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Second moment for cooperative diffusion in one-dimensional hard-particle lattice gases
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The diffusion of hard particles that span an arbitrary number of lattice sites on a one-dimensional lattice can
be expressed in terms of a differential equation that contains one term that represents the random walk of
independent particles and another term that represents the interaction of particles. The cooperative term in-
volves the gradient of the pair distribution at the distance of closest approach. The moments of the particle
distribution can then be expressed as a set of recursion relations that involve moments of the pair distribution
at closest approach. For the case of the second moment this reduces to an equation involving the zeroth
moment of the pair distribution for particles spanning a single lattice site which is known exactly. The
independent-walk part of the second moment has the usual linear dependence with time while the cooperative
part introduces a contribution that varies #s [S1063-651%96)03811-]

PACS numbes): 05.40:+j

[. INTRODUCTION This equation contains one set of terms that represents the
diffusion of independent particles and another involving the

Diffusion plays an important role in many physical pro- pair distribution at the distance of closest approach that rep-
cesses. The standard linear diffusion equation in continuougsents the cooperative part of the process. In Sec. IV we
space treats the average random motion of independent pdfrm the moments of the distribution and find that we can
ticles, while the interaction between particles generally intro-Obtain an exact expression for the second moment in terms
duces some kind of nonlinear terms. Solutions are known foPf the zeroth moment of the pair distribution for the case
some Spec|a| classes of nonlinear diffusion equaumS v=1 which we construct in Sec. V. We discuss the contribu-
such as Burger's equatid@]. In this paper we consider one tion of the cooperative nature of the process to diffusion in
of the simplest examples of cooperative diffusion, namelySec. VI.
the motion of hard particles on a one-dimensional lattice, for
which we obtain a modified diffusion equation. As is the Il. SOLUTION FOR »=1
case for the cooperative dynamics in many systems, the
problem of finding the moments of the distribution is simpler  In this section we review the solution for one-dimensional
than solving the complete problef,4] and in this case we lattice diffusion with»=1, as illustrated in Fig. (b). The
are able to give a general solution for the second moment.solution for this model was first given by Kutngg] in 1981;

In Fig. 1 we illustrate a sample configuration of particles@ review of the subject is availablg]. Here we use the
on a one-dimensional lattice where the particles cover amethod of Glaubef8] which has been applied to this model
arbitrary numbery of lattice sites. One can think of this [9]. Glauber's method was devised to treat the one-
model as one involving particles of fixed length where thedimensional Ising model where at each site of a one-
lattice is made increasingly finer with lattice spacifig1/v. dimensional lattice there was a spin that could have two ori-
The equilibrium properties of such a system were treated fogntations. Here the two states are the state of occupancy of a
generald by Lee and Yand5] in their famous paper on the lattice site, occupied by a particle1) and unoccupied
connection between phase transitions and the zeroes of tie'1). We let the variabler,, represent the state of site,
grand partition function. The dynamics for genefas more
complicated and only the case 81 [as illustrated in Fig. om=*1. (2.1
1(b)] has been solvefb]. In the present paper we obtain an
expression for the second moment of the particle distribution
for generalv (or 6) for the initial condition of a group of
close-packed particles with a finite second moment. The kind @—o—|—0—0—0—0+0—0—o—!+—0—0—o+o+0—0—0—o—|—0—0
of process we will use to illustrate the cooperative diffusion
of particles is illustrated in Fig. 2 where we have a close-
packed group oM particles_ at zero t_ime._ As time increases Y A ~ AN N A
these particles diffuse out in both directions and the second
moment of the distribution increases.

We will approach this problem as follows. In Sec. Il we
review briefly the application of Glauber’s approach for dif-  FiG. 1. Hard particles on a one-dimensional latti@.lllustra-
fusion to the SpeCiaI case of=1 since we will find that the tion of the case where the particle spans four sites4). The
second moment for generalcan be expressed in terms of reference site keeping track of the location of the particle is shown
the properties of the=1 system. Then, in Sec. Ill, we con- in black. (b) A sample configuration of particles for the casel
struct the differential equation for diffusion for genenal illustrating the allowed hops to nearest-neighbor sites.

