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Model kinetic equation for low-density granular flow
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A model kinetic equation is proposed to describe the time evolution of a gas composed of particles which
collide inelastically. Dissipation in collisions is described by means of a parameter which is related to the
coefficient of restitutione. The kinetic equation can be solved exactly for the homogeneous cooling state,
providing explicit expressions for both the time-dependent “temperature” and the velocity distribution func-
tion. In contrast to the Maxwellian for fluids with energy conservation, this distribution exhibits algebraic
decay for large velocities. Hydrodynamic equations are derived by expanding in the gradients of the hydro-
dynamic fields around the homogeneous cooling state, without the limitatoasgmptotically close to unity.

The equation for the energy density contains, in addition to a source term describing the energy lost in
collisions, a contribution to the heat flux which is proportional to the gradient of the density. The linear
stability of the homogeneous cooling state is investigated by analyzing the hydrodynamic modes of the system.
The shear modes are found to decay slowly at long wavelengths, in the sense that spatial perturbations of the
macroscopic flow field decay slower than the cooling rate for the thermal velocity of the reference homoge-
neous state. On the other hand, the heat mode is always §t@b#63-651X96)02107-1

PACS numbe(s): 05.20.Dd, 05.60tw, 47.20-k, 47.50+d

[. INTRODUCTION puter simulation$3—5]. The stability of two particular states
corresponding to different physical situations has been inves-
The study of fluids composed of inelastically colliding tigated: the unbounded uniform shear flp8y7] and the ho-
particles has attracted a lot of attention in the last few yearanogeneous “basic” statb,7]. The latter is characterized by
This interest has been prompted and stimulated by the a& vanishing flow field and uniform density and temperature.
tempts to understand the motion of granular media in thén contrast to normal fluids, the temperature decreases mono-
so-called rapid flow regime, in which the particles movetonically and consequently this state is referred to also as the
freely and independently except when they collide with each'cooling” granular state. In the two works we are aware of
other. In this regime, one can think of the grains of thewhich deal with the stability of cooling granular med&7]
granular material as similar to the molecules of a fluid andboth use the same constitutive relatigns., expressions for
try to extend the methods of kinetic theory in order to de-the heat and momentum fluxes in terms of hydrodynamic
scribe the behavior of the medium. This analogy has beegradient$ derived by Jenkins and Richm4al.
used by several authors to derive continuum hydrodynamic- Although a hydrodynamic description for systems with
like equationg1] . In some cases the starting level of de- inelastic collisions is suggested by analogy with normal flu-
scription is purely microscopic, while in others physical ar-ids, its form and justification requires a detailed derivation of
guments are introduced to justify the form of the fluid the equations from a more fundamental basis. The kinetic
equations. Nevertheless, all theories arrive at roughly thenodel proposed here provides a simple but more fundamen-
same type of equations. They are similar to the conventiondhl level of description from which the context of a hydrody-
Navier-Stokes equations, the main difference being the prestamic description can be addressed exactly. For normal flu-
ence of a term describing dissipation of macroscopic kinetiéds, hydrodynamics represents the dominant phenomena at
energy into thermal energy in the evolution equation for thdong wavelengths and long times. This dominance is assured
temperature. The macroscopic description of the flow isy the fact that the hydrodynamic fields are associated with
made just as for ordinary fluids in terms of the density, thethe five globally conserved quantiti@sarticle number, total
macroscopic flow velocity, and the granular temperature, alenergy, and total momentynand the fact that the asymp-
though the nature of the latter is quite different from thetotic state is both uniform and stationary. In the present case
thermodynamic temperature of a fldidl]. It is worth men-  energy is not conserved and consequently the asymptotic
tioning that recent work on one-dimensional granular mediastate is not stationary. It is shown that a universal solution is
has incorporated, as an additional hydrodynamic field, the@pproached for a wide class of spatially homogeneous initial
third moment of the fluctuating velocify2]. conditions, whose time dependence occurs entirely through
The above equations of motion have been used to analyzbe temperature field. The latter can be calculated directly
the linear stability of granular flows, focusing the attentionfrom the kinetic equation and sets the time scale for ap-
on the possibility of explaining the formation of the “inelas- proach to this universal homogeneous cooling state. This as-
tic structures” or clusters which have been observed in comymptotic state therefore plays the same role for fluids with
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inelastic collisions as the Maxwellian does for normal fluids.tial deviations from this state. However, a significant advan-
In the latter case, a local equilibrium generalization of thetage of the BGK model is that more complex conditions
Maxwellian serves as the reference state for study of inhote.g., boundary drivencan be studied quantitatively. The
mogeneous states. A similircal cooling state is established primary results obtained here & the velocity distribution
here as well. Hydrodynamics follows from the kinetic equa-for the homogeneous cooling state is broad, with divergent
tion if there exist “normal” solutions whose space and time Mmoments of degre&=2/(1- €); (2) a hydrodynamic de-
dependence occurs only through the hydrodynamic fieldsScription exists at Navier-Stokes order fet>1/2; (3) the
Such a solution is constructed perturbatively, by expandingnomentum flux is given by Newton's viscosity law, while
about the local cooling state in powers of the gradients of thé"€ heat flux is given by Fourier's law plus an additional

hydrodynamic fields. This is a generalization of the contribution proportional to the density gradie(4) the lin-

