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Origin of normal stress differences in rapid granular flows
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A method for performing a Chapman-Enskog-like expansion of the Boltzmann equation corresponding to
granular gases is presented. A calculation of the stress tensor corresponding to a two-dimensional gas of
inelastically colliding smooth disks serves to demonstrate the method. This calculation provides an answer to
the long sought source of the normal stress differences in granular fluids. It turns out that, like in molecular
fluids, this effect is seconéBurnet) order in the shear rate but, unlike in simple molecular fluids, it is a
sizeable effect; as such it can be considered as a measurable manifestation of the Burnett correction for simple
fluids. [S1063-651X96)04210-9

PACS numbe(s): 83.10.Hh, 47.50+d. 05.20.Dd, 51.16y

In recent years there has been a significant increase in thet serve as a “zeroth order” in a perturbation theory at
interest in the properties of granular systeffis-6]. These finite granular temperatures. In this paper it is shown how
systems, which are of immense industrial importance, exhibithis problem can be resolved. It is knoyh6-18, that the
a variety of unusual properties. When strongly for¢edy.,  temperaturdl, of a homogeneous sheared granular system is
sheareyl granular systems can be completely fluidized; thisproportional toy”/z, where y is the shear rate and is a
state is coined “rapid granular flow.” One of the prominent measure of the degree of inelasticitiefined as +e” where
properties of granular gases is the sizeable normal stress di- is the coefficient of normal restitution Consider the
ferences these systems exhibit when in a sheared sta@@uble limity—0 ands—0 while y’/c (or T) is fixed. In this
[1,7.8. The question of the source of this effect has preoclimit one obtains an equilibrium systerfat any predeter-
cupied a number of researchd@10]. Some investigators mined temperatuje On the basis of this observation it can
who employed kinetic theoretical methods for the study ofo€ shown19] that a perturbative expansion for the solution
granular flows merely stated that their theories could no®f the Boltzmann equation corresponding to a steady sheared
account for this phenomenon, e.§11-13. Jenkins and State can be constructed by employifig as a small param-
Richman[9] obtained anisotropic normal stresses by conjeceter and considering the shear ratéo be O(Ve). This ex-
turing a form of the single particle distribution function. An- pansion is limited to steady states alone. Below we present a
other theory for normal stress differences, presentedf generalization of this approach, which is achieved by consid-
proposes that density gradients are responsible for this phefing y and e to be separatésmall expansion parameters.
nomenon. In the latter work, this effect is attributed to Consider, e.g., the Boltzmann equation fofdélute) gas of
(Enskog corrections to the Boltzmann equation. hard disks in a plane, whose collisions are characterized by a

The similarity of the microscopic dynamics of rapid single constant coefficient of normal restitutigks, 20
granular flows to that of molecular fluids has prompted nu-
merous studies of granular systems which are based on the of oT A -
kinetic theory of gasef9,11-15. The relevance of a kinetic ot vy V= 2 iy >Odk dva(k-vyo)
approach to(at least dilute rapid granular flowgwhich is 1
supported by molecular dynamid#1D) results and suc-
cesses of kinetic theorigsan be appreciated by considering
the quasielastic limit. In this limit the energy logdue to
inelasticity in each collision can be small enough so that the =B(f,f). (1)
time scale for local equilibratioftypically, a few collisions
per particl¢ is shorter than the time scale for energy decay In Eq. (1), f denotes the single particle distribution func-
(by inelastic collisions consequently, one expects a neartion (in the above integral only the velocity dependence is
Maxwellian (local) distribution to develop(in quasielastic spelled out, o7 is the total cross sectiofequal to twice the
systems In most previous investigationésee, however, diameter of a disk e is the coefficient of normal restitution,
[13)) the single particle distribution corresponding to granu-K is a unit vector pointing from the center of disk 1 to that of
lar systems has not been systematically derived from the codisk 2 at contactyy ,v5 andv,,v, are the velocities of the
responding Boltzmann equation—instead, various momentolliding particles before and after the collision, respectively.
closures have been invokg¢®,11,12,14,1% clearly a sys- The nonlinear Boltzmann collision operat8(f,f ) is de-
tematic perturbative solution of the pertinent Boltzmannfined in Eq.(1). In the derivation below we specialize, for
equation is called for. There is however a problem in consimplicity, to the case of homogeneous number densijty
structing a Chapman-Enskd@E) expansion for a granular and homogeneous granular temperaf@H. Denote the in-
system: due to the inelastic nature of the collisions the onlyerse “granular temperature” by3 where g8~ (t)=(u?).
steady state of such systems, in the absence of external for€he brackets ) denote averaging with respect fo Next,
ing, is one of zero granular temperature—and the latter cardefine a dimensionless single particle distribution funcfipn

1
X| gz FvDF(vz) = f(vo)f(v2)
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by f=npgf(y/Bu), whereu is the fluctuating velocityactual
velocity minus the average velocity at a given phiNotice
that f is a space independent function wfin the homoge-
neous case. In the case of a simple shear flow figkdyyX,

Eq. (1) can be written in the following nondimensional form:

2

whereB=p1/\B, 7=y VB, i=\Bu, | = Linoy is the mean
free path, and
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The functionQ,(u) is the expansion oB(fy,fy)/f, to first
order ing, given by[19]:
2
%]
2

1 u?
U1 —udr. | —
+12u(1 u)ll(z),

Ql(U)=2JFe‘“2’2[% (1—§u

(©)

wherel, andl ; are the zeroth and first order modified Bessel
functions, respectively. The rhs of E@®) is orthogonal to 1
andu. The requirement that it is also orthogonalibyields
Boi=\/7/8. The coefficientB,, determines the rate of cool-
ing, due to the inelasticity of the collisions, to lowest order in
e. Notice that, unlike Eq(6), Eq. (8) is specific to the CE
expansion for granular fluids. Reverting to dimensional
quantities, it follows that:

— Jml8snor(u?)¥?+ higher order terms.
(10)

Below we omit the tilde signs, with the understanding that all dt (U cootng=

guantities are dimensionless unless otherwise specified.
Next, we specialize to the case of near-elastic colli-

sions:
sion of f and B in powers of these parameters

f(u): fo(u)(1+8q>01+ ’y(blo+ 82(1)02
+yedyt Dot ), 4

wherefo(u)=exp(—u?)/m, and(sinceB vanishes in the ab-
sence ofboth inelasticity and shear

B=¢Bo1+ ¥Bio+ e’ Boat veBiit ¥ Baot - . (5)

This two parameter expansion is a generalization of the CE
expansion for the case of rapid granular flows. The substitu- ¥(®)= —
tion of Eq.(4) and Eq.(5) in the Boltzmann equation yields

a perturbative expansion férin powers ofe andy. At O(y)
one obtains

£(I)10= Blo(l_u2)+2uxuy, (6)

where L is the standard linearized Boltzmann operator

dk du,(K-uyp)e Y[ d(u*)+ D (u)

k Uy5>0

—®(up)—P(uy)].

L=
" 2m

()

Equation(7) is defined withe=1. The solubility condition
for Eq. (6) requires the right-hand sidehs) of this equation
to be orthogonal to the eigenfunctions&fwhich have van-
ishing eigenvalues, i.e., to 1, andu? (with a Maxwellian
weight function[22]). This implies8,,=0. The solution of
Eq. (6) is therefore(due to the isotropy of) of the form
D= 2<I>10(u)uxuy=d)lo(u)uzsinZH,Awhere (u,0) are the
polar coordinates of the vectarand®,, is a function of the
speed, which can be determined numericqll@] or (less

e<1, and small shear: y<1. Consider the expan-

Equation(10) is in conformity with the phenomenological
result Teooing —eNar T2 for homogeneous systeni$6-—
18]. Since the rhs of Eq8) depends om alone, the solution
is a function®y,(u) of the speed which can be determined
numerically to the desired accurag$9]. The equation at
0 is

—¥(Py),
(13)

L0
LD 5= Lo 1— u?) + 2uguy® - Uy —— e

where

~ dk duy(k-u)e [ d(uf)d(ut)
27 Jiup>0

—®(up)P(uz)]. (12)

Note that in Eq(12), uy andu; are defined witre=1. It is
evident, by considering the form d,; and symmetry con-
siderations, thatV(®,y) satisfies the solubility conditions.
The other terms on the rhs of E(L1) satisfy the first and
second solubility conditions. The th|rd solubility condition
determinesB,, [19]: 320 [5x%e - <I>10(x)dx~—0 8146.

The coefficients,, determines, to lowest nontrivial order in

v, the heating caused by the shear. Reverting to dimensional
gquantities one obtains

d
at (U2)pearing=0.8146y2\/(u?) + higher order terms.
(13

It can be showh19] that the rhs of Eq(11) is of the form
A(u) +B(u)u?cos¥+C(u)u’cosd¥, hence the solutlon
of Eg. (11) assumes the form; (I) O—CI) (u)
+® @(u)ucos B+ §)(u)u*cosd, whered 9, d 20%, and
CD(“) are scalar functions af that can be determined numeri-

accurately by using, e.g., an expansion in Sonine polynomi-cally [19]. To lowest nontrivial order in the above perturba-

als[22]. At O(g) one obtains

LD g;=Boy(1—U?)+Qy(u). )

tive expansion, the steady-state condition reads:
Boie + Booy*=0 (our results hold, of course, for transient
dynamics—as well The resultingdimensional relation be-
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tween shear, inelasticity, and granular temperature, undesf the normal stresses increases with the mean free path
steady-state conditions, is~0.8771/s(u?)/|. This resultis  when all the other parameters are fixed. Notice thatéady

in conformity with the mean field(qualitative relation granular systems the temperature is not predetermined but it
Toyle. The contributions tdf of O(ye) and O(e?) are re- s fixed bye and y. Substitution of the steady-state relation
sponsible for an inelastic correction to the viscosity and to betweenT and y in Eq. (14) yields a normal stress ratio
next order correction to the inelastic cooling rate, respecwhich is a universal function of alone. The result, to the
tively. These corrections are not considered in the presemtresently calculated order in perturbation theory, is

paper. Having found the form of the functidro first order

in £ and second order iy, we can now evaluate the stress
tensorz;; =(u;u;) to the same order. Sindg is (standardly XX T
defined in such a way that the normalization, mean velocity, 7yy 1-0.52%
and temperature are given by its appropriate moments, it

foIIovx_/s that the isot_ropic parts of the correctionsfgodo Not e Jatter function tends to unity as-0 and thus one may
contribute to the diagonal components of thAe(O?tress eNsOkrroneously conclude that the normal stress difference is a
Hence, the isotropic parts d; (e.g.,®o; and®30) do Not  eatre of inelasticity. However, whes—0 and y is kept
contribute to these components. Cleasjnceu;u; contains  fiyeq jt follows from Eq.(14) that the normal stress differ-
up to second harmonics #and, as mentioned, the Operator gnce remains intagthe lowest order at which the inelasticity

L is isotropig, the fourth order harmonic does not contributeinﬂuences the normal stress ratio@s{yze)]. The reason for

to the stress tensor as well. C_onsequently, only second ordgte possible confusion is the fact that in tteady(sheared
harmomcs, i.e., terms proportional to cos@nd sin@, con-  giate of a granular system?xs for a fixed value of the
tribute to the stress tensor. The components of the stres§ anylay temperaturda result of the balance between col-
t_ens_or are obtained by a direct mtegranon of the termg m“'ﬁsional inelastic cooling and viscous heatindrence, one
tiplying the above mentioned harmonics, the result being  ~onnot separate the—0 andy—0 limits in this case.

The unobservability of the normal stress difference in
simple molecular fluids can be appreciated by noting that
where[19] Y2121 (u?) = O_(110’21) for air at 20 °C, atmospheric pressure

and y=1 sec . Only under extreme conditionsery cold
1 (= o 2np and strongly sheared dilute gagese stands the chance of
a=s J x%e X ®2) (x)dx~0.3395 and observing a slight normal stress difference in simple molecu-
0 lar fluids. In granular fluids, however, this quantity@e)
and amenable to measuremenhus the specific nature of
b= 1 ij5e‘xzti>10(x)de —0.4073. granular fluids i.e., the fact that F<y?/e renders the Burnett
2 Jo correction significant and observable in these systeone
may regard this effect in granular fluids as a measurable
Since 7,,> 7, We obtain a normal stress difference. Notice manifestation of the Burnett correctiomt this point we
that this effect is(qualitatively) a consequence of the shear wish to mention again the Jenkins-Richman an§@tof an
and not of the inelasticity. Reverting to dimensional quanti-anisotropic Maxwellian distribution for a steady sheared
ties it follows that: granular flow: in their theorywhich compares favorably
with simulation$ a steady-state shear flow was considered
and the resulting normal stress differencedig:). Their re-
sults for the numerical coefficientsa® and “b” (in our
notatior are close to ourgl9]. The normal stress ratio pre-
Equation(14) is formally identical to the result one could dicted by Eq/(15) for e=0.8, is7y,/ 7,,~1.463. The numeri-
have obtained by substituting the two-dimensiaf2®) Bur-  cal result of Walton and Braufv] is 1.484 and that calcu-
nett correction(the 3D Burnett formulas are given, e.g., in lated by Jenkins and Richman is 1.438 the dilute limif.
[22]) for the normal stresses. This formal resemblance isThe difference between the results of Jenkins and Richman
somewhat misleading sinceii) the CE expansion of the and our own is due to the fact that they use Enskog’s equa-
Boltzmann equation corresponding to a granular gasa is tion to obtain a closure while we have performed a system-
priori undefined, as explained in the abovi) The e—~0  atic CE-like expansior(their theory corresponds to effec-
limit is not a trivial limit, as one can realize by considering tively replacing the function®;; by constants At this point
the fact that the only steady state of a sheared elasticalli is worthwhile mentioning that normal stress differences are
colliding system(of infinite extenj is one of infinite tem-  known in polymeric systems, nontrivial molecular systems,
perature due to the continual heating by the shear, whereasaad in strongly sheared systems in general. As mentioned in
granular system under similar conditions has a genuin¢he above, the existence of a very weak normal stress differ-
steady state(iii) Equation(14) is only a lowest ordefin y  ence in sheared simple molecular fluids, can be deduced
and ) expression of a more general res@ithich ise de-  from the well known values of the Burnett coefficients for
pendent which follows from the(above generalization of such systems. However, as we have hopefully shown in the
the CE idea to inelastically colliding systems. All in all, na- above, the existence aftrong normal stress differences in
ive usage of the Burnett results, while yielding the correctsimple granular systems is a subtle issue: unlike polymeric
answer to lowest order, is not justified; a careful analysis obystems these systems are isotropic on the molecular level
the corresponding Boltzmann equation is required. The ratiand the CE expansion for the corresponding Boltzmann

T, 1+0.52%
XX (15)

_1 2 _1 2 . _
Tw=ztays, ty=3—ays, andr,=T1,=by,

Txx 1+0.679y%12/(u?)
7,y 1—0.679721%/(u?)’

(14)
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equation cannot straightforwardly be read off the corre{with corrections due to higher ordérsSSince a similarbut
sponding CE expansion for elastic systems. weak effect exists in simple molecular fluids one may state

In summary, we have shown how one can perform &hat the Burnett correction is a universal source of normal
Chapman-Enskog analysis of the Boltzmann equation correstress differences and that granular fluids provide a measur-
sponding to granular systems. We carried it out to Burnetf0!€ manifestation of this effect.

order and discovered that this order is the source of the one of ug.G.) gratefully acknowledges support from the
(strong normal stress differences observed in granular flowNSF and the U.S.-Israel Binational Science Foundation.
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