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Energy diffusion due to nonlinear perturbation on linear Hamiltonians
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In nonintegrable Hamiltonian systems, energy initially localized in a few degrees of freedom tends to
disperse through nonlinear couplings. We analyze such processes in systems of many degrees of freedom. As
a complement to the well-known Arnold diffusion, which describes energy diffusion by chaotic motion near
separatrices, our analysis treats another universal case: coupled small oscillations near stable equilibrium
points. Because we are concerned with the low-energy regime, where the nonlinearity of the unperturbed
Hamiltonian is negligibly small, existing theories of Arnold diffusion cannot apply. Using probability theories
we show that resonances of small detuning, which are ubiquitous in systems of many degrees of freedom, make
energy diffusion possible. These resonances are the cause of energy equipartition in the low-energy limit. From
our analysis, simple analytic equations that relate the energy, the degrees of freedom, the strength of nonlinear
coupling, and the time scale for equipartition emerge naturally. These equations reproduce results from large-
scale numerical simulations with remarkable accuré8$.063-651X96)04311-3

PACS numbsgs): 02.50.Fz, 02.50.Kd, 05.28y, 05.45:+b

I. INTRODUCTION Among many important facts, the Kolmogorov-Arnold-
Moser(KAM ) theorem shows that energy redistribution does
Since Poincareshowed that most nonlinear Hamiltonian not always occur in nonintegrable systems. Redistribution is
systems are nonintegrable, i.e., they do not possess any capessible only when the theorem is not valid, namely, when
stant of motion other than the total enefdy, it has become the nonintegrable part of the Hamiltonian is sufficiently large
apparent that in treating the vast variety of nonlinear sysor when the system is sufficiently close to resonances. By
tems, studying the general characteristics can be more impojhyestigating the conditions under which the KAM theorem

tant than searching for particular solutions of the equationgreaks down, one can obtain better insight into the energy
of motion. This is especially true for systems of many de-regjstribution process.

grees of freedom, because in such systems the solutions are Resonances are known to enhance the energy transfer

most likely too complicated to offer digestible information. 5mqng coupled degrees of freedom. Parametric oscillation in
A powerful technique fqr extracting Fhe ger_1eral CharaCte.r'nonIinear optic§ 7] and Fermi resonances in molecular dy-
'St'CS.Of complex dynamlc_: sy_stems IS SFat'St'Cal analys'snamics [8] are well-known examples. Consider again
Consider the general Hamiltonian of near-integrable system . Lo
i S : e general near-integrable  HamiltonianH(l, 6)
H(p,q) =Ho(p,q) + eH.(p,q), whereH, is integrable while ~
H, not ande is a parameter1. It is more convenient to =Ho(l) +eHy(1,6),  where _I_(Il’lz’ e ’IN). and
describe the system in terms of the action and angle variablds~ (?1:02. - - - ,6n) are the action and angle variables, re-
(1,6) of Hy, so thatH, depends only on the action variables SPeCtively, andN s the number of degrees of free-
I,i.e.,H(I,0)=Hq(1)+ eH,(I, 6). In analyzing the statistical 90m- In general,H, can be written in terms of its
behavior of a nonlinear system, one is concerned more witfOUrier components asH;=2,Vp(l)cos(n- ), where
the action variables than the angle variables. This is becaug8=(M1,M;, ....my) is an array of integers. A resonance
the angle variables cycle rapidly between 0 andid time ~ €Xists if the angular frequencie®=(w;,wy, ... oy),
scales too small for much physics to happen. In contrastvhere wj=dHo/dl;, satisfies m-w=3%{L;mw;=0 for
each action variable, which is a one-to-one mapping of theomem in the expansion off;. The quantityA w,=m- w is
energy of a degree of freedom, changes slowly under thealled the resonance detuning.Hffy is not linear, thenw
influence ofeH,. The distribution of the action variables and depends ori. Resonance conditions are satisfied for the val-
its evolution in time, referred to as the energy redistributionues of I on the intersections of the resonance surfaces
process, is the major concern of this paper. m-w(1)=0 and the energy surfadd(l,#)= const. Such
Before Kolmogorov, Arnold, and Moser proved the exist-resonances form a weblike structure known as the Arnold
ence of invariant trajectories in near-integrable systems andeb. Although the Arnold web may constitute only a small
that the invariant trajectories may constitute a finite measurpart of the phase space, it is known that fo¥=3 initially
of the phase spad®-5|, it was generally assumed that en- localized energy can diffuse along the stochastic layers of the
ergy redistribution through nonlinear couplings would even-interconnected resonances. The phenomenon is known as the
tually bring a nonintegrable system to states of approximatérnold diffusion[9]. Under the moderate nonlinearity con-
equipartition. A well-known numerical experiment by Fermi, dition e<a<<(1/e), wherea=(l/w)(dw/dl) represents the
Pasta, and Ulam was intended to show such scengios nonlinearity ofH,, Chirikov was able to estimate the rate of
Arnold diffusion along the so-called guiding resonance by
considering the effect of a dominant “layer resonance” and
* Author to whom correspondence should be addressed. other small “driving resonances[’10]. One of the important
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conclusions of Ref[10] is that the diffusion rate is propor- rium points perturbed by weak nonlinear couplings. The sys-
tional to exp(-clAwn|/\€), meaning that when the pertur- tem has many correspondences in the real world.
bation is very small, the diffusion is effectively frozen. How-  In Sec. Il we show that if the lower bound of resonances
ever, in a recent paper Chirikov and Vecheslavov proposed @etunings|A |, is not small, energy redistribution can be
much faster diffusion mechanism by considering the relatiorPounded to a near neighborhood of the initial point. In con-
between high-order perturbation terms and resonance detutiast, if|A w|ny, is sufficiently small, which is likely the case
ings[11]. whenN is sufficiently large, we show that the energy redis-
In Arnold diffusion energy redistribution proceeds along tribution resembles the diffusion process. The diffusion rate
the stochastic layers near the separatrices by chaotic motioi$. proportional toe? times the probability density of near-
The process cannot occur in the low-energy limit because iZero detuning. In Sec. lll we discuss how the resonance de-
takes a significant amount of energy to reach the separatriceisinings scale witiN. The scaling relation reveals how im-
Moreover, in the low-energy limit the nonlinear part Idf, probable that energy redistribution in a system of laxgis
becomes negligible. In other wordd,, is effectively linear. bounded. The result shows that resonances of small detuning
In such cases Chirikov's method cannot be applied becausgmnipresent in systems of largé are the cause of equipar-
the conditiona> € is not satisfied. How energy redistribu- tition in the low-energy limit. In Sec. IV we present our
tion occurs in the low-energy limit remains unclear. analysis of the time scale for equipartition and compare our
Energy redistribution is intimately related to the equipar-estimation with results from recent large-scale numerical
tition principle in statistical mechanics. Even if one has notsimulations. Without any fitting parameter, our analytical ex-
been bothered by the KAM theorem when thinking about thepressions reproduce results from two independent works.
equipartition principle, there is still the problem of the time The paper is concluded in Sec. V with a discussion.
scale for equipatrtition. In statistical mechanics the concept of
ergodicity is defined in thé— limit. But in our practical Il. ROLE OF RESONANCE DETUNING
world one cannot wait for— . It is important to know how IN ENERGY DIFFUSION
long it takes for a nonintegrable system to reach equiparti-