(a)

(b)
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. 1 . . 1 ! I . FIG. 3. lllustration of allowed hops for the case vf1. The
sites being monitored are in parentheges. Allowed moves for a
singlet.(b) Allowed moves for a nearest-neighbor doublet.

FIG. 2. lllustration of an initial close-packed block df par-
ticles (here with»=3) that with time diffuse out along the lattice in

both directions where P,(0) is the initial distribution of particles and

P(no|m,) is the conditional probability that given a particle

The rules for the hard-particle system are that if there is &t Siten at t=0 the particle is at siten at time t. The
particle at sitem, then the closest another particle can get to°nditional probabilities are given H]

the reference particle imm* v where v measures the size It

(number of sites spanned bhe particle. The basic dynamic P(nolmy) =™l n—n(20), (2.19

process in our diffusion model is the hopping from one lat-yhere| (2t) is the imaginary Bessel function. If we special-

tice s_ite _to another which we can represent by the followingz¢ 5 the case where the initial probabilities are either zero
reaction: or one, then we have

(—+H)=(+-). (2.2 ay
Pn(t)=e~ I m—n(2t), (2.1)
Following Glauber we can write the differential equation for () no (2t

the time evolution of the average value @f, as ) o o )
where the sum is over the initial sites containing particles.

One could proceed in a similar manner fer-1, con-
d{om)/dt=— 2{20} om[w(m=1m)+w(mm+1)]P{s}. structing the appropriate,,, functions and obtaining the ana-
(2.3 log of (2.9. In fact this leads to rather complicated equations
and in this case it is simpler to approach the differential
The two terms involvingv in (2.3) represent the exchange of equations in a direct manner. The reason that the ease
a particle at sitem with either site (n—1) or (m+1), as can be solved is that two particles can switch pla¢e®
illustrated in Fig. 8a). For the case ob=1 we have[9] through one anothey’as if they were truly independent.
This does not alter the mathematics since the identity of the
particles is immaterial. But it does scramble the initial order
on the lattice.

wmm+1)=31(1-0,0ms1), (2.9

which is zero for the nearest-neighb®micombinationg ++)
and(——) and one for(—+) and(+—). Using(2.4) in (2.3

gives Ill. DIFFERENTIAL EQUATIONS FOR w»>1
_ B In Eqg. (2.6) we gave the relation betwedwr,,) andP,,.
dom)/dt=(om-1) = 2(om) +(0m1)- 29 In this section we will find that it is more convenient to
We can write the average sigma as express the differential equations directly in terms of Fhe
and in this case it is easier to use the indices 0 and 1 to
(om)=Pm—(1—P,), (2.6) represent a vacant and occupied lattice di@auber’s

method used the mathematical properties-dfand—1). In
whereP,, is thea priori probability that a particle will be order to change the probability of occupancy of sitewe

found at sitem. Using (2.6) in (2.5 we have must consider jumps where neighboring particles move onto
the site(increasing the probability of occupancgnd also
dPp/dt=Py_1—2Py+Pr1, (2.7 jumps where a particle at sita moves to neighboring sites

L . . ) ) ) (decreasing the probability of occupancyhe four possible
which is the differential equation for independent particles;,qyes are illustrated in Fig.( for the case of/=4. Now

hopping on a one-dimensional lattice with »>1 we must stipulate that the requisite stretch of un-
occupied sites be present in order for an allowed move to
take place. The differential equation illustrated in Figa)4

One then has the general solution for an arbitrary initialCa" P& written as follow¢again for »=4 where the paren-
configuration of particles theses enclose sites spanned by a partigie

(M=o (M)—(m+1)e--- (2.8

dP,,/dt=P((10,00)0)+ P(0(00Q,1))— P((1,,000)0)

Pr(t)= 2 Py(0)P(nglmy), (2.9 — P(0(0001,)). 3.0)
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d/d\(r.n) = (a) 82P(X,t)
~ I Pn-1—2Pnt Pm+1%72_.
+(®@ 0000 +0(0 00 @ 3.7
'S dQ(x,t)
- (Q 000 -0(O0o0®e Qm—Qm_1~ p .
m X

