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The mixed-mode philosophy of combining classical and quantum degrees of freedom under a single um-
brella is employed to study chaotic behavior under quantization. The quantal wave packet is expanded in terms
of a set of basis functions. The Jacobi-Hamilton formalism of the time-dependent Schro¨dinger equation allows
the treatment of real and imaginary components of the time-dependent expansion coefficients as coordinates
and momenta so that Lyapunov exponents can be calculated. Under the mixed-mode formalism, a two-
dimensional nonlinearly coupled oscillator system is partially quantized by letting one of the modes obey
classical and the other quantal dynamics. The Lyapunov exponent spectrum of the complete system is obtained
and the results are compared with the fully classical ones.@S1063-651X~96!10510-9#

PACS number~s!: 05.45.1b, 03.65.Sq, 82.20.Rp

INTRODUCTION

The search for the quantum signatures of classical chaos
has attracted a great deal of attention@1–4#. As soon as it
was established that nonlinear systems in general had rather
uncommon but characteristic behavior of displaying highly
unpredictable evolution in time, the questioning of the exist-
ence of similar dynamics for molecular systems had begun.
Since the equations defining the motion are highly nonlinear
in nature, one should expect to observe the signatures of
chaos. Classical approaches to various vibrational problems
indicated that even for very low-dimensional problems, one
encounters the indications of chaos with irregular trajectories
and large Lyapunov exponents. However, in all these prob-
lems, the interesting~and correct! physics can be described
only in terms of the quantum mechanical methodology, and
here the controversy arises. Does classical chaos manifest
itself in the quantum world? Does the dynamics of a very
small molecule display significantly different behavior upon
changing some parameters such as energy or the magnitude
of the external field? Obviously the characterization of the
quantum dynamics and the relations to the corresponding
classical dynamics is an interesting and open question.

Classically chaos is identified by the strong dependence
on initial conditions which can be recognized in the study of
the maximum Lyapunov exponent or the Kolmogorov en-
tropy. These measures define the exponential separation of
initially very close trajectories. A positive Lyapunov expo-
nent implies that close lying points in the phase space may
evolve quite differently in time, thereby pointing out that
they forget their history rather quickly. Once the differential
equations defining the time evolution are known, it is rather
a simple task to compute these quantities, or if some final
observations are known as time series, again there exist sev-
eral algorithms to extract such information from them@5,6#.
These calculations can be carried out routinely for problems
of a few dimensions. But they become quite cumbersome
when the dimensionality is increased, especially when all the
exponents are to be computed. The analysis of Lyapunov
exponents as functions of the perturbation parameters will
point to the qualitative changes in the dynamics and can
pinpoint the critical region where the regular dynamics ends

and chaos begins. For few-dimensional systems, it is even
possible to follow trajectories in various surfaces of sections
of the phase space so that a visual inspection can be carried
out for recognizing chaotic or regular motion. However, all
of these measures are based on classical mechanics and do
not apply directly in quantum mechanics. The wave mechan-
ics states that the position and the momentum cannot be
determined exactly due to the uncertainty principle. The av-
erage values over wave functions take the place of precisely
determined observables and then the terms ‘‘phase space’’
and ‘‘phase space trajectory’’ lose their meanings. Conse-
quently, defining ‘‘close lying’’ points in a similar manner
becomes a rather difficult task.