tion, if that will ever occur. In this section we investigate the evolution of the action

In the low-energy limit the effect of nonlinear perturba- variables in an ensemble of the model systems. To facilitate
tion is small, hence the only way to walk around the KAM the discussion and the comparison with established numeri-

theorem is by going through resonances. As mentione§& eTperimﬁnta, we Tse the Felrmi-Pasta—UI(aleU) BI _
above, in the low-energy limiH, is effectively linear and Model and thep™ model as examples. Because the analysis

w; are constants. The chance of having exact resonanc&s ndot dmodeLdepHend$nt, the rgsults l.We ohbtamled can be ex-
(m-w—=0) is small except for those imposed by symmetrytended to other Hamiltonians by scaling the relevant param-

. : eters.
requirements. Although given any set @fone can always A 4
find anm to makem- w arbitrarily small, the components of The Hamiltonians of the FP3 model and the* model

suchm are often so large that the corresponding perturbation"f‘r‘? described in d.Eta” in Appendix A. B(.)th mo_dels represent

Vn(l)cosn- 6) does not exist or is negligibly small. There- strings m?de of dlscrete_mass anq spring units. Each mass-

fore one should focus the attention on how far the system igPring unit forms a !"°”'.'”ear oscillator that couples to its

away from resonances, instead of the existence of exact resg_elghbors. The Hamiltonians have the form

nances. As an example, one of the authdrsV,) has taken N

such an approach to show that the different behaviors of H(1,0)=> wjl;+€>, Vyu(l)cogm-6), (2.2

intramolecular vibrational energy redistribution in &H, =1 m

and SFk; can be explained by their significant difference in

the number of low-ordefsmallm;) resonances of small de- WhereN w are constants, {mj={(my, ... my):m

tuning [12]. One may ask the following: Given a group of EZ'Ei:1|m‘il|$44}- and the number of the elements{im} is

dominant low-order resonances, are the resonance detunindd{m}) =2"N"* (see Appendix A The equation of motion

sufficiently small to cause energy redistribution? If yes, howof the action variables is

fast is the process? Without a detailed knowledge of the dy- JH

namics of the system, it seems difficult to answer such ques- li=——=€¢> mVy(l)sin(m- ). (2.2

tions. Yet wherN is sufficiently large, due to the large num- 90; m

ber of frequency combinations, the statistics of the resonance o 0 )

detunings dictates the typical behavior of the system. ThereSubstitutingd; = w;t+ 6 + O(e) into Eq.(2.2), one has

fore, a natural approach is to incorporate the statistics of

resonance detunings into the standard perturbation theory. li=e> mVy(DsinAwqt+62)+0(ed), (2.3

As we shall see, such an approach unveils not only the dy- m

namical origin of the equipartition principle, but also its va-

lidity boundaries and the time scale for reaching equipartiwhereAwy,==f m;w; represent the detunings of the reso-

tion. nances and®,==" m; 6° represent the initial conditions of
In this paper we study the energy redistribution process irthe angle variables. We calculate the change; afuring a

the low-energy limit by analyzing the role of resonance de-periodAT by integrating Eq(2.3) from O toAT. The length

tunings. Our model system is a linell, of large N per-  of AT is chosen to be sufficiently short so thaf(1) do not

turbed by a small nonlineagH,. Physically it represents change significantly durindoT, yet much longer than the

small-amplitude harmonic oscillations near stable equilibperiods of the angle variables. For sufficiently smalll
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evolves much slower tha#, such choices oAT are always ) ) 5
possible. Now that the change Wf,(1) is negligible during ([Al]*)~4e % | Vin(h)
AT, me{m’