Chapman-Enskog method for deriving hydrodynamics fromearized hydrodynamic equations yield shear modes that de-

the Boltzmann equation, with the important difference thatt® slower than the cooling rate of the reference homoge-
the reference state can be very far from the Maxwellian"€QUS State.
Therefore, in contrast to previous studies along these line

the assumption of small spatial gradients does not impl

weak dissipation and the hydrodynamics represents a d

scription of spatial excitations relative to this dynamic state.
For strong dissipation the reference state can change on tind
scales comparable to the relaxation times for small spati
perturbations. Since the asymptotic reference state is sp
tially uniform, the hydrodynamic description dominates over

all other excitations at long times since their relaxation time . . o
luxes, and associated transport coefficients as explicit func-

increase with the wavelength of the disturbance. felns IV th bility of the time-d d
Because the reference state is not Maxwellian, there is n%ons ofe. In Sec. IV the stability of the time-dependent

reason to expect that the constitutive relations between th omogeneous cooling state is cqnsidered by linearizing the
average heat and momentum fluxes are given simply b ydrodynamlc equations arOL_Jnd It S_ome comments on the
Newton’s and Fourier’s laws, respectively. In fact, we show omparison of our results with previous studies are given
that the model kinetic equation proposed here leads to awer? as well. Finally, Sec. V provides a summary and con-
additional term in the heat flux proportional to the densitydus'ons'
gradient. Such a term has been obtained by &ual.[9], but

they restrict their results to asymptotically weak dissipation.

This precludes study of the qualitative effects of this term
described in Sec. Il under conditions of strong dissipation. In a low density gas mass, momentum, and energy con-
The Chapman-Enskog expansior{ & uses a Maxwellian as serving collisions tend to produce a local Maxwellian distri-
the reference state and therefore does not predict a limit obution of velocities. A model kinetic equation with these
the dissipation due to a slow decay of the homogeneouproperties is given by one whose change due to collisions is
cooling state distribution. In particular, it is shown that the simply proportional to the deviation of the distribution func-
contribution to the heat flux from a density gradient stabi-tion from this local distribution. The parameters of the local
lizes the longitudinal shear mode at large dissipation. Sincélistribution (local density, temperature, and flow velogity
stability plays a central role in the analysis of possible stateare determined such that the conservation laws hold. Here we
for granular flow, and since experiments and also computewant to extend this model to admit loss of energy during the
simulations have shown that highly nonlinear effects domi-collision process. The simplest way is to scale the tempera-
nate the behavior of granular media, it is essential to have are in the local distribution by a parameter measuring the
secure basis for the hydrodynamic equations used in the&nergy loss. Thus we propose the following equation for the
analysis. For all these reasons, it is instructive to studyne particle distribution functiof(r,v,t):

simple model kinetic equations of inelastic gases which al-

low controlled and detailed analysis. Although these models

do not provide a quantitative description for real granular &—f+v-Vf=—§(f—f ) 1)
media, they can isolate and clarify some important qualita- at o

tive features of the physics peculiar to granular flows.

The model presented here is an extension to dissipative . - e
gases of the well-known Bhatnagar-Gross-Kro&GK) Where{(r,F) is an average collision frequenégpecified in
model equatiofi10], which has proved to be very useful for MOre detail below and
the study of both stationary and nonstationary states of nor-
mal fluids far from equilibrium{11]. There is not a unique fo(r,v,t)=n(r,t) [ V/evo(r,t)]. 2)
modification of this equation to take account of dissipation in
collisions, but an argument is presented in Appendix A to
support a particularly simple possibility. The resulting equa-Here V(r,t)=v—u(r,t) is the “peculiar’ velocity,
tion retains all of the qualitative practical advantages of thevo(r,t)=[2kgT(r,t)/m]¥2 is the average thermal velocity
BGK equation for normal fluids. Attention is limited here to (kg is Boltzmann’s constantn is the particle mags and
the homogeneous cooling state and to those with small spas(v/o) is the normalized Maxwellian fod dimensions,

The plan of the paper is as follows. The model is formu-
ted in Sec. Il. The balance equations of average density,
nomentum, and energy are obtained from moments of the
inetic equation, and the exact solutions of the balance equa-
'@ns and the kinetic equation for the homogeneous cooling
tate are obtained. In Sec. Il the generalized Chapman-
nskog expansion for inhomogeneous normal solutions is
carried out to first order in the gradientdavier-Stokes or-

en. The result is used to calculate the heat and momentum

Il. THE KINETIC MODEL EQUATION
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where

2
v
(Z)(U/O’):(WO'Z)_d/ZEXL{—(;) } 3
P(r,t)=j dvmvVi(r,v,t) (8)
The functionsn, u, andT are identified as the local particle
number density, flow velocity, and temperature, respectively,s the pressure tensor, and
through the definitions
1
q(r,t)=J dv=mV2VE(r,v,t) 9
n(r,t)=J dvf(r,v,t), (49 2
is the heat flux. The above equations are similar to the con-
servation laws for a dilute gas with elastic collisions except
n(r,t)u(r,t)zf dvvf(r,v,t), (40 for the presence of the additional energy dissipation term
proportional to (+ €2) in the temperature equation. From
d 1 the structure of this term it is seen that- ¥ is the average
En(r,t)kBT(r,t)=f dvzmvzf(r,v,t). (40 of the relative loss of kinetic energy per particle in each

collision. Thereforee can be interpreted as the coefficient of

It is customary in the literature of granular media to define[ﬁzt';gggcg %2{';'22\/@“1& tgglse)'(zgf Bg:?nii bey Egg‘opna:‘g]rgthe
the “granular” temperature by Eq4c) without the Boltz- q g

mann constant. Since our model is formulated in the generaﬁnergy derived from the Boltzmann equation for a granular

context of kinetic theory of dissipative gases we prefer to
keep the standard definition in kinetic theory. Finallyis a
position- and time-independent constant witki &<1. As
shown below, it represents the coefficient of restitution for
inelastic collisions. Fore=1, Eq. (1) reduces to the BGK w
model kinetic equatiof10] for normal gases.