As v gets larger(or, with particle size fixed, the grid gets
finer), these approximations become more accurate and in
the limit of 5~0 we get the continuum limit. Then in con-
tinuous space

d/dt(®@ © O O)e (b)
m

M I 2
. (@00 OO ® + (@ 0000 @ JP(x,t) 9°P(x,t) 9Q(x,t) JQ(x—c,t)
m m = > + y (38)
at ax X X
'
- 0 0 OC 0 O C & - € OO O(e O O OO i X . X ) . . .
m m which is the familiar diffusion equation with extra terms in-

volving the variation of the probability of closest approach
FIG. 4. The contributions to the differential equation for par- along the lattice.

ticles with v=4 at sitem. (@) Moves contributing to the rate equa- In order to solve(3.6) we need a differential equation for
tion for the singlet(b) Moves contributing to the rate equation for the Q. This is constructed in analogy with the process used
the nearest-neighbor doublet. for (3.1); the reactions that increase or decregsgare il-
lustrated in Fig. &) (again forv=4). The differential equa-
We can rewrite(3.1) using the identity tion then is
P((1,,0000)+ P((1,,000/1)= P((1,,000)=P,,. (3.2 dP((1,,0001)/dt=P((10,0001)+ P((1,,000)01)
. ) —P(0(0001,)000)
The equality on the left hand side follows from the general
identity - P(1,,000010000). (3.9
P(s0)+P(s1)=P(s), (3.3 Using the identities

+
wheres is any fixed sequendsequence must be followed P((1000(10000)+ P((1,000(10001)

by something and the only two possibilities are 0 aindlrhe _ _

equality on the right hand side follows since if there is a P((1r000(1000)=P((1,0001) (3.19
particle at sitem then because of the extent of excludedye gptain

volume the 0’s indicated must follow. Rearrangif&2) we

have dP((1,,0001)/dt=P((1,,00001)— P((1,,000 1)

P((1,000)0)= P, — P((1,000)1). (3.4 +P((1n-,00001) - P((1,0001)
+P((1,000(10001)

+P((1,_,000(10001).  (3.11

It is useful now to define the quantity

Qm="P((1,0001). (3.5

Defining
This is the probability that two particles are at the distance of R.=P((1,,00001)
closest approach and is related to the discrete pair distribu- m m ' (3.12
tion function through the relatiog,,= Q/P,. Using (3.4) S=P((1,,000(10001) '

and (3.5 in (3.1 we obtain
then the differential equation @8.9) can be written

dQm/dt=(Rn=Qm)+(Rm-1—Qm) +Sy-,+Sn.  (3.13

So the rate of change of the two-particle correlat@nis
The first set of terms involvind®,,_1, P, and P, 1 iS  given in terms of another two-particle correlatioR)(and
identical with (2.7) for the case ofv=1 which is equivalent three-particle correlatiorS. We then require differential
to the diffusion of independent particles. But now forl  equations forR and S which require higher order particle
we have the additional terms involvir@, the pair distribu-  correlations, and so on, giving an infinite hierarchy of equa-
tion, that represent the cooperative nature of diffusion fortions.
v>1. The combinations of terms {i8.6) can be identified as We will not try to solve this hierarchy of equations ex-
the finite difference(discrete spageapproximations to the plicitly but instead will focus attention on the moments of
following derivatives: the distributionP,,. We will find that the second moment

de/dtZ Pm—l_zpm+ Pm+1+(Qm—v_Qm—v+l)
+(Qm=Qm-1)- (3.6
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can be expressed in terms of the zeroth moment of the dis- . 0 .
tribution Q,,, which we can calculate in general. —_—

When the system is at equilibrium all of the probabilities @ e 020 s @000 M=dyv=4)
in (3.13 are independent of position on the lattice and we @ees@eoe@ese@eee® (M=57v=4)
obtain the result @evee@eose@esee®  (Meody=S)

|
Q=R+S. (3.19
m
IV. MOMENTS OF P, ) ©:+®
m+ V2

We consider the power moments of the distributi®p,

,un=z m"P,,. (4.2 © (== == 3) == = (5) == (6 == - --
m @s) (5 @m we O (O

We con.SIder'the initial condltlon WheM sites are OCCUpI?d FIG. 5. (a) lllustration of the symmetric initial conditions for
by particles in a symmetric fashion about the center site aSariousM

i din Fi h h f Il i andv. (b) lllustration of the shift byw/2 for calculating
lllustrated in Fig. 2. Thus we have for all time the moments of the doublet distributiofc) lllustration of the

equivalent random walk process represented by (Bdl2. The
(4.2 numbers in parentheses are the initial probabilities of independent
random walkers for the case of=5.