Dealing with a discrete energy spectrum, one cannot de-
fine the ‘‘exponential separation,’’ and other measures dis-
tinguishing the regular and ‘‘irregular’’ quantum dynamics
must be found. If this distinction exists, then ash goes to
zero ~classical limit!, the ‘‘motion’’ should be chaotic or
regular. There are two major components of the proposed
criteria of identifying ‘‘irregularity’’ in quantum systems and
the majority of these attempts are based not on dynamical
but rather on static properties of the solutions of the Schro¨-
dinger equation. In general, eigenfunctions provide informa-
tion on the localization and nodal structure of the solution
@7–10#. If the classical system is integrable, the quantum
Hamiltonian can be brought into separable form and its
eigenfunctions are localized along certain modes~not neces-
sarily along the original modes used in the definition of the
Hamiltonian!. So an analysis of eigenfunctions~usually in
coordinate space! provides information on the localization
and hence the separability of the Hamiltonian. Such eigen-
functions should also have well defined nodal structures of
the separable operators. Alternatively one can study the de-
cay of spatial correlation functions of wave functions@11# or
follow time evolutions not in the classical phase space but in
a similar phase space defined in expectation values of coor-
dinates and momenta. Relatively fast decay of these space
autocorrelation functions implies a degree of initial condition
dependence. However, these measures rely on visual inspec-
tion and they are difficult to quantify, moreover the visual-
ization tends to be problematic for more than two-
dimensional systems. In contrast, the statistical analysis of
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eigenvalues provides hard numbers as to the irregularity of
the spectra@12–15#. The most common technique of analysis
uses the distribution of the normalized nearest-neighbor
spacings. If anN-dimensional Hamiltonian is separable, then
the eigenvalue spectrum is in fact a superimposition of ei-
genvalues ofN one-dimensional Hamiltonians. Since these
spectra are uncorrelated, the nearest-neighbor histograms
should display a random~Poisson type! behavior. On the
contrary, if the Hamiltonian is not separable, the eigenvalues
are strongly correlated and the similar histograms show a
Wigner-type distribution. There are two different functional
forms whose limiting forms give Poisson and Wigner types
of distributions which are driven by a single parameter
@12,16#. The magnitude of this parameter defines the degree
of irregularity so a transition from ‘‘regular’’ to ‘‘irregular’’
regions can be detected. Similar ideas based on this philoso-
phy use the sensitivity of eigenvalues to perturbation param-
eters@17#, distribution of intensities between adjacent states
@18#, and avoided crossings of eigenvalues upon varying per-
turbation parameters@19#. The complications arise in all
these methods since a large number of highly accurate eigen-
values are required for a careful statistical analysis. In fact,
we have even showed that statistics from inaccurate calcula-
tions may give qualitatively incorrect answers@20#.

As all these methods for analyzing quantum dynamical
results fail to produce definite evidence of chaos, in this
work we resort to an approximate philosophy such that the
effects of the quantization can be studied using classical me-
chanical tools. By defining ‘‘Lyapunov exponents’’ for a
wave packet in a manner similar to the classical case, we
look for the fingerprint of chaos in propagation of wave
packets under the effect of a classical field. The idea of de-
fining quantal Lyapunov exponents is not very common but
there exist several attempts. The quantal distribution function
in the so-calledQ representation has been proposed and has
been shown to behave like a Lyapunov exponent@21# within
a finite time regime. In a more recent report, the Hamilton-
Jacobi formulation of the quantum mechanics is employed
@22#. Here the gradient of the phase of the wave function and
the quantum field are treated similarly to the classical mo-
mentum and the coordinate and their time evolutions are
obtained from the Newtonian equations of motion for a one-
dimensional kicked oscillator.

Our approach is similar to that of Schwengelbeck and
Faisal@22# in that it is based on the Hamilton-Jacobi formal-
ism of the Schro¨dinger equation. However, instead of defin-
ing a quantum particle in a coordinate-momentum phase
space, we proceed to expand the wave packet in terms of a
basis set and label each basis function as a different particle
which moves in the field of other ‘‘particles.’’ In this case
the dimensionality of the problem increases, however, the
maximum Lyapunov exponent should still carry the charac-
teristics of the problem.

Since our original interest in the problem of quantum
chaos has its roots in the intramolecular vibrational relax-
ation @23#, we study a two-dimensional nonlinearly coupled
bound oscillator system. This model system can be used to
describe the stretching vibrations of a three-atomic molecule
and shows a strong classical chaos. Previously employing
this model, again in a quantal-classical mixed-mode philoso-
phy @24#, we have studied how a classical particle behaved

under partial quantization and have shown that the chaotic
behavior of the classical particle was smoothed out due to
the presence of the quantum field. Here we look at the other
side of the problem, namely, what the dynamics of a wave
packet looks like under the effect of a classical particle.

