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A model kinetic equation is proposed to describe the time evolution of a gas composed of particles which
collide inelastically. Dissipation in collisions is described by means of a parameter which is related to the
coefficient of restitution,e. The kinetic equation can be solved exactly for the homogeneous cooling state,
providing explicit expressions for both the time-dependent ‘‘temperature’’ and the velocity distribution func-
tion. In contrast to the Maxwellian for fluids with energy conservation, this distribution exhibits algebraic
decay for large velocities. Hydrodynamic equations are derived by expanding in the gradients of the hydro-
dynamic fields around the homogeneous cooling state, without the limitation toe asymptotically close to unity.
The equation for the energy density contains, in addition to a source term describing the energy lost in
collisions, a contribution to the heat flux which is proportional to the gradient of the density. The linear
stability of the homogeneous cooling state is investigated by analyzing the hydrodynamic modes of the system.
The shear modes are found to decay slowly at long wavelengths, in the sense that spatial perturbations of the
macroscopic flow field decay slower than the cooling rate for the thermal velocity of the reference homoge-
neous state. On the other hand, the heat mode is always stable.@S1063-651X~96!02107-1#

PACS number~s!: 05.20.Dd, 05.60.1w, 47.20.2k, 47.50.1d

I. INTRODUCTION

The study of fluids composed of inelastically colliding
particles has attracted a lot of attention in the last few years.
This interest has been prompted and stimulated by the at-
tempts to understand the motion of granular media in the
so-called rapid flow regime, in which the particles move
freely and independently except when they collide with each
other. In this regime, one can think of the grains of the
granular material as similar to the molecules of a fluid and
try to extend the methods of kinetic theory in order to de-
scribe the behavior of the medium. This analogy has been
used by several authors to derive continuum hydrodynamic-
like equations@1# . In some cases the starting level of de-
scription is purely microscopic, while in others physical ar-
guments are introduced to justify the form of the fluid
equations. Nevertheless, all theories arrive at roughly the
same type of equations. They are similar to the conventional
Navier-Stokes equations, the main difference being the pres-
ence of a term describing dissipation of macroscopic kinetic
energy into thermal energy in the evolution equation for the
temperature. The macroscopic description of the flow is
made just as for ordinary fluids in terms of the density, the
macroscopic flow velocity, and the granular temperature, al-
though the nature of the latter is quite different from the
thermodynamic temperature of a fluid@1#. It is worth men-
tioning that recent work on one-dimensional granular media
has incorporated, as an additional hydrodynamic field, the
third moment of the fluctuating velocity@2#.

The above equations of motion have been used to analyze
the linear stability of granular flows, focusing the attention
on the possibility of explaining the formation of the ‘‘inelas-
tic structures’’ or clusters which have been observed in com-

puter simulations@3–5#. The stability of two particular states
corresponding to different physical situations has been inves-
tigated: the unbounded uniform shear flow@6,7# and the ho-
mogeneous ‘‘basic’’ state@5,7#. The latter is characterized by
a vanishing flow field and uniform density and temperature.
In contrast to normal fluids, the temperature decreases mono-
tonically and consequently this state is referred to also as the
‘‘cooling’’ granular state. In the two works we are aware of
which deal with the stability of cooling granular media@5,7#
both use the same constitutive relations~i.e., expressions for
the heat and momentum fluxes in terms of hydrodynamic
gradients! derived by Jenkins and Richman@8#.

Although a hydrodynamic description for systems with
inelastic collisions is suggested by analogy with normal flu-
ids, its form and justification requires a detailed derivation of
the equations from a more fundamental basis. The kinetic
model proposed here provides a simple but more fundamen-
tal level of description from which the context of a hydrody-
namic description can be addressed exactly. For normal flu-
ids, hydrodynamics represents the dominant phenomena at
long wavelengths and long times. This dominance is assured
by the fact that the hydrodynamic fields are associated with
the five globally conserved quantities~particle number, total
energy, and total momentum! and the fact that the asymp-
totic state is both uniform and stationary. In the present case
energy is not conserved and consequently the asymptotic
state is not stationary. It is shown that a universal solution is
approached for a wide class of spatially homogeneous initial
conditions, whose time dependence occurs entirely through
the temperature field. The latter can be calculated directly
from the kinetic equation and sets the time scale for ap-
proach to this universal homogeneous cooling state. This as-
ymptotic state therefore plays the same role for fluids with
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inelastic collisions as the Maxwellian does for normal fluids.
In the latter case, a local equilibrium generalization of the
Maxwellian serves as the reference state for study of inho-
mogeneous states. A similarlocal cooling state is established
here as well. Hydrodynamics follows from the kinetic equa-
tion if there exist ‘‘normal’’ solutions whose space and time
dependence occurs only through the hydrodynamic fields.
Such a solution is constructed perturbatively, by expanding
about the local cooling state in powers of the gradients of the
hydrodynamic fields. This is a generalization of the
Chapman-Enskog method for deriving hydrodynamics from
the Boltzmann equation, with the important difference that
the reference state can be very far from the Maxwellian.
Therefore, in contrast to previous studies along these lines,
the assumption of small spatial gradients does not imply
weak dissipation and the hydrodynamics represents a de-
scription of spatial excitations relative to this dynamic state.
For strong dissipation the reference state can change on time
scales comparable to the relaxation times for small spatial
perturbations. Since the asymptotic reference state is spa-
tially uniform, the hydrodynamic description dominates over
all other excitations at long times since their relaxation times
increase with the wavelength of the disturbance.

