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We study thed-dimensional random Ising model using a suitable type of Bethe-Peierls approximation in the
framework of the replica method. We take into account the correct interaction only inside replicated clusters of
spins. Our ansatz is that the interaction of the borders of the clusters with the external world can be described
via an effective interaction among replicas. The Bethe-Peierls model can be mapped into a single Ising model
with a random Gaussian field, whose strength~related to the effective coupling between two replicas! is
determined via a self-consistency equation. This allows us to obtain analytic estimates of the internal energy
and of the critical temperature ind dimensions.@S1063-651X~96!00111-0#

PACS number~s!: 05.50.1q, 02.50.2r

INTRODUCTION

The mean field solution and its improvements, such as the
Bethe-Peierls approximation@1,2#, give good approximations
of the critical temperature and of the internal energy in many
statistical models. We show that the same methods can be
applied to spin glasses by considering the overlap among
replicas instead of the magnetization. Indeed, the appropriate
ansatz for spin glasses is assuming that the effect of the
thermal bath on a replicated cluster of neighbors’ spins pro-
duces an effective coupling among replicas. We shall give an
a posteriorijustification of such a hypothesis by proving that
the Sherrington-Kirkpatrick~SK! model @3# is recovered in
the limit of infinite dimension.

This paper considers the Ising model with independent
random nearest-neighbor couplingJi j in the absence of ex-
ternal magnetic field. Our main result is that, in the Bethe-
Peierls approximation, this model is equivalent to a single
Ising model with a random Gaussian field whose strength is
related to the effective coupling between two replicas. We
thus obtain an estimate of the internal energy and of the
critical temperature in any dimension.

In Sec. I we introduce the Bethe-Peierls ansatz for spin
glasses in the framework of the replica method. In Sec. II
we prove that this ansatz leads to the SK model when
d→`. In Sec. III we show that, under the hypothesis of no
replica symmetry breaking, thed-dimensional model can be
mapped into a single Ising model with random Gaussian
field. We also explicitly compute the replica symmetry solu-
tion for the internal energy ind dimensions for the spin glass
with dichotomic random couplingJ561. In Sec. IV we
show that our method allows us to compute in a simple way
the critical temperatureTc(d). The result is very accurate at
high dimension. In Sec. V we discuss the possibility of using
our ideas to implement a clever numerical scheme for deter-
mining internal energy and critical temperature of
d-dimensional spin glasses.

I. BETHE-PEIERLS ANSATZ FOR SPIN GLASSES

The partition function of the Ising models on a lattice of
N sites with nearest-neighbor couplingsJi j which are inde-

pendent identically distributed random variables, in the ab-
sence of external magnetic field, is

ZN~b,$Ji j %!5(
$s%

)
~ i , j !

exp~bJi js is j !, ~1.1!

where the sum runs over the 2N spin configurations$s%, and
the product over thedN nearest-neighbor sites (i , j ).

In the thermodynamic limit almost all disorder realiza-
tions have the same free energy, i.e., the quenched free en-
ergy

f52 lim
N→`

1

bN
lnZN, ~1.2!

whereĀ indicates the average of an observableA over the
distribution of the random couplingP(Ji , j ). In the following
we assume that theP(Ji j ) is such thatJi j50 andJi j

251.
On the other hand, it is trivial to compute the so-called

annealed free energy

f a52 lim
N→`

1

bN
lnZ̄N , ~1.3!

corresponding to the free energy of a system where the ran-
dom coupling are not quenched but can thermalize with a
relaxation time comparable to that of the spin variables. For
instance, in the case of dichotomic random couplingJi j561
with equal probability, one has

f a52b21~ ln21d ln coshb!, ~1.4a!

while for Gaussian coupling, i.e., P(Ji j )
5~2p!21/2 exp~J i j

2 /2!, one has

f a52b21S ln21
b2d

2 D . ~1.4b!

However, f a is in general very different from the quenched
free energy. In order to compute~1.1!, it is convenient to use
the replica trick@4#. Let us thus considern noninteracting
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replicas of the disordered system labeled bya51,...,n. The
corresponding partition function is

Zn5(
$s%

expS b (
a51

n

(
~ i , j !