MIXED-MODE APPROACH

One of the standard approaches to the classical quantum-
correspondence is to apply both methodologies in a mixed-
mode~MM ! fashion, that is, the part of the system is to be
treated quantum mechanically where the remaining parts fol-
low the rules of classical mechanics. Nowadays the classical
dynamics of even very large systems of 106 particles can be
studied easily, whereas the quantum dynamics of more than
three particles poses severe difficulties. Therefore one uses
the mixed-mode philosophy to separate the problem into re-
gions and solve the physically simple or uninteresting parts
by classical methods. Once these regions are properly
coupled to quantum degrees of freedom, the problem can be
analyzed either by some approximate methods or using itera-
tive techniques. In this manner very large scale problems can
be brought into computationally manageable forms.

We have previously used this approach with a completely
different aim. Let us define ann-dimensional Hamiltonian,

H5(
j
H j1(

jk
Vjk1(

jkl
Vjkl1••• , ~1!

whereV denotes terms which couple two or more sets of
modes. If this Hamiltonian is not an integrable one due to the
nonlinear character ofV, the quantum dynamics can only be
realized by solving the full-dimensional Schro¨dinger equa-
tion,

i\]C~ t !/]t5HC~ t !. ~2!

The computational effort for the solution of Eq.~2! will have
an Nn dependence both for numerical and basis expansion
methods whereN is the number of grid points or basis func-
tions andn is the dimensionality of the problem. Since this
problem is intractable in the full quantum treatment espe-
cially for high n, a self-consistent-field~SCF! approximation
can be applied in which the Hamiltonian is written as a sum
of n terms which include the couplings as averages@25–27#,

H5(
j
H j
SCF, ~3!

with

Hj
SCF5Hj1K (

k
Vjk1(

jkl
Vjkl1•••L

n21

, ~4!

with ^ &n21 denoting an average over all modes exceptj .
Thenn uncoupled~for a short time step! Schrödinger equa-
tions can be solved in an iterative manner. At each time step
averages over all modes are computed, SCF Hamiltonians
for that time step are set up, and the propagation of wave
packets is computed under the average fields of remaining
modes. Of course, being an approximate method, SCF car-
ries certain errors and one has to analyze the magnitude of
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these errors. We have applied this method to several prob-
lems and compared the results with the exact quantum dy-
namics@24,28,29#. It seems that the quantum SCF approxi-
mation slows down the energy transfer between different
modes. In fact, it has been suggested that to understand the
time scales of energy transfer quantitatively, one has to resort
to multiconfigurational SCF methods to overcome these er-
rors @30#.

However, in the mixing of classical and quantum dynam-
ics, SCF seems to be a very convenient approach@31,32#.
The averages over the classical modes used in the quantum
Hamiltonians are not averages in the standard sense. Instead
they are simple functions of classical observables~mostly the
coordinates!. Therefore, the only approximation in the quan-
tum region is that the perturbation term remains constant for
the duration of the integration step. As long as the time step
is small enough, the errors due to this assumption must be
very small. In fact we have shown that such an iterative
process in a fully classical system did not change the quali-
tative description of the system@33#. On the other hand, the
classical modes communicate with the quantum modes
through so-called Ehrenfest couplings, which are averages
over wavepackets. The justification lies in the Ehrenfest re-
lations @34#:

d/dt^qj&5^]H/]pj&, ~5a!

d/dt^pj&52^]H/]qj&. ~5b!

The errors associated with this approximation depend on the
separability of classical and quantum modes.

HAMILTON-JACOBI FORMALISM
FOR QUANTUM DYNAMICS

The propagation of a wave packet can be obtained from
the solution of the Eq. 2@35,36#. For a one-dimensional
problem, we proceed to expand the initial wave packet as a
linear combination of basis functions~conveniently chosen
as eigenfunctions of the uncoupled Hamiltonian!,

C~q,t !5(
l

cl~ t !wl~q!, ~6!

where time-dependent coefficients can be written in terms of
their real and imaginary components,

cl~ t !5xl~ t !1 ipl~ t ! ~7!

Replacing the wave packet in Eq.~2! by Eq. ~6!, we obtain
~in atomic units so that\51 and omitting the explicit time
dependence of coefficients!

i(
l

@]xl /]t1 i ~]pl /]t !#wl5(
l

~xl1 ipl!Hwl . ~8!