Because the reference state is not Maxwellian, there is no
reason to expect that the constitutive relations between the
average heat and momentum fluxes are given simply by
Newton’s and Fourier’s laws, respectively. In fact, we show
that the model kinetic equation proposed here leads to an
additional term in the heat flux proportional to the density
gradient. Such a term has been obtained by Lunet al. @9#, but
they restrict their results to asymptotically weak dissipation.
This precludes study of the qualitative effects of this term
described in Sec. II under conditions of strong dissipation.
The Chapman-Enskog expansion in@9# uses a Maxwellian as
the reference state and therefore does not predict a limit on
the dissipation due to a slow decay of the homogeneous
cooling state distribution. In particular, it is shown that the
contribution to the heat flux from a density gradient stabi-
lizes the longitudinal shear mode at large dissipation. Since
stability plays a central role in the analysis of possible states
for granular flow, and since experiments and also computer
simulations have shown that highly nonlinear effects domi-
nate the behavior of granular media, it is essential to have a
secure basis for the hydrodynamic equations used in their
analysis. For all these reasons, it is instructive to study
simple model kinetic equations of inelastic gases which al-
low controlled and detailed analysis. Although these models
do not provide a quantitative description for real granular
media, they can isolate and clarify some important qualita-
tive features of the physics peculiar to granular flows.

The model presented here is an extension to dissipative
gases of the well-known Bhatnagar-Gross-Krook~BGK!
model equation@10#, which has proved to be very useful for
the study of both stationary and nonstationary states of nor-
mal fluids far from equilibrium@11#. There is not a unique
modification of this equation to take account of dissipation in
collisions, but an argument is presented in Appendix A to
support a particularly simple possibility. The resulting equa-
tion retains all of the qualitative practical advantages of the
BGK equation for normal fluids. Attention is limited here to
the homogeneous cooling state and to those with small spa-

tial deviations from this state. However, a significant advan-
tage of the BGK model is that more complex conditions
~e.g., boundary driven! can be studied quantitatively. The
primary results obtained here are~1! the velocity distribution
for the homogeneous cooling state is broad, with divergent
moments of degreek>2/(12e2); ~2! a hydrodynamic de-
scription exists at Navier-Stokes order fore2.1/2; ~3! the
momentum flux is given by Newton’s viscosity law, while
the heat flux is given by Fourier’s law plus an additional
contribution proportional to the density gradient;~4! the lin-
earized hydrodynamic equations yield shear modes that de-
cay slower than the cooling rate of the reference homoge-
neous state.

The plan of the paper is as follows. The model is formu-
lated in Sec. II. The balance equations of average density,
momentum, and energy are obtained from moments of the
kinetic equation, and the exact solutions of the balance equa-
tions and the kinetic equation for the homogeneous cooling
state are obtained. In Sec. III the generalized Chapman-
Enskog expansion for inhomogeneous normal solutions is
carried out to first order in the gradients~Navier-Stokes or-
der!. The result is used to calculate the heat and momentum
fluxes, and associated transport coefficients as explicit func-
tions of e. In Sec. IV the stability of the time-dependent
homogeneous cooling state is considered by linearizing the
hydrodynamic equations around it. Some comments on the
comparison of our results with previous studies are given
there as well. Finally, Sec. V provides a summary and con-
clusions.

II. THE KINETIC MODEL EQUATION

In a low density gas mass, momentum, and energy con-
serving collisions tend to produce a local Maxwellian distri-
bution of velocities. A model kinetic equation with these
properties is given by one whose change due to collisions is
simply proportional to the deviation of the distribution func-
tion from this local distribution. The parameters of the local
distribution ~local density, temperature, and flow velocity!
are determined such that the conservation laws hold. Here we
want to extend this model to admit loss of energy during the
collision process. The simplest way is to scale the tempera-
ture in the local distribution by a parameter measuring the
energy loss. Thus we propose the following equation for the
one particle distribution functionf (r ,v,t):

] f

]t
1v•“ f52z~ f2 f 0!, ~1!

wherez(r ,t) is an average collision frequency~specified in
more detail below!, and

f 0~r ,v,t !5n~r ,t !f@V/ev0~r ,t !#. ~2!

Here V(r ,t)5v2u(r ,t) is the ‘‘peculiar’’ velocity,
v0(r ,t)5@2kBT(r ,t)/m#1/2 is the average thermal velocity
(kB is Boltzmann’s constant,m is the particle mass!, and
f(v/s) is the normalized Maxwellian ford dimensions,
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f~v/s!5~ps2!2d/2expF2S vs D 2G . ~3!

The functionsn, u, andT are identified as the local particle
number density, flow velocity, and temperature, respectively,
through the definitions

n~r ,t !5E dv f ~r ,v,t !, ~4a!

n~r ,t !u~r ,t !5E dvvf ~r ,v,t !, ~4b!

d

2
n~r ,t !kBT~r ,t !5E dv

1

2
mV2f ~r ,v,t !. ~4c!

It is customary in the literature of granular media to define
the ‘‘granular’’ temperature by Eq.~4c! without the Boltz-
mann constant. Since our model is formulated in the general
context of kinetic theory of dissipative gases we prefer to
keep the standard definition in kinetic theory. Finally,e is a
position- and time-independent constant with 0,e<1. As
shown below, it represents the coefficient of restitution for
inelastic collisions. Fore51, Eq. ~1! reduces to the BGK
model kinetic equation@10# for normal gases.

The context of this choice for the BGK kinetic model is
discussed in Appendix A. Some comments on its relevance
here are appropriate. For elastic collisions, the right side of
Eq. ~1! describes a detail balance condition whereby the col-
lisions drive the system towards a local equilibrium distribu-
tion. In the presence of external forces or boundary condi-
tions, there is a competition between this collisional detail
balance and the external constraints, leading to possible sta-
tionary distributions quite different from local equilibrium.
In the case of inelastic collisions detailed balance is violated
even in the absence of external constraints, and collisions do
not stabilize the local equilibrium distribution. This effect is
represented by the dependence off 0 on e in Eq. ~1!. It does
not mean, however, that inelastic collisions stabilizef 0 in-
stead. The fact thatf 0 cannot be a solution follows from the
violation of energy conservation and a consequent time de-
pendence off 0 through its dependence on temperature. This
is apparent in the detailed derivation of the homogeneous
cooling state,f h , given below.

