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Nonlinear dynamics of the magnetization in an anisotropic ferromagnet with a magnetic field
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Introducing a particular parameter in the equations of motion for the magnetization in an anisotropic ferro-
magnet with a magnetic field, the Lax equations for Darboux matrices are generated recursively, the Jost
solutions are satisfied the corresponding Lax equations, and the nonlinear dynamics of the magnetization are
investigated. The results show that the solitary waves depend essentially on two velocities which describe a
spin configuration deviating from a homogeneous magnetization. The center of inhomogeneity moves with a
constant velocity, while the shape of solitary waves also changes with another velocity. The depths and widths
of surface of solitary waves vary periodically with time, meanwhile its shapes are not symmetrical with respect
to the center. Thea component of the total magnetic moment and the total magnetic moment are not constants.
The asymptotic behavior of multisoliton solutions is also analyz8d063-651X96)12710-0

PACS numbegws): 05.30—d, 05.90+m, 75.50.Gg

I. INTRODUCTION reported exclusively the multisoliton solutions of the
Landau-Lifshitz equation. However, the Landau-Lifschitz
The study of ferromagnets is of considerable intrinsic in-equation for a ferromagnet with an easy plane was previ-
terest, especially from the points of view of both soliton ously unsolved?2]. It is impossible to find the general sta-
theory and condensed matter phydits6]. In particular, its  tionary solution, as mentioned by Tjio and WridI2t)].
continuum limit is governed by the Landau-Lifschitz equa- Reducing the equation of motion to a sine-Gordon equa-
tion, and it displays fascinating geometrical aspects: isotrotion for a ferromagnet with an easy plane, Mike$Ré] ob-
pic [7—10] and pure anisotropi€11-13 systems are geo- tained a solution. However, there exist some questions about
metrically equivalent, and gauge equivalent to a nonlineathis approach. First, this reduction has not been rigorously
Schralinger equation. These, as well as the biaxial anisoestablished except far—0. Then, it is apart from the quan-
tropic [14—-19 systems, are completely integrable. On thetum effects[2], which are particularly crucial for CsNi-
experimental side, a ferromagnet with an easy plane in avith S=1. Third, it is inadequatg27], as shown by the
symmetry-breaking external transverse field has receivedeutron scattering experiments in CsNifFinally, when an
continuing interest, though the most theoretical treatmentexternal field tends to zero, this solution becomes a traveling
have been based on the approximate mapf2@fto a sine- wave which does not obviously relate to nonlinearity of spin
Gordon equation. interactions. Long and Bishof28] proposed another solu-
By separating variables in the moving coordinates, Tjiotion. However, when an anisotropic approach vanished this
and Wright[21] and Quispel and Cap¢R2] separately ob- solution does not tend to the well-known solution of an iso-
tained the Landau-Lifschitz equation for an isotropic ferro-tropic ferromagnet. Using the variation method, Nakumura
magnet and a ferromagnet with an easy axis. In terms of aand Sasad@ll] obtained a solution. If this solution is di-
inverse scattering transformation, Takhtaje28] outlined  rectly substituted into the equation of motion, it does not
very briefly the main steps of the solution of equation ofsatisfy this equation. Reducing the equation of motion to an
motion. Fogedby24] gave the detains of the procedure men-appropriate form, Kosevich Ivanov, and Kovalg8] found
tioned. Unfortunately, some essential steps in his arguments, solution. But it could not be considered as an approximate
such as the estimation of the value of Jost solutions, casolution of equation for a ferromagnet with an easy plane,
hardly be accepted with satisfaction. Pu, Zhou, and25]  since it does not satisfy this equation even in the approxima-
tion of first order anisotropy.
Borisov [30] and Sklyanin[31] have formulated sepa-
“Mailing address. Address correspondence to Dr. Wu-Ming Liu.rately an inverse scattering problem in its classical form, i.e.,
Electronic address: wmliu@itp.ac.cn in terms of equations of the Marchenko type for a complete
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anisotropic ferromagnet. By means of an inverse scatteringvhereug is the Bohr magneton. Equatig¢h) has an integral
transformation, Mikhailoyf32] and Rodin[16] were able to  of motion <M2>EMg:con5t_ In the ground state, the
reduce the problem to Riemann boundary value problem on guantity M, coincides with a so-called spontaneous magne-
torus. However, these results are expressed by the elliptigzationM = (2ugS/a®), whereSis the atomic spin and is
function, they are more complicated, and they are difficult tothe interatomic spacing.

transform to those of ferromagnet with an easy plane. Even |n general, the magnetic energyof a biaxial anisotropic
though soliton solutions were found, they are difficult to ferromagnet, including an exchange enefgy, a magnetic

transform to those of a ferromagnet with an easy plane, agnisotropic energyE,,, and a Zeeman enerds;, can be
mentioned by Faddeev and Takhtaje®]. Derivating the \yritten as

Marchenko equation by an inverse scattering transformation,

Borovik and co-workerg33,34] could not find even the E=Eg+Eat+Ez

single soliton solution in a uniaxial anisotropic ferromagnet.

