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Multifractality in the stochastic Burgers equation
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We investigate numerically the scaling properties of spatiotemporal correlation functions in the one-
dimensional Burgers equation driven by noise with variance proportionkltoThe long-distance behavior at
B<0 is determined by shocks that lead to multifractality in the high-order structure functions and a dynamical
exponentz close to unity. For3>0 earlier theoretical predictions for scaling exponents constrained by
Galilean invariance obtain; these results are not expected to hojgi<f@. Nevertheless, the continuation of
the fixed point tg3<<0 correctly predicts some of the properties, an occurrence that we relate to the anomalous
scaling of composite operatofs$1063-651X96)05811-4

PACS numbds): 05.45+b, 47.10+9g

The Burgers equatiofil] for a one-dimensional velocity a (subdominantexponent that we relate to the results of the
field u(x,t) has served as a simple model for investigating aRG analysis. Finally, we present results for the scaling of
variety of interesting issues that arise in fluid turbulence.composite operatordocal products of the fieldsfor 8<0.
Recently, there has been renewed interest in the Burgers The one-dimensional noiseless Burgers equation displays
equation with stochastic noi$@—5| shocks and scale-invariant behavior in the inertial rdrige
the energy spectrumiE(k) decays algebraically, i.e.,
E(k)~k~?, and the structure functiorty,(r) grow linearly
with r for all g=2. In the presence of uncorrelated, conserv-

) ) ) ) _ ing noise withB=2 shocks disappear; the energy spectrum
Here_v denotes the viscosity. The stochastic noz;{el_,t) IS tends to a constant for smadl and Sq(r)wrgq with £,=q.
spatially correlated but has no temporal correlations. Therhese results correspond to those obtained for the Kardar-
spatial Fourier transform of the noisgk,t) obeys Parisi-Zhang (KPZ) equation [6,7] for interface growth,
- I ) , which is related to the noisy Burgers equation by a simple
(k7K t )>_2D|k|ﬁ(277)5(k+k )o(t=t’). (2 transformatior{8]. The interface version of the problem was
In two stimulating papers Cheklov and Yakha,3] have investigated by Medin@t_al. [9] l_Jsing RG techniques for
explored the special case gf= — 1. We consider the system 0=B<2. They studied fixed points to one-loop order and
for positive and negative values ¢f and study how the obtained the exponeng characterizing the interface width
spatiotemporal behavior in the inertial range varies. We dis@nd the dynamical exponentexactly. We note that the case
cuss how the occurrence of shocks modifies long-distanc®f 8= —1 studied in Ref{[2] falls outside the scope of the
long-time properties fo<0 and leads to multifractality in @nalysis in Ref[9], since for negative8 a naive calculation
contrast to the regim@=>0. Nevertheless, as we will de- reveals that hlgher-order nonlinear terms become relevant in
scribe, results from a renormalization-gro@®G) analysis of ~ the renormalization-group sense. _ .
the model valid for3>0, where there are no shocks, con- Here we study the stochastic Burgers equation numeri-
tinue to describe some of the properties fox0. These Cally for —1<p<2 using a pseudospectral methfiD],
observations can be understood in terms of the shocks therfiPically with 4096 points in a system of size=1024 and
selves, which lead to a dynamical scaling exporeent and ocpasmna_lly _Wlth Iarggr sizes. We chose th_e noise from a
to the anomalous scaling behavior of composite operatordiniform distribution with the appropriate variance and the
Our specific numerical results include the long-wavelengttinitial state to be either a single sine wave or a random su-
behavior of (i) the energy spectruri(k)=({(k)u(—k)), perposition of sinusoids. We used t_he param_eteﬁ).l or
where{i(k) is the spatial Fourier transform of(x); (ii) the ~ Smaller(down to »=0.03) and a noise intensit, in the
correlation function of the energy dissipation rate discrete version of Eq(1), of D=10"".

&u+ au a2u+ . L
G U TV e 7(x,t). (1)

e(x,t)=v(du/dx)% and (iii) the structure functions,(r) For positives we find good agreement with the theoreti-
moments of Velocity differences cal results of Medinat al. in Ref. [9] Namely, forﬁ be-
tween 1.5 and 2, the system flows to the standard KPZ fixed
Sy(N=([[u(x+r)=u(x)]|% (3)  point[11] with interface exponents=3 and y=3 [6,7]. We

define the exponent that characterizes the behavior of the
for different values ofj=2. One expect§q(r)~r5q forr in energy spectrum:

the inertial range, delineated by the dissipation length scale

set by the shock size and the distance between the shocks. Of E(k)oc|k| 7. 4
particular interest is the dependencefgfon g and its de-

viation from linearity ,# cq, which is referred to as inter- At g=1.6 we find thaf{12] E(k) tends to a constant consis-
mittency and as displaying multifractal behavior. We studytent with the results for the KPZ fixed poiet=2xy—1=0
the dynamical behavior and firk=1 for 3<0; we identify ~ crossing over from the bare free-field behavior of
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FIG. 1. Energy spectruniE(k) vs k on a log-log plot for FIG. 2. Energy spectrunit(k) vs k on a log-log plot for a