Multiplication of Eq. ~1! by 1, v, andv2 and integration
over the velocity leads to the following evolution equations
for the hydrodynamic fields:

]n

]t
1“•~nu!50, ~5!

mn
]u

]t
1mnu•“u52¹•P, ~6!

d

2
nkB

]T

]t
1
d

2
nkBu•“T

52~“u!:P2“•q2
d

2
z~12e2!nkBT, ~7!

where

P~r ,t !5E dvmVV f ~r ,v,t ! ~8!

is the pressure tensor, and

q~r ,t !5E dv
1

2
mV2V f ~r ,v,t ! ~9!

is the heat flux. The above equations are similar to the con-
servation laws for a dilute gas with elastic collisions except
for the presence of the additional energy dissipation term
proportional to (12e2) in the temperature equation. From
the structure of this term it is seen that 12e2 is the average
of the relative loss of kinetic energy per particle in each
collision. Thereforee can be interpreted as the coefficient of
restitution of collisions@1#. This is confirmed by comparing
the above equation with the exact balance equation for the
energy derived from the Boltzmann equation for a granular
gas.

The form ofz can be made more explicit by identifying it
as the average collision frequency for the Boltzmann gas.
Only the case of hard sphere interactions is considered, for
which z has the form

z~r ,t !5Cn~r ,t !T~r ,t !1/2, ~10!

whereC is a constant depending on the dimension of the
system.

Consider now the basic homogeneous solution of Eqs.
~5!–~7! defined by the conditions

uh50, “Th5“nh50, “•qh50, ~11!

which imply

]nh
]t

50, “•Ph50, ~12!

and

]Th
]t

52zh~12e2!Th . ~13!

Due to the dissipation in collisions this homogeneous state is
not time independent, but its temperature monotonically de-
creases, an effect that is usually referred to as ‘‘cooling.’’
Inserting Eq.~10! into Eq. ~13! leads to a closed differential
equation that can be integrated. The solution is

Th~ t !5
Th~0!

S 11
t

t0
D 2 , ~14!

where t0
215(12e2)zh(0)/2, zh(0)5z„nh ,Th(0)…, and

Th(0) is the initial temperature. This is a well-known result
in the granular flow literature and has been derived by dif-
ferent methods@4,12#, and molecular dynamics simulations
have shown that it is obeyed at short times for values ofe
close to one~quasielastic limit!.

The velocity distribution function for this homogeneous
state follows from Eq.~1!,
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] f h~v,t !

]t
52zh~ t !@ f h~v,t !2 f 0,h~v,t !#. ~15!

The distributionf 0,h is obtained from Eq.~2! by using the
hydrodynamic fields Eq.~11!. The solution to this equation is
obtained in Appendix B. For a general homogeneous initial
distribution specified att50 the solution approaches at long
times a universal distribution whose time dependence occurs
entirely throughT(t). The universal distribution is given by

f h~v,t !5E
1

`

dx P~x!nhf~v/v0ex!, ~16!

P~x!5px2~11p!, p5p~e!5
2

12e2
, ~17!

wherev05v0(t) is the thermal velocity@see following Eq.
~2!# at the temperatureTh(t). The distribution functionf h
plays the same role for granular fluids as does the Maxwell-
ian for normal fluids. However, there are qualitative differ-
ences in the velocity dependence sincef h is a superposition
of Maxwellians including those with arbitrarily large half-
widths. The distribution determining these half-widths,
P(x), decreases slowly for largex so there are significant
contributions from large velocities. For fixed, finitee, the
asymptotic behavior of the distribution function can be ob-
tained directly from Eqs.~16! and ~17! with the result

f h~v,t !→
nh
2
pGS p1d

2 D ~e2v0
2p!2d/2S ev0

v D p1d

. ~18!

As a consequence of this algebraic decay, velocity moments
of degree>p(e) are divergent. This result holds indepen-
dent of the dimension. Fore;1 the distributionP(x) is
sharply peaked aboutx51 and the velocity distributionf h
approaches the Maxwellian for normal fluids.

III. HYDRODYNAMIC EQUATIONS

The balance equations, Eqs.~5!–~7!, are not a closed set
of equations for the hydrodynamic fields until ‘‘constitutive
equations’’ are obtained for the pressure tensor and heat flux,
expressing them also in terms of the fields. In this section we
derive approximate constitutive equations which are valid to
first order in small gradients of the fields. These results, to-
gether with the balance equations, are analogous to the
Navier-Stokes hydrodynamics for normal fluids. We use an
extension of the Chapman-Enskog method@13# which ac-
counts for the peculiarities associated with nonconservation
of the energy and a resulting reference state that differs from
the local equilibrium state for normal fluids. The distribution
function for the hydrodynamic state is normal, i.e., it de-
pends on space and time only through the hydrodynamic
fields. Consequently, for weakly inhomogeneous states it can
be expanded in powers of the gradients of these fields~for-
mally measured by a uniformity parameterq associated with
each gradient operator!,

f ~r ,v,t !5 f ~0!
„vu$x i~r ,t !%…

1q f ~1!
„vu$x i~r ,t !%…1•••,

~19!

where $x i(r ,t)% denotes the hydrodynamic fields,n(r ,t),
T(r ,t), andu(r ,t). Substitution of this expansion into Eqs.
~8! and ~9! gives the pressure tensor and the heat flux as an
expansion in powers of the gradients. Since the coefficients
are averages over normal distributions, these fluxes are ex-
pressed entirely in terms of the hydrodynamic fields and their
use in the balance equations, Eqs.~5!–~7!, gives a closed set
of hydrodynamic equations.