Using the Hirota method, Bogdan and Kovalg85] at- _1 2 ﬂﬂds 1 2.3
2 ) . . =5a X—3Bx | Myd>x

tempted to construct exact multisoliton solutions in an aniso- X OXK OX

tropic ferromagnet. However, they could not prove a series

of nontrivial identities f(_)r the pgrameters of_ t_he solutio_n. ~1 ZJ Mgd?’x—,ugf M - Bd3x. )

When an easy plane anisotropy is weak, explicit expressions

cannot be obtained. Taking into account only the first order ) ) )

approximation, Ivanov, Kosevich, and Babif36] obtained If Ean=0, a crys_tal_ls cal!ed an .|sotrop|c ferromagnet. In.the

a useful result. limit B,=0, a biaxial anisotropic ferromagnet changes into
There exist some difficulties in the study of the nonlinearan Uniaxial anisotropic ferromagnet: whgp>0, an anisot-

dynamics of the magnetization in an anisotropic ferromagfopy is of an easy-axis type, and whgh<0 it is of an

net. Its equation of motion, differing from those of an isotro- €asy-plane type. _ _ _

pic ferromagnet, could not be solved by the method of sepa- |f measuring the space coordinateand time coordinate

rating variables in moving coordinaté@1,22. Then this t in units oflo=(J/8,)"? andwo=(2usBMo/%), then ac-

equation could not be solved by an inverse scattering trang:ording to Egs.(1) and (2), we can obtain the following

formation; in addition to complexity due to the Riemann €quation of motion:

surface, there is the double-valued function of the standard

spectral parameter, and the reflection coefficient at the edges HM =M X[xM +IM + ugB], )

of cuts in the complex plane could not be neglected even in Lo . .

the case of nonreflection. Therefore, an exact treatment cﬁ/geirce thfonm:tlgzss_ d'?r? (nyé]ryti,c\:]ljl)alrs re\l;t;ed trg;he acnfl]?)cc))_se

the nonlinear dynamics of the magnetization in an aniso:]_pd. 07 02+ ' h p_ ’ <0y | thy f

tropic ferromagnet has never been done to our knowledge.” !ag( g'p. ), w ere§—|,8x|32£,8>f ). n2 € case o

It is the purpose of this paper to investigate exactly the? uniaxial anisotropic ferromagnel=diag(0,0p%). In gen-

nonlinear dynamics of the magnetization in an anisotropicera.l’ the third term on the right-hand side of_Ea)_desc_:rlbe
arious perturbations such as an external field in this paper.

ferromagnet with a magnetic field. This paper is organized a hen an external field is longitudind= (0,087, this term

follows: in Sec. Il introducing a particular parameter, the Lax n be removed by th transformation that th
equations for Darboux matrices are generated recursivel)(/‘."’l € removed by the gauge transiormation, so hat the

Section Il shows that Jost solutions satisfy the corresponas—yStem becom%s_ln'éexg(r)a(t))le.trll-!ovtvever_, i a? externabllflegd IS
ing Lax equations. The exact soliton solutions are obtainedansverse, e.g = ( o ), this term is no removable by

and it is shown that tha component of the total magnetic the gauge transformatlon., 'and hone of the spin compongnts
moment and the total magnetic momentum are not constant emain conserved quantities. Consequent_ly, _the combined
In Sec. IV the asymptotic behavior of multisoliton solutions alilean pI_us gauge |nva_r|a.nce_ of the equation Is broken, and
is also analyzed. Section V contains conclusions. This a| o Lax pairs seem to exist; this system is generally thought

proach is a good method of studying of the nonlinear dynamEO be nonintegrable. Only in the absence of either an aniso-

ics of the magnetization, in the case of a ferromagnet Witﬁrorp:c ilrr]ltter?cglon \(/)\Irhaz t(?]xternailnflteili do??hth'; sy:tc—:ir: tti)er_1
anisotropy in the presence of an external magnetic field. come ntegrabie. yvhen the osciiiations of the magnetizatio
vectorM are localized near an easy plapg Eq. (3) has

transformed a sine-Gordon equation in the limit
IIl. EQUATIONS OF MOTION Jx<<Jy<J,. Similarly, this equation also changes a non-
_ _ linear Schrdinger equation in the limid,~J,<<J,, when
In the macroscopic theory of ferromagnetism, the magthe oscillations of the vectdvl are localized in the vicinity
netic state of a crystal is described by the magnetization vegf the vacuum stat®(x,t)=(0,0,M).
tor M=(M,,My,M;), while the dynamics and kinetics of a  Equation(3) may be represented as a compatibility con-

ferromagnet are determined by variations of its magnetizagition 4,L — 3,A+[L,A]=0 of two equations for X2 ma-
tion. As a function of space coordinates and time, the magtrices W (x,t; u,\):

netization of a ferromagneM (x,t) is a solution of the
Landau-Lifschitz equation AW (Ot ) =L (u, M) (Xt u, ),

IM % SE AW (Xt N)=A(u,N) P (Xt u,N), (4)

e vE @

while
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L(m,N)=—iu(Myoxt+Myoy)—iAM,o,, In Appendix A, we will obtain some relations for the Lax
pairsL andA, the Jost solution¥ ,(£) andW (&), and the
A(p,N)=—ipn(MydM,—M, M) oy —i (M d4M, Darboux matriceD ,(£). They are useful for further calcu-

) lations in the rest of this paper.
— My M) oy —iIN(M,My—Md,M,) 0,

+i2uN(Myo +Myoy) +i2u’M 0, (5)

lll. SOLITONS
whereo, (a=X,y,z) are the Pauli matrices.

