from a constant value 10 ajeading to the exact 1D result and to obtain analytical 2D
decreasing behavior ag is decreased. This region will be approximations. In the following we treat two different ap-
referred to as the intermediate-friction regime and correproximations, which are both compared to the exact numeri-
sponds to the Kramers turnover region. The low-friction re-qc] results.
gime in the left is characterized by an evident decrease of The first approximation is the DPA. In the DPA, the 2D
In(Dy). As y takes on lower values, the diffusion coefficient proplem is restricted to a 1D problem by considering the
is no longer simply proportional to the inverse friction. Be- minimum-energy path connecting the wells with the saddle
low the knee, the diffusion tends to be energy controlled: thfboints (which coincides with thex axis in our case The
energy of the diffusing particle is almost conserved along thgatter problem is exactly solved at high friction by means of
trajectory for long timegof the order ofy™1). a well-known resul{14,15);

The results for the diffusion coefficient will be presented

and discussed separately in the different damping regimes. a’Dy
The exact numerical results will be compared to those of Dora=—13 a '
different approximations. The overdamped regime will be f dxexp:,BU(x)]f dxexg —BU(X)]
examined first. 0 0

4.1

A. The high-friction regime where

As stated aboy_e, the qve_rdamped rggime_ is the one in Do=kgT/m7, (4.2)
which the probability density in the configuration space can
be obtained also by solving the simpler Smoluchowski equa-, _ 1 . . .
tion instead of the FPE. The Smoluchowski limit is obtainedg_:(kB_Tl) and and U(x)=V(x,0). In normalized units,
from the FPE by lettingy— o at fixed potential; in this limit 0=Y
D/Dy=Dv tends to a constarisee Fig. 2

In Figs. 3 and 4Dy is studied as a function of the cou-
pling parametely; at fixedg,. In all the following figures,
the 2D FPE exact results will be represented by black dots.
D increases with increasingy, that is, as the potential goes wherel4(z) is the modified Bessel function of order zero
from the decoupledd;=0) to the strongly coupled case [46] andz=2(gy—01).
(91=9p). Furthermore, a comparison between FigwBere The second approximation, called in the following the
00=0.5) and Fig. 4 ¢o=2) shows that, at fixed);, the  “quasi-2D"” approximation, can be derived by generalizing
lowestD corresponds to the highegg. In all cases the be- to a 2D potentialV(r) the method proposed by Gther
havior of D is in agreement with the corresponding behavioret al. [15] for the 1D case. Here the derivation of the
of the potential barrieE, [see Eq(3.2)]. E, is in fact raised quasi-2D approximation is sketched. When a uniform exter-
either by increasingyy or by decreasing. nal forceF is applied along the& axis, there will be a mean

1

DDPA:mv 4.3
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velocity vq in the direction of the forceyy= uFy, where
w is the mobility of the particle. The drift velocityy can be
calculated as

J IIdydxr(r)v(r)
b= ce ’

dydxnr)

cell

4.9

wheren(r) is the density of particles;(r) is thex compo-

nent of the local velocity, and the integrals are extended over

the unit square cell of spacirg When no external force is
applied, the equilibrium density of particles is
Nedr) =Noexd —BV(r)] (B=1kgT). In the presence of a
small Fo, n(r)=ne{r) and the normalization factor in Eq.

(4.4) follows immediately. The evaluation of the numerator
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is approximated and requires subtler considerations. The in-

tegrand is the density of current of particles in #héirection
J(r)=n(r)v(r). To perform the integration over the cell, we
first keepy fixed and then we integrate ovgr Assuming
that at fixedy the diffusive motion in the direction can be
treated as one dimensional(r) must bex independent
along the path, as in the strictly 1D ca$#5|, that is,
J(r)=J(y). The further step allowing us to perform the in-

FIG. 5. High-friction diffusion coefficient in the flat-channel
case @p=g,). Symbols as in Figs. 3 and 4.

more important as the-y coupling is increase(see Figs. 3
and 4. Dy, is a much better approximation, especially at
small coupling. In factD andD o, practically coincide when
the values ofy; are small compared with,. The difference

tegration over is the observation that the work done by the betweenD andD g, becomes more relevant as the coupling

external force when the particle moves over a spaeairagf

parameterg; is increased andDq, always underestimates

fixed y must equal the work dissipated by the friction force the diffusion coefficient at everg, #0.