Terms proportional toq measure deviations from
f (0)„vu$x i(r ,t)%… at each instant in time. Thus while the ref-
erence state may evolve rapidly at strong dissipation through
its dependence on$x i(r ,t)%, these deviations ‘‘track’’ this
background evolution as well through their dependence on
these same fields. Similarly, the parameters of the hydrody-
namic equations~e.g., transport coefficients! will have a de-
pendence on the time varying fields$x i(r ,t)%. This is the
case as well for the usual Chapman-Enskog expansion about
the local equilibrium state for normal fluids. The difference
here is a new time scale for these fields set by the rate of
dissipation. Since it is independent of the wavelength, the
relaxation of the hydrodynamic modes at long wavelength
can be slow relative to the reference state dynamics at strong
dissipation. However, this interesting effect does not invali-
date the modified Chapman-Enskog method, which requires
only that small relative spatial perturbations remain small.
The latter is the requirement for dynamical stability of the
reference state discussed in the next section.

To determine the coefficients in the gradient expansion
for the fluxes, Eq.~19! is substituted into the model kinetic
equation. In addition to terms proportional to gradients of the
hydrodynamic fields the time derivative of these fields oc-
curs as well. These time derivatives can be expressed for-
mally in terms of the gradients using the hydrodynamic
equations. This implies a corresponding expansion for the
time derivative in powers of the uniformity parameter

]

]t
5

]~0!

]t
1q

]~1!

]t
1•••. ~20!

The expansions~19! and ~20! allow a self-consistent deter-
mination of both the distribution function and the fluxes at
each order in the uniformity parameter. A primary difference
from the Chapman-Enskog expansion for normal fluids is
that the contribution from] (0)/]t is nonzero due to the
source term in the energy equation.

The details of this generalized Chapman-Enskog expan-
sion for granular fluids are carried out in Appendix C. The
distribution function to zeroth order in the gradients is found
to be

f ~0!
„vu$x i~r ,t !%…5E

1

`

dx P~x!n~r ,t !f~V/v0ex!, ~21!

wherev05v0(r ,t) is now the thermal velocity determined
from the nonequilibrium temperatureT(r ,t). This is a super-
position of local Maxwellians, and represents the extension
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of the globally homogeneous distribution, Eq.~16!, to its
local form. The contribution from first order in the gradients
is

f ~1!
„v;u$x i~r ,t !%…5An„V,$x j~r ,t !%…•“n~r ,t !

1Au„V,$x j~r ,t !%…:“u~r ,t !

1AT„V,$x j~r ,t !%…•“T~r ,t !.
~22!

First order differential equations determining the functions
An ,Au, and AT can be found in Appendix C where it is
verified also that the usual solution for normal fluids is re-
gained for e51. However, the term proportional to
“n(r ,t) is present only foreÞ1 and represents a qualitative
difference between granular and normal fluids. Further
analysis of the consequences of this term is given in the next
section.

The pressure tensor and heat flux can be calculated di-
rectly to first order in the gradients using Eqs.~21! and~22!
in Eqs.~8! and ~9!, with the results

P~r ,t !→nkBTI2hS“u1~“u!12
2

d
I“•uD , ~23!

q~r ,t !→2k“T2m“n. ~24!

The equation for the pressure tensor has the same form as
that for a normal low density gas in the Navier-Stokes ap-
proximation~i.e., Newton’s viscosity law!. The first term on
the right side of the equation for the heat flux corresponds to
Fourier’s law in normal hydrodynamics, while the second
term reflects a coupling between density gradient and heat
flux due to the inelastic collisions and has no analog in nor-
mal fluids. The shear viscosity coefficienth is

h5
2nkBT

~11e2!z
. ~25!

The heat conductivityk and the new transport coefficient
m are

k5
~d12!~2e422e211!nkB

2T

2~2e221!2mz
, ~26!

m5
~d12!e2~12e2!~kBT!2

~3e221!~2e221!2mz
. ~27!

In the limit e→1 the coefficientm vanishes whileh andk
reduce to the shear viscosity and heat conductivity obtained
from the BGK model kinetic equation@14#.

Finally, combining these fluxes with the balance equa-
tions gives the Navier-Stokes order hydrodynamic equations:

]n

]t
1“•~nu!50, ~28a!

mn
]u

]t
1mnu•“u5“•FhS“u1~“u!12

2

d
I“•uD G

2“~nkBT!, ~28b!

d

2
nkB

]T

]t
1
d

2
nkBu•“T

52
d

2
zn~12e2!kBT

1~“u!:FhS“u1~“u!12
2

d
I“•uD G1“•~k“T!

1“•~m“n!2nkBT“•u. ~28c!

The detailed derivation in Appendix C shows that these re-
sults hold only fore2.1/2; otherwise the contributions of
first order in the gradients to the heat flux diverge. It is pos-
sible that when higher orders in the gradients are considered
the divergence moves to larger values ofe, indicating that
the Chapman-Enskog expansion is only asymptotic for any
value of e2 greater than 1/2. In either case, convergent or
asymptotic, this establishes the maximum value of the dissi-
pation in collisions which is compatible with Navier-Stokes
order hydrodynamics according to our kinetic model. It is
tempting to speculate that this result might be associated
with the phenomenon of inelastic collapse which has been
observed in molecular dynamics simulation of a two-
dimensional gas of inelastic disks@15#. A similar effect had
been previously documented in one dimension@4,16#. The
limitation found here,e.0.7, is close to the value for which
the collapse is observed in Ref.@15#. Nevertheless, we do not
have any solid physical reason to relate both results.

IV. STABILITY OF THE COOLING
HOMOGENEOUS SOLUTION

According to the analysis of Sec. II the Navier-Stokes
equations, Eqs.~28!, admit the basic homogeneous solution
defined by Eqs.~11!–~13!. Here we use the Navier-Stokes
order equations to study the linear stability of the homoge-
neous state. Small perturbations of the hydrodynamic fields
about this state are defined by

dn~r ,t !5n~r ,t !2nh , du~r ,t !,

dT~r ,t !5T~r ,t !2Th~ t !. ~29!