Since the parameteps and i in Eq. (5) satisfy the rela-
tion N?=u?— 492, where %= p?+ ugB. If one of them is
taken to be an independent parameter, then the other is a _
double-valued function of the first, and it is then necessary to Dn(£)=CnBn(£), (12
introduce a Riemann surface. In order to avoid the complexWherec is a 2x 2 matrix independent of, and
ity brought about by a Riemann surface, we will introduce a
particular parametef,

WhenD (&) has only two simple poleg, and —g_n, we
can define

§n_§nF _fn_ann’ (13)

Bn(&§)=1- — nT T
N=¢—nPEt p=Et Y, ) S
whereé= + 5 correspond to zerd and tou=*27. In the while
complexu plane, these two points are the edges of cuts. This — —_— =
indicates that the edges of cuts must make a contribution (§n=€n)CoFn. (£0=&n)CaFy (14)
even in the case of nonreflection when we use an inverse ~
scattering transformation. The corresponding Lax equation& € residues at pole and — gn' whereF, andF, are also

are written as 2X 2 matrices independent f respectlvely .
The following are relations for Darboux matricBs,(£):
PEO=LET (O, D}(&)=Bl(&)C), (15
(7)
D, ' (§)=B, (§)C, ", (16)
KV (E)=A(EY(E).
and
There are two different types of the physical boundary
conditions for Eq.(3). The boundary condition of the first Dn(é)D, X(£)=D, 1 (&)Dy(&)=I. (17)
type, corresponding to breatherlike solutions usually called
magnetic solitons, is chosen as In the rest of this section, we will determirig,(¢) and
C, separately. First, according to Appendix A and ELp),
M—M(=(0,0Mp) at x—*oo. (8 one can obtain the following relations f&r,(&):
The corresponding Jost solution of E@) may be chosen as g ¢ ¢ _g_
n n n
Bi(&)=1- - Fam g ofnox (19
q’o(f):%‘“ —i(O'X+U'y+O'Z)}EXp{ —i(é- 772571)
and
(&4 7%)? _
*Mo| X= 25z 7yt o2 © B, X(&)=Bl(&), (19

One of the most powerful methods for constructing exacwhere the superscript means transpose, while
solutions of nonlinear integrable equations is the Darboux - _
transformation method37-42. Using Darboux matrices Fo=0Fn0y. (20
D,(£), we can define the Jost solutidh,(£) of Eq. (7),
SinceDn(§>D;1(§)=_D;1<§)Dn(§)=I in Eq. (17), it

Vn(§)=Dn(§)Vn-1(§), (10 has not poles, i.eF,Bf(£)=0, i.e.,
wheren=1,2,3 ...,D,(§) has two poleg, and—g_n. Sub- ¢ _g_
stituting Eq.(10) into Eq. (7) with a suitable subscript, the Fol I-F— nz CoFloy | =0; (21)
Lax equations foD,(£) can be written as &n
Dn(€)=Ln(€)Dn(§) —Dn(é)Ln-1(8), this result shows theft, is degenerated. _
(11) In Appendix B, we will obtainF,, and F,, separately. In

terms of Eq.(13) and Appendix BB,(£) can be expressed
Dn(§)=An(€)Dn(€) —Dn(é)AL_1(). by
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Ba(&)=[(¢— &) (£ ?)(g_|v|2+§|5|2><§—|5|2+§|y|2>]-1(§_”|7”|2+§”|5”|2 _f
n n +Sn n n n n n n n n 0 §n|5n|2+§n|'yn|2
PN APAL 0 _( 0 %%)
X 2 - + 2_ g2\
M 0 Elmlzrala TS, o
f_n|7n|2+§n|5n|2 0 )
— & — : (22)
|§| ( 0 §n|5n|2+§n|7n|2

Second, by means of Appendix A and E#j2), there are the In order to determineC,,, substituting Eq(14) into Eq.

following relations forC,: (12), then taking the limitt— and O, we can obtain
— d(C=—i12n(M C,)+(Cpi2n(M ,
Co=0,Cpoy, (23) «(Chn) 7(My),0,(C,)+(Cp)i2n(M,),0, (30
cl=c-? (24) 35(CnBn(0))=127n(Mp),0,(C,,B,(0))
n n
—[CnBn(0)]i2n(M),0,.
and
Comparing these two equations, one can find
t_).
CrCa=t: 29 Cr2=By(0). @D
this result shows that,, is a diagonal, i.e., Using Egs.(22) and(31), C,, can be determined by
(Cn)12=(Cp)21=0, (26) Cn:[(§n|7n|2+§n|5n|2)(§n|5n|2+§n|7n|2)]_1/2
— &l 802+ &l vl 0
(Cn)11=(Ch)2a (27) x( ol 8ol Enl i — . (32
0 §n|7n| +§n|5n|
and
while 6, in Eq. (29) can be written as
C = 1 28 "
I(Cud @ T - (AN -
Since only the module ofG,),; is equal to 1, one can n E(yal?+1607) ]
write
where &), and &, denote the real and imaginary part &f,
B i respectively.
Ch=exp 5 00|, (29 Up to now, we have obtaine@, and B,(&), i.e., the

Darboux matriceD ,(£) have been recursively determined.
where 6, is real and characteristic of the rotation angle of Substituting Eqs(22) and (32) into Eq. (12), D,,(§¢) can be
spin in thexy plane; it may be dependent enandt. expressed by

D (&) ={(£= & (&4 EDL(Enl Ynl 2+ &0l 80l (£l 802+ &0 va|D1¥R 2

(<§_n|an|2+sn|yn|2><g_n|yn|2+sn|5n|2> 0 )
X — _
0 (§n|'}’n|2+§n|5n|2)(§n|5n|2+§n|7n|2)

§_n| 5n|2+§n|'}’n|2 0 ) — ( 0 %b}
x| &2 o + 2 &2\
H 0 eyl oz TEETR S o

Eolvnl?+ €0l 8412 0 )
_ nz . ) (39
£l ( 0 £ 612+ £l val?