AT Xf f(X,AT)P(x)dx, (2.9
Ali%j 62 miVm(I)sin(Awmt+ 9%)(“ [Aw|min=<[X|<[A®|max
0 m

where|A o] min,|Aw|max are the bounds diA wy|.
_ In what follows we shall further reduce E¢R.9) into a
62 m, A {[COE(AwmAT) ”COE{& ) form in which the role ofA w,, in the energy redistribution
] o process is clearly displayed. By analyzing the integral in Eq.
—siN(Awm,AT)sIN(O,)}- (2.4 (2.9, we shall show that resonances with small detunings
play the dominant roles in the energy redistribution process.
By averaging over the initial condltloné , one obtains Let P andQ be the height and width d?(x), respectively,
(A1?), the average oAl? in a mlcrocanonlcal ensemble, and assume th&(x) is well behaved such that

k

o_ 1 Van(1) |P<k><x>|<P(3) (2.10
<AII>__EE I (A m)2 QO

s {[coS AwyAT) — 112+ Sirf(Aw, AT)} holds for some constant;~O(1), where P®(x) is the

kth derivative of P(x). As an examplec,=1/y2 for the

) o2 1—c05{AwmAT) Gaussian distribution (Y2 7Q)exp(—x%2Q2). To simplify
—€ 2 m;“Vin( (Awy)? ' (2.9 the integral in Eq(2.9) let us separate the rangeyointo two

parts: |Ao|mnsX<Q/c; and Q/c;<|X|<|Aw|nax. FOr
|x|<Q/cy, expanding P(x) in series and noting that

4 -
In both the FPUB model and thep* model each reso f(x,AT) i$ an even function ok, one obtains

nance detunindAw,, is a linear sum of at most fouw,
because there are at most four nonzero integenms.iVe
may divide{m} into two groups:(i) {m’}={m: with four
nonzerom;}, M({m’})=2*x41xC} and (i) {m"}={m:
with at most three nonzero m}, M{m"})
=2*XN*—2%x41xC}. Because we are interested in sys- =
tems of largeN, where N({m'}) is much larger than

M({m"}), the major contribution t¢A1?) is from{m’}, that

f f(X,AT)P(x)dx
[A@|min=<|X|<]|A®|max

2
k=0

f P<k>(0)
|Aw|min$|X|SQ/C1

f F(x, AT)P(x)dx
Q/cy<|X|<|Ao|nax

is,
Ql = P
(A= X mViF(Awm,AT), (26 =2J "t AT PO)+ S O ok g
me{m’} olmin =1 (2K)!
where f f(X,AT)P(x)dx
Qler<|x|<|Aw|max
1-codAw, AT
f(Awm,AT)E& (27) o

(Awpy)? =2fw f(x,AT)P(O)dx—zf f(x,AT)P(0)dx
@lmin Qlcy

Forme{m’}, =N m?=4. One has s P(24((0)
+2 f(X,AT 2k
N mein x >L21 2kt
(A= (A1Py=4e® D VE(Df(Awy,AT).
i=1 me{m’} +J f(x,AT)P(x)dx. (2.11
(2.8 Q/c1=|X|<|A0| max

In systems of many degrees of freedom, the number oketting F represent the first term ar@the sum of the last
possiblem is very large, hence there are many differentthree terms in Eq(2.11), Eq. (2.9) becomes
Aw,,. Because we are interested in the general statistical
behavior of such systems, we may describe(B@) in terms (|Al |2>m4< P E V%(I)
of the distributions oV, andA w,,,. Becausel w,, is deter-
mined byw; from the unperturbed Hamiltonidd,, whereas '
V., by the nonlinear perturbatioH,, it is reasonable to as- Define
sume that in general the distributions ¢f, and Aw,, are .
uncorrelated. Lettind®(Awy,) be the distribution oA wy,, F(X)Exj 1_C208Jdu. (2.13
one has x U

(F+3G). (2.12

me{m’}
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1.6 that B<1, then the average fractional change \gf(l),
1ad (o Fi) which is proportional tq|Al])/|1], stays negligible for arbi-

trarily long AT. In this case the energy is localized, as ex-
1.2 pected from the KAM theorem.

In Sec. Ill we show thatA o|,i, decreases rapidly with
increasingN. Hence, for largeN, the energy will not be
Z 084 bounded in a small neighborhood of the initial point. If
|A | mirAT<1, from Eq.(2.15

1.0

0.6 -
s _2P(0)
44 ~ Aol E(|Aw|mmAT)— 7P(0)AT. (2.19
0.2 4
In Appendix B we show that7P(0)=P, whereas
°-°'0 T A T T 2 |G|<12c,P/Q. If € and|Aw|ni, are both sufficiently small
« we may choose\T>12c, /() without violating the condi-
tions that the change of (1) is negligible duringAT and
FIG. 1. Shape oF(X). |Aw|minAT<1. Theng in Eq. (2.12 can be neglected and
Then <|A||2>~4w< &S vfn(|)) P(O)AT. (2.20
oc 1—cosu me{m’}
a ZP(O)ATLAwlmmAT u? du Equation(2.20 shows that when the number of degrees of
freedomN is large, under suitable “coarse grainingthoice
— 2P(0) F(|Aw|miAT). (2.14 of AT), the energy redistribution resembles a diffusicen-
|A @ min mn dom walk process. Thé-dependent “diffusion rate”
In Fig. 1 we plot the functionF(x). It can be seen that
F(x) is bounded by its maximunf(x,)<1.4 and for D=47T( 2> V%U)) P(0) (2.2
Xx<X, the function increases monotonically with When me{m'}
x<1 is independent ofAw|mi,. From the form ofV.(1) de-
%1 —coal - scribed in Eq(A25) it can be seen that the diffusion rate is
F(X)*XJ' 02 du= EX' (2.19 never zero except at the phase space boundary whef@
0 for somei. From Eq.(2.9) it can be seen that at this bound-
Using Eq.(2.10, one can show that aryii=0 the diffusion becomes limited in the directions per-
pendicular to the axis in the phase space.
|G|<12c,P/Q). (2.19 Equation (2.20 holds under the condition that during