B=0.5. Herer=0.05 andD=10"5. The system size is=1024. system of size L=1024 for 8=-0.5. Here »=0.04 and
At large k the behavior is that of the free field and at léwis in ~ D=10"°. The behavior at smak is in agreement with the result
agreement with the result derived from the non-KPZ fixed point.extrapolated from the non-KPZ fixed poinE(k)=|k|~“ with
See Eq(5). o=1-38=14

E(k)~k %% The measured dynamical exponent is in good We next discuss the regim@<0. A visual inspection of
agreement with the KPZ value and the velocity structurethe profile reveals a few large, well-defined shocks. As men-
functions approach a constant value for largas expected tioned earlier, negative values gflie outside the realm of a

[12]. RG analysis of the interface model because of higher-order
For 0<B< 1.5, Ref.[9] finds a new fixed point with ex- nonlinear terms. Nevertheless, we find thapat —0.5 and
ponents given by13] —1, E(k)~k 134004 (see Fig. 2 and E(k)~k 165005
respectively, in agreement wittd) and (5). The result at
o=1-3%B, z=1+1ip. (55 B=-—1 s the one reported in Re2] with a hyperviscosity

term with a 12th derivative in Eq1). Referencd 2] found

Both this new(strong-coupliny fixed point and the KPZ clear evidence for=3 and provided somewhat less persua-
fixed point are Galilean invariant and this leads to the exposive evidence that= 3.
nent relationy+z=2 [9]. There exist several numerical = The agreement of the exponentvith that predicted from
simulations[7] in the interface representation for the casea naive extrapolation of the results in REJ] is surprising; it
B=1; the numerical results fg8>1 do not all agreg¢14];  appears that the continuation of the non-KPZ fixed point to
for B<1 a ballistic deposition model studied by Meakin andnegative values of 8 determines the behavior of
Jullien[15] does not in fact yield¢+z=2, but the authors (u(k)u(—k)) and higher-order nonlinearities are not rel-
point out possible difficulties with crossover in the determi-evant(see the later discussipnindeed, we have explicitly
nation ofz. checked that aB= —1 the addition of a small nonlinearity

In Fig. 1 we show the behavior dE(k) versusk for  of the form u®(du/ax) does not change the value of the
B=0.5. At highk, i.e., small distances, one finds the bareexponents. As to the velocity structure functions, it was
free-field behaviolE(k) ~k~1%. This behavior crosses over already pointed out in Ref2] that at 3=—1 they grow
at smallerk to E(k)~k ™22, in agreement with the value of almost linearly, {;~0.9, with distance forq=4,6,8. At
o given in Eq.(5). We find similar agreement fog=1. B=—0.5 also, the profile clearly indicates the presence of
Thus there is clear indication that one is at a new fixed pointhe shocks. With the noise of the form assumed and within
for 0<B8<1.5. We find that the velocity structure functions our numerical limitations,{,~0.87 for q=6 and 8 and
Sy(r) approach a constant valig, at larger and their ratios somewhat lower fog=4 (see Fig. 3. In order to clarify this
are consistent with the results of a Gaussian distribution. Thetrongly intermittent behavior we studied a cutoff noise that
conclusion is that the long-wavelength behavior is deterfurther suppresses the stochastic driving at short length
mined by the strong-coupling fixed point for positigeand  scales. We employed a noise that has correlations of the form
there is no remnant of shocklike behavior; the velocity pro-/k|? for smallk and assumes a small constant value for larger
file shows no shocks and this is confirmed by the lack of ank (equal to the smallest value obtained in the original mpdel
indication of intermittency in{S,}. We emphasize that the with smooth interpolation between the two limits. The
noise variance behaves Hg? for all k; no cutoff has been shocks are better defined and for btk —1 and—0.5 we
introduced[4,12]. From a direct calculation of the velocity find a value of{,=0.98+0.04 forq=4, 6, and 8. The value
correlation functionC(t)(u(x,t)u(x,0))~t~ 12"z we find  of o remains unaltered. This clearly establishes the role of
z~1.2, which means that the relatiop+z=2 is obeyed shocks in causing strong intermittency.
within numerical errors. However, in the interface represen- Since we expect most of the dissipation to occur in the
tation, from the temporal correlations in the steady state, wehocks a useful probe of the system is the spatial correlation
find a value forz much larger than the theoretical value, of the rate of energy dissipatiore(x) defined by
which leads to a violation of the identity+z=2 by as €= v(du/dx)%. We compute its correlation
much as 20%, in rough agreement with the results of Ref.
[15]. Ga(r)=(e(x)e(x+1)) (6)
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FIG. 3. Structure factor§y(r) vsr plotted on a log-log plot for FIG. 5. Autostructure function Sy(r=0;t)=([u(x,t)

g=4, 6, and 8 wherB=—0.5. The system size is=1024 and —u(x,0)]% vst plotted on a log-log plot fog=2 (lower curve
distances are measured in lattice units. For distances in the inertiahdg=4 (upper curvéwheng= —1. From the long-time behavior
range, the growth o,(r) is close to linear. Here'=0.03 and  the value of the dynamical scaling exponentan be estimated to
D=10°. bez~1.