#o=M and  pogq=0.

Taking the time derivative of(4.1) and using(3.6) for

dPy/dt we have Starting with a symmetric configuration about the origin as

illustrated in Fig. %a) all of the even moments,, are zero.
dun/dt=> m"(Pp_1—2Pn+Pmi1) The relations between the first few, and a;, are

m

I __
Qp= g,

+ 2 M"(Qm-,= Q-1+ Qm=Qm-1)-
m ar=ay+(vl2)ag=0 or ai;=—(v2)ay, (4.8
4.3
ay=ar,t+ va+ (V4 ag= a,— (V1) ay.
Since the sum is over an infinite number of sites we can shift
the summation index as follow$or example: Then we have

) ) dus/dt=2up+2(v—1)ay, 4.9
> m'Pn_1=2>, (M+1)"Py,. (4.9

™ m dus/dt=0, (4.10
Then we can writd4.3) as A /dt=2p0+ 120+ (v—1)(v2— 21+ 2) g

dpg/dt=">, P,[(m+1)"—2m"+(m—1)"] +12Av=1)a;. (4.11

We see that iv=1 the u,, can then be obtained simply by
+ m+ )= (m=+ v—1)"+m" successive integration of a set of recursion relations. For
% Qul( V)" v=b) v>1 the moments oP,,, depend on the moments Q,,. For
the special case qi, we have

—(m+1)"]. (4.5
t
We define the moments @, as Mz(t)=M2(0)+2Mt+2(v—1)foao(s)ds. (4.12
anzz m'Q,,. (4.6) We can determing,(t) exactly if we knowea,. But af is
m
As illustrated in Fig. %) the configuration of nearest- “o:% Qm- (4.13

neighbor pairs is symmetric about the origin. For the nearest-

neighbor pairsthe Q) we shift the value ofn to (m+»/2),  Now this quantity does not depend on the position of the
i.e., we measure moments from the center of the doublet, Sarticles on the lattice but simply depends on how many
illustrated in Fig. §b). Then we have nearest-neighbor contacts there are. So one can remove the
obligatory 0’s and reduce the calculation to thagffor the
' m+ v/2)"0... . 4. case ofv=1. And we know the solution for that case exactly.
“n % ( v12)"Qnm @7 So we can determing,(t) exactly, which we turn to now.
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V. CALCULATION OF ay dx, /dt=—2x;+2X,,

We need to know the quantity, which can be written in

terms of theP(1,,1,,,,) for the casev=1, dxp/dt=2x,—4x;+2Xs,

dX3/dt:2X2_4X3+ 2X4,

0= 2 P(Lnlny) 69 dxg /dt=2x5— 4x,+ 2, (5.8

The functionay for the process illustrated in Fig. 2 has the
limits
dx,/dt=2X,_1—4X,+2X, 41,

ap(0)=M—1 and aq(*)=0. (5.2

To generate an expression fag for general time we return where the initial conditions arésee Fig. 2

to (2.3) and develop the analog of this equation for the rate

of change of doublets. Rate equations for higher order cor- Xp(0)=N—=4n (n<M),

relations were obtained by GlaubdB8] for the one- (5.9
dimensional Ising model; the dynamics of the two-particle Xn(0)=N—=4M (n=M).

correlation function has been treated by Evans and Hoffmaq.he relation forx,(0), for example, is obtained by consid-
[10]. The processes involved are illustrated in Fig. 3. For theering a configurlatior,I ofM close-,packed particlegwith
special case of the nearest-neighbor doublet shown in Figu'=1) _____ o and counting
3(b) we have the number of nearest-neighbor produats, oy, 1. FoOr
nearest-neighbor sites with like sigfs or +) the product is
+1, but at the border between and + the product is—1,
which represents a change 6f from the+1 product. Since
there are two ends of the sequence Mf +’s we have
X1(0)=N+2(—=2)=N-4. We next introduce the following

new variables:
while for two particles further removed, as illustrated in Fig.