By multiplying with wn from left and integrating over coor-
dinates we obtain

i @]xn /]t1 i ~]pn /]t !#5(
l

~xl1 ipl!^wnHwl&. ~9!

In the most general case, Hamiltonian matrix elements can
be complex:

^wnHwl&5anl1 ibnl . ~10!

Then equating real and imaginary components on both sides
of the equation we get

]xn

]t
5(

l
~xlbnl1planl!, ~11a!

]pn

]t
52(

l
~xlanl2plbnl!. ~11b!

Equations~11! define the time evolution of basis coefficients.
Let us define a formal Hamiltonian,

H5~1/2!(
nl

~xlxn1plpn!^wnHwl&. ~12!

Then we note that

]xn /]t5]H/]pn , ~13a!

and

]pn /]t52]H/]xn , ~13b!

which are the classical Hamilton-Jacobi equations of motion.
Now the evolution of the quantum wave packet can be ob-
tained employing well known methods of molecular dynam-
ics simulations. In fact we have also shown that Newton
formalism can be easily used at least for the time-
independent Hamiltonians@36#.

Now the one-dimensional quantum problem~in coordi-
nate representation! is transformed into an 2n-dimensional
‘‘classical-like’’ form and all the measures of classical non-
linear analysis can be applied.

LYAPUNOV EXPONENTS

Once the time-dependent Schro¨dinger equation is brought
into the form of coupled nonlinear differential equations, we
can define a new ‘‘phase space’’ in 2n dimensions, where
each dimension corresponds to a real or an imaginary com-
ponent of a basis coefficient. We can then follow a phase-
space trajectory, compute Lyapunov exponents, and observe
whether the signs of classical chaos survive quantization. To
compute Lyapunov exponents we use the tangent-space
method, in which we look for the exponential divergence of
2n points, which are infinitesimally close to the original
point @37#. The regular updating of these points is a difficult
problem and to work in the tangent space provides a reason-
able formalism for the solution. Since the distances between
the classical particle and 2n points are very small, the time
evolution of the distances can be brought into linear form,

d/dtdxj~ t !5]F~x!/]xux5x~ t ! , dxj~ t !, ~14!

wheredxj (t) is the distance of the pointj to the origin at
time t. x denotes all coordinates~and including momenta!
andF represents vector function for the time evolution of the
point x. In our caseF is defined by Hamilton-Jacobi equa-
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tions @Eq. ~11!# and]F(xI )/]xI ux5x(t) is the Jacobian at given
time t. Utilizing this algorithm with periodical orthonormal-
ization of the vectorsdxj , we proceed to compute all
Lyapunov exponents from the logarithms of the ratios of
distances to initial separations.

The explicit forms of theF and its Jacobian are given as

F~xn!5(
l

~xlbnl1planl!, ~15a!

F~pn!52(
l

~xlanl2plbnl!, ~15b!

J~xn ,xl!5bnl , ~15c!

J~xn ,pl!5anl , ~15d!

J~pn ,xl!52anl , ~15e!

J~pn ,pl!5bnl . ~15f!

If the Hamiltonian is real, as in our example, then the above
equations simplify to a great extent.

The model system is a two-dimensional nonlinearly
coupled anharmonic oscillator system whose classical dy-
namics, quantum eigenvalue spectrum, and mixed-mode be-
havior is studied extensively by us@7,24,28,38#

H521/2~Px
21Py

21x211.44y2!20.05x310.001 40625x4

20.0864y310.002 916y410.1x2y2. ~16!

The classical trajectory calculations have shown that the
critical energy for the appearance of chaos is aroundE53 ~in
generalized units! and aroundE510; the phase space is fully
chaotic.

We choose thex mode to be classical and they mode to
be the quantal one. The initial conditions are then a single
(x,Px) point in the phase space and a wave packet along the
y direction. The integration of Hamilton’s equations provide
the time evolution of the classical point:

]x

]t
5Px, ~17a!

2
]Px

]t
5x20.15x210.005 625x310.2̂ y2&x2, ~17b!

where ^y2& denotes the expectation value over the wave
packet, which has an implicit time dependence. The initial
wave packet is written as a linear combination of eigenfunc-
tions of the harmonic part ofHy and its time evolution is
governed by the appropriate Schro¨dinger equation,

i\]C~y,t !/]t5~Hy10.1x2y2!C~y,t !, ~18!

whereHy contains all the terms which solely depend ony.
At each time step, Eqs.~17! and~18! are solved keeping the
external fields~x2 for the y mode and̂ y2& for the x mode!
constant and the Lyapunov exponents are computed from
Eq. ~14!.