and determine the exponentdefined by its large behav- €exponent identityz+ y=2 imposed by Galilean invariance
ior: G4(r)~|r|~#. We computed the spatial Fourier trans- at the strong-coupling fixed point is violated; however, the
form éd(k)=<%(k)%(—k)> directly; the data obtained from Galilean invz_iriant fixed poin_t does describe the behavior of
our calculations are displayed in Fig. 4. 8= — 1 we find the_ system: it correctly predlcts the exponernthat charac-
uw~0.38+0.08 compared to the value of 0.25 obtained in thet€rizesE(k); it also predicts the dynamical exponent except
presence of hyperviscosifg]. At 8= —0.5, the value ofu ~ When the effective exponent a=1 due to the motion of
changes somewhat to 0:48.06[16]. Note that forg>0,  Shocks simply dominates the lower fixed-point value.
Gq(r) is short ranged and does not show scaling behavior. Finally, we draw attention to the anomalous scaling be-
We next consider dynamical correlations and determindiavior of the composite operatorgu®(x)u(y)) and
the dynamical exponert for 3>0. We evaluate the auto- (u*(x)u®(y)). We calculatgu”(k)u"(—k)), whereu"(k) is
structure functions defined byS,(r=0t)=([u(x,t)  the Fourier transform oé"(x) for n=2 and 4. The results
—u(x,0)]%, which are expected to scale S§(0,t)~t5q’z. are plotted in Fig. 6. We find numerically that
We see from Fig. 5 that there are two scaling regimes an?u“(k)u”(—k))ock‘”n at B=—1 with o,~1.6 for both

z can be deduced from the values &f determined earlier. |\ _ 5" 4 4[16]. This behavior does not obey, within the
Ohur tflnt_dlngs may bbeh su_mmanze(()jt by_ the sta_tetme:{nt t_?ﬁt 3fmitations of our numerical calculations, expectations based
s_olr '%es h'Ie _elawolr 08y .’) 'ST(;]O”S'SI en_ 1W.' on so-called gap scaling and is consistent with the occur-
z=1+p/3, while 2=1 at longer times. The value=1 s .0 of multifractality. The ultraviolet behavior determined

lead i behavior in fi imil hat i Th_eﬁy the existence of shocks alters the scaling of composite
leads to linear be aV|or,|n time similar 1o that in space:. | ISoperators and the precise behavior can be related quantita-
is reminiscent of Taylor’s frozen hypothesis in that the time

. . . I i ._tively to the valuez=1. Our results strongly suggest that the
correlations at a given point are similar to equal time spatia

. X ! . ; igher-order operators are not increasingly relevant. This be-
correlations with a spatial separation determined by the Me3avior underlies the success of the prediction for the expo-
velocity of shocks. The value a=1 would imply that the

nento=1— 38 based on a simple balancing argument ignor-
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FIG. 4. Fourier transform of the correlations of the energy dis- PN
sipatione= v(du/dx)? [see Eq.(6)], G4(k) vs k on a log-log plot FIG. 6. Correlations of composite operatams"(k)u"(—k))
for B=-0.5 and »=0.04 (upper curv¢ and B=—1 and plotted on a log-log plot fon=2 (lower curvg andn=4 (upper
v=0.075(lower curve. HereD=10 ¢ in both cases. curve for B=—1. Herey=0.075 andD =106,
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ing higher-order termgl3], which is also the value obtained ior that occurs in the Burgers equation with stron¢pa-

by a continuation to negativ@ of the exponent computed by tially) correlated stochastic noise: the existence of shocks
Medinaet al. for 8>0. Note that the naive arguments apply and the consequent occurrence of multifractality and the
for correlations involving twau's at widely separated points scaling of composite operators and dynamical correlations.

but fail in the (singulay limit when separations are taken to ) o

be zero. Recently, Polyakd] has analyzed the stochastic ~ We thank the Ohio Supercomputer Center for providing

Burgers equation using point-splitting methods and the optime on the Cray YMP supercomputer, which made this
erator product expansion; however, his results do not appe&fudy possible. F.H. thanks the Department of the Navy, Of-
to be direct|y app|icab|e to th§<0 case studied here. In fice of Naval ResearCh, for Support under Grant No. NO0014-
conclusion, we have described a variety of intriguing behav92-J-1271.
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