3(c), we have Yn=[X,—(N—=4M)]/4M (5.10

N omome)/dt=— 2{2:} TmOm+1[W(Mm—1m)

+w(m+1m+2)]P{o} (5.3

and
d<0'm0'n>/dt:_2% omon[W(m—21m)+w(m,m+1) . (5.1

tw(n=1n)+w(nn+1)IP{o}, (54 |, terms of these variables Eq&.8) and(5.9) become

which holds forn>m+1. Using the form ofw given in dy,/dt'=—y,+y,,
(2.4 we have
dy,/dt'=y;—2y,+ys,

d /dt= - -2 +
(OmOm+1) (Om-10m+1) = 2(0mOm+1) +{OTmOm+2) dya/dt’ =y,— 2y5+Ya,
(5.5 (5.12

and
dy,/dt' =y, 1= 2Y,+Yni1s
d<0'm0'm+ k>/dt: <0'm710'm+ k>+ <0'm+ 10m+ k>
_4<0'm0'm+ k> + <0'm0'm+ k—1>

H{OmTmiks1)- (5.6

with the initial conditions

1-n/M  (n<M)

n(0=1 (N=M).

(5.13

We now define the quantities

Equations(5.12 and (5.13 represent a random walk of in-
Xe= 2, TmOmik (5.7)  dependent particles on a 1D lattice with reflection at the first
m site, as illustrated in Fig.(6) where the numbers in paren-
theses show the initial probabilities fod =5.
where to avoid special conditions at the ends we use periodic The solution to this set of equations has been given by
boundary conditions. Summing.5 and (5.6) over m we  van Kampen and Oppenheifl] and later by Schwarz and
then obtain the set of equations Poland[12] and is



21,
M-1
yn(t')= gl Yi(0)P(ko|nyr), (5.14
where
P(KImy=e 2" [I,_(2t") + 1 -1(2t)].  (5.19
Recalling thatt’ =2t we have
M-1
yi()=e * gl (1—K/M)[1 -1 (40 +1,(40)] (5.19
and
X1(t)=N—-4M[1—-y,(1)]. (5.1

Now X, is defined in terms of the average correlationogf
and o, 1,

(5.18

X1= §m: <0'm0'm+1>-

To express¢; in terms of the probabilities of particle con-
figurations we use the identiti€gecall that O plays the role
of —1)

<0'm0'm+ 1> =P(1plm+1) —P(Onlns1) —P(100myy)
+P(0mOm+ 1),
P(17m0m+1) + P(1nlmi1) =P (1),
(5.19
P(0m1m+ 1) + P(:I-mlm+ 1) = |:)(:Lm+ l)a

I:)(:I-mom+ 1) + I:)(Omlm-# 1) + P( I 1) + I:)(Omom+ 1) =1,

and we havéwhereP,=P(1,,)]
P(1plmi1) ={0mOmi1)/4+ (Pm+Pmi1)/2— 3. (5.20

Summing over allm (using periodic boundary conditions
and using relations

Xl=§ <0'm0'm+1>1 % Pm:% Pni1=M,

(5.21)
we have
o= 2, P(1nlps1)=X/4+M—N/4.  (5.22
m
Using (5.17 we have the final result
M-1
ag()=Myy()=e"* 3 (M—K)[1}1(40)+1(4D)].
(5.23
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FIG. 6. The functionay as a function of time fow=>5. Shown
are the exact solution of5.23 and the approximation of5.27)
which are indistinguishable on the scale shown. The units of time
are relative to the basic hopping rate(ih5).

(5.2
As t—0 we haveusing(5.12 and(5.13 which are a set of

recursion relations for a series in powerstdbr they,]

(5.2

An approximate form that has both the limits given(f25
and(5.26 is

ap~(M—1)—2t+---  (t—0).

_ M(M-1) 5.2%
O At 8at+b’ '
where
_ 2
a=($) , b=M-\a. (5.28

Figure 6 shows the exact form af, given by (5.23 and
compares the result g6.27). On the scale shown the two
relations are virtually indistinguishable. $6.27) gives all
the pertinent features ofy, (and in particular the correct
asymptotic limits ag—0 andt— ).