Ji js i
~a!s j

~a!D , ~1.5!

where the sum runs over the 2Nn spin configurations$s% of
the replicas,

$s%[$s~1!%,...,$s~n!%,

with

s~a!5~s1
~a! ,s2

~a! ,...,sN
~a!!.

After having performed the averageZn and found an ana-
lytic continuation at realn values, the quenched free energy
is given by

lnZ5 lim
n→0

1

n
lnZn. ~1.6!

Even in two dimensions, there is no exact solution for this
problem. The first nontrivial approximations of the quenched
free energy can be obtained either by constrained annealed
average@5# or by improved mean field approximations of the
Bethe-Peierls type. Recently we have introduced such an ap-
proximation in the dual lattice made of square plaquettes in
two dimensions@6#. However, there is no solution of the
self-consistency equation at low temperature and it is not
trivial to generalize the approach at higher dimensions. For
systems with diluted quenched disorder, a different type of
improved Bethe-Peierls approximation~the cluster variation
method! has been studied in@7# without using the replica
approach.

In this paper we want to work directly on the real lattice,
by taking into account the correct interactions inside a pile of
replicated clusters made of a central spins0 and of its 2d
nearest neighbor$sk%, and by considering only an effective
interaction with the external world. Note that in the 2d case,
the clusters are crosses made of five spins.

Separating the two contributions~crosses plus external
world! in the partition function, we get

Zn5(
$scr%

FexpS b (
a51

n

(
k51

2d

Jks0
~a!sk

~a!D
3 (

$sext%
expS b (

a51

n

(
~ i , j !Þ~0,k!

Ji js i
~a!s j

~a!D G , ~1.7!

where

Jk[J0k

are the coupling between the central spin of the cross and its
neighbors on the border. The first sum in~1.7! runs over the
2(2d11)n spin configurations$scr% of the replicated crosses
labeled by~s0

a ,s1
a , . . . ,s 2d

a ! with a51,. . . ,n while the second
sum runs over all the other spins. The expression obtained by
computing the second sum depends only on the 2dn lateral
spinssk . The correct Bethe-Peierls ansatz is given by the

assumption that the interaction among the lateral spins of the
replicated crosses and the external world forces an effective
interaction among different replicas with a constantmab that
should be determined via a self-consistency equation. In
other terms, our Bethe-Peierls ansatz is

(
$sext%

expS b (
a51

n

(
~ i , jÞ0,k!

Ji js i
~a!s j

~a!D
5K~b!expS (

a.b
mab(

k51

2d

sk
~a!sk

~b!D , ~1.8!

whereK~b! is a multiplicative constant which depends on
the temperature but not on the lateral spins. One expects that
mab50 in the high-temperature phase, while it must have a
nonzero value in the glassy phase.

Therefore, instead of~1.7!, we have to compute an effec-
tive partition functionZn ,

Zn5(
$scr%

)
k51

2d

expS b (
a51

n

Jks0
~a!sk

~a!D
3expS (

a.b
mabsk

~a!sk
~b!D . ~1.9!

A further simplification can be reached for dichotomic
couplingJi j561 where one can perform the gauge transfor-
mation s k

(a)→Jks k
(a) on the lateral spins, leaving the free

energy unchanged. In this case the averaged partition func-
tion ~1.9! becomes

Zn5(
$scr%

)
k51

2d

expS b (
a51

n

s0
~a!sk

~a!D expS (
a.b

mabsk
~a!sk

~b!D .
~1.10!

This relation implies the rather surprising result that a non-
disordered Ising system exhibits the same behavior of a spin
glass if one imposes the appropriate interaction among dif-
ferent replicas.

At this point, the effective couplingmab* (b) is given by
the self-consistency equation

lim
n→0

^sk
~a!sk

~b!&n5 lim
n→0

^s0
~a!s0

~b!&n , ~1.11!

where^ &n represents the thermal average over the replicated
system. Then, the Bethe-Peierls estimate of the internal en-
ergy is

UBP~b!5 lim
n→0

2
1

2n F ]

]b
lnZn~mab ,b!G

mab5m
ab*
.

~1.12!