The context of this choice for the BGK kinetic model is
discussed in Appendix A. Some comments on its relevancehere C is a constant depending on the dimension of the
here are appropriate. For elastic collisions, the right side ofystem.

Eg. (1) describes a detail balance condition whereby the col- Consider now the basic homogeneous solution of Egs.
lisions drive the system towards a local equilibrium distribu-(5)—(7) defined by the conditions
tion. In the presence of external forces or boundary condi-

The form of can be made more explicit by identifying it
as the average collision frequency for the Boltzmann gas.
Only the case of hard sphere interactions is considered, for
hich ¢ has the form

L(r,t)y=Cn(r,t)T(r,t)2 (10)

tions, there is a competition between this collisional detail upy=0, VTp=Vn,=0, V.q,=0, (1)
balance and the external constraints, leading to possible sta- . .

tionary distributions quite different from local equilibrium. Which imply

In the case of inelastic collisions detailed balance is violated an,

even in the absence of external constraints, and collisions do —=0, V-P,=0, (12
not stabilize the local equilibrium distribution. This effect is at

represented by the dependence @bn € in Eq. (1). It does and

not mean, however, that inelastic collisions stabilfgein-

stead. The fact thdt, cannot be a solution follows from the aTh )

violation of energy conservation and a consequent time de- = 4n(1— €Ty, (13

pendence of ;, through its dependence on temperature. This
is apparent in the detailed derivation of the homogeneouBue to the dissipation in collisions this homogeneous state is

cooling statef,,, given below.

Multiplication of Eq.(1) by 1, v, andv? and integration
over the velocity leads to the following evolution equations
for the hydrodynamic fields:

not time independent, but its temperature monotonically de-
creases, an effect that is usually referred to as “cooling.”
Inserting Eq.(10) into Eq.(13) leads to a closed differential
equation that can be integrated. The solution is

Tx(0)

an
—£ V- (n)=0, (5 Th=7—"772 (14
1+ —
to
Ju
MnG +mnu-Vu=-v-p ©)  where t,'=(1-¢2)¢n(0)/2, n(0)=¢(n4,Tr(0)), and
T,(0) is the initial temperature. This is a well-known result
d oT d in the granular flow literature and has been derived by dif-
—nkg—+ =nkgu-VT ferent methodg$4,12], and molecular dynamics simulations
2 a2 have shown that it is obeyed at short times for valueg of
4 close to ongquasielastic limit
_ D Y. The velocity distribution function for this homogeneous
=~ (VurP-V-q 25(1 € InkgT, Y state follows from Eq(1),
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(vt f(r,v,t)=f© (1.t
h;:/ ):—éh“)[fh(v.t)—fo,h<v,t>]. (15) (r,v,t)=fO|{xi(r,0)})

pRAR VPTG RS
The distributionf,y, is obtained from Eq(2) by using the 19
hydrodynamic fields Eq11). The solution to this equation is where {xi(r,t)} denotes the hydrodynamic fields(r,t),
obtained in Appendix B. For a general homogeneous initialr(r,t), andu(r,t). Substitution of this expansion into Egs.
distribution specified at=0 the solution approaches at long (8) and (9) gives the pressure tensor and the heat flux as an
times a universal distribution whose time dependence occurgxpansion in powers of the gradients. Since the coefficients
entirely throughT(t). The universal distribution is given by are averages over normal distributions, these fluxes are ex-
pressed entirely in terms of the hydrodynamic fields and their
o use in the balance equations, E(®—(7), gives a closed set
fh(v,t)=f dx P(X)npé(vlvgex), (16)  of hydrodynamic equations.
! Terms proportional tod measure deviations from
fO|{xi(r,1)}) at each instant in time. Thus while the ref-
2 erence state may evolve rapidly at strong dissipation through
P(x)=px *P, p=p(e)= 12 (170 its dependence of;(r,t)}, these deviations “track” this
background evolution as well through their dependence on
these same fields. Similarly, the parameters of the hydrody-
wherevy=v,(t) is the thermal velocitysee following Eq.  namic equationse.g., transport coefficientsvill have a de-
(2)] at the temperaturd@p(t). The distribution functionf,  pendence on the time varying fieldg;(r,t)}. This is the
plays the same role for granular fluids as does the Maxwellcase as well for the usual Chapman-Enskog expansion about
ian for normal fluids. However, there are qualitative differ- the local equilibrium state for normal fluids. The difference
ences in the velocity dependence sirigés a superposition here is a new time scale for these fields set by the rate of
of Maxwellians including those with arbitrarily large half- dissipation. Since it is independent of the wavelength, the
widths. The distribution determining these half-widths, relaxation of the hydrodynamic modes at long wavelength
P(x), decreases slowly for large so there are significant can be slow relative to the reference state dynamics at strong
contributions from large velocities. For fixed, finitg the  dissipation. However, this interesting effect does not invali-
asymptotic behavior of the distribution function can be ob-date the modified Chapman-Enskog method, which requires
tained directly from Eqs(16) and (17) with the result only that small relative spatial perturbations remain small.
The latter is the requirement for dynamical stability of the
d reference state discussed in the next section.
Ny, prd| L, , _4pl €0 ) . ) ; .
fh(v,t)—>7pl“ - (e“vgm) — . (18 To determine the coefficients in the gradient expansion
v for the fluxes, Eq(19) is substituted into the model kinetic
equation. In addition to terms proportional to gradients of the
As a consequence of this algebraic decay, velocity momentsydrodynamic fields the time derivative of these fields oc-
of degree=p(e) are divergent. This result holds indepen- curs as well. These time derivatives can be expressed for-
dent of the dimension. Foe~1 the distributionP(x) is  mally in terms of the gradients using the hydrodynamic
sharply peaked about=1 and the velocity distributiorf,, equations. This implies a corresponding expansion for the

approaches the Maxwellian for normal fluids. time derivative in powers of the uniformity parameter
J 99 o
I1l. HYDRODYNAMIC EQUATIONS 5t = W%— 1974- cee (20)