acting on the particle:
a
F0a=mnf dxv(r). (4.5
0

An expression forvy follows easily from these consider-
ations; the mobilityu is extracted and, finally, the diffusion
coefficient in the quasi-2D approximati@y,, is obtained as

DszkBT/.L
a a -1
fdy[f dxexp[,BV(r)]}
0 0

foadyf:dxexq—BV(r)]

DQz:Doa2 (46)

This expression was derived by Ala-Nissila and Y[a§] by

Since all approximations are worse at higly coupling,
we shall examine as a special case the situation of maximum
coupling @1=do), corresponding to flat channels. The flat
channel gets narrower with increasigg and, consequently,
the diffusion coefficientD has a decreasing behavitsee
Fig. 5. The DPA gives in this case the constant value
Dppa=Dg=1/y, as expected from Einstein’s relationship
for free diffusion. The quasi-2D approximation instead re-
produces the decreasing behavior and gives fairly accurate
results. The deviations from the exact result are not very
large up to the highest values gf reported in Fig. 5. Any-
way, a more accurate investigation at high couplings will
now be carried on.

The asymptotic behavior @, at very high couplings in
the flat channel case can be evaluated from (Bg) taking
the limit g;— wheng;=g,. It can be shown thaD g,y
vanishes as

different methods. In normalized units and with the potential

(3.1, the quasi-2D approximation gives

J " dy exp(2g0c08) 1 1(2)
0

YDqo= , (4.7

foﬁdyexﬂzgow%’)'o(z)

whereR=g,/9q, andz=2gy(1— Rcoy).

1

The coefficientsA and B can be extracted from the data in
Fig. 6; it turns out thal=1.70,B=0.250.

In Fig. 6, both Oy) ! and Dq,y) * are plotted as a
function of Ing; (g1=9¢). The behavior ofI()sz)‘1 is, as
expected, linear in lgy at highg,;. What is more interesting,
however, is the result concerning the exact diffusion coeffi-

Let us compare the approximations with the exact resultscient in the limit of very highx-y coupling. From the results
In the figures, the DPA corresponds to the dashed lines anid Fig. 6, (Dy) ! also appears to have an asymptotic loga-

D, to the dash-dotted lines.
Dppa @and D coincide only ifg;=0. The 2D decoupled

problem splits in fact then into two independent 1D prob-

lems. At nonvanishingy;, Dppa always overestimates the

rithmic dependence on the couplimg. This suggests that
D vy should vanish in the limit of infinite coupling in the same
way asDq,. Assuming that the asymptotic behavior Dfy

is also given by Eq(4.8), the parameter& andB can be

diffusion coefficient and the disagreement becomes more angtracted from the data in Fig. 6. It turns out thet 1.48,
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FIG. 6. Asymptotic behavior of the inverse diffusion coefficient
at high friction in the flat-channel casgd=g;). Dq, (dash-dotted FIG. 7. Diffusion coefficient at intermediate frictiony& 0.5) as
line) vanishes as in Ed4.8) at highg,; the exact numerical results a function of thex-y coupling g, at fixedgy,=1. The black dots
display the same kind of behavior. correspond to the exact numerical results; the dashed line to the
diffusion-path approximatiofEgs. (4.1)—(4.3)] and the dotted line

B=0.186. From these values, it follows that the ratiot© Dow[Ed.(4.12].

Do /D should tend to the asymptotic limiq,/D =0.744.

The DPA approximation, instead, gives in the flat-channef/9- 8. The potential barrier is rather higle,=4kgT

case the coupling-independent re€dffp,y=1 and is there-
fore asymptotically wrong at higk-y couplings.
A diffusion problem with some similarity with our flat-

(gp=1.5,9,=0.5) andD v is always less than one, as is to
be expected sincB y is the ratio between the diffusion co-
efficient and Einstein’s free diffusion coefficient. A strong

channel case was studied by Zwanfg], who considered decre.ase is shown going towards the lowest valueg. @t
the high-friction motion of a Brownian particle in a 2D chan- th€ highesty’s, say y=5, Dy tends to a constant value;
nel with periodically varying width. In the case consideredthereforeD behaves like 1y towards the moderate-high fric-

by Zwanzig, no potential is present in the channel and thdion values. - _ , .
The diffusion along a flat channel is examined, as at high

nonconstant channel width. The effective diffusion coeffi-damping, as a particular case. In Figs. 9 and 10 all symbols

particle is subjected only to the geometrical constraint of a

cient is always smaller than Einstein’s relationship. Ein-
stein’s result is recovered exclusively for a rectangular chan-
nel. In fact, when the channel width changes periodically
along thex direction, the particle can wander along the
direction before finding its way through the “bottlenecks.”
This makes the motion in the direction slower and there-
fore the diffusion coefficient is smaller. Our results for mo-
tion in a flat channel are qualitatively in agreement with the
results obtained by Zwanzig, as the diffusion coefficient is
always lowered with respect to the result given by the Ein-
stein relation Eq. (4.2)].