AT the change ofV,(l) is negligible or, equivalently,

The proof is given in Appendix B. These properties/ond  (|A[|)/|I|<1. This condition can be used to estimate the
G will be used in the following analysis. upper bound ofeH|/H, for Eq. (2.20 to hold. For simplic-
If |Aw|min is not small, the energy could be bounded to ity let us require thag|Al|)/|I|<cs, wherecs is of the order

near neighborhood of the initial point The condition for  0.1. Becaus&\T>12c,/Q and{|A1|2)=DAT, whereD is
energy localization is(|Al[)/[I|<1 for all time, where the diffusion rate in Eq(2.2D),

(|A1]) is a simplified notation of ([A1[%). From Eqs(2.14

and(2.16) 12c Call Call
N e Ly O L
2PF(x) 12,P Q (a1l VD
|F+1dl< Aol q (2.17
min To carry out the estimation, we replaté by its average
where F(xo)<1.4 and 10 <1/]Aw|y,. From Egs.(2.12  [I[, which is approximately/NIZ, wherel,, is the average
and(2.17) one can see there exists a consgnof order 10  action per degree of freedom, and reldteto Hy andD to
such tha|Al])/|l] is bounded by H,. BecauseH is approximatelyNw, | .y, Wherew,, is the
average value ob; ,
\/Cz( &€ X vzmu)) P/|A®|min H
me{m’} I~ . 2.2
B= . (218 M~ Now (223

Although Eq.(2.12 holds only for a period\ T during which BecausesZEV% is of the order 22"'%-
the change oW (1) is negligible, if|A |y, is sufficiently 012
large or the perturbatioa®>V?2 is sufficiently small, such D~8me°HIP(0). (2.24
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With ¢;~0(1), c3~0(0.1), #P(0)=P, and the probability o c AN o
normalization conditioPQ~1, Egs.(2.22—(2.24) yield jo G(y)dy~=~ fo ex —2°C,P(0)y]dy+ L G(y)dy

H 0.01Q

el : 2.29 - e {1-exi — 2C}P(0)C])

Ho ~ waN 2°C{P(0) .
This condition defines how weak the perturbation strength o
|eH4|/H, has to be for Eq(2.20 to be valid. +f G(y)dy. (3.9

C

Ill. SCALING RELATIONS BETWEEN  |A |y, AND N For systems of large\, ex—2“CP(0)c]<1 can be ne-

It was shown in the preceding section that the nature oflected. DefineQ(y)=1—Jy<,P(x)dx. Then
the energy redistribution process in systems of lakhés . . |
determined by the lower bound of resonance Qetulmng J G(y)dy=J [Q(y)]23°4dy
|Aw|min. As |Aw|mn decreases, energy redistribution c c
changes from being bounded to diffusion. In systems of large .
N, |A.w|m.in is likely to be small because there are many g[Q(C)]ZSCT_J-J Q(y)dy, (3.6)
combinations oA w,,. Therefore diffusion is likely to domi- 0
nate the energy redistribution process. However, because the " ) ) _
diffusion rate is independent 4 |y, once|Aw|y, is  WhereSgQ(y)dy is the expectation value ¢ wy|, which
sufficiently small for diffusion to occur, it does not make iS finite and independent ofN. Because Q(c)<1,
much difference to have an even lardér Therefore, for a Q(c)V<1/M  for  sufficiently ~large M. Hence
given perturbationeH,, in a rough sense there exists aJ:G(y)dy<1[2*C}P(0)] for sufficiently largeN. For sys-
threshold number of degrees of freeddty, such that the tems of largeN the expectation value ofA |y, is then
energy redistribution changes its nature from being bounde@pproximately
to diffusion asN crossedNy,. To clarify the role ofN we
shall now discuss the relationship betwéAm| ., andN by
calculating the expectation value & |-

For any particular me{m’} the probability of _ ) ) ) _
|Awgy|>Y is This relation shows hoWA | i, scales withN. It is approxi-

mately equal to the inverse probability density?@@) di-
vided by the number of frequency combinatiorﬂc2.
1= JXSyP(x)dx. 3.1 Now that the dependence pf |y, on N is known, we
are in a good position to estimaltg,. Substituting Eq(3.7)
BecauseV({m'})=2%x41xC) and every 4! of theAw,, into Eq.(2.18, the condition for energy localization is
(hence every X4! of the |Awy,|) has only one value, the

(3.7)

|Aw|min~

24ChP(0)

probability of|A w| =Y, defined asz(y), is \/C2< &2 2 V%(I))[Z“CTPP(O)]
2%y B= metm) <1. (3.9
G(y)= 1—J| | P(x)dx (3.2 1]
x|<y
3 _ _ , Again, to carry out the estimation we repladg by
Therefore the probability density fd)_Aw|min=y is —G'(y) [l]~Ho/(yNw,), and noting that,~0O(10), P(0)= P/,
and the expectation value th o| i, is P~1/0), ande2SV2~2€2H2, Eq. (3.9) yields
o0 B , _ - o0 _ 0 H
fo y[—G'(y)ldy=—yG(y)[5 + fo G(y)dy fo G(y)dy. N5/2< %)(IH 1l><1_ 39
(3.3 0