The balance equations, Eq$)—(7), are not a closed set . )
of equations for the hydrodynamic fields until “constitutive The expansion19) and (20) allow a self-consistent deter-
equations” are obtained for the pressure tensor and heat flugination of both the distribution function and the fluxes at
expressing them also in terms of the fields. In this section w&ach order in the uniformity parameter. A primary difference
derive approximate constitutive equations which are valid tdfom the Chapman-Enskog expansion for normal fluids is
first order in small gradients of the fields. These results, tothat the contribution fromy®/at is nonzero due to the
gether with the balance equations, are analogous to thgource term in the energy equation.
Navier-Stokes hydrodynamics for normal fluids. We use an The details of this generalized Chapman-Enskog expan-
extension of the Chapman_Enskog met}{dﬂ] which ac- sion for granular fluids are carried out in Appendix C. The
counts for the peculiarities associated with nonconservatiodistribution function to zeroth order in the gradients is found
of the energy and a resulting reference state that differs frorfP be
the local equilibrium state for normal fluids. The distribution
function for the hydrodynamic state is normal, i.e., it de- (0) _ _[”
pends on space and time only through the hydrodynamic FPMixarob L dx POON(r 1) ¢(V/voex), (21)
fields. Consequently, for weakly inhomogeneous states it can
be expanded in powers of the gradients of these fiflis ~ wherevy=uv(r,t) is now the thermal velocity determined
mally measured by a uniformity parameigmssociated with  from the nonequilibrium temperatuiigr,t). This is a super-
each gradient operator position oflocal Maxwellians, and represents the extension
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of the globally homogeneous distribution, E{.6), to its ¢ JT d
local form. The contribution from first order in the gradientsinksﬁ+ EnkBuo vT
is

FRV XD =AY {x;(r,H}-Vn(r,t) = 25”(1_ €2)kgT

+ ALV {x;(r,H)}):Vu(r,t)

+(Vu):| 7 +V.(kVT)

2
Vu+(Vu)+—aIV-u

+AT(v,{xj<r,t>})-VT<r,t>.(

+V-(uVn)—nkgTV-u. (280

First order differential equations determining the functions ) S )
A, A, andA; can be found in Appendix C where it is The detailed derivation in Appendix C shows that these re-
verified also that the usual solution for normal fluids is re-Sults hold only fore*>1/2; otherwise the contributions of
gained for e=1. However, the term proportional to firstorder in the gradients to the heat flux diverge. It is pos-
difference between granular and normal fluids. Furthethe divergence moves to larger valueseofindicating that
analysis of the consequences of this term is given in the nexhe Chapman-Enskog expansion IS only asymptotic for any
section. value of €2 greater than 1/2. In either case, convergent or

The pressure tensor and heat flux can be calculated dasymptotic, this establishes the maximum value of the dissi-

rect'y to first order in the gradients using qul) and (22) pation in collisions which is Compatible with Navier-Stokes
in Egs.(8) and(9), with the results order hydrodynamics according to our kinetic model. It is

tempting to speculate that this result might be associated

2 with the phenomenon of inelastic collapse which has been
P(r,t)—nkgTl = 5| Vu+(Vu)"—IV-ul, (23  opserved in molecular dynamics simulation of a two-
dimensional gas of inelastic disk5]. A similar effect had
g(r,t) = —«VT—uVn. (24)  been previously documented in one dimensfdri6]. The

limitation found hereg=0.7, is close to the value for which
The equation for the pressure tensor has the same form #se collapse is observed in R€L5]. Nevertheless, we do not
that for a normal low density gas in the Navier-Stokes ap-have any solid physical reason to relate both results.
proximation(i.e., Newton’s viscosity layv The first term on
the right side of the equation for the heat flux corresponds to IV. STABILITY OF THE COOLING
Fourier's law in normal hydrodynamics, while the second HOMOGENEOUS SOLUTION
term reflects a coupling between density gradient and heat
flux due to the inelastic collisions and has no analog in nor- According to the analysis of Sec. Il the Navier-Stokes

mal fluids. The shear viscosity coefficientis equations, Eqs(28), admit the basic homogeneous solution
defined by Eqgs(11)—(13). Here we use the Navier-Stokes

2nkgT order equations to study the linear stability of the homoge-

= m (25 neous state. Small perturbations of the hydrodynamic fields

about this state are defined by

The heat conductivityx and the new transport coefficient
W are on(r,t)=n(r,t)—ny, dou(r,t),

_(d+2)(2€' =22+ 1)nkg T ST(r,t)=T(r,t) = Ty(t). (29
o 2(2€—1)’m¢ ’ (28

Substitution of Eqs(29) into Eqgs.(28) and linearization in
(d+2)e(1— €%)(kgT)? the perturbations gives

K= Ee—1)(2—1)2m¢ @27)

