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Transforming signals with chaotic synchronization
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We introduce a general technique to alter the properties of chaotic signals used with coupled chaotic
systems. The changes we introduce allow one to vary the synchronization properties of synchronized chaotic
circuits, synchronize chaotic systems that do not otherwise synchronize, vary the spectral properties of chaotic
signals, and produce a variety of chaotic signals from one chaotic circuit. The transformations we study could
potentially aid designers of synchronous chaotic circuits, as it is far easier to design new transformations than
to design new chaotic circuitfS1063-651X96)05411-9

PACS numbe(s): 05.45+b

I. INTRODUCTION systems; for example, we could replace tHevariable with
the drive signal everywhere thay’ appears in the response

While there has been much speculation on the use of chaystem, or we could use a diffusive couplifih,16. It has
otic systems for communications or other applicationsbeen showil,2] that if all of the Lyapunov exponents in the
[1-13], there are really only a few standard chaotic systemsgesponse system are negative, tlyéry—0 ast—oo.
that have been used for examples. One may try to design
other chaotic systems, but for now designing chaotic sys-
tems, especially systems that may be built as circuits, is a
trial and error process. When one imposes some set of re-
strictions on the chaotic systems, such as ease of reproduc- Rather than simply sending a single signal sucty ds
ibility, synchronization characteristics, or spectral propertiesthe examples above, we may send a transformed versign of
the problem of designing chaotic systems becomes evefhat may depend on other dynamical variables in the drive
more difficult. system. An example of such a transformationis y+x,

We will show in this paper that one may greatly modify where we callw the “transmitted signal.” If the response
the properties of existing coupled chaotic systems by transsystem is synchronized to the drive system, thér X, so
forming the original drive signal and one or more other chae may construct the inverse transformatipsw—x by
otic signals from the existing drive system to create a newsing x’ in place ofx, a procedure we calsynchronous
scalar drive signal. We then undo the transformation at th@ubstitution In this casey=y (within some small error
receiver using a procedure we cajinchronous substitution  Superficially, the transformation procedure we use looks
to recover the original drive signal. We show below howthe same as the work of Kocarev and Parlitz or Pengl.
synchronous substitution allows one to create a variety of17,18. There are important differences in the physics be-
chaotic signals from one source, tailor the Lyapunov expotween our work and previous work. In the Kocarev and Par-
nents of response systeniene may even synchronize un- |itz work, they do a change of variables on the drive and
stable subsystemschange the spectral properties of chaoticresponse systems by defining a new driving varisbiich
signals, and multiplex chaotic signals from different sourcess a function of the old variables. This change of variables
[13]. allows Kocarev and Parlitz to find new decompositions for
an existing chaotic system. Some of these new decomposi-
tions will be stable. The driving variable will be different,
depending on the particular decomposition used. We used a

We use the idea of chaotic synchronizat[dr-3,6,14,1%  simple version of this idea in our original work on chaotic
to reproduce the signals from a drive system at some resynchronizatior{1,2,14], in which we used a hysteretic cir-
sponse system. One may start witdrave (transmittey sys-  cuit. We found that the circuit response system was not
tem such ax="f(x,y,2), y=9(X,y,z), z=h(x,y,z) and di- stable when driven with our original choice for driving vari-
vide it into component subsystems. The exact division mayble. We had to define a new driving variable which was a
be done in many ways. function of the original circuit variables in order to synchro-

To build a receiver(or responsg system, we reproduce nize the response to the drive.
one or both of the subsystems of the drive system and drive In our approach, we do not use a change of variables. We
them with a signal from the drive system. There are manydo define a new variable@ which is a function of the original
ways to apply the signal. For example, we could useythe driving variable and other variables. The new variablés
variable to drive the response systexi=f(x’,y’,z’), transmitted to the response system but is not used to drive
y'=g(x’,y,2"), y'=h(x",y’,z"), where the primed vari- the response system. We recover the original drive variable
ables are response system variables only and we have apy inverting the transformation that generatedWe invert
plied the drive only in the Yy’ response subsystem. We the transformation using only variables from the synchro-
could use different combinations of drive signals and subhized response system, a process that we call synchronous

Ill. TRANSFORMATION AND SYNCHRONOUS
SUBSTITUTION

II. CHAOTIC SYNCHRONIZATION
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substitution. In inverting the transformation, we create a
feedback loop in the response system, so that the new re-
sponse system is no longer identical to the drive system. One
may decide which variables one would like to feed back into
the response system, for example, to improve stability, and
then design the transformations appropriately. In the Ko-
carev and Parlitz technique, the response system is still iden-
tical to the drive system; there is no feedback involving the
response variables.