Let us anticipate that the Bethe-Peierls approximation pre-
dicts a phase transition at a critical temperatureTc(d) above
which mab* 50. As a consequence the Bethe-Peierls solution
coincides with the annealed one in the high-temperature
phase, i.e.,
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UBP5
d

db
@b f a~b!# for b,bc . ~1.13!

II. THE INFINITE-DIMENSIONAL LIMIT

The model defined by~1.9! becomes the infinite-range SK
model@3# in the limit d→`. This result has great importance
since it provides good evidence that we have chosen the
correct Bethe-Peierls ansatz for spin glasses. In this section
we prove that the self-consistency equation~1.11! in the
limit d→` gives the equation for the overlap of the SK
model.

Let us recall that the averaged partition function of the
infinite-range SK model after some simple algebraic manipu-
lation becomes

Z5~ Z̄!nFmax
qab

1

2n (
$s%

expb2S (
a.b

qabs~a!s~b!2
qab
2

2 D GN,
~2.1!

where the sum is on the 2n realizations$s% of the n spins
s~1!, . . . ,s(n). In the high-temperature phaseT>Tc , one has
qab50 so thatZn5(Z̄)n, while in the glassy phase one has a
nontrivial overlapqab5qab* (T) which maximizes (Z̄)n, that
is,

qab5^sasb&[
($s%s

~a!s~b!exp~b2(a.bqabs~a!s~b!!

($s%exp~b2(a.bqabs~a!s~b!!
.

~2.2!

In order to get the correctd→` limit of the self-
consistency equations~1.11!, we should use the rescaling

b→
b

A2d
, mab→b2mab . ~2.3!

Now, the disorder average inZn is easily performed since at
large d the first exponential in~1.9! can be expanded in
Taylor series up to the second order, so that

exp@b~2d!#21/2JkSk

511b~2d!21/2JkSk1
b2

4d
Jk
2Sk

21O~d23/2!

511
b2

4d
Sk
21O~d23/2!5expS b2

4d
Sk
2D1O~d23/2!,

whereSk[(as 0
(a)s k

(a). The distribution of the coupling is
irrelevant provided thatJ̄50 and J251. Therefore after a
small correctionO(d23/2), the partition function~1.9! be-
comes

Zn5(
$scr%

expb2S (
a.b

s0
~a!s0

~b!
1

2d (
k51

2d

sk
~a!sk

~b!

1mab(
k51

2d

sk
~a!sk

~b!D ~2.4!

implying that

^sk
~a!sk

~b!&5
($sk%

sk
~a!sk

~b!exp~b2(a.bmabsk
~a!sk

~b!!

($sk%
exp~b2(a.bmabsk

~a!sk
~b!!

1O~d21/2!, ~2.5!

where k is one of the lateral sites of thed-dimensional
crosses and the sum is on the 2n realizationssk of then spins
s k

(1) ,...,s k
(n).

On the other hand, in the limitd→`, the corresponding
relation for the central spins can be written as

^s0
~a!s0

~b!&

5
($s0%

s0
~a!s0

~b!exp~b2(a.b^sk
~a!sk

~b!&s0
~a!s0

~b!!

($s0%
exp~b2(a.b^sk

~a!sk
~b!&s0

~a!s0
~b!!

~2.6!

since one has

^sk
~a!sk

~b!&5 lim
d→`

1

2d (
k51

2d

sk
~a!sk

~b! . ~2.7!

A direct comparison of~2.6! and ~2.5! shows that the self-
consistency equation~1.11! is satisfied only if

mab5^sk
~a!sk

~b!&

that is the equation for the overlap of the SK model. We can
thus identify the couplingmab with the overlapqab for
d→`.

III. REPLICA SYMMETRY SOLUTION
IN THE BETHE-PEIERLS

APPROXIMATION

It is possible to obtain the replica symmetry solution of a
d-dimensional spin glass in the Bethe-Peierls approximation.
We must note that in the casemab5m, the averaged partition
function ~1.9! of n replicated crosses is

Zn5(
$scr%

)
k51

2d

expS bJk(
a51

n

s0
~a!sk

~a!D expS m (
a.b

sk
~a!sk

~b!D .
~3.1!