For simplicity let us require that the left-hand side of Eq.
(3.9 equalsc,, wherec, is of the order 0.1. Then we have
an estimation ofNy,,

Q H 2/5 Q H 2/5
Nth=c§’5< 0) ~o.4< 0) . (310

Let ¢ be sufficiently small such that when<c,

InG(y)=2%C}In 1—fll P(x)dx
X<y

way |€H1| way |€H|
~2%CH —f ‘ P(x)dx e e
X<y
IV. TIME SCALE FOR EQUIPARTITION
~23Cy - fx<yp(0)dx The foundation of the equipartition principle in dynamics

is an old problem. The emergence of the KAM theorem has
=—2'CNP(0)y. (3.4  made it more puzzling. In the high-energy limit where the

motion is highly chaotic, it is relatively easy to appreciate the

From Eq.(3.4) one has equipartition principle. In the intermediate energy range,
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TABLE I. Comparison with numerical simulations from R14]. In7z, numerical results, IR, calcu-
lated values.

N=128 N=256 N=512
In& -65 -59 -52 -46 -42 -38 -62 -55 -44 -56 50

In7g 14.3 13.0 12.3 10.9 105 9.6 14.2 12.3 10.6 12.4 115
InT, 151 13.9 12.5 11.3 10.5 9.7 13.8 12.4 10.2 11.9 10.7

where the motion is partially chaotic, Arnold diffusion pro- N

vides a possible mechanism for equipartition. In the low- U=E

energy limit where regular motion is expected, it is more =1

difficult to relate the equipartition principle to dynamics. The

problem actually lies in the fact that our intuition of dynam- If the total energy of the system B thenAq,, the average

ics often comes from systems of smalll In Secs. Il and Il value of Aqiz, is approximatelyE/N and Aqng E2/N?.

we showed that iN>Ny,, energy diffusion is likely unin- Hence

hibited. From the fact that in an isolated system the simplest

steady-state solution of the diffusion equation is a constant, Ho E/N 4N

one expects that given sufficient time, equipartition will be leH,| (B4 (EIN?) ~ BE (4.3

reached. In other words, if the action distribution will ever

reach a steady state, the state should be an equipartition st we keepE/N fixed, T, 1N. But if we keepE fixed, T
In ex.periment, F‘?fm?’ _Pasta, and Ulam employed one OLN. This is exactly £heescaliﬁg law Kangt al. discovérgd

the earliest eIectron!c d'g't?' compute'rs to study the problgr‘ri1n their simulation of the FPUB model with fixedE and 8

[6]. Although they did not find any evidence of energy equi- 16]

partition, their results stimulated many subsequent works irg '

. . . Not only the scaling lawT >N, but Eq.(4.1) actually
theory as well as in numerical experimgB|. In early nu- ; L )
. . . L reproduces the time scale for equipartition observed in Ref.
merical works the lengths of integration were limited by the

speed of the computers: hence, if equipartition was nOE16]. Before we proceed further with the comparison, let us

found, one could always suspect that the result may be difg1 z:lrzzf"\f;ﬁr;ip(%) 25&;&22@?&: ii';%/)N?'ST;;
. X Y av ) -
ferent with a longer integration time. Regardless of the true roximately 0.15. as estimated in Appendix B. Substituting

reason behind the original FPU results, recent simulations b9 = o :
Pettini and Landolfj14], Goeddeet al.[15], and Kantzet al. wtavt dP('O)I'?Bf_l%ly' atndE— 12'1the 'fr:et% W|dth|_0.04/$ ?S
[16] have revealed strong evidence of near equipartition. Uss—"Ea e4 ?|,n e {1 ], into Eq. (4.1), wi € scaiing relation
ing a CRAY-XMP supercomputer, Pettini and Landolfi stud- g.(4.3 one has

ied energy redistribution in the FPB model and theg*

N| =

1 N
(Aq)*+ 782, (Agy)*. (4.2

model with wide ranges of parameters. They were able tot Te N{1/[277Nw§VP(0)]}[4N/(BE)]2N
observe near equipartition in all the cases they studied ag — (0.04K/10)N - (0.041/10)N ~832.
long as the integration time is sufficiently long. ' ' (4.4

From the discussion above it is clear that the important
question is actually .hOW. I_ong one has to wait pefore therps agrees well with the time scale shown in Fig. 2 of Ref.
system reaches equipartition. Will that occur while we are[l6]
still interested? Armed with Eq2.20), one can estimate the '
time scale for reaching equipartition. Consider the typicalth

distanceR between two arbitrary points in the action Space'notatior) for different N [14]. They obtained the time scale