One major difference between our synchronous substitu-
tion and the change of variables technique of Kocarev and
Parlitz is that our transformations are not limited to recom- )
binations of the existing drive system variables[19], the ) K
transformation included a filter. Any transformation will t(s)
work, including transformations that introduce new vari-
ables, as long as the transformation is invertible and the re- FIG. 1. Signaly from the drive systensolid line) and response
sponse systenincluding the inverse transformatipris signaly’ from the Lorenz system of Eq(:f&)—(lO) showing that the_ _
stable. If we consider transformations such as filtefitej, r(_aspon_se system converges to the drive system when the driving
we see the synchronous substitution technique may be us&@nal ISW=y+x.

to alter the spectrum of the transmitted chaotic sigmal Si the Jacobi is | i | th ditional
Below we first show a numerical example involving the ince the Jacobian IS lower triangular, the conditiona

Lorenz equations before giving a more general description opyapunov expon_ent; are simply the diagonal elemgnm)
synchronous substitution. Afterwards we show circuit ex-2nd —2.667, indicating that the response system is stable.

amples of synchronous substitution. Figure 1 shows the Convergence)df_to y_when the_ _drlve _
and response systems are started with different initial condi-

y (arb. units)

tions.
IV. NUMERICAL EXAMPLE
Our first simple example illustrates the technique using V. GENERAL FORMULATION
the Lorenz equations. The drive system is OF SYNCHRONOUS SUBSTITUTION
dx We can generalize this combined use of transformation
aZlO(y—X% 1) and synchronous substitutions as follows. LEt be a
transformation from R"—R: w=T(x,y,z, ...), where
dy (X,¥,z, ...)eR". Suppose the response system is near syn-
— =—xz+60x—Y, (2)  chronization. We send the transmitted sigmalwhich may
dt be a combination of several drive system signals, including
the original drive signal. In order to synchronize the re-
d—szy—z 667 &) sponse system, we need an estimate for the valyegdien
dt ' ’ only the signalw. By the implicit function theorem, if
D,T#0, then there exists an inverse transformation which
W=y+X. (4)  we denote byT ! such thaty=T,*(w,x,z, ...). At the
] response we only know. But we can get a good estimate of
The response system is y by using the response variablgs$, z', etc. This use of
- , response variables in place of drive variables is what we term
y=w=x, (3 synchronous substitution. We write=T, Y(w,x',z/, ...).
, We can now puy into the response where we would like to
d_X =10(y—x') 6) apply the drive variableg.
dt ' The question that remains is that of stability. Using the
above formulation we can write the general form of the
daz’ , variational problem for the response stability. If the vector
gt o Xy-2667. () field of the response i§(x',y’,Z', ... y), then the varia-

tional equations become
The stability of the synchronous state is determined from the

conditional Lyapunov exponents of the response sys@m dor
(7). They are found from the Jacobian of the response system dt =[Dieyzr, .. Flsyne state
evaluated on the synchronous state,
o +D5FDe .z, Ty lsyne sddr, (9)
ax"  ox’
X 9z ~20 0 where 6r=(x"—x,y'—y,z2’—z,...). The first term in
07 a7 :[y—x —2.664' (8) bra_ck_ets is the usual Jacobian that results in the standard
a7 variational problem. The second term depends on the trans-