Except for constant multiplicative factors, it can also be writ-
ten as

Zn5(
$scr%

)
k51

2d

expS bJk(
a51

n

s0
~a!sk

~a!D expm

2 S (
a

sk
~a!D 2

~3.2!

that is bilinear insk . In order to linearize~3.2!, we should
use the standard Gaussian identity

exp~x2/2!5
1

~2p!1/2
È`

dv exp~2v2/2!exp~vx!

so that one has
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Zn5(
$scr%

)
k51

2d

expS (
a51

n

~bJks0
~a!sk

~a!1m1/2vksk
~a!!D ,

~3.3!

where

c̄5
1

~2p!d/2
E •••E )

k51

2d

dvke
2vk

2/2)
k51

2d

P~Jk!dJkc

~3.4!

indicates now the average over the standard Gaussian vari-
ablesvk and over the couplingJk between central and lateral
spins.

This transformation has the advantage of allowing for a
factorization of the product over the replicas in~3.3!, imply-
ing that

Zn5Fn, ~3.5!

with

F5(
$scr%

)
k51

2d

exp~bJks0sk1m1/2vksk!. ~3.6!

This is the main result of the section. It establishes that, in
the Bethe-Peierls approximation, the replica symmetry solu-
tion is equivalent to that of a single Ising model with a ran-
dom Gaussian field applied to the boundaries of the cross.
This field has a strength related to the coupling among rep-
licas and describes the interaction of the cluster of 2d11
spins with the external world.

The explicit sum over the lateral spinssk gives

Zn5S (
$scr%

Wm~s0! D n, ~3.7!

whereWm is the non-normalized weight of the central spin,

Wm~s0!5)
k51

2d

2 cosh~bJks01m1/2vk!, ~3.8!

obtained after summing over the configurations of the 2d
lateral spinssk . The probability of the central spin thus is

Pm~s0!5
Wm~s0!

Wm~s051!1Wm~s0521!
~3.88!

and is itself a random quantity depending on the 2d random
Gaussian fields and the 2d random couplingJk .

Because of the replica symmetry, the self-consistency
equation ~1.11! for determining m* , and so the needed
strength of the random field, assumes the simpler form

^s0&
25^s1&

2, ~3.9!

where the thermal average of the central spin is

^s0&5 (
s0561

s0Pm~s0! ~3.10!

and the thermal average of one of the lateral spins is

^s1&5 (
s0561

tanh~bJks01m1/2v1!Pm~s0!. ~3.11!

In order to find the internal energy we have to compute

lim
n→0

1

n
lnZn5 ln (

s0561
)
k51

2d

2 cosh~bJks01m1/2vk!

~3.12!

and then, following~1.12!, the internal energy is given by a
derivative atm5m* , the solution of~3.9!,

UBP~b!52d (
s0561

Jks0tanh~bJks01m1/2v1!Pm~s0!.

~3.13!

It is worth stressing that in the limitd→`, the self-
consistency equation~3.9! becomes, by virtue of the results
of Sec. II,

m5 lim
d→`

^s1&
2. ~3.14!

The above expression, after performing the rescaling~2.3!,
gives the replica symmetry solution for the overlap of the SK
model in the glassy phase,

m5tanh2~bvm1/2!, ~3.15!

wherev is again a standard Gaussian.
For the 6J model, after the gauge transformation

Jksk→sk , the probability Pm~s0! depends only on the
Gaussian fields and is independent of the couplingJk . We
can thus setJk51 in the formulas from~3.3! to ~3.13! and
the average~3.3! should be taken only over the 2d Gaussian
variablesvk .

Figure 1 shows the replica symmetry solution
2dT2m* (T) as a function of the rescaled temperature
(2d)1/2T at d52,3,4,6 for the6J model. The effective rep-

FIG. 1. Replica symmetry solution of the self-consistency equa-
tion m* /~2db2! as a function of the rescaled temperatureT/(2d)1/2

for the 6J model at d52,3,4,6. The larger the dimension, the
higher the corresponding line. The dashed line indicates the infinite-
dimensional limit~overlap of the SK model!.
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lica coupling m* vanishes above the critical temperature
Tc(d) as we shall discuss in the next section. As a conse-
quence the internal energyUBP is equal to the annealed in-
ternal energy atT>Tc . It is interesting to note that below
T8'0.5,m* (T)T2 decreases.