RESULTS AND DISCUSSION

Classical dynamics as a function of energy is studied by
generating initial points randomly in the four-dimensional
phase space. The four-point Runge-Kutta method is used for
the calculation of trajectories which are integrated for
500 000 steps. All Lyapunov exponents are computed with
the tangent-space method with periodic orthonormalizations
at every ten steps. Kolmogorov entropy, which is the sum of
all positive exponents, is also stored as a function of time.
Since second Lyapunov exponents are very close to zero, the
qualitative behavior of the maximum exponent and Kolmog-
orov entropy are very similar. The plot of the maximum
exponents vs energy clearly displays the onset of chaos.
AroundE52, we start detecting positive exponents. As the
energy increases, the system quickly loses its regularity and
chaos settles completely aroundE58210.0 ~Fig. 1!. The
small number of regular trajectories at high energy values are
due to deep valleys of the potential which can trap particles.
The energy along these modes cannot be transferred to the
other modes within our finite integration times. The volume
of the phase space for these local trajectories is almost zero.

For the mixed-mode system, the total number of
Lyapunov exponents is 2n12, wheren is the number of
basis functions and at each time step one computes 2n12
vectors of length 2n12. The size of the resulting set of
coupled equations is then~2n12! (2n12)1(2n12) in-
cluding the nonlinear equations. Consequently, the computa-
tion time increases drastically with basis size. In order to
work with small basis sizes, we choose not to propagate
harmonic oscillator coherent states whose expansions over
harmonic oscillator eigenfunctions require rather high quan-
tum numbers for a reasonable representation. Instead, linear
combinations of low-lying eigenfunctions with real coeffi-
cients~initially at rest! are employed. We used two different
initial wave packets which are

c15w01w1

and

c25w21w3 .

FIG. 1. Maximum Lyapunov exponents for the classical case.
Exponents are in bits/a.u.
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The energies of wave packets are 1.135 and 3.267, respec-
tively. In order to complete the picture in the mixed-mode
system, three different initial conditions for the classical
mode are chosen as

x50, Px.0, x50, Px,0, x51.5, Px.0.

Only the signs of the momenta are defined and then they are
scaled in each calculation so that the total energy changes
from 2.0 to 15.0 with increments of 0.5.

In order to study the effects of the basis size, initial clas-
sical conditions, and the composition of the wave packet, we
proceed to compute all Lyapunov exponents for basis sizes
changing from 6 to 22 for two wave packets and three clas-
sical initial conditions. The largest set of calculations results
in 46 exponents. The time steps for integrations have to be
decreased by an order of magnitude with respect to the clas-
sical case in order to conserve the energy and consequently
integrations are carried out for 23106 time steps, which
seems to be long enough for exponents to converge. The
calculations for a single mixed-mode trajectory with 22 basis
functions requires about 3 h of CPUtime in R8000 Indigo2.
In Fig. 2 the convergence of the maximum Lyapunov expo-
nent is given for various basis sizes at different energy val-
ues. The sum of all exponents stays in the order of 10213 and
they form positive-negative pairs as they should for Hamil-
tonian systems@39#. The errors in pairing use in the order of
5% for small basis sizes and fall below 1% when larger basis
sets are employed.

In Fig. 3~a! we display the effects of the basis size on the
maximum exponent. The plotted values are averages over
three classical conditions as mentioned above. At low en-
ergy, all calculations agree well and when the energy is in-
creased, only the basis size of 6 deviates significantly from
others. Therefore we conclude that a basis size of even 10
functions is sufficient to study quantum effects for this
Hamiltonian, at least when the initial classical energy is high
compared to the quantal one. Figure 3~b! shows a similar
analysis of the effect of the initial classical condition. Here
the points are averages over 10, 14, and 18 basis function
results. Even the very restricted set of conditions used in
these calculations indicates that the results are not very sen-
sitive to the sampling of the classical phase space~for con-
stant energy! or to the basis expansion provided that a suffi-