B. The intermediate- and low-friction regimes

In this section we will present the results for the diffusion
coefficient in the intermediate- and low-friction regimes.

The effect of thex-y coupling at a fixedy is first exam-
ined. At moderate dampingyE 0.5), D y (black dots in Fig.
7) has the same qualitative behavior at fixgd go=1) as in
the high-friction regimeD increases as the coupling param-
eter g, varies from 0 tog,, that is as the potential barrier
Ey [Eqg. (3.2] goes from its maximum valuegg to O, re-
spectively.

0.2

0.175

0.15

0.125

0.1

0.075

0.05

0.025

o b e by e b e |

3=1.5 g,=0.5

2 3 4 5

v

FIG. 8. Diffusion coefficient as a function of the frictiop in

the turnover region and belovg, and g, are chosen to give a

At fixed g andg,, an accurate investigation of the diffu- sufficiently high-energy barrieff,= 4kgT) that the jump-diffusion
sion coefficient as a function of the friction is presented inregime holds. Symbols as in Fig. 7.
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> Dy are obtained at the highegg, i.e., when the channel is
A 7:5 narrower.

The presence of ar-y coupling therefore has the effect
of making the diffusive motion slower. The diffusion coeffi-
cient is smaller and this is more evident at low friction. In
fact, in the coupled case, long straight trajectories are less
g 4 favored than in the decoupled case. The effect is evident
- O A even at small couplings.

06 L . o O The coupled potentigl3.1) has been studied by different
groups[29,3Q in the investigation of chaotic diffusion in
d Hamiltonian systems. They noticed that without the coupling
i term, the corresponding Hamiltonian is integrable and no
. diffusive and chaotic motion is observed. The presence of
Jo=9; the coupling allows instead an energy exchange between the
x andy degrees of freedom. This happens however small the
L coupling is and the results remain qualitatively unchanged,
0 0.2 0.4 0.6 0.8 ] as long as the coupling is different from z€r@9]. In the
presence of coupling, either “normal” or “anomalous” dif-
9 fusion can take place, according to the strength of the cou-
o o pling, although the system is conservative. Their consider-

FIG. 9. Diffusion coefficient in the flat-channel casp 91) 8 aijons cannot of course be directly compared with the results
a functlc.)n.ofgl. Thg dl.ﬁerent'symbolls correspond to three valuesWe have presented in this paper, since we are dealing with a
of the friction y, as indicated in the figure. different problem: in Refq.29,30 diffusion arises determin-

istically, while here the diffusive motion is due to random
refer to the exact numerical results. In Fig. 9, the effect ofand friction forces. It is anyway worth noticing that our non-
raisingg; = g, that is, of narrowing the channel, is studied at conservative system, in the limit—0, is equivalent to an
three different values of (y=0.125,y=1, y=5). Dy is  ensemble of conservative systems, whose weights are given
correspondingly found to have a decreasing behavior. Aby Boltzmann factors.
nonvanishingg,;, Dy is smaller than Einstein’s value, and  In the low-damping regime no exact analytical 2D results
the strongest differences are obtained at the lowest frictionare available; even in 1D, in the low-friction expansion of

In Fig. 10,D vy is plotted as a function of the friction at the solution of the 1D FPE3], only the leading terms are
three different values of the parametgp (black dots: known analytically, providing a good approximation exclu-
0o=0:=0.5, squares: go=9g,;=0.7; open circles: sively at extremely low dampinf]. Approximations for the
0o=0:=1). As in Fig. 8,D behaves as the inverse power of 2D diffusion coefficient are provided, anyway, by the DPA
the friction at the highest dampings and rapidly decreaseand the 2D-jump model. In the following we will discuss
with decreasing friction. At the samg the lowest values of these approximations and their validity as resulting from the