J
—on+n,V-éu=0, (30)
In the limit e—1 the coefficientu vanishes whiley and « ot
reduce to the shear viscosity and heat conductivity obtained
from the BGK model kinetic equatiofi4]. d
Finally, combining these fluxes with the balance equa—mnhﬁ‘qurnthV5-|—+TthV5n
tions gives the Navier-Stokes order hydrodynamic equations:

d—2

_ 2
7h V<ou+ d

Z—?+V~(nu)=0, (289 V(V-ow|=0, (31)

d o _ 3 d
EnthE oT+ T(l_ € )nth§h5T+ E(l_ € )kBThé’hén

2
Vu+(Vu)+—aIV~u)

ou
mnE+mnu-Vu=V~[77

—V(nkgT), (28b) +npke TV - Su— K, V26T — u,V26n=0. (32
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Heren,, is chosen to be the initial average number density 05

1
nh=vf drn(r,0) (33 -
andTy(t) is the solution of Eq(13) with the initial condition 0
1 -0.25
Th(0)= Nj dr n(r,0)T(r,0). (39
0571

In the above expressiomMsandV are the number of particles
and the volume of the system, respectively. 075

These linear equations have time-dependent coefficients.
However, with a suitable change of variables they can be , , , ,
transformed to linear equations with constant coefficients. 0 0.2 0.4 0.6 0.8 1

First, dimensionless time and lengths are introduced by k
t Lh() FIG. 1. Hydrodynamic modes given by the dispersion relation in
T= J dt’' Zn(t’), I= r. (35 Eqg.(42), with e=0.75. The three modes are réabnpropagating
0 vo(t) and the longitudinal shear mode is unstable for all values of the

. . . . wave-numbek.
The physical meaning of is the cumulative number of col-

lisions suffered by a particle in the interval (0, The space g similar expressions fov and 6. Sincer is a monotoni-
scaling is time independent for the case of hard spheres we,| ;. increasing function of, the condition for stability is
are cons!derlng. Flna_llly, dimensionless hydrodynamic fieldges g The equations which govern the components of the
perturbations are defined by velocity perpendicular to the wave-number vectorde-

ST(r 1) Su(r,t) couple from the rest of the equations and represkentl
o(l,7)= T (t’) . ow(l, T :—(£)’ degenerate shear modes, with the dispersion relation
v
h 0 . )
on(r,t) Stranszz(l_ez)_ 2+1° (40)
p(l,7)= o (36)

) ) ) _There shear modes become positive KetkZ,.,, where
In terms of these new variables the linearized hydrodynamic

equations have constant coefficients and read . 1—et\12
p ktrans: T (41
L +v,-w=0, @37a | | |
JT However, this does not mean that velocity perturbatiéus
grow in time since they have been scaled to the thermal
w E(l— Aw+ EV (0+p) velocity of the homogeneous state in the above analysis. In-
it 2 2! P stead it shows thafu decays more slowly than this thermal
velocity, i.e., the cooling rate is greater than the relaxation of
5 -2 the shear modes. After an initial transient period the linear
T2 Viw+ d Vi(Vi-w) | =0, (37D analysis is no longer valid because terms nonlinear in the
macroscopic velocity become important. This effect has been
90 1 analyzed by Goldhirsch and Zand®i and used as the start-
dﬁ— +d(1—€?) §9+p +2V,-w ing point to propose a physical mechanism for the formation
T of high density clusters.
The other three modes are given by the solutions of the
_vU2( % * —
Vil 0+u*p)=0, (379 dispersion relation
where we have introduced , K*(1+ €2)+2(d—1) . (1, ,
2 S d(1+ €2 kS_Z(f_l)
1* (€)=24n(D) () [Npkgvi()], (1+e)
% (&)= 22n(t) m( ) TkaTr(D02(1) 38) 3d— k* +4€>—de’+ k* E4k2 2k*(d-1) ,
Mmo€)= gh( M€ [ B h( Uo ] 2d(1+€2) d2(1+62)
The dependence of and i on € is given in Egs.(26) and 1- & . %
27). = e S B e, (42)
To identify the linear modes and dispersion relations of 4 2d

Egs.(37), we look for solutions of the form . o _ .
Figures 1-4 show this dispersion relation for a two-

p=p(s,k)esrik ! (399  dimensional system and four valueseofOnly the real parts
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0.2 : : : : 0.1
0
0.2
0.4
08¢ 0.2 0.4 06 0.8 1 05, 0.2 0.4 06 0.8 1
k k '

FIG. 2. The same as in Fig. 1, but fer=0.80. The three modes FIG. 4. The same as in Fig. 1, but now fe+0.95. In this case
are still real in all the plotted range &f but now the longitudinal k?éngzo-Zl, and the sound propagating modes appeak$c0.03.
shear mode becomes stable ko¥ kig,,=0.6. Notice that the short wave-number part of the spectrum simplifies

as the value of increases.

of the propagating modes have been plotted. Let us focus on
the leading eigenvalue, which is always real and positive fodoes not depend on the dimension of the system, and also
small enough values df . It is easily identified as the ex- that the existence of the two different behaviors is a direct
tension to granular fluids of the longitudinal shear of normalconsequence of the density gradient contribution to the heat
fluids, and we represent it bg(,,q. Comparison of the sev- flux. If u*(e)— 0 thensy,o(k— ) is always negative and a
eral curves indicates that there is an important qualitativdinite value ofk* (e) always exists.
change in the behavior of this mode at a given valtie For For e<e*, the longitudinal shear mode is unstable for all
e<€e* it remains positive for all values of the wave number values ofk. That means that there are always instabilities
k, while for e>€* it becomes negative fdr larger than a  with a wavelength covering all the system, independent of
critical valuek* (e). The value ofe* can be obtained from the size of the system. Consider next the caseofe*.
the k—o behavior of Eq.(42). In this limit there is a real There is always a value of the wave numbef, (¢), such
solution given by that for k>kig, all the modes are stable, while flrkig,,
s x o« the heating mode is unstable. The functilqthg(e) is ob-
d(@+eT)(«* —p7) (43  tained from Eq(42) by settings=0. The positive root of the