E:Lllstbxvuzrse]lillleg lﬁheaavfgi?ga\:zllu?hd:l/;/r;rgleegcs:tlij(;i tshaatcefor equipartition (g in their notation from the decay curve
let us define the timg scpa{)le for equi)r/)artitiﬁgto be the timpe ?r]: the “spectral entropy” . WhICh-IS a qatural |nd|cato_r of
: e X - i e degree of equipartition. The simulations were carried out
it takes for the diffusion to reach twice of the typical dis- ¢5; poth the EPU and thes* model with a wide range of
tance; theriTo~(2|1])%/D, whereD is the diffusion rate in ¢ The same formula Eq4.1) reproduces all the data in Ref.
Eq. (2.21). From Egs.(2.23 and(2.24 one obtains [14] for which £ satisfies the condition of weak perturbation
Eq. (2.25. The comparison is shown in Table I. There is an
) intrinsic uncertainty in determiningg due to the slow decay
T~ 1 Ho 4.1) of z near equipartition. Taking into account this intrinsic
€ ZWng\,P(O) eZHf' ' uncertainty, the agreement betwegnpandT, is remarkable.
Goeddeet al. have also investigated the time scale for
equipartition for the¢* model with numerical simulation
Note that in Eq(4.1) theN dependence is not as simple as it [15]. However, in their simulatiofeH|/Hy~1, which is
appears because the ratig /| eH;| may also depend oN.  too large for our analysis to be valid. Therefore we are not
For example, consider the potential energy of the FPU able to make a similar comparison with their numerical re-
Hamiltonian[see Eq.(A6)] sults.

Pettini and Landolfi have studied the dependencg&.ain
e average energy per degree of freedaE/N (e in their
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It should be noted that the comparisons above are doniateraction, we would hav& N ;|m;|<6 in Eq. (2.1) and

without any fitting parameter. The remarkable accuracy ofAw|,, becomes proportional to @&J_ ConsequentlyNy,
Eq. (4.1 strongly supports our thesis, namely, small reso-scales as Hio/|eH,|)?", while the general form oD and
nance detunings in systems of lariyeis the basis of equi- T, remains the same.
partition in the low-energy limit. It should be noted that even though our analysis is meant
Confusion regarding the limit oN—c may arise. Does g pe used on nonintegrable Hamiltonians, questions may
equipartition always happen in systems of lafg@ If yes,  arise. For example, what would happen if the Hamiltonian
how should one look at the regular motion of a nonlinearon|y appears to be nonintegrab|e? There are classes of non-
string, such as the continuum limit of the FiFBJmodel and  |inear Hamiltonians that are actually integrable. If we treat
the ¢* model? To answer such guestions, one must distinthe nonlinear part of those Hamiltonians as perturbation, it is
guish the continuum limit from the thermodynamic limit. In still possible to see “apparent” diffusion. Yet in such cases
the continuum limit letN—c while keeping the energf  the motion of different degrees of freedom is correlated in
constant. In such caséty/|eH,| is of orderN andTe=N.  such ways that with proper sets of variables the static nature
Therefore, in practice, equipartition will never occur. This of the motion can be revealed. Nevertheless, if one wishes to
can be traced back to the diffusion raBein Eq. (2.21).  describe the motion in terms of linear mode expansions, the
BecauseDxe’H?, as E/N approaches zeroD also ap- perturbation picture is still valid. It bears a close analogy to
proaches zero. Even though diffusion is allowed becausthe interaction picture in quantum mechanics.
|Aw|min—0, the diffusion rate is too small to bear any prac-  The theory presented in this paper can be readily extended
tical significance. On the contrary, in the thermodynamicto quantum mechanics. Let be the probability amplitude of
limit E/N is kept constant asN—co. In such cases a system in staté. Then|c;|? corresponds to the classical
Hq/eH; remains roughly constant anb<1/N. Equiparti-  action variablel; and the phase angle of corresponds to

tion can occur in practical time scales. the angle variable, . The evolution ofic;|? is governed by
an equation similar to Eq2.4); hence using our method, one
V. DISCUSSION can analyze probability diffusion in quantum systems in a

similar way. Such an analysis can be used to elucidate the

In Sec. Il itis seen that in the low-energy limit the energy qynamic basis of quantum microcanonical ensemble theo-
redistribution process shifts from bounded motion to diffu- jo5 We plan to present such an analysis in future papers.

sion as|A | mi, approaches zero. Becaygew| ,, decreases

rapidly with increasingN, as shown in Sec. Ill, we expect

that in systems of larg®l energy diffusion always occurs, ACKNOWLEDGMENT
even in the low-energy limit where from casual inspection of
the Hamiltonian the nonlinear couplings look unimportant.
The conclusion above is not a surprise. Long ago Ford an
Lunsford had given the following Hamiltonian as an ex-
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ample, in which the erratic dynamics is independent of the APPENDIX A
strength of perturbatiory. Only the time scale for observing
the erratic dynamics changes with[17]: The FPUB model is the discrete version of the nonlinear
partial differential equation
H=J;+2J,+3J3+ y[ 2d;I3%c0g26, - 6,)
1/2 2 2 2
+B(313233) Y2cod 0, + 6,— 03)]. (5.) % B % 1+3B(%) o A1)

The example above is somewhat unnatural because the
chance of having three frequencies of the exact ratio 1:2:3 is
very small. Nevertheless, it carries some spirit of the basidt is one of the nonlinear models Fermi, Pasta, and Ulam
idea presented in this paper: Small detunings make weaktudied with an early digital computer. Discretizing the con-
perturbation important. By replacing the unnatural requiretinuous function y(x) in Eq. (Al) into a vector

ment of exact resonance with a statistical distribution of de{ys, .. ..yn) and substituting in
tunings, the role of resonances in the energy redistribution
becomes clear and relations amaNg|eH4|/Hg, |A®|mins av\2 2 2
y Yiri—y)e (Yi—Yi-1)
D, andT, also become apparent. 2 = +
: e 3<ax) @? T ax?