Substitution of Eqs.~29! into Eqs.~28! and linearization in
the perturbations gives

]

]t
dn1nh“•du50, ~30!

mnh
]

]t
du1nhkB“dT1ThkB“dn

2hhS“2du1
d22

d
“~“•du! D50, ~31!

d

2
nhkB

]

]t
dT1

3d

4
~12e2!nhkBzhdT1

d

2
~12e2!kBThzhdn

1nhkBTh“•du2kh¹
2dT2mh¹

2dn50. ~32!
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Herenh is chosen to be the initial average number density

nh5
1

VE dr n~r ,0! ~33!

andTh(t) is the solution of Eq.~13! with the initial condition

Th~0!5
1

NE dr n~r ,0!T~r ,0!. ~34!

In the above expressionsN andV are the number of particles
and the volume of the system, respectively.

These linear equations have time-dependent coefficients.
However, with a suitable change of variables they can be
transformed to linear equations with constant coefficients.
First, dimensionless time and lengths are introduced by

t5E
0

t

dt8zh~ t8!, l5
zh~ t !

v0~ t !
r . ~35!

The physical meaning oft is the cumulative number of col-
lisions suffered by a particle in the interval (0,t). The space
scaling is time independent for the case of hard spheres we
are considering. Finally, dimensionless hydrodynamic field
perturbations are defined by

u~ l,t!5
dT~r ,t !

Th~ t !
, w~ l,t!5

du~r ,t !

v0~ t !
,

r~ l,t!5
dn~r ,t !

nh
. ~36!

In terms of these new variables the linearized hydrodynamic
equations have constant coefficients and read

]r

]t
1“ l•w50, ~37a!

]w

]t
2
1

2
~12e2!w1

1

2
“ l~u1r!

2
1

e211 S ¹ l
2w1

d22

d
“ l~“ l•w! D50, ~37b!

d
]u

]t
1d~12e2!S 12 u1r D12“ l•w

2¹ l
2~k* u1m* r!50, ~37c!

where we have introduced

k* ~e!52zh~ t !k~e!/@nhkBv0
2~ t !#,

m* ~e!52zh~ t !m~e!/@kBTh~ t !v0
2~ t !#. ~38!

The dependence ofk andm on e is given in Eqs.~26! and
~27!.

To identify the linear modes and dispersion relations of
Eqs.~37!, we look for solutions of the form

r5 r̂~s,k!est1 ik• l, ~39!

and similar expressions forw andu. Sincet is a monotoni-
cally increasing function oft, the condition for stability is
Res,0. The equations which govern the components of the
velocity perpendicular to the wave-number vectork de-
couple from the rest of the equations and representd21
degenerate shear modes, with the dispersion relation

strans5
1

2
~12e2!2

k2

e211
. ~40!

There shear modes become positive fork<kshear* , where

ktrans* 5S 12e4

2 D 1/2. ~41!

However, this does not mean that velocity perturbationsdu
grow in time since they have been scaled to the thermal
velocity of the homogeneous state in the above analysis. In-
stead it shows thatdu decays more slowly than this thermal
velocity, i.e., the cooling rate is greater than the relaxation of
the shear modes. After an initial transient period the linear
analysis is no longer valid because terms nonlinear in the
macroscopic velocity become important. This effect has been
analyzed by Goldhirsch and Zanetti@5# and used as the start-
ing point to propose a physical mechanism for the formation
of high density clusters.

The other three modes are given by the solutions of the
dispersion relation

s31
k* ~11e2!12~d21!

d~11e2!
k2s22S 14 ~e221!2

2
3d2k*14e22de21k* e4

2d~11e2!
k22

2k* ~d21!

d2~11e2!
k4D s

2
12e2

4
k21

k*2m*

2d
k450. ~42!

Figures 1–4 show this dispersion relation for a two-
dimensional system and four values ofe. Only the real parts

FIG. 1. Hydrodynamic modes given by the dispersion relation in
Eq. ~ 42!, with e50.75. The three modes are real~nonpropagating!,
and the longitudinal shear mode is unstable for all values of the
wave-numberk.
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of the propagating modes have been plotted. Let us focus on
the leading eigenvalue, which is always real and positive for
small enough values ofk . It is easily identified as the ex-
tension to granular fluids of the longitudinal shear of normal
fluids, and we represent it byslong. Comparison of the sev-
eral curves indicates that there is an important qualitative
change in the behavior of this mode at a given valuee* . For
e,e* it remains positive for all values of the wave number
k, while for e.e* it becomes negative fork larger than a
critical valuek* (e). The value ofe* can be obtained from
the k→` behavior of Eq.~42!. In this limit there is a real
solution given by

slong~k→`!52
d~11e2!~k*2m* !

4k* ~d21!
. ~43!

The sign of the right-hand side of this expression is deter-
mined by the factork*2m* . Using Eqs.~26! and~27!, one
gets thatk*2m*.0 for 0.626&e2<1, andk*2m*,0 for
0.5,e2&0.626. Thereforee*.0.79. We note that this value

does not depend on the dimension of the system, and also
that the existence of the two different behaviors is a direct
consequence of the density gradient contribution to the heat
flux. If m* (e)→0 thenslong(k→`) is always negative and a
finite value ofk* (e) always exists.

For e,e* , the longitudinal shear mode is unstable for all
values ofk. That means that there are always instabilities
with a wavelength covering all the system, independent of
the size of the system. Consider next the case ofe.e* .
There is always a value of the wave number,klong* (e), such
that for k.klong* all the modes are stable, while fork,klong*
the heating mode is unstable. The functionklong* (e) is ob-
tained from Eq.~42! by settings50. The positive root of the
equation is

klong* ~e!5S d~12e2!

2~k*2m* ! D
1/2

. ~44!

In Fig. 5 we have plotted this function, also ford52, in the
interval 0.65,e2,1, since fore→e* , klong* (e) diverges, as
discussed above. The functionktrans* is included for compari-

FIG. 2. The same as in Fig. 1, but fore50.80. The three modes
are still real in all the plotted range ofk, but now the longitudinal
shear mode becomes stable fork.klong* .0.6.