In particular we see that

ag~t~12

(5.29
This means thati,(t) of (4.12) has the asymptotic form

wo(t)~A+Bt+Ct¥?=A+Bt[1+(C/B)t~ 2]~ A+Bt.
(5.30

From (5.30 we see that the effect of cooperativity is to in-
troduce ayt correction tou,; the very long-time limit ofu,

is that for independent unitshe particles behave as indepen-
dent units when they are very far apath Fig. 7 we show
the behavior ofu,(t) for the caseM =5 andv=>5. We plot
the function

The imaginary Bessel functions have the asymptotic form

1 1/2
e-4‘|n(4t)~(—> , (5.29

8t

which gives the following asymptotic form fag:

App IM=[ (1) = u2(0) /M, (5.3

with u,(t) given by(4.12 using(5.27) for ay(t). Referring
to (5.30, we indicate the contribution arising from the inde-
pendent diffusion of particleflinear int), the contribution
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350 part and a term varying as the square root of time from the
interaction part. From the example shown in Fig. 7 we see
that initially the effect of interaction is quite large, even for a
250 small number of particle$s in Fig. 7 in the initial close-
total packed cluster. As the particles move away from one another
Ay t the behavior becomes more and more like that characteristic
150 of independent particles. Our example shows that there are
very important nonideal components to diffusion even in our
(/2 simple one-dimensional model.
50 We have been able to calculate the second moment of the
particle distribution exactly, but not higher moments. The
reason that we can make progress with the second moment is
that when we form the time derivative of the moments and
FIG. 7. The time evolution of the second moment for hard par-use (3.6) for the ;clme dependence of t&, most of t_hem
ticles. The curve marked “total” shows the result 6f.12 using ~dependence im'" cancels and we have the recursion rela-
(5.27) for ay(t) for the caseM =5 and »=5. The contributions  tions illustrated in(4.9) and (4.11) where the time depen-
from independentt] and cooperative interactiort}(?) are indi- ~ dence of higher moments is given in terms of lower mo-

cated. The units of time are relative to the basic hopping rate ifments. If one knows the lower moments one simply
(2.5). integrates with respect to time to get the higher moments.

For the case o»=1 we can obtain an arbitrary number of
arising from the interaction of the particlégarying as the moments. Of course for this case we know the exact solu-
square root of) and the complete functiofiabeled “total”’) ~ tion, given in(2.11), but we do not need to know that to
which is the sum of the two. At long times when the particlescalculate the moments of the distribution recursively. The
have moved far apart from one another the behavior is domiProblem with going beyong, is seen in the equation fai,,
nated by independent diffusion. At short times, however, thé4.11), where we requirg,, and @, , the second moment of
cooperative nature of the process produces marked devi#he Q distribution (doublets at closest approachVe could

20 40 60 80 100

time

tions from simple diffusion. pursue the time dependence of thg [or a,—see(4.8)] in
the same manner but when we (8€l3 for the time depen-
VI. DISCUSSION dence of the,,, we do not get the cancellation of powers of

m that leads to a recursion process as was the case with the

We have shown that the diffusion of hard particles on au,, . Perhaps there is a way of using identities suctBa® to
one-dimensional lattice with an arbitrary number of sites ocawrite (3.13 in terms of other species that does lead to a
cupied by a particle can be written in terms of a differentialrecursion process, but we have not been able to find it.
equation,(3.6), that has one set of ternithe P’s in (3.6)] The second simplification that allowed us to calculate
that represents the diffusion of independent particles and aris that we require only the time integral af,, as shown in
other sefthe Q’s in (3.6)] that reflects the interactions be- (4.12. And a(t) is independent of so we could obtain this
tween particles. This division into two sets of effects follows quantity for the case=1 which we can solve exactly. All of
through in the result for the second moment of the particlehe higher moments,, require knowledge of where the par-
distribution given by(4.12 where, as illustrated i15.30, ticle is on the lattice, involvingn" factors, and hence depend
we get a term linear in time from the independent diffusionvery much on the value of.
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