We also noted in particular the importance Tf when
discussing equipartition. We showed that even though small (Vir 1= YD) (Yi—Yi_1)

|A o] min makes energy diffusion possible, it does not guaran- (Bx)? , (A2)
tee that equipartition will be reached in practical time scales.

In particular, we used the FPB model and thep* model to

show that low energy elastic waves in continuous media do PY Vi1 —2Yit+Yiq

not contribute to equipartition because energy diffusion T AE (A3)
caused by such motions is too slow to be of practical signifi-

cance.

Our analysis can be readily generalized to other HamiltowhereAx=L/N andL is the length of the string, EdA1)
nians. For example, if® instead of¢* was the dominant becomes
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. Yier—2YitYioa (Yiea=Y)?  (Yi—Yi1)? _1 _ 2 [Qmax 200211124 (y  E
Yi—wz—[“'ﬁ (Ax)2 (Ax)2 li=5- f# deQJ—;JO (2Ej— 0;°Q7) Zde_Z,-’

All
n (yi+1_Yi)(yi_yi—1)” (A1D)
(Ax)? whereQma,=(2E;)*% w; is the value oQ; whenP;=0. The
Vi —2Vi+yi 1 (Vier—y)®  (Vi—yi_1)? generating functior(Q,1) can be obtained from
| 1 1 — I | | 11—
(A7 @x* @ax? s
(A4) sza—QjF(Q,l) (A12)

Letting g;=y; andp;=y;, one has

q4i=pi,

. 1
pi= (A—X)Z(qi+1_2qi+Qi—1)

+(Aixy1[<qi+l—qi>3—<qi—qi1>3]. (AS5)

From the above equations one obtains the Hamiltonian

N

1 1 1
_ Th2. (d . —0)2
H_z [2p|+2(AX)2(q'+l Q|)

i=1

1 B
+Z(A—X)4(qi+l_qi)4 (A6)
1 1 N
=52 pi+ E,E Aijdig;
i=1 ihj=1
1 8 O
+ZW21 (Gis1—a)*, (A7)

where the periodic boundary conditiay, ;=094 is used,
Aij=(28 ;= 8 j+1— 6,j-1)/AX?, and &, ; is the Kronecker
delta. SettingS”-=1/\/_I\Jl[cos(2nij/N)+sin(27rij/N)], we can
diagonalize the matrixd= (A;;) with S=(S;;) such that

o
SAS = ,

2
wy

to be
F( |)—§ fQjP'd -—§ fQj(zE»— 2QH)V%dQ
Q. —“ o JQJ_j:l 0 im0 Qj Qj
N
Q.

From the generating function one obtains the angle variables

0 Qj
6J=EF<Q,I)=%L (20— 02Q)~V%Q

w: | 12

= arcsir{ (#) le . (A14)
J
Substituting

1 1

EPJ-Z-I-ijZQ]-Z:EJ—:w]-lj, (A15)
2'] 1/2

Qj= (a) sing); (A16)

into the Hamiltonian, one obtains

I 1/2 4
—’) sinal}.
o

(A17)

Essentially the same procedure can be applied to dis-

where all but the diagonal matrix elements are Zzerocyetize the sine-Gordon equation in the low-energy limit for

wf=4sirf[(1/2)k;]/Ax?, kj=2m}IN, and S=S~'. Making
the canonical transforr®=Sp and Q= S5q,

N

N
1 1
2 212

N

B
(Ax)“iE

=1

N

4
> <$+1,,-—si,j>Qj} . (A9)

=1

+

N

Change the variablesQ(P) to the action angle variables

(1,0) with

1,1
5P+ > w?Q’=E (A10)

2 I

the ¢* model. Substituting Eq(A3) into

Py Py

Frr (A18)

+ ysiny=0

and settingg;=y; andp;=Yy;, one obtains the Hamiltonian

N N N
H=>> p?+ 5_2 AijQin+'yz (1-cox),
i=1 i,j=1 i=1
(A19)

with A;; defined as before. In the low-energy linjtis very
small, hence



54 ENERGY DIFFUSION DUE TO NONLINEAR ...

LN L N y N y N
H*—E pr+ —,E AijQin+—,2 ai— _|E af
i=1 2|,J:l 2|:l 4-|:l
LN LN Ly
:—2 pr+ —_E AijCquJ'_—,E ar (A20)
=1 2i=1 4li=a

Where ’A” :é” + 7’5i,j .
matrix A= (A;;) with S defined before:
2
Wy
SAS 1= ,

2
wy

(A21)

where w’=4sirf[(1/2)k;]/Ax?*+ y and k;=2j/N. Chang-
ing the variables td®=Sp and Q=Sq, and then changing
them to the action angle variablek §) as done before for

the FPUB model, one has
. 1/2 4
(—‘) sinaj} . (A22)
i\ o,

Mz
£

Because

(—1)mns

Sing;sinG,sinG; sing,= 16

Ny,---,Ng==*1
X cogny 0+ n,0,+N30,+N46y,),
(A23)

both the FPUB Hamiltonian and thes* Hamiltonian can be
written in the form

>

\ikim
Nq---
1s<j,kI,m=Nng, .., ng=+1 1

N
:j§=:l wjl;+e n4(I)

X cogny 0+ ny0,+ N30+ N46,), (A24)

where we have introduced the dimensionless parameteicular w; falling in the interval &—

e=BIL? for the FPUB model ande=yL?/3! for the ¢*
model, and

yikim (= 1)n1

Ny---Ny

=" S ccien

(A25)

with C =N(S+1;—Sj)/Vo;L for the FPUB model and
C' S,/Vo,L for the ¢4 model. The perturbation

part V‘kIm ., (1) contains ZXN* terms. With
mE(ml,.. mN) 05(01, sy N) and (mo)E
>N .m0, one has
N
H=2Y ojlj+e> Vp(l)cogm- 6). (A26)
j=1 m

From Eqgs.(A22)—(A24) it is apparent thafm} consists of
all integer arraysify,, . .. ,my) with =N, |m;|<4.