In order to determine/, and §,,, substituting Eq(14) into Eq.(11), then taking the limi¢— £&,, Eq(11) can be written as
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I(CrF W 1(£0)=Ln(E)[CrFnVin_1(&n)],
I(CF W 1(En)=An(E)[CF W n_1(&n) ],

where the factor is independent efandt. BecauseF,, is the degeneracy, the second factor of the right-hand side, i.e.,
(vn6n) ¥ h_1(&,), should appear in the left-hand side with its original form; therefore, we can simply obtain

(Yn8n) = (D)W 1 (&p). (36)

Whenb,, is a constant, it will be determined by the boundary condition and the initial condition.
When ¢—1, according to Eq(11) and Appendix A, we can obtain

(35

(Mp-0)=Dy(1)(Mpy_1-0)DJ(D), (37)
whereD (1) can be written as

Dn(1)=[(1= &) (1+ &) (Enl Yal 2+ &0l 80D (&l 802+ Enl val D] 2

((f_nl 80l 2+ &l vol D) Enl val>+ £l 61/) 0 )
X e a2 e 1S |2 2
0 (§n|'yn| +§n|5n| )(§n|5n| +§n|7n| )
(1= ) & 0a[2+ (1= £) 1] 702 (£2— E2)¥n0n
X 22\ o 2ye |4 |2 £2: 2" (38)
(&n—&7) Onvn (1_§n)§n|7n| +(1_§n)§n|5n|
Similarly, whené— —1, in terms of Eq(11) and Appendix A, we can also obtain
Uz(Mn‘U)Uz:Dn(_l)Uz(Mn—l'U)UZDE(_]-)- (39
Using Appendix A andC,C =1 in Eq. (25), Eq(39) can be transformed into
0/ Mp-0)o,=—0(Mp-0)oy. (40)
Whenn=1, according to Eq9.37) and(40), we can obtain
(M1)x=i1(M1)y=(D1(1))12D1(1))21+ (D1(1))11(D1(1))25, (41)
(M1);=(D1(1))12D1(1))11+ (D1(1))11(D1(1))12 (42
whereD (1) can be written as
D1(1)=[(1=£)(1+ &) (&a] yal >+ &1l 81D (1] 81>+ 1] 72212
y ( (@l P+ alnP@lnl+alaP’ 0 )
0 (Exlyal?+ &1l 817 (1] 8112+ &l 4l
X( (1= )& 012 +(1-B) &1] 7,2 (&) y10, ) s
(=D on (1-&)élnlP+1-eDélsl?)
|
In terms of Eq.(36), since only relative values ob(l)  therefore
have meaning, one can find
yi=f+ift, s=f—if 1, (46)
1 1 .
(v 8~ (f f;%(i _i), (4g)  While
fi=exp(—¢1t+idy), (47)
where
S &+ 7P
¢1=L|1§|1|2L<x—vlt—xm>, (48)

2 2\2
f1=bi’2eXp‘i<§1— ﬂszl)[x_z%tn; (45)
§1(81 7°)

and
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£1(&°~ and
$2= 1—|1§|2L<x Vot =Xa0), (49
_2A& €&l 774)+4772|§1|4 50
where 2 El&P(&P =7
:4§i(|§1|2_ 7°) (50 By means of Eqs(41)—(51), the single soliton solutions
1 BIK can be written as
|
(M), = "2(|§1|4_ 714)5'“h¢13|n¢2+ 2515/1/(|§1|2_ 7°)?coshp,cosp, (52)
v |£112(1£1°— n°)costt 1 + 49?12 &[SI &, ’
(My)y= ”2(|§1|2_ 7°)?sinhe; cosp,— 2515/1/(|§1|4_ n*)coshp;sing, (53)
vy |£1|2(|£117— 9°)2cosi ¢y + 42 E12| & |Psirt b, 7
//2 2_ 8 212 2 r-|2
(M)~ M 12(1&112— n*)2+87PE1%| &4 sinP ¢, (54

|§1|2(|§1|2_ n?)2costt ¢+ 472E1% & %sint g,

Similarly, we can also obtain the two-soliton, three-soliton, and multisoliton solutions.

It is concluded that the solitary wavés2)—(54) depend essentially on two velociti®g in Eq. (50) andV, in Eq. (51),
which describe a spin configuration deviating from a homogeneous magnetization. The center of an inhomogeneity moves with
a constant velocity/,, while the shape of solitary wavdshe direction of magnetization in its centelso changes with
another velocityVv,.