FIG. 3. The same as in Fig. 1, but fore50.85. Now there are
intervals of values ofk in which two of the modes are complex, i.e.,
propagating. They correspond to the standard sound waves. Only
their real part is plotted.

FIG. 4. The same as in Fig. 1, but now fore50.95. In this case
klong* .0.21, and the sound propagating modes appear fork.0.03.
Notice that the short wave-number part of the spectrum simplifies
as the value ofe increases.

FIG. 5. The critical wave numbersktrans* ~dashed! and klong*
~solid! as functions ofe.
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son. It is seen that ask is decreased, the first effect which
appears is the slow decay of velocity fluctuations associated
with the transversal shear modes, except very close to the
critical valueklong* . As k is decreased further, the longitudi-
nal shear mode becomes also unstable, with the instability
growing algebraically in time.

Hydrodynamic modes of a uniform granular medium have
been studied recently by McNamara@7#, using a fluid-
mechanical model. His results are qualitatively similar to
ours for values ofe very close to one. In particular, he also
derives expressions forktrans* andklong* , which turn out to be
proportional to (12e2)1/2 as in Eqs.~41! and ~44!. Never-
theless, the hydrodynamic equations he uses do not contain
the term proportional to the gradient of the density in the
heat flux and, therefore, they do not predict a critical value of
the restitution coefficient. For values ofe not very close to
one, the behaviors of the modes predicted by our model are
more complex than those resulting from his hydrodynamic
equations. We refer the reader to his careful and illuminating
discussion of the implications of the instability of the homo-
geneous state.

In a given system, the smallest wave numberkm allowed
for a perturbation or fluctuation will be determined by the
system geometry and the boundary conditions. We can esti-
mate this value as given by 2p/L, whereL is the parameter
characterizing the size of the system. Taking into account
our choice of dimensionless units,km.v0 /(zhL), which is
proportional to the mean free path in the basic homogeneous
state. Ifkm.k* , the basic homogeneous solution is asymp-
totically stable, since fluctuations which would lead to a di-
vergent behavior are impossible, while ifkm,k* the homo-
geneous state is unstable.

V. CONCLUDING REMARKS

In this paper a model kinetic equation has been proposed
to study the dynamics of a gas of particles which collide
inelastically. In spite of its apparent simplicity, the model
leads to a quite intricate collective behavior of the fluid, and
to results which are compatible, at least at a qualitative level,
with what has been observed in computer simulation. In par-
ticular, it predicts the instability of the uniform cooling state,
and reproduces the physical mechanisms which have been
found responsible for the formation of clusters in granular
media by using other theories. On the other hand, the model
can be exactly solved for particular states of the fluid. This
allowed us to compute the velocity distribution correspond-
ing to the uniform state, which is needed to obtain the hy-
drodynamic equations to first order in the gradients~Navier-
Stokes approximation!. The heat flux is given by the usual
Fourier law plus an additional term proportional to the den-
sity gradient. This term has been obtained in the study by
Lun et al. @9# but their analysis is restricted to the quasielas-
tic limit since they have performed the Chapman-Enskog
expansion about a local Maxwellian reference state. Since it
is proportional to (12e2) it is small at weak dissipation and
usually neglected. We are not aware of any other consider-
ation of this density gradient term in the stability analysis of
the cooling state.

The broad scope of problems which can be addressed
with this model should be emphasized. For instance, it in-

cludes the possibility of exploring the microscopic origin of
the hydrodynamic instabilities, and also instabilities which
are not of hydrodynamic nature. Finally, we mention work in
progress to investigate the stability of a state representing
uniform shear flow, for which the exact solution of the model
kinetic equation also can be obtained. In a different direction,
the model can be extended directly to kinetic equations for
the dynamics of nonequilibrium fluctuations at one and two
times @17#.

The BGK model for normal fluids has an underlying basis
in the Boltzmann equation. It is well known that the Boltz-
mann equation is anomalous in one dimension. Thus, al-
though we have developed most of our calculations for arbi-
trary dimension, its application to the one-dimensional case
can be problematic and we do not expect our present model
to describe the kind of behavior discussed in Refs.@2,18#.
Also, the Boltzmann equation is limited to low density and
this is reflected in the quantitative features of our BGK
model here as well. We believe that a detailed analysis of the
Boltzmann kinetic equation for inelastic collisions will show
that the qualitative features of that equation are preserved by
the BGK model, both at the hydrodynamic and kinetic levels.
This is certainly the case for normal fluids, where the direct
Monte Carlo simulation method@19# has been applied to
compare results from both the BGK and Boltzmann equa-
tions. This method applies even to states far from equilib-
rium and its accuracy is well established. There should be no
difficulty in extending it to the inelastic case@20#.

From a more practical point of view, the generalized
Chapman-Enskog expansion described here can be applied to
an extension of the dense fluid Enskog kinetic theory for a
realistic description of granular media. Previous work in this
direction has been limited to the quasielastic limit. We plan
to discuss the derivation of hydrodynamics from the Enskog
equation, and extensions of both the kinetic model and the
Monte Carlo simulation method to this dense fluid equation.
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APPENDIX A: ORIGIN OF THE BGK MODEL

The BGK model introduced in Sec. II is intended to cap-
ture the most important physical and structural features of
the Boltzmann equation. It has been used widely with great
success for the case of elastic collisions, and the objective of
this appendix is to motivate its relevance for inelastic colli-
sions as well. The Boltzmann equation for this latter case is
@20#

~] t1v–“! f ~r ,v,t !5J@ f , f #, ~A1!
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J@ f , f #[s2E dv1E dŝ Q~ŝ–g!uŝ–gu

3@e22f ~r ,v8,t ! f ~r ,v18 ,t !