comparison with FPE 2D exact results.
As said in the Introduction, the DPA is not restrictad
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0 priori to a particular range of the friction or of the potential
&~ amplitudes. The one-dimensional diffusion coefficiBypa
o % . o so000 can be obtained solving the FPE in the effective 1D potential
E/ 0.4 « ® ; o 9 : Sgggg experienced by the diffusing particle if the motion could be
— e o go° restricted only to the most favorable trajectory that is in our
-0.6 o © caseU(x)=V(x,0). The resulting 1D problem is then nu-
o8 . ° merically solved. The details of the method leading to the
' o solution of the FPE with a 1D potential have been published

elsewherd6]; here we only recall that the computing efforts
are far lighter in the 1D case than in two coupled dimen-

—12 o *§p=0,=0.5 sions.

Zia © 0 go=0,= 0.7 DPA results have been compared widhat intermediate
and low friction, too, and, as in the previous high-friction

-1.6 °oJo=0 4= 1 figures, they are represented by a dashed line. As in the high-

friction case,Dppp Overestimates the diffusion coefficient;
the deviations are even more relevéobmpare Fig. 7 with

|
Lt I I L IO L B L
[e]

PN I W N T P I N B o Figs. 3 and 4 In fact, the DPA gives worse and worse
“25 -2 -1s -1 S05 005 1 4s results with decreasing friction. This is evident from Fig. 8
|ﬂ<7/> and panel(a) of Fig. 11, where the relative difference

Copa=(Dppa—D)/D is plotted as a function of. Cppp is
FIG. 10. Diffusion coefficient in the flat-channel case nearly independent oj at the highest-friction value@n the
(do=9,) as a function ofy. The different symbols correspond to case presented here, it is about)(®8t it strongly increases
three values ofy;, as indicated in the figure. when y<0.5. The DPA can therefore lead to relevant errors
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< 06 ¢ but at low damping long jumps become important
(5 os b [6,7,33,41,48 and the evaluation of1?) is not trivial
TE . [25,33. The directional rate}l) can be approximated by a
04 £ . 2D extension of Kramers's[44] high-friction result
E ® * 6 4 e e e e [11,17,18,4%
0.3 F .
F 1 w,s 0% 0%
() _— Tava LA —
o 3 o Sc 4ol 2o, eXp(~Ey).
oot (@) go=1.5 g,=0.5 (4.1
o ) T T BT T B B B In Eq. (4.1) E, is the dimensionless potential barrier and
0 1 ? ? ' ° w4,S; and w¢,S; are the vibrational frequencies related to
Y the curvatures of the potential near the minimum and near
= 04 the saddle point, respectively. The validity of E¢.1]) is
O 03 F not limited to the Smoluchowski limit but it can be extended
0.2 & down to values of the friction around the turnover. Taking
0.1 & e o ® © o o o o into account these results and E¢&2)—(3.4), the diffusion
°OE * coefficient in the jump modglJM) is finally obtained as
-01 F
02 do—91 | | ¥
—0.3 f_. DJM:’JTZI":Z\/E’]T— 1+—_
Cos b (b) go=1.5 g,=0.5 : Vgo+ 01 8(go—01)
-05 | y
B e e R S e TR R (412
Y

In the limit of infinite friction, the formula provided by the
JM coincides with the high-barrier limit of the quasi-2D ap-
proximation[Eq. (4.7)].

D ;v is represented in Figs. 7 and 8 by a dotted line. Fig-
ure 7 shows that Eq4.12) is appropriate even at intermedi-
ate friction (y=0.5), as long as the potential barriers are
sufficiently high. From our result®) ;, can be considered a
reasonable approximation whep—g,=0.5. If this differ-
ence becomes smaller, i.e.,B§<2kgT, Eq. (4.12 can no

FIG. 11. Relative errors Cppp=(Dppa—D)/D and
Cy;u=(Dyy—D)/D at fixedgy andg, as functions of the friction.

at low friction. The disagreement with the DPA is even more
important for flat channels(Figs. 9 and 1D where
Dppay=1 at every friction. As an example, at the lowest
friction considered herey=0.125, we obtaine® y=0.27 at

go=91=1; the DPA would then lead to an error of about alonger be correct, as shown by the same authors in the 1D

factor 4. ) . -
We can conclude that at low damping the DPA Overesti_case[ZS], both by numerlca_l calt;ulaﬂons and by qualitative
arguments about some typical time scales.