In the polar coordinates, taking tlzeaxis as the polar axis,

28121417 = n7)?+ 877 £1% 4| *sinP ¢,

H=1— - , 5
©0 |£112(1 17— 7%)? cosﬁ¢1+47/2§”2|§1|23m2¢2 59
&1 &l* =77 2|&f*7? }
+ ¢o+ta ‘1— anhp, | +2tan 1| —a——tanhp, |, 56
©= Qo ¢2 gl(|§1|2+ 772) rk)bl |§ |4 4 Ml ( )
we can find the following property:
COY(—X,—t)=cosA(x,t). (57)

In order to analyze the features of the previous soliton solutions, setting the preliminary values as zero in the moving
coordinates of the soliton,

TE(&) -7
2872(| 42— 7?2+ 817 f”zlgllzsnﬁ{%(x—vzt)}
co¥=1— , (58
&7+ BERETR)
16112 &]2— 7?)2cosh % +4 25"2|§1|2sm2[%<x—v2t>}
&P L[ EaP-n) e+
e=eot g (VAN o e T X
[ 2lan? r{f’l’(lgllzw% ]
1 +
+2tan {|§l|4_n4lan Bk X| . (59

Therefore, the depths and widths of the surface of solitaryinear equations solved.

waves are not constants, but vary periodically with time. The Obviously, whenyp—0, u© = \, and these soliton solu-
shape of the solitary waves also changes with velogily tions in an anisotropic ferromagnet reduce to those in an
and it is not symmetrical with respect to the center. Thisisotropic ferromagnet; for example, the single soliton solu-
feature did not appear in the soliton solution for all othernon-ions (52)—(54) are transformed to
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"

(M 1)X=ﬁzsecﬁ[§’l’(x—4§1t—x10)]( £rsind £)(x— 4]t

)

x—2( &

"2
1

31

_XIO)]Sin[ & X_2<§i_ )t_xzo

+ §1c0sH & (x—4&1t— Xlo)]004 &

)

261 " ' 1" 7 ’
(M 1)y:WSGCH[ E1(X—4&1t—X19) ]} &1sint &7 (X— 45t

' ’ 512
—Xy0)]€0g &1| X=2( §1— |t =Xz

"2
1

- —/)t_xzo

FIG. 1. Some graphical illustrations of a soliton solution
(M,), expressed by Eq54) in an anisotropic ferromagnet, where

31

7=0.10,£1=0.1,£7=0.2,%,0=0, X50=0, anda/(4V,) as units of
— &1coshi € (x—4&1t—x;p)Isin Ei(x—2< &1 time.
2 (2) The shape of the surface oM(), changes with an-
- i,)t—xzo) ] (61)  other constant velocity/,; the surface is not symmetrical
1 with respect to the center. Whep—0, the soliton solution

(M,),, expressed by Ed54) in an anisotropic ferromagnet,

1 " , reduces to that in Eq62) in an isotropic ferromagnet; the
(Ml)Z:MO_WseCH[gl(X_A'glt_XlO)]' (62 shape of surface ofM;), does not change with velocity
V,, and the surface is symmetrical with respect to the center,
These results are equal to 873 obtained by the method as illustrated by Fig. 3.
of an inverse scattering transformation in RE#5]. While (3) The depth and width of the surface d¥1¢), are not
taking thez axis as the polar axis in the polar coordinates, constants but vary periodically with time. Whep-0, the

depth and width of the surface ofA;),, expressed by Eq.
"2 (62 in an isotropic ferromagnet, does not change periodi-
cosf=1— Wsecﬁ[g’l’(x—4§1t—xlo)], (63)  cally with time; the surface is also symmetrical with respect
1 to the center, as illustrated by Fig. 3.
o In terms of soliton solutiong55) and (56) in an aniso-
x—2| &~ SL o tropic ferromagnet, we can find that taecomponent of the
v 20 total magnetic moment

"2

e=¢ot&;

+tan‘1[ g—%tanﬂg’l’(x—%it—xm)]J. (64)
1

Whent— 0, these results are equivalent to E2R) obtained
by means of the method of the separating variables in the
moving coordinates in Ref21].

Figures 1-3 give some graphical illustrations of a previ-
ous soliton solution 1,), expressed by Eq54) in an an-
isotropic ferromagnet, and that by E@2) in an isotropic
ferromagnet. In these figures, we took the parameter:
£1=0.1, £1=0.2,X10=0, X50=0, andw/(4V,) as a unit of
time in three figures, then set=0.10 in Fig. 1,7=0.33 in
Fig. 2, andn=0 in Fig. 3. If thex— (M), plane is taken as
a reference plane wher- 0, we can directly find the follow-
ing feature of solitary waveM ), .

(1) Since the lowest point of the surface is located in the
plane of the center of surface, we can observe the motion oi
center by looking at the motion of the lowest point. The FiG. 2. Some graphical illustrations of a soliton solution
lowest point of the surface in the previous figures movegm,), expressed by Eq54) in an anisotropic ferromagnet, where
with three constant velocitieg, corresponding to three an- 7;=0.33,£]=0.1,£]=0.2,x,0=0, X,0=0, and=/(4V,) as units of
isotropic parameters, respectively. time.
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P,= MOJ dx(1—co%) (65)

is not a constant, and it is dependent periodically on time,
whereP, has the sense of the mean number of spin deviated
from the ground state in a localized magnetic excitation. The
total momentum of the magnetization field,

P=—MOJ dx(1—co9)V o, (66) o5

is also not constant. Only in the case of an isotropic ferro-
magnetny=_0 are the operatoi®, andP constants of motion.
Tjio and Wright[21] took advantage of this in solving the
equation of motion. These properties are important for mag-
netization in an anisotropic ferromagnet with an external
field, but they have never been obtained by other methods.

FIG. 3. Some graphical illustrations of a soliton solution

(M;), expressed by Eq62) in an isotropic ferromagnet, where
IV. ASYMPTOTIC BEHAVIOR OF MULTISOLITON 0=0, £,=0.1, £1=0.2, X,4=0, X,,=0, and «/(4V,) as units of

SOLUTIONS time.