2 f ~r ,v,t ! f ~r ,v1 ,t !]. ~A2!

Equation~A2! defines the nonlinear Boltzmann collision op-
erator in terms of the restituting collisions,v85v
2(2e)21(11e)(ŝ–g…ŝ and v185v11(2e)21(11e)
(ŝ–g…ŝ. Here,ŝ is a unit vector defining the integration over
the spherical surface of the colliding pair of particles,s is
the hard sphere diameter, andg5v2v1 . It is straightforward
to verify the following properties of the collision operator:

E dvS 1

v

1

2
mv2

D J@ f , f #5S 0

0

~12e2!w
D , ~A3!

w~r ,t !5
mps2

16 E dvdv1f ~r ,v,t ! f ~r ,v1 ,t !uv2v1u3.

~A4!

~For simplicity, here and in the remainder of this appendix
we limit attention to the case of three dimensions.! With
these results, the balance equations~5!–~7! are obtained ex-
cept with the source term in the temperature equation,
2(12e2)3/2nkBTz, replaced with2(12e2)w. The BGK
model kinetic equation is obtained by using a simpler, more
practical collision operator in~A2!. In many cases the pri-
mary interest is in transport associated with the balance
equations, so the conditions given by Eqs.~A3! will be nec-
essary constraints on its choice.

The Boltzmann collision operator has two contributions,
representing scattering out of the velocity statev and scatter-
ing into this state. HenceJ@ f , f # can be written in the sug-
gestive form

J@ f , f #52z~vu f !@ f ~r ,v,t !2h~r ,v,tu f !#, ~A5!

with the identifications

z~vu f !5s2E dv1E dŝ Q~ŝ–g!uŝ–gu f ~r ,v1 ,t !, ~A6!

h~r ,v,tu f !5z~vu f !21s2

3E dv1E dŝ Q~ŝ–g!uŝ–gue22

3 f ~r ,v8,t ! f ~r ,v18 ,t !. ~A7!

The notation indicates that bothz andh are functionals of
f . To construct the BGK model we first restrict this func-
tional dependence to occur only through the macroscopic
fields,n(r ,t), T(r ,t), andu(r ,t) as defined by Eqs.~4!. The
first approximation is to replacez(vu f ) by a velocity-
independent function

z~vu f !→z„n~r ,t…,T~r ,t !…. ~A8!

This means that the collision rate can vary with the local
density and temperature of any nonequilibrium state, but that
the detailed dependence on the velocity is assumed to be not
essential. With this approximation in Eq.~49! the constraints
~A3! lead to

E dvS 1vD h~r ,v,t !5S n~r ,t !

n~r ,t !u~r ,t ! D , ~A9!

E dv
1

2
mv2h~r ,v,t !5

3

2
n~r ,t !kBT~r ,t !2~12e2!

w

z
.

~A10!

The right sides of these equations are functionals of
f (r ,v,t) through their definitions, Eqs.~4!. The second
and final assumption of the BGK model is thath(r ,v,t)
can be replaced by the ‘‘best’’ distribution function
subject to knowledge of only these constraints, i.e., that
which maximizes the information entropy,S@ f #
[2*dvh(r ,v,tu f )lnh(r ,v,tu f ). A straightforward calcula-
tion leads to

h~r ,v,tu f !→ f 0~r ,v,tu f !

[n~r ,t !S m

2pkBT8~r ,t ! D
3/2

3e2$m@v2u~r ,t !#2%/@2kBT8~r ,t !#, ~A11!

T8~r ,t ![T~r ,t !F12
2~12e2!w~r ,t !

3nkBT~r ,t !z~r ,t !G . ~A12!

Use of Eqs.~A8! and~A11! in Eq. ~A5! defines the BGK
kinetic model for the collision operator

JBGK@ f , f #[2z„n~r ,t…,T~r ,t !…

3@ f ~r ,v,t !2 f 0~r ,v,tu f !#. ~A13!

It preserves the conditions~A3! by definition and hence im-
plies the same macroscopic balance equations as the Boltz-
mann equation. In the special case of elastic collisions,
e51, the usual BGK model for the Boltzmann equation re-
sults. However, the ‘‘derivation’’ described here makes no
assumptions specific to elastic collisions. The basic idea is
that the macroscopic balance equations and associated mac-
roscopic fields are the most important ingredients of the de-
scription. Detailed velocity dependencies of the collision
process are assumed to affect only quantitative rather than
qualitative dynamics. For elastic collisions, the assumption
of maximum information entropy leads directly to the correct
stationary solution. For inelastic collisions, detailed balance
is violated so no solution toJ@ f , f #50 occurs. Instead, the
homogeneous cooling state occurs from an imbalance be-
tween collisions into and out of the velocity statev. This
imbalance is preserved in the BGK model through the dif-
ference between the temperatureT(r ,t) associated with the
distribution functionf (r ,v,t) and the effective temperature
T8(r ,t) associated with the distribution functionh(r ,v,t).
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Dimensional analysis leads to the result

w}
3

2
nkBTz. ~A14!

In the text we choose the simplest case for which the pro-
portionality constant in this relation is unity.

APPENDIX B: GLOBAL AND LOCAL
HOMOGENEOUS SOLUTIONS

In this appendix the derivation of the global homogeneous
solution ~16! and its extension to the local form~21! is de-
scribed. It is sufficient to consider the latter since the former
follows as a special case. The kinetic equation to lowest
order in the uniformity parameter is given by

S ]~0!

]t
1z~ t ! D f ~0!

„vu$x i~r ,t !%…

5z~ t ! f 0~v,r ,t !, ~B1!

where f 0(v,r ,t) is defined by Eqs.~2! and ~3!. The only
contribution to the time derivative at lowest order in the
uniformity parameter comes from the temperature

]~0!

]t
f ~0!

„vu$x i~r ,t !%…52~12e2!z~ t !T
]

]T

3 f ~0!
„vu$x i~r ,t !%…, ~B2!

and Eq.~B1! simplifies to

S ~12e2!T
]

]T
21D f ~0!