mates the diffusion coefficient more dramatically than in the . . h f validity of the hopoi
high-friction regime. Dimensional effects become more and Co_ns_lderatlons about the range of va |_d|ty_o the hopping

: = ; - description develop also from an examination of Fig. 12,
more important with decreasing friction, and cannot be ne-

lected at all fory below the turnovettypically placed be- where the logarithm of the exact diffusion coefficidhtis
?Ween y=1 and ;/:0 5) even at smaII)c/:%upliﬁgp plotted as a function of the potential barrieg. Both y and
As mentioned in the Introduction, the hopping mod] ggrﬁre?](?l)ée?cg:ﬁ\?rﬁégfu:s }a)“.NAccordmg to the usual phe-
is the standard approach to diffusi¢f5,39,4Q. The 2D- 9

jump model provides a good description of the migration D=Dexp( —Ep), (4.13
mechanism at high potential barriers. In this picture the dif-
fusion coefficient is given by whereD, is a prefactor weakly dependent on temperature. If
InD is plotted as a function o, a linear behavior is ex-
D= %<|Z)Vj:<|2>r}1): (4.9  pected at least in a limited range of temperatures. Figure 12

shows that at low barriers significant deviations from the
where (12) is the mean-square jump length, is the total ~ Arrhenius law are possible and the diffusion may become
jump rate taking into account the four different escape direcunactivated. In this case the model of migration taking place
tions, andr}l) is the directional escape rate over a saddleby activated hops is certainly not appropriate. The linear be-
point. Equation(4.9) is correct at high barriers, indepen- havior of InD, and therefore the JM, is recovered only at high
dently of the friction, butr; and(I?) cannot be evaluated  barriers.
priori in every friction regime. If the friction is not too low, At a fixed and high potential barrieD ; is a worse ap-
one can expect that the diffusive motion consists of hopgroximation as the friction is decreased, as shown in Fig. 8
between nearest-neighbor lattice sit@ingle jumps and and stressed in panéb) of Fig. 11, where the relative dif-
(1?) is simply given by the squared lattice spacing ferenceC;y=(Djy—D)/D is represented. The deviations of

D v from the exact result are to be imputed both to the poor

(1?y=a?, (4.10  evaluation ofr{" and of (1%) in Eq. (4.9. The estimation
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— 05 a two-dimensional coupled periodic potential on a square
9021 7:05 lattice. The Fokker-Planck equation has been numerically
solved and the diffusion coefficient has been calculated in a
wide range of theory parameters: the strength of the friction,
the x-y coupling parameter, and the amplitude of the poten-
tial barriers along the diffusion path. At high friction, results
are easily obtained by the MCFM up to barriers okl0
and more(see Fig. 4, for instangeand with strong coupling
. (see Fig. 6 We stress that, for our model potential, the
stronger is the coupling the lower is the barrigrhich is
proportional togy—g4); the computational effort increases
* with the sumgy+g4. The calculations become cumbersome
at lower friction. However, it is possible to explore the jump-
diffusion regime(at E,=~4kgT—5kgT) well below the turn-
N over point, down to a friction regim@roundy=0.1) where
g I | | ‘ | | i . the single—j_ump model is no_Ionger correct a.nd long jumps
s T T e T T T e T s T s should be likely. A shortcoming of our numerical method is
£ that, at low friction, barriers greater thakgll —-5kgT cannot
b be studied by a reasonable computational effort. Many sys-
tems in surface diffusion are characterized by higher barriers
_ FIG._ 1_2. Arrhenius plot of the diffusion coefficient at interme- gt the temperatures of the experiments; however there are
diate friction (y=0.5). several systems which present rather low barrféos in-
stance, Na/C{100) [34], CO on different faces of Ni and Pt,
(4.11) for rj(l) loses its validity at low friction, and at the pople gases on metals, ef&0] ], which are of fewkgT at
same time the evaluation of the mean-square jump length iom temperature or somewhat above.

o

|
@]
o
L B L L L L L B BRI L B

far more complicated than Ed4.10 in the low-damping Numerical results have been obtained for the egg-carton
regime, where the particle can jump over more than ongotential which may be considered representative of the
lattice spacing. large class of potentials where the more favorable diffusion