In this section we will construct a direct procedure for
studying the asymptotic behavior of multisoliton solutions in
an anisotropic ferromagnet with a magnetic field. According

By means of Appendix A, we can obtain the relations

to Eq. (10), we can define InE) = oxd(=&)ox, (79

YN(E)=In(E)Wo(8), (67) H(O=I", (76)

where INEINHE=IHEINE =1, (77)
In(E)=Dn(€)Dn-1(8) - . . D1(8), (68) o Ny NG

where Jy(€) has N pairs of poles &, and —g_n, PL(g):I _nzl g_n—fG;E_nZl moxGIax, (78)

n=1,2,... N. Similar to Eq.(11), we can obtain the Lax o
equations for¥ (&), P& =Pl (), (79

WN(E)=Ln(E)Wn(E), and
(69

Gn="—0,Gn0y. 80
HWN(E)=An(E)TN(E). n= T OxPn0x (80)

On the basis of Eq(12), Jy(£) can be written as Becausedy(£)Iy'(£) =3y (I =1_in Eq. (77), its

residue att= ¢, should vanish, i.e.GmPL(gm)=0, i.e.,

In(E)=KnPn(), (70) N N
) S L Glo,|=0
where G| | e O A g1z, 7Gx =0.
Kn(£)=Cn(€)Cn-1(8) .. .C1(8) (71) (81)
and This result shows tha,,, is degenerated; therefofe,, can
be defined
N N1
PN(5)=|—n§1mGn+n§1mGn, (72) Gn=(ay BN (vh &) (82

In order to solve Eqs(81) and (82), we will introduce a

whereKy is a 2x2 matrix independent of, i.e., transformation

KN(%):eXF{2®N(§)0’Z , (73 INE=U"1n(HU (83

and

where
N G,=U"'G,U, G,=U"lGUu=-G',, (84)
On(é) =2 by (74) —

A=1 whereU lo,U=i.
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Corresponding to Eq81), one can write N o N 1
1= E = _(1+fm72fniz)Pnfn+ z —(1
EN: EN: n=1&,+&n n=1&,—&m
G,"|=0. (85 _
A1 €— & G’ =1 éntém " + 2 ) pnf. (95
Taking the ||m|t§—>§n in Eq (69), we can obtain By means of Eqs(94) and (95)’ Pn, EP{\](&)&and
_ P (€)1, can be easily determined. Howevey, and p,, will
A (KNG =L KNGV , N &)12 ¢ ! noon
KNG W ol £0))=Ln(€n) (KNG W o(£0)) (e  appear in every equation of Eq94) and (95), and it is
difficult to obtain explicit expressions of them by the well-
(KNG W o(£n))=An(€n) (KNGr W o(€n)). known Binet-Cauchy formula. The asymptotic behaviors of
the multisoliton solutions can be derived from them.
SinceG,, is degenerate, the factor Introducing
(v'n 6" Wo(én) (87) \ pofn if n=1, 1e1,2,... N
1=\
must be independent of andt. Therefore, we can simply pafn i n=1=N, TeN+1N+2, ... 2N
obtain (96)
’ ’ - and
(y'n 0'n)=(by nHw, l(én)y (89)

E,=1, lel1,2,... 2N, 9
whereb,, is a constant which has been shown in E2f), " < ©7
while @', 8"y, v'n, and &', are different froma,,, B8,,  whereE is a row matrix, Eqs(94) and(95) can be expressed
Yn, and é,, except fory’ 1=y, andé’; = 8. by

Similar to Eq.(82), G;, can be written as
E=AQ, (98)
G,=(pn vo)(fy 1. 89
n= (P ) (o 1) ®9 whereQ is a 2N X 2N matrix,
where
(&4 12)?2 Qnm= ! T (L7272, (99
. _ +7 gt é
f =b1’2exp[—| —n? 1[X—2—t ] noem
n 1 (E=n°¢) §(§2— 7]2) 0 0
Qunim=———(1+f, 272, (100
Substituting Eq(89) into Eg. (85), we can obtain n~&m
N N 1 _
pnt 2 s (fufn Quinm=="—(1+f,"?f "2, (101
n= n=1 §n+§m gn_fm
+f;ﬁf;1>pn (91) 1 _
nd QN+n,N+m::(l+fn72fm72)- (102)
a gn""fm
N
1 — — By means of Eq(97), one can find
SIS T (f fo yn+2 y a7
=1 g~ &y Bt b A=EQ L (103
—1¢-1
i fa vn. (92 P/ (1)1 in Eq. (93) can be written as
By means of Eqs(91) and(92), one can fingp,,v,, and 2N
Pn(8), eq., P (1)1=1+> AR=1+AR", (104)
I=1
N N 1
PL(1)=1— f,. (93  Wwhere
WDu=1= 2 = pnf= 2 77l (99
According to Eqs(91) and(92), we can also obtain &1 if n=1, lel2...N
1 "= 1
1= — 1+f2 2f ~2) o+ — if n=1-N, leN+1IN+2,... N.
n§=:1 n_gm( Pn " 21 fn"'fm &ntl
(109
+fm?fo ) paf (94

According to Eq.(97), Py(1)11 in EQ. (104 can be ex-
and pressed as
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d RTE while
Pu(1)1=1+EQ 'R"= e((je;Q) (106)
- 401 &0l°— n*)?
WhenN=1¢=¢;, deQ is written as Vln:T1 (111
%(Hf,—“) i—mlf,—l*“) 2062 = &) &+ D) +an'| &
deQ=de{ 74 | Vo= e 2= 7 (112