„vu$x i~r ,t !%…

52 f 0~v,r ,t !. ~B3!

It is now straightforward to integrate this equation from
T05T(t0) to T5T(t), assuming a given initial distribution
as a function ofT(t0), obtaining

f ~0!
„vu$x i~r ,t !%…5S TT0D

1/~12e2!

f ~0!~v,T0!

1~12e2!21E
T

T0dT8

T8 S TT8D
1/~12e2!

3n~r ,t !f~V/ev08!, ~B4!

where the explicit form forf 0 given by Eq.~2! has been
used, andv08 is the thermal velocity as a function ofT8. For
T!T0 the first term on the right side becomes negligible and
the solution approaches a universal form independent of the
initial conditions. Formally, this universal form is identified
by integrating from infinitely high temperature (T0→`),

f ~0!
„vu$x i~r ,t !%…→~12e2!21E

T

`dT8

T8 S TT8D
1/~12e2!

3n~r ,t !f~V/ev08!. ~B5!

Finally, a change of variables to integrate over (T8/T)1/2

instead ofT gives the desired result,

f ~0!
„vu$x i~r ,t !%…5E

1

`

dx P~x!n~r ,t !f~V/v0ex!, ~B6!

whereP(x) is given by Eq.~17!. This is the result~21! used
in the main text. The corresponding global solution given by
Eq. ~16! follows from this local solution for the special case
of constant density and vanishing flow velocity.

APPENDIX C: THE FIRST CHAPMAN-ENSKOG
APPROXIMATION

Here the generalized Chapman-Enskog expansion is car-
ried out to first order in the uniformity parameter. Substitu-
tion of Eqs.~19! and ~20! into the kinetic equation and re-
taining terms of first order in the uniformity parameter gives

]~1! f ~0!

]t
1

]~0! f ~1!

]t
1v.“ f ~0!52z f ~1!. ~C1!

The terms involvingf (0) are calculated as follows:

S ]~1!

]t
1v•“ D f ~0!5

] f ~0!

]n S ]~1!

]t
1v•¹ Dn1•••, ~C2!

where the dots on the right side denote corresponding terms
from partial derivatives with respect toT and u. The time
derivatives of the hydrodynamic fields appearing on the right
side have contributions of first order in the uniformity pa-
rameter given by Eqs.~5!–~7!,

]~1!n

]t
1“•~nu!50, ~C3!

mn
]~1!u

]t
1mnu•“u52“•P~0!, ~C4!

d

2
nkB

]~1!T

]t
1
d

2
nkBu•“T52~“u!:P~0!2“•q~0!.

~C5!

The lowest order pressure tensorP(0) and heat fluxq(0) are
calculated directly from Eqs.~8!, ~9!, and ~64! with the re-
sults

P~0!~r ,t !5n~r ,t !kBT~r ,t !I , q~0!~r ,t !50. ~C6!

Use of these results in~C2! gives

S ]~1!

]t
1v•“ D f ~0!5Bn•“n1Bu:¹u1BT•“T, ~C7!

with the functionsBn, Bu, andBu defined by

Bn5E
1

`

dx P~x!f~V/v0ex!VF12S 1

e2x2D
2G , ~C8!
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Bu5E
1

`

dx P~x!n~r ,t !f~V/v0ex!2~v0ex!22

3~VV2d21V2I !, ~C9!

BT5E
1

`

dxP~x!n~r ,t !f~V/v0ex!~v0ex!22T21V

3SV22v0
22

d

2
~v0ex!2D . ~C10!

With these results Eq.~C1! becomes

S ]~0!

]t
1z D f ~1!52~Bn•“n1Bu:¹u1BT•“T!.

~C11!

The terms occurring on the right side suggest looking for a
solution of the form

f ~1!5An•“n1Au:¹u1AT•“T. ~C12!

Substitution of this form into Eq.~C11! and equating coeffi-
cients of the independent hydrodynamic gradients gives the
equations forAn ,Au, andAT ,

S ~12e2!T
]

]T
21DAn1~12e2!

T

n
AT5z21Bn ,

~C13!

S ~12e2!T
]

]T
21DAu5z21Bu, ~C14!

S ~12e2!T
]

]T
1
1

2
~123e2! DAT5z21BT . ~C15!

It is a straightforward but lengthy calculation to construct the
solution to these equations by integrating from an infinite
initial temperature, as was done in Appendix B. Here, we are
interested primarily in the heat and momentum fluxes de-

fined by Eqs.~8! and~9!. Use of the form~C12! leads to the
Navier-Stokes order fluxes given by Eqs.~23! and~24!, with
the shear viscosity, thermal conductivity, andm defined by

h52E dvmVxVy~Au!xy , k52
1

dE dv
1

2
mV2V•AT ,

m52
1

dE dv
1

2
mV2V•An . ~C16!

The above equations forAn , Au, andAT now can be used to
obtain the corresponding equations for the transport coeffi-
cients. They read

S ~12e2!T
]

]T
21Dm1~12e2!

T

n
k

52
3mv0

4

8dz
~d12!

~12e2!2

2e221
, ~C17!

S ~12e2!T
]

]T
21Dh52n

mv0
2

2z
, ~C18!

S ~12e2!T
]

]T
1
1

2
~123e2! Dk

52n
3mv0

4

8dTz
~d12!

~2e422e211!

2e221
. ~C19!

The right hand sides of~C17! and~C19! result from velocity
moments of degree 4. According to the discussion following
~16! these integrals exist only ifp(e).4 or, equivalently,
e2.1/2. The existence of hydrodynamics for our kinetic
model at Navier-Stokes order is therefore limited as well by
this condition.

Equations~C18! and ~C19! can be integrated directly to
obtainh andk. Then, use of this result fork in ~C17! gives
m. In this way Eqs.~25!–~27! are obtained.
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