Finally, a few words about the computational effort re- trajectories are straight lines. In particular, both high and low
quired for the evaluation ob. The number of iterations in  friction have been considered; the effect of g coupling
the matrix continued fractioni2.33 increases towards low has been discussed in detail. At high friction, the exact nu-
y; larger matrices are needed both with decreasingnd  merical results have been compared to those of two analyti-
with increasinggy+g;. For instance, the following trunca- cal approximations: the diffusion-path and the quasi-2D ap-
tions[see Eq(2.28] are sufficient for a precision better than proximation. The diffusion-path approximation reduces the
1%: atgp=2,9;=1, andy=1000P=H=8,N=1 and one 2D problem to one dimension and neglects the effect of the
iteration in the continued fraction; @,=0.6,9,=0.3, and  x-y coupling; it turns out that this approximation strongly
vy=1000 P=H=5, N=1 and one iteration; agp=0.6, overestimates the diffusion coefficient at large couplings. For
g;=0.3, andy=1 P=H=5, N=6 and six iterations. instance, in the case of a flat channel, the diffusion-path ap-
proximation reduces to the Einstein relation and does not
depend on the coupling while the exact result tends to zero in
the limit of infinite coupling. On the contrary, the quasi-2D

Our motivation for the present work was twofold. First, approximation always gives rather good results, even in the
we intended to study the dynamics of nonlinear 2D periodiccase of extremely strong coupling. The quasi-2D approxima-
systems in the dissipative case. The nonlinear dynamics of #@on has been derived by fixing the value of one coordinate
classical particle moving conservatively in a 2D field of and by solving the diffusion problem along the other coordi-
force exhibits chaos and enhanced diffus[@®,30; these nate as if it were strictly one dimensional. This is expected to
dynamical features do not survive in the more realistic casde essentially correct if all important diffusion trajectories
of noise-assisted diffusion, but the investigation of the very-occur on straight lines. Therefore the quasi-2D approxima-
low-friction regime remains of great interest. Secondly wetion is expected to give good results when the minima and
wanted to extend to 2D the Fokker-Planck model of adatonthe saddle points lie on straight lines, as it happens in the
surface diffusion[6,32,33,36,41,40 Adatom diffusion on lattice considered in the present paper. In a honeycomb lat-
crystal surfaces is obviously a multidimensional problem andice[51,52, this is not the case and one could expect a worse
at least two coupled dimensions must be taken into accourstgreement between the quasi-2D approximation and the ex-
to study dimensional effects. Moreover both experiments andct data.
molecular dynamics simulations indicated that typical fric- At intermediate and low friction the effect of the coupling
tion values are around and below the Kramers turngther  is even stronger in reducing the diffusion coefficient; thus the
knee region in Fig. 2 So the dynamical investigation must diffusion-path approximation is not reliable even at small
cover a wide damping range in order to give a reasonableouplings. In the presence of coupling, it is difficult for the
description of surface diffusion. diffusing particle to perform long and straight inertial trajec-

In this paper we have presented a detailed investigation dbries: the coupling allows the energy transfer between the
the noise-activated diffusion of a classical particle moving inx andy degrees of freedom. More intuitively, in our model

V. CONCLUSIONS



4720 54

CARATTI, FERRANDO, SPADACINI, AND TOMMEI

potential, the channel width is smaller at the saddle pointBoltzmann equation with Bhatnagar-Gross-Krook kernel
than at the minima and this reduces the possibility of longd53] or Skinner-Wolynes equationfs4], can be treated
straight flights. In these regimes, there are no good analyticéB,55. Our method leads to exact numerical results, which
estimates covering the full parameter range. At high potentiahay be used to test analytical or numerical approximations
barriers, it is possible to compare the exact results with thosgptained by different method&or instance, finite-barrier

of the jump-diffusion model; the latter is satisfactory down corrections[56]). The method gives the full dynamic struc-
to the turnover region. Below the turnover, long jumps areyre factor, from which all relevant correlation functions, the
activated and the mean-square jump length cannot be easifcape rate, and the jump-probability distribution can be de-

evaluated; neglecting long jumps strongly underestimates thgeq [7]. At low friction and high barriers the MCFM be-
diffusion coefficient.

Finally, we remark that the numerical method develope

in this paper can be easily generalized to position-depende

friction and tilted potential$6,27]. In the same framework,

different classes of kinetic equations, such as the linearize

comes inefficient; the investigation of noise-activated diffu-
{on in this regime is still an open problem and the

?ievelopment of different method®.g., Langevin simula-

Hons, reactive-flux methgdmay be useful.
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