The reason can be understood by a simple qualitative ar-
gument. Consider the model defined by~3.12! with Jk51
which is originated by the6J model. On the lateral spins,
there is a competition between the random fieldm1/2vksk
and the ferromagnetic interactionbs0sk . This gives origin to
a frustration of the system belowTc . However, if the tem-
perature is very low, the ferromagnetic interaction dominates
and we expect that the workm* /b2 necessary to win the
tendency of the spinsk to align with the field vanishes. In
correspondence the system would become ferromagnetic
with a ground stateU052d. Such a regime is clearly un-
physical, and one can trust in our results only when the work
m* /b2 made to destroy the long-range order in the glassy
phase is a nonincreasing function of the temperature, i.e., for
T>T8.

The internal energyUBP(T)/d is shown in Fig. 2 for the
6J model atd52,3,4,6. An estimate of the ground state
energyU0 can be obtained byUBP~T8! as previously argued.
Using this hypothesis we get

U0521.51 at d52,

U0521.88 at d53,

U0522.204 atd54,

U0522.718 atd56.

At d52 we can compare our analytic estimate with the nu-
merical result@8# U0521.404.

It is an open issue to understand whether better estimates
can be obtained via~1.12! with a replica symmetry breaking
solutionmab* .

IV. PHASE TRANSITION AND CRITICAL
TEMPERATURE IN FINITE DIMENSION

The Bethe-Peierls method and its improvements are able
to give accurate estimates the critical temperature of disor-
dered systems. In a replica symmetry approach, good ana-
lytic results have been obtained for diluted spin glasses@9#
and other randomly frustrated systems with finite connectiv-
ity @10#.

In the framework of the results of the preceding section,
we should note that at the transition point, the order param-
eterm* vanishes. Therefore the critical temperature can be
computed from~3.3! considering only the first order of its
expansion inm* .

Let us first compute the thermal average of the central
spin

^s0&5m1/2tanh~bJk!(
k51

2d

vk1O~m!. ~4.1!

Since this expression appears in~3.3! only in a squared form
it is not necessary to compute higher orders thanm1/2. Analo-
gously, the thermal average of one of the lateral spins is

^s1&5m1/2tanh~bJ1!(
k52

2d

tanh2~bJk!vk1m1/2v11O~m!.

~4.2!

Inserting this expression in the consistency equation~3.9!
one obtains

m2dtanh2~bJ!5m~2d21!tanh2~bJ!„tanh2~bJ!…21m,
~4.3!

where J is one of the couplings. Equation~4.3! gives the
critical temperatureTc5b c

21 as a function of the dimension

tanh2~bcJk!5
1

2d21
. ~4.4!

In the case of the6J model, this equation becomes

FIG. 2. Annealed internal energyUa/d
5tanh~b! ~dashed line! and the Bethe-Peierls so-
lutions UBP/d ~full lines! versus temperature
T5b21 for the 6J model at d52,3,4,6. The
larger the dimension, the higher the correspond-
ing line. The dotted lines are the estimates of the
ground state energy obtained by imposing that
m* /b2 is a nondecreasing function of the tem-
perature.
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tanh2~bc!5
1

2d21
. ~4.5!

In Fig. 3 we compare the Bethe-Peierls critical temperature
~4.5! with the numerical result obtained in the literature for
the6J model @11#.

We have also computed the critical temperature of the
Gaussian model via a numerical solution of~4.4!. In this case

Tc51.19 at d52,

Tc51.81 at d53 ~numerical resultTc51.0!,

Tc52.28 at d54 ~numerical resultTc51.8!,

Tc52.67 at d55,

Tc53.06 at d56.

Let us remark thatTc is finite in d52. This spurious tran-
sition is a typical and well-known effect of mean field ap-
proximations. In fact, the Bethe-Peierls approximation gives
a lower critical dimensionalitydc51, whereTc50, while
there is good numerical evidence thatdc52. On the other
hand, the higher the dimensionality, the better our estimates.
In the limit of infinite dimension, after the usual rescaling
~2.3! of the temperature, from~4.5! one obtainsbc51, which
is the critical temperature of the SK model.