sync state formation and the synchronous substitution. The latter can
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cause changes in stability and allow more interesting and
varied synchronization schemes to be developed. Note that
the second term will have a column of zeroes in yHepo- 5
sition.
Obviously this approach is not limited to using the vari-
abley’ and can be applied in situations where more than one 0
signal, sayw; andw,, are transmitted. -
VI. CIRCUIT EXAMPLES > .
We demonstrated synchronous substitution in a piecewise
linear RosslefPLR) circuit [20]. The circuit is described by
-4
dx
a=—a(rx+,8y+z), (10
T T T T T
-4 -2 0 2 4
d
-l x-ay+ ), ap y (V)
FIG. 2.y’ signal from the response systemysignal from the
d_Z: —a[z—g(x)] (12 drive signal for two piecewise linear Rossi?LR) circuits when
dt 9 ’ the driving signal isn=y—x and the reconstructed driving signal
Y=s+x.
0 if x<3
VII. DRIVING UNSTABLE SUBSYSTEMS
g(x)= . (13
15(x—=3) if x=3, Synchronous substitution may also be used in control the
stability of the response system and even synchronize re-
w=T(X,y,2), (14)  sponse systems that normally do not synchronize. We dem-

onstrate this control of stability with the drive circuit of Egs.

where a=10¢, a=0.12, b=10, B=05, y=0.02, and (10—(14) and the response circuit described by

r=0.05. They term in Eqg.(11) is divided into two parts to

make the correspondence with the response system of Eq. w=z—kx, (19
(17) more obvious. The synchronized response circuit is de-
scribed by Z=w+kx', (20
=T, wx"y,z"), (15) dx’ B
E:(rx’+ﬂy’+z), (21
dx’ —
——=—a(rx'+By+2'), (16)
¢ dy .
gt - a(=x"=py’), (22
dy’ —~
E=—a(—x’—ay+yy’), (17

wherep=a—y=0.12 and the other symbols are defined with
Egs.(10)—(14).
dz' , , The stability of the response system described by Egs.
ar - ez —ax)]. 18 (1922 is determined by the conditional Lyapunov expo-
nents of thex'—y’ response subsystem. Since this sub-
The termyy’ in Eq. (17) is necessary to stabilize the opera- system is linear, the exponents can be computed analytically;
tional amplifier integrator used in the above circuit. We usedhey are found from the eigenvalues of the sub-Jaco(sien
the response circuit of Eq&l4)—(17) with two different ver-  ting a=1 for this calculatioh
sions of T. For our first circuit, we usedv=y—x and
y=w+x'. The plot of Fig. 2 showy’ vsy from the circuit —-r—k —p
for the preceding transformation. The largest Lyapunov ex- 1 p |
ponent for the response circuit is196 s* (calculated nu-
merically from the equations of motion by the method of For k=0, p=0.12, 8=0.5, andr =0.05 the eigenvalues are
Eckmann and Ruellg21]). 0.035+0.704, and therefore the subsystem is unstable—
Nonlinear transformations are also possible with synchrochaotic synchronization is not possibiehich is a known
nous substitution. The transformatien= —y/(x+4.2) and result for the Rosslex—y subsysteni1,2].
y=—w(x’+4.2) also resulted in synchronization in the cir-  The stability of the response system variesKer0. Fig-
cuit. The largest Lyapunov exponent of the response circuitire 3 shows the maximum real part of the eigenvalues of this
for this second transformation was calculated to-b851  matrix (um,,) as a function ok (with other parameters given

st above. The eigenvalues cross into the left half plane when

(22)
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FIG. 3. Plot of umn,=maxRe\;),Rel\,)} versusk for the -4 7
piecewise linear Rossler response system of Ei®—(21).

k=p—r=0.07. “Optimum” synchronization (minimum

Mmax) OCcurs when the eigenvalues are degeneratk=at

—(p+r1)+2yg~1.244. 27
A circuit was built to simulate Eqs(19)—(22) (with ; f

a=10%. Fork=0 (corresponding ta driving only), no syn- < 0 v eSOV A

chronization of the drive and response circuits was fasn  «wo

discussed above, the response system is unstable=f0).

Synchronization was seen far=1 (the system is stable for "2

k=1 in the theoretical example abgvéhe response system

was also seen to synchronize fhre=0.15 and 2.20(well -4

within the region of stability shown in Fig.)3while no : : ,

synchronization was seen fke=0.075, just on the boundary 0 01 02 03 04

of stability shown in Fig. 3. The drive and response circuits t

did not synchronize fok=2.67, but, as can be seen in Fig. 3, (s)

Mmax fOr k=2.67 is just below 0O, so the response circuit may

be especially sensitive to noise and parameter mismatch.  FIG. 4. (a) y; signal from a PLR circuit described by Eq30)—
One may stabilize other normally unstable subsystemsk13)- (b) Difference between signals in drive and response circuits

we drove ay-z subsystem of the PLR circuit of Eqé8)— (6=y,:—Yy1) when signals from two PLR circuits are added to to-

(14) with w=x+ky andX=w—Kky’. The response system is gether, transmitted, and separated by synchronous substitution be-
unstable forx driving [1,2—the numerically determined fore driving synchronized response systems as in E2@—(29).
largest Lyapunov exponent for the response system is 1100

s L. The circuits did synchronize whe=1, for which the Yi=W—Y;, Yo=w-yj, (24)
largest Lyapunov exponent was8899 s1. The response _
circuit could also be set to have neutral stability; the largest i=1.2, (29
Lyapunov exponent for the response equations was 0 for dx!
k=0.11. X;

0 d—t'=—a(rxi’+ﬂyi’+zi’), (26)

VIII. SIGNALS FROM MULTIPLE SYSTEMS dy-’
F_ ! I~ !

Note that nothing in the definition of the transformatibn dt al=xi —pyi—c(yi=yi)l @7
requires that all signals come from the same dynamical sys-
tem. For example, we could use a transformafiomvhich dz ) .
combines signals from different dynamical systems as a way gt - ezi—9xil, (28
to multiplex different chaotic signals or to use one chaotic
signal to change the spectral properties of another through a 0 if x'<3

|

nonlinear transformation. Tsimring and SushcHhigB] have
numerically demonstrated a simple version of chaotic multi-
plexing by adding two chaotic signals. We have demon'whereazlo“ ~0.12,b=1.0, =0.5,1 =0.05, andc=0.5
strated a similar process both numerically and in circuits. When the re’s%onée ,syste.m’of E(.QE'S)—(Z'9) i,s integra'te.d
st B ro e o ey el 1 s f Sz v, any sy

Co . e . _chronizes withy,. The largest conditional Lyapunov expo-
The response circuits were driven by a diffusive coupllngnent 2] for thgzsix-dimer?sional [ESDONSE Z stem—ismop
[15,16 to allow more control over the stability of the re- P y

- . s -, compared with a largest conditional Lyapunov exponent
sponse system. The response circuits were described by of _2255 <Liora singlgdriven PLR resp%n%e systerﬁ)] For

identical systems, the initial conditions determine whether
w=y;+VYs, (23 response system 1 synchronizes with drive system 1 or 2; in

9= 15x/~3) if x/=3, @9
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building actual circuits, response system 1 is most closelyn [5], but local instabilities still caused bursting in circuit
matched to drive system 1, and the same for systems 2. experiments.
Noise free numerical simulations do not reveal an accu-
rate picture of the system of Eq23)—(29), however. While
the global conditional Lyapunov exponents are less than
zero, there are regions on the response system attractor The use of transformations that may be undone by syn-
where a conditional Lyapunov exponent is greater than zerahronous substitution will be a useful tool in the application
When circuits corresponding to Eq23)—(29) were driven, of chaos in fields such as communication. If one desires to
bursting was seen instead of perfect synchronization. Figureend many different chaotic signals to many different users,
4(a) shows a time series of the signg| from the drive  one could use signal transformation by synchronous substi-
circuit, while Fig. 4b) shows §=y,—y;. The drive and tution. It is easier to design new synchronous transformations
response systems are close to synchronization, but local réian it is to design new chaotic circuits, so one may engineer
gions where a conditional Lyapunov exponent is greater thawhole sets of chaotic signals with some desired properties.
zero cause bursting away from synchronization. TsimringThe combination of signals from different chaotic systems,
and Sushchick13] see the same local instabilities that we which may be undone by synchronous substitution, has been
have seen here. The local instabilities are related to the fagroposed as a method to multiplex many chaotic signals to-
that the two response systems are coupled to each other. Vgether[13], and also offers a way to alter the spectral prop-
were also able to observe synchronization in numerical exerties of chaotic signals; unfortunately, the presence of local
periments when one of the drive circuits was a PLR circuitinstabilities in the response system currently makes this
and the other circuit was a four-dimensional circuit describednethod impractical.
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