ciently large number of functions are used. Finally, we
compared the results for two different wave packets in Fig.
3~c!. Again the differences due to the selection of the wave
packet are very small. When one considers the fact that even
the standard computations of Lyapunov exponents of classi-
cally chaotic systems give quantitatively different results for
various algorithms or even under different operating sys-
tems, we believe that the above formulation of the quantal
Lyapunov exponents produces reasonably precise results.
We then proceed to average all results from the mixed-mode
system and compare to the fully classical ones. In this aver-
aging, two different wave packets, three different initial clas-
sical conditions, and basis sizes of 10, 14, and 18 are in-

FIG. 2. Convergence of the MM exponent. Exponents are in
bits/a.u.

FIG. 3. ~a! Dependence of Lyapunov exponents on the basis
size. Exponents are in bits/a.u.~b! Dependence of Lyapunov expo-
nents on initial classical conditions. Exponents are in bits/a.u.~c!
Dependence of Lyapunov exponents on initial wave packet. Expo-
nents are in bits/a.u.
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cluded. In Fig. 4 we observe that Lyapunov exponents found
for the mixed-mode approach agree extremely well with
those from the fully classical ones. Similar calculations have
been carried out for the simplified potential of
V(x,y)50.5(x21y21x2y2) which has a very high symme-
try. The agreement between the mixed-mode and classical
Lyapunov exponents again is very good.

A systematic comparison between the mixed-mode and
classical trajectories will be presented elsewhere. Here the
basic difficulty lies in the phase space representation of the
wave packet. The selection of a set of initial classical points
for a given wave packet is not unique. The Wigner transfor-
mation @40# is asymptotically correct; however, it cannot be
strictly used as a probability distribution since it is not posi-
tive in all regions. On the other hand, the Husimi distribution
@41,42#, which is a Gaussian smoothed Wigner transforma-
tion, can be used for such correspondence between a wave
packet and a bundle of trajectories, but it lacks a rigorous
proof. Here we would like to compare only three trajectories
at different energy values. In Fig. 5, these trajectories are
given on they-py plane, which is the quantized coordinate in
the mixed-mode representation. The lighter dots are for the
classical dynamics and the darker points correspond to the
expectation values of the wave packet. At all energy values,
different portions of the phase space are visited. Mixed-mode
trajectories are mostly located around the origin due to the
averaging involved in the expectation values. AtE52.0,
both classical and MM results are regular even though they
span different parts of the phase space. The classical particle
avoids the origin since the energy stored in they mode is
always large. In contrast the wave packet is making small
amplitude motion around the origin. As the energy is in-
creased, the classical particle starts to visit all cells in the
phase space and the MM trajectory does not follow any pe-
riodic orbits.

Previously we have shown that a partial quantization
smoothes out the chaotic details of the motion of the classi-
cal particle@24#. Applying the same methodology, now we
observe that a quantum system under the effect of a classical
field behaves just like a classical particle under similar con-
ditions, that it displays ‘‘chaos.’’ Before a claim for the
‘‘quantum chaos’’ can be made, one has to analyze this
rather unexpected behavior. Two fundamentally different ap-
proaches of classical and quantum mechanics are connected

via Ehrenfest couplings which are highly unsymmetric.
When a quantum particle moves under a classical field, the
chaotic details of the classical motion are carried over ex-
actly into the Schro¨dinger equation; that is, there is no aver-
aging process for the field. On the other hand, in classical
dynamics, quantum fields appear only as expectation values
which will wash out all the details, destroying chaos. There-

FIG. 4. Classical and MM Lyapunov exponents. Exponents are
in bits/a.u.

FIG. 5. ~a! Classical and MM trajectories aty-py plane for
E52.0 a.u. Exponents are in bits/a.u.~b! Classical and MM trajec-
tories aty-py plane forE58.0 a.u. Exponents are in bits.a.u.~c!
Classical and MM trajectories aty-py plane forE515.0 a.u. Expo-
nents are in bits/a.u.
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fore, the channel which allows the energy transfer between
two different worlds actually decides on the nature of the
dynamics by either carrying over all the minute details or by
selecting basics.
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