1 1 —
——(1+[f7 =1+ _ )
i—§ 2§; Supposing alE,">0 andV,;y>Vyn-1)> ... >Vy, the

(107 vicinity of (Vi,t—X1n0) (i=1 and 2 is denoted by®,. In

the extreme largg, these vicinities are separated from left to

By means of Eq(90), f,, can be written as

right asO®y,0y-_1, ... ,01. In the vicinity ©;, there are
fo=eXp — un+idhzn), (109 ~ limits,
where (X=Vipt=Xgp0)—> =%, [fo| '=0 if n<] (113
& (|&al°+ 77)
¢1n:%(x_vlnt_xln0) (109  and
n
and (X=Vimt=X1p0) =, |fm|_14>oo if m>j,
, (114
fr,1(|§n| —7°)
¢2n_ |§n|2 (X_VZnt_XZno)a (110) Wh”e deQ tendS to
1 1 1 1
0 — 0
§n+§n’ §n+§j gn_fn’ fn_fj
_ _2,—2 _ —2¢-2
1 R P P O S L ™
&+ & 2¢; §tém  E—&v E&  E—éw
el e P 52
0 flfy 2 2.7 0 fmzfﬁ fmzh
§m+§j §m+§m’ gm_ éj Em— Em
(119
1 1 1 1
_ — 0 _ 0
gn_gn’ gn_gj §n+§n/ §n+§j
T T I T S T T T L
=& & E—Em &t én 2§ &t &m
0 f_r;ZfJfZ E}zfr;.fz 0 f_r;zfi EZE,Z
fm_fj Em— Em gm"’fj EmT Em
|
wheren,n’<j<m,m’. N - i
In Appendix C, we find that the asymptotic behavior of xi= 1 (&~ &m) (&, iq), (118
the multisoliton solutions in limitg113) is similar to the m=j+1 (§+ &Em)(§5— &m)
single soliton solution, but; is replaced byf{*
while deQ— deQ(")
) (Tj)llz
fo=1 L]t (116 =
! Xj . deQ“):— (gj—gj)_(l_’_|f(+)|—8)
4yl

(- g (gt &)

7 BT A - -
AT o +W[(f§ VAT 19
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the asymptotic expression of ¥t should be obtained.
Meanwhile,®{]) and®$”, corresponding to those in Egs.
(109 and (110, can be written as

&(&12= 7%
)= e (= Vat=xgjo= T, (120
]
Er(g17—7)
q)(sz:—J |éj|2 (X_V2jt_X2j0_r(2j+)), (121
where
P4 == (inl 7~ ) (122
1j 2)\1_/ j i1
'SP =argr;—argy; (123
2j ] ]

Similarly, whent— — oo, the asymptotic behavior of mul-
tisoliton solutions in the vicinity ofd; can be written, e.g.,
analogous to Eq€120) and(121),

ry)=-ry’, (124
ry)=-T4"; (125

J

therefore, the total additional displacementIof; and the
total phase shiff’,; are

ry=2r{’, (126)

Iy=2r%). (127

V. CONCLUSION

V; in Eq. (50) andV, in Eg. (51). The center of an inhomo-
geneity moves with a constant velocit, while the shape
of the solitary waves also changes with another velocity
V,. Therefore, the depths and widths of the surface of the
solitary waves are not constants but vary periodically with
time, and the shape of the solitary waves is not symmetrical
with respect to the center. By means of these features, we
find that soliton solutions in an anisotropic ferromagnet can-
not be expressed in the form of product of separated vari-
ables in the moving coordinat¢g1,22. Only when »—0
can these soliton solutions in an anisotropic ferromagnet re-
duce to those in an isotropic ferromagnet; for example, the
single soliton solution$63) and(64) in the polar coordinates
are equivalent to Eq22) obtained by means of the method
of separating variables in the moving coordinates in Ref.
[21]. Therefore, it is impossible to investigate the exact soli-
ton solutions in an anisotropic ferromagnet by means of the
method of separating variables.

Reducing the equations of motion to an appropriate form,
Kosevich, lvanov, and Kovaley29] found a solution. In
terms of Eq.(55) in the polar coordinates, there exists

tanz(f) __ GAEP ) ARG sing,
2) TP el 7 PeosRan— &2 &l 77
(129

If we compared Eq.128 with an approximate solution
given in Ref.[29], we can find that previous properties of the
soliton solutions remain even in an approximation on the
order of »?. The solutions of Ref[29] do not satisfy the
Landau-Lifschitz equation for an anisotropic ferromagnet
even in the first order of anisotropy, and there is no reason to
consider it as an approximate solution; all attempts tried in
this approximation were not successful.

Introducing a particular parameter in Eq. (6), while
&= = 5 corresponds to zer® and tou=*=27. In the com-
plex u plane, these two points are the edges of céitson-
tributes to the determination fact®@, in Eq. (12). C, is
important to ensure that the Jost solution generated satisfies
the corresponding Lax equations. This indicates that in the
inverse scattering transformation the edges of cuts in the
complex plane must make a contribution even in the case of
nonreflection. Unfortunately, Borovik and Kulinidt33,34]

In the present paper we introduced a particular parametegpparently did not consider these effects. Evidently, they did
¢ for equations of motion of the magnetization in an aniso-not obtain any expression of the solution.
tropic ferromagnet with a magnetic field; the Lax equations Using the Hirota method, Bogdan and Koval¢85]
for the Darboux matrices are generated recursively. B)SOUght soliton solutions of the Landau-Lifshitz equation in
choosing the constants involved in the Darboux matrices, than anisotropic ferromagnet in the form