Similarly, we can diagonalize the
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APPENDIX B

Lemma 1)G|<12c,P/Q.
Proof. Because 6 f(x,AT)=[1-coskAT)]/x*<2/x>
and 0<P(x)<P, the second term in Eq2.11) is bounded

by
e
Qlcqy

Similarly, the last term in Eqg(2.11) is bounded by

c,P

(X,AT)P(0)dx q

<4Pj —dx=4——
Q/clx
(B1)

U f(x,AT)P(x)dx
Q/cy<|x|<|Aw|max

* c,P
—de 4—

sZPJ dx 4P
Qley =< x| = X2 Qe X Q

(B2)

From Eq.(2.10, |P®¥(0)|<P(c,/Q)?, the third term in
Eqg. (2.11), is bounded by

Qie; ~ <2k)(o)
ZflAwmmf(x,AT)[ 21 el kldx
Q/Cl 1 * 2k
2k
Jo [Z (Q) X ldx

©

c,P 1 c,P
—4 ST <4

Q & (2K)1(2k—1) (B3)

Thus the sum of the last three terms in E2.11), which is
called G, has the absolute value less than or equal to
12c,P/Q).

Lemma 2.7P(0)=P.

Proof. Defining p(x)dx to be the probability of any par-
dx,x+3dx), i.e
p(x) is the distribution ofw;, then P(Awm) can be derived
from p(x) by convolution. Because the convolution depends
on the numbers afn; that are+1 and— 1, respectively, for
convenience of discussion we sepafate } further into five
subsets{m’}=U2_,{mg}, with {mg}={m:s of the m; are
+1, 4—s are—1, and the rest are}0Letting Ps(Aw,,) be

the distribution of Aw, for me{mg because
N({mg)=CxatxCy  and  M{m'}) =25 o*M{mg})
=24x41xCl,

4 4

CS
P(Aom) =2 57 P(Awp). (84)

To avoid any possible misunderstanding of the meaning of
Ps(Aw,), let us write outP,(Aw,) explicitly. For m
e{m,}, twom; are+1, two are—1, and the rest are 0, i.e.,
Awp=wi;+w,—w3—w,. The probability distribution of
Awp in {m,} is
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o= [ [ [ plor+wr— 05—ty P.(0)= [ g*(y)ay (89)

Xp(w1)p(wy)p(wz)dw;dw,dws. and

(B5)
. . . 12 1/2

Other P(Aw,,) can be derived by convolution gf(x) in (fgz(y)dy)

similar ways. Because the convolution involves fauy,

from the central limit theorem in probability theof¥8], the

widths of all theP4(x) are approximately/4w, wherew is :f g?(y)dy="P,(0).

the width ofp(x). Because the product of the height and the

width of a probability distribution is approximately 1, the Equation (B10) shows thatP,(0) is the maximum(the

heights of all theP4(x) also have approximately the same heighy of P,(x); hence in a crude seng®(x)<P,(0) for

Pa(X)< f g%(y+x)dy

(B10)

value. As we shall see in the following paragraph, the valueaall s. Because

is just P»(0).
Defining

Q(Y)EJ p(y+w)p(w)dw, (B6)

then
g(—y)=f p(—y+w)p(w)do
=f p(o)p(y+o’)de'=g(y). (B7)

Settingy= w3—

Pz(X):f f f P(wi+wy— w3—X)

Xp(w)p

JJJ’D(wl y—X)p(w1)p(w>)

X p(y+ wz)dwldwzdy

w,, one has

(w2)p(w3)dw;dw,dws

=f g(—y—x)g(y)dy=f g(y+x)g(y)dy.
(B8)

Hence

4 ~a

CS
P(x)= 2 24P (0=2 57P2(0)=P(0), (B1D

the height ofP(x) is smaller thanP,(0), i.e., P<P5(0).
Therefore

4 g WC%
7P(0)=7>, 3 P4(0)=—,P,(0)=P. (B12)
s=0 2 2

Lemma 3.For w;=2sin(m@i/N), P(0)~0.15.

Proof. The average value @b; is w,,~1.27 and the stan-
dard deviation ofp(x) (the distribution ofw;) is o~0.62.
Hence the width ofp(x) is w~2X0.62=1.24. We know
from Lemma 2 that for alk the width of P4(x) is approxi-
mately V4w and the height ofP¢(x) is approximately
P,(0). Because the product of the height and the width of a
probability distribution is approximately 1,
P,(0)~1/\/Aw~0.4. Similar to the above proof that the
maxima of P,(x) happens ak=0, one can show that the
maximums ofPy(x), P4(x), P3(x), and P,(x) happen at
X=—4w,, —2w,, 2wy, and dv,,, respectively. Since
the standard deviations of the,(x) are all approximately
VAo=1.24~w,,, x=0 is at least two standard deviations
away from the peak fos# 2. ThereforeP¢(0) for s#2 are
very small. We have

4

C;
P(0)= E 24Ps<0> 54P2(0)=015.  (B13
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