4k*(d=1) equation is

SIong( K—o0)=—

The sign of the right-hand side of this expression is deter- d(1-¢€%) )1’2 44
44

mined by the factoix* — u*. Using Eqs.(26) and(27), one Téng('f):(m
gets that* — u* >0 for 0.626s €2<1, andx* — u* <0 for #
0.5< €2<0.626. Thereforeg* =0.79. We note that this value In Fig. 5 we have plotted this function, also for= 2, in the

interval 0.65<°<1, since fore— e*, kit (€) diverges, as

0.2 : . : . discussed above. The functifi,,sis included for compari-
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FIG. 3. The same as in Fig. 1, but fe=0.85. Now there are €

intervals of values ok in which two of the modes are complex, i.e.,
propagating. They correspond to the standard sound waves. Only FIG. 5. The critical wave numberk},,. (dashed and kfgng
their real part is plotted. (solid) as functions ofe.
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son. It is seen that ds is decreased, the first effect which cludes the possibility of exploring the microscopic origin of
appears is the slow decay of velocity fluctuations associatethe hydrodynamic instabilities, and also instabilities which
with the transversal shear modes, except very close to thare not of hydrodynamic nature. Finally, we mention work in
critical valuekjy,,. As k is decreased further, the longitudi- progress to investigate the stability of a state representing
nal shear mode becomes also unstable, with the instabilityniform shear flow, for which the exact solution of the model
growing algebraically in time. kinetic equation also can be obtained. In a different direction,
Hydrodynamic modes of a uniform granular medium havethe model can be extended directly to kinetic equations for
been studied recently by McNamafd], using a fluid-  the dynamics of nonequilibrium fluctuations at one and two
mechanical model. His results are qualitatively similar totimes[17].
ours for values ok very close to one. In particular, he also  The BGK model for normal fluids has an underlying basis
derives expressions fdty.,sandkig,g, which tum out to be i the Boltzmann equation. It is well known that the Boltz-
proportional to (1 ¢%)** as in Eqs.(41) and (44). Never-  mann equation is anomalous in one dimension. Thus, al-
theless, the hydrodynamic equations he uses do not contajo,gh we have developed most of our calculations for arbi-
the term proportional to the gradient of the density in thettrary dimension, its application to the one-dimensional case
heat flux and, therefore, they do not predict a critical value of,, "o hroblematic and we do not expect our present model
the restitution coefficient. For values efnot very close to to describe the kind of behavior discussed in RE2s18].

one, the behaviors of the modes predicted by our model A'Riso, the Boltzmann equation is limited to low density and

more complex than those resulting from his hydrOdyI’]am'(‘\this is reflected in the quantitative features of our BGK

equations. We refer the reader to his careful and illuminatin . . .
discussion of the implications of the instability of the homo—andel here as well. We peheve_that a_detall_e(_j analy5|s of the
Boltzmann kinetic equation for inelastic collisions will show

geneous state. h h litative f fth . db
In a given system, the smallest wave numb,grallowed that the qualitative features of that equation are preserved by

for a perturbation or fluctuation will be determined by the the BGK model, both at the hydrodynamic and kinetic levels.

system geometry and the boundary conditions. We can esti-NiS is certainly the case for normal fluids, where the direct
mate this value as given byrL, whereL is the parameter Monte Carlo simulation methofil9] has been applied to
characterizing the size of the system. Taking into accoungompare results from both the BGK and Boltzmann equa-
our choice of dimensionless unitis,=vo/(£,L), which is tions. This method applies even to states far from equilib-
proportional to the mean free path in the basic homogeneou#m and its accuracy is well established. There should be no
state. Ifk,>k* , the basic homogeneous solution is asymp-difficulty in extending it to the inelastic ca$e0].

totically stable, since fluctuations which would lead to a di- From a more practical point of view, the generalized
vergent behavior are impossible, whilekif <k* the homo- Chapman-Enskog expansion described here can be applied to

geneous state is unstable. an extension of the dense fluid Enskog kinetic theory for a
realistic description of granular media. Previous work in this
V. CONCLUDING REMARKS direction has been limited to the quasielastic limit. We plan

to discuss the derivation of hydrodynamics from the Enskog
In this paper a model kinetic equation has been proposedquation, and extensions of both the kinetic model and the

to study the dynamics of a gas of particles which collideMonte Carlo simulation method to this dense fluid equation.
inelastically. In spite of its apparent simplicity, the model

leads to a quite intricate collective behavior of the fluid, and
to_ results which are Compatiblt_e, at least at a qualit_ative level, ACKNOWLEDGMENTS
with what has been observed in computer simulation. In par-
ticular, it predicts the instability of the uniform cooling state, The research of J.J.B. was partially supported by Grant
and reproduces the physical mechanisms which have beeo. PB95-0534 from the DirecainGeneral de Investigaaio
found responsible for the formation of clusters in granularCientfica y Tecnica (Spain. The research of J.W.D. was
media by using other theories. On the other hand, the mod@upported by National Science Foundation Grant No. PHY
can be exactly solved for particular states of the fluid. Thisg312723. The authors are grateful to Professor M. Erns for a
allowed us to compute the velocity distribution correspond-critical reading of the manuscript.
ing to the uniform state, which is needed to obtain the hy-
drodynamic equations to first order in the gradigiMavier-
Stokes approximation The heat flux is given by the usual APPENDIX A: ORIGIN OF THE BGK MODEL
Fourier law plus an additional term proportional to the den-
sity gradient. This term has been obtained in the study by The BGK model introduced in Sec. Il is intended to cap-
Lun et al.[9] but their analysis is restricted to the quasielas-ture the most important physical and structural features of
tic limit since they have performed the Chapman-Enskoghe Boltzmann equation. It has been used widely with great
expansion about a local Maxwellian reference state. Since guccess for the case of elastic collisions, and the objective of
is proportional to (1 €) it is small at weak dissipation and this appendix is to motivate its relevance for inelastic colli-
usually neglected. We are not aware of any other considesions as well. The Boltzmann equation for this latter case is
ation of this density gradient term in the stability analysis of[20]
the cooling state.