Jost solutions satisfy the corresponding Lax equations, the
exact soliton solutions describing nonlinear dynamics of the
magnetization are investigated, and the asymptotic behavior
of multisoliton solutions are also analyzed. These results
have never been found by any other methods. They may be
useful for further theoretical research and practical applica-
tion.
Equations(52)—(54) show that the soliton solutions in an

anisotropic ferromagnet depend essentially on two velocitiesyhile

M +iM,

B 2fig
|f[*+1g]*’

1121l
[P+l

(129



54 NONLINEAR DYNAMICS OF THE MAGNETIZATION IN ... 4623

s Vo(—§)=—ioxVo(£),
f=2> > a(i, - don)€XPpi T i), 0 oV, o

(130

n=0 Cyn
Vi) =P,Y8);

then, using these relations, one can find

[(N=1)/2]
. . . —
9= mE:O Cgﬂ A, .- dzmea) V(=8 =—ioW,(§),
(A5)
Xexp(p; t---tpj, ), (131 —
' e Vo =V,%)
. . . . i, and
where [N/2] is the maximum integer in addition tbl/2, L
C, represents a summation over all combinationdNodle- Dn(—&)=0,Dp(&) 0y,
ments inn, andp; = (k;+ w;t+ p°), while (A6)
(n) Di(£)=Dy (&)
a(i i )= > ali.i) for n=2
11 -+ 4n) =) k< . -
1 for n=0,1. (132) APPENDIX B: DETERMINATION OF F,, AND Fy

Putting
According to t_he expression of the single soliton ;o_lutions Fo=(anB) (yade) (BD)
(52—(54) in this paper, one can see that they are difficult to n nPn) {¥Yn0n),

be expressed in the form of Hirota factorization. Obviously,ihen substituting it into Eq21), we can obtain the following
Bogdan and Kovaley35] did not obtain the desired results. |inear equations:
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i . Using y, and 8, to express,, By, Fn, andF, can be
According to Egs.(4), (5), and (6), we can obtain the yyritten as | n ne Pne n

APPENDIX A: SOME RELATIONS

relations . _
Fn= g[(§n| 7n|2+ §n| 5n|2)(§n| 5n|2
N—&)=—\(d), Enlyol 2+ &4l 52 0 )
2y7-1 .
(A1) +al )] ( 0 Enl 80|24 &0l 70l
w(—6=—p(d x.§%%1%) (B3)
and "
and
L(— &) =0, L(&)a,, F o= &L (&nl Yal2+ &0l 812 (£0] 842
(A2) -1 f_n|'yn|2+§n|5n|2 0
o +§n|7n| )] 0 §_|5|2+§|’)/|2
LT (&) =—L(&) nl Onl?+ &nl vn
and X ;”) v 81). (B4)
A( _5: Ux@("xa APPENDIX C: ANALYSIS OF ASYMPTOTIC BEHAVIOR
(A3) OF THE MULTISOLITON SOLUTIONS

_ In Eg. (119, only those terms leading to
AT(&)=—A9). |f1a| 78 - |fx] "8 remain, and it is difficult to calculate this
determinant. Similar to the procedure in RE34], we will
In terms of Eq.(9), there exist only consider the term without
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1 1 1 1
0 — — 0
Entén &t En—En En— &
1 1 1 1
— 0 — 0
§j+§n’ 2§J é:] gn/ gj_é:j
—2¢-2 —2¢-2
0 0 i Fin 0 0 m fﬂ
§m+§m’ gm_gm/
(CY
1 1 1 1
_ — 0 — _— 0
fn_gn’ fn_gj §n+§n’ gn gj
1 1 1
—_ —_— 0 —_— — 0
g] Ent gj_gj §]+§n’ 2§]
22 PEYYEY
0 0 E’me’ 0 0 E‘zfﬂ
fm_gm’ §m+§m’
The term involvingfj_4 is the following determinant:
1 1 1
0 0 — 0
Ent &nr &n—&nr én—fj
—4 —2¢—2 —2¢-2
0 fj_ fj fm/ 0 0 fJ fm/
2§ &t &= Emr
—2:-2  £-2¢-2 —2¢-2
0 fon f; fnf 0 0 f fﬂ
§m+§j §m+§m’ gm_gm/ (CZ)
1 1 1
—_ 0 0 _ 0
gn gn’ §n+§n’ fn g]
1 1 1
—_ 0 0 _ — 0
é] gn’ §j+§n’ 25]
F-2¢-2 £-2c-2 T-2¢-2
0 ot " fofo 0 o mfw
ém_‘fj gm_gm’ §m+§m’
In addition to the common factdf ;| 2. ..|fy| 8, these two determinants are clearly proportional to
1 1 1
btbn f—én &gl | 1 1
1 1 1 Emt&m =&
— — — R (C3
én— & Entén §n+§j 1 1
1 1 i Em_gm' §m+§m’
gn_gn’ §n+§n’ 2§j
the proportional coefficients are
—, -1 _
(fﬁ'fj)z (fj_fn)z(fj"‘fn)z (4

and

2&i|&— &|7n=1 (&+ £0)2(&— £n)?
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1 (&= Em)2(&+ £m)?

28 M (&4 £m)2(£— Em)?

(CH

Therefore, the asymptotic behavior of the multisoliton solutions in the li@it8) and(114) is similar to the single soliton

solution.
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