It is possible to improve the estimate of the critical tem-
perature in a systematic way by considering a larger cluster
instead of a cross made of a single central spins0 and of its
2d neighborsk , as we shall discuss in the conclusions.

For instance, we have considered a plaquette of four spins
plus the 8~d21! spins that are its nearest neighbors in the6J
model. Applying our Bethe-Peierls ansatz to the replicated
plaquettes, the equation for the critical temperatureTc(d) is
again given by the solution of a rational function of
t[tanh~b!. After a lengthy but trivial calculation one has

11~2d23!t422~d21!t212~d21!~ t42t2!t2

3F ~11t2!41~11t4!2

~11t2!2~11t4!2
1

2t2

~11t4!2G50. ~4.6!

In this case, the lower critical dimension isdc5
15
11 instead of

dc51 found for the cross. The critical temperatureTc(d)
obtained by~4.6! is shown in Fig. 3, too.

In our opinion, looking at increasingly larger clusters it is
possible to determine the critical temperature of a
d-dimensional spin glass as the zeros of rational functions of
t5tanh~b! reaching an accuracy much larger than that given
by direct numerical methods. Moreover, one can also hope to
find a converging sequence of lower critical dimensions,
simply considering the zeros of the rational functions with
t51 ~i.e., Tc50!.

V. CONCLUSIONS AND PERSPECTIVES

The properties of finite-dimensional Ising spin glasses are
largely unknown. The lower critical dimension itself is not
known although most numerical simulations indicated53 as
the lowest dimension which exhibits a glassy phase at finite
temperature. Furthermore, even if the glassy phase is present,
the existence of replica symmetry breaking at low dimen-
sionality is still controversial. All that is a clear indication of
the difficulties encountered when one tries to extract infor-
mation directly from the model.

In our approach we simplify the task. Indeed, when we
assume replica symmetry, our approximation reduces itself
to the study of the quenched model

F5(
$scr%

)
k51

2d

exp~bJks0sk1m1/2vksk!, ~5.1!

where both thevk and theJk are quenched variables. It
should be noticed that in this model, one only deals with
2d11 spins and 4d quenched variables at most. The model
is completed by the self-consistency equation~3.9! that we
rewrite here as

FIG. 3. Rescaled critical temperature
(2d)21/2Tc versus the dimensiond. The Bethe-
Peierls solution for the6J model given by~4.5!
is indicated by a full line. The improved estimate
obtained by~4.6! where the cluster is a plaquette
of four spins instead of a central spin is indicated
by a dashed line. The squares are the numerical
values of (2d)21/2Tc for d52,3,4,6 joined by a
dotted line.
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^s0&
25

(k^sk&
2

(k1
, ~5.2!

where the second term of~5.2! is the mean of the overlap on
the lateral spin.

The validity of our approach stems from the possibility of
a systematic improvement. Following a standard technique
we can replace~5.1! by

Z5(
$s%

)
l ,l 8

exp~bJll 8s ls l 8!)
l ,k

exp~bJlks lsk!

3)
k
exp~m1/2vksk!, ~5.3!

where the first product is on all the first neighbor spins of a
hypercube, the second product on the couples of spins
formed by lateral spins labeled byk and their first neighbor
on the faces of the hypercube, and the third product is simply
on the lateral spins. This model is completed by the self-
consistency equation

( l^s l&
2

( l1
5

(k^sk&
2

(k
1 , ~5.4!

where the first sum runs on all the spin of the hypercube and
the second one on the lateral spins. The linear dimension of
the hypercube can be progressively increased, and one ex-
pects to converge to the right result in the limit of large
hypercubes. In our opinion, this might be a powerful numeri-
cal tool to determine the internal energy and the critical tem-
perature of a spin glass, superior to a direct approach by
Monte Carlo simulations.

Let us also mention the major open problem from a theo-
retical point of view. It is the search of the solution of the
Bethe-Peierls equations with replica symmetry breaking, to
see whether the unphysical behavior of the internal energy at
low temperature disappears as happens in the Parisi solution
@12# of the SK model. A first step can be reached by looking
for a solution with only one breaking. This can pave the way
to the comprehension of the glassy transition in finite dimen-
sion.
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