The broad scope of problems which can be addressed
with this model should be emphasized. For instance, it in- (o +v-V)f(r,v,t)=J[f,f], (A1)



54 MODEL KINETIC EQUATION FOR LOW-DENSITY GRANULAR FLOW 453

o R This means that the collision rate can vary with the local
J[f.f]EUZJ dVlf do®(o-g)o-d density and temperature of any nonequilibrium state, but that
the detailed dependence on the velocity is assumed to be not
X[ 2(r,v' 1) f(r,v],1) essential. With this approximation in E@t9) the constraints
(A3) lead to
f(r,v,t)f(r,vy,t)]. (A2) 1 n(r.0)
Equation(A2) defines the nonlinear Boltzmann collision op- f dV( v) h(r,v,t)= ( n(r,t)u(r,t))' (A9)

erator in terms of the restituting collisionsy’=v
—(2¢) Y1+ e€)(o-g)0 and  Vi=vi+(2¢) Y(1+e) 1 3 W
(0-g)o. Here,o is a unit vector defining the integration over f dvzmvzh(r,v,t)= En(r,t)kBT(r,t)—(l— €)—.

the spherical surface of the colliding pair of particlesjs éEAlO)
the hard sphere diameter, age v—v; . It is straightforward

to verify the following properties of the collision operator: The right sides of these equations are functionals of

f(r,v,t) through their definitions, Eqs.4). The second

0 and final assumption of the BGK model is thiafr,v,t)
\Y m ” . . . .
jdv Jf.f]= 0 , (A3) can be replaced by the “best dlstr|but|_on fL_mctlon
) ) subject to knowledge of only these constraints, i.e., that
Smo (1-e)w which maximizes the information entropy, S[f]
= — [dvh(r,v,t|f)Inh(r,v,t|f). A straightforward calcula-

m tion leads to

w(r,t)=

’770'2
16 f dvdv, f(r,v,t)f(r,vy,t)v—v,|3.

(Ad) h(r,v,t|f)—fo(r,v,t|f)

(For simplicity, here and in the remainder of this appendix
we limit attention to the case of three dimensignd/ith
these results, the balance equati@his-(7) are obtained ex-

_ m 3/2
=”(r’t)(zkaT'(r,t))

cept with the source term in the temperature equation, MV u(r, 012 2ke T (0]

—(1— €))3/2nksT¢, replaced with—(1— e2)w. The BGK xe ! (ALD)
model kinetic equation is obtained by using a simpler, more )

practical collision operator ifA2). In many cases the pri- T =T(r t){l— 2(1—€e7)w(r,t) (AL2)
mary interest is in transport associated with the balance ' ' 3nkgT(r,t)(r,t)|"

equations, so the conditions given by Eq4.3) will be nec-
essary constraints on its choice. Use of Egs.(A8) and(A1l) in Eq. (A5) defines the BGK
The Boltzmann collision operator has two contributions,kinetic model for the collision operator

representing scattering out of the velocity statend scatter-

ing into this state. Hencd[ f,f] can be written in the sug- Jggu[f,f]1=—2(n(r,1),T(r,t))

gestive form

A F=— DD —h(r vt H],  (A5) X[Hrv.D=To(rv.t D] (A13)

It preserves the condition®3) by definition and hence im-

plies the same macroscopic balance equations as the Boltz-

A R mann equation. In the special case of elastic collisions,
é(V|f)=sz dVlf do®(o-g)|o-g/f(r,vy,t), (AB) =1, the usual BGK model for the Boltzmann equation re-

sults. However, the “derivation” described here makes no

h(r,v,t|f)=¢(v|f) to? assumptions specific to elastic collisions. The basic idea is
that the macroscopic balance equations and associated mac-

with the identifications

o roscopic fields are the most important ingredients of the de-

Xf dVlf do@(o-g)o-gle? scription. Detailed velocity dependencies of the collision
process are assumed to affect only quantitative rather than

XE(r v OF(r V). (A7) qualitative dynamics. For elastic collisions, the assumption

of maximum information entropy leads directly to the correct
The notation indicates that bothand h are functionals of Stationary solution. For inelastic collisions, detailed balance
f. To construct the BGK model we first restrict this func- is violated so no solution td[f,f]=0 occurs. Instead, the
tional dependence to occur only through the macroscopifomogeneous cooling state occurs from an imbalance be-

fields,n(r,t), T(r,t), andu(r,t) as defined by Eq¢4). The  tween collisions into and out of the velocity state This
first approximation is to rep|ac€(v|f) by a Ve|0city_ imbalance is preserved in the BGK model thI’OUgh the dif-

independent function ference between the temperatdrér,t) associated with the
distribution functionf(r,v,t) and the effective temperature
L(V|f)—=Z(n(r,t),T(r,1)). (A8)  T'(r,t) associated with the distribution functidr{r,v,t).
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Dimensional analysis leads to the result Finally, a change of variables to integrate ovar (T)?
instead ofT gives the desired result,

3
o 5 nksTS. (A14)

(OW(r.0h= [ “ax Pon(r0 (Vo) (86)
In the text we choose the simplest case for which the pro- !

portionality constant in this relation is unity. whereP(x) is given by Eq.(17). This is the result21) used

in the main text. The corresponding global solution given by
Eq. (16) follows from this local solution for the special case
of constant density and vanishing flow velocity.

In this appendix the derivation of the global homogeneous

APPENDIX B: GLOBAL AND LOCAL
HOMOGENEOUS SOLUTIONS

solution (16) and its extension to the local forf21) is de- APPENDIX C: THE FIRST CHAPMAN-ENSKOG

scribed. It is sufficient to consider the latter since the former APPROXIMATION

follows as a special case. The kinetic equation to lowest ) o
order in the uniformity parameter is given by Here the generalized Chapman-Enskog expansion is car-

ried out to first order in the uniformity parameter. Substitu-

99 © tion of Egs.(19) and (20) into the kinetic equation and re-
- T V{xi(r, 0} taining terms of first order in the uniformity parameter gives
_ (DFO)  HOF(D)
={(O)fo(v,r,1), (B1) 9 (0)— _ #¢(1)
o VLV 40

where fy(v,r,t) is defined by Egs(2) and (3). The only
contribution to the time derivative at lowest order in the The terms involvingf(®) are calculated as follows:
uniformity parameter comes from the temperature

50 P (D © EHONE )
S O Oh =~ (1= T = (7”“7 el eyt (€
ot aT
(0) _ where the dots on the right side denote corresponding terms
X O Do), (B2) from partial derivatives with respect b andu. The time
and Eq.(B1) simplifies to derivatives of the hydrodynamic fields appearing on the right

side have contributions of first order in the uniformity pa-
((1 27 d 1)f(0)(V|{ r.ob) rameter given by Eq¥5)—(7),
—€)l == Xill,
aT

dYn
=—Tfo(v,r,t). (B3) at +V-(nu)=0, €3
It is now straightforward to integrate this equation from sy
To=T(ty) to T=T(t), assuming a given initial distribution mn +mnu-Vu=-V.pP9, (C4)
as a function ofT(ty), obtaining
T|He d o1 d (0) 0)
f(O)(VHXI(r’t)}):(T_O) f(o)(V,To) EHKBT‘FEHKBU'VT:_(VU):P _Vq .
(CH
TodT' [ T 1/(1- €2)
+(1—62)*1f —,(—,) The lowest order pressure tengdf) and heat fluxg® are
T TOAT calculated directly from Eq498), (9), and (64) with the re-
Xn(r.) ¢(Vlev)), (B4 Sults
where the explicit form forf, given by Eq.(2) has been PO(rt)=n(r,HkgT(r,t)l, q(r,hH=0. (CH)

used, and is the thermal velocity as a function @f. For ) )
T<T, the first term on the right side becomes negligible and/se of these results i(C2) gives
the solution approaches a universal form independent of the

initial conditions. Formally, this universal form is identified g 0)_ )
by integrating from infinitely high temperaturd {— o), (TJFV'V f7=B, Vn+By:Vu+Br- VT, (C7)
dT [ T\ M2 with the functionsB,, B,, andB, defined b
(0) . (1—-eH 1| ——| — n Bus u y
fOV{Xi(rHD—(1-¢€) L T (T’) 2
® 1
<n(r)é(Vevt). (85) B,= L dx P(x) p(V/vgex)V 1—(—62)(2) } (C8)
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% _2 fined by Eqs(8) and(9). Use of the form(C12) leads to the
Bu= f dx POx)n(r,t) ¢(V/vex)2(voex) Navier-Stokes order fluxes given by Eq83) and(24), with
1 . . - X
the shear viscosity, thermal conductivity, anddefined by
X (VV —d~1V2), (C9

1 1
. 77=—f dvmV,Vy (A, Kz—af dvsz2V~AT,
BT=f dxP(X)N(r,t) p(V/vgex)(voex) 2T v

1

10 1
p=—g| dvzm\AV-A,. (C16)

d
X V2—vg—§(voex)2 : (C10

The above equations féx,,, A,, andA; now can be used to
obtain the corresponding equations for the transport coeffi-
cients. They read

With these results EqC1) becomes

90
(Wu fU=—(B,-Vn+B,Vu+B;-VT). 5 T
I _ 2
(C1) ((1 € )T(ﬂ_ llu+(l—c¢€ )nK
The terms occurring on the right side suggest looking for a .
solution of the form _ 3mug 442 (1-€%)? 17
- 8d¢ ( ) ST
fU=A,-Vn+A,:Vu+A7- VT. (C12
o 0 mvé
Substitution of this form into EqC11) and equating coeffi- (1=e)T7-1|7= N (C18
cients of the independent hydrodynamic gradients gives the
equations forA, ,A,, andAr,
1-€)T i ! 1-3¢?
o d , T » (A=eNTor 517360 |«
(1=e)T=—1|An+(1-€)-Ar={"By,
(C13 3mud , (26*—2€2+1) 1o
= Ngar 9t Tz (C19

((1—62)T%—1)Au=§_15u, (C14
The right hand sides afc17) and(C19) result from velocity
moments of degree 4. According to the discussion following
. (16) these integrals exist only ip(e)>4 or, equivalently,
Ar={""Br. (C19 €’>1/2. The existence of hydrodynamics for our kinetic
model at Navier-Stokes order is therefore limited as well by
It is a straightforward but lengthy calculation to construct thethis condition.
solution to these equations by integrating from an infinite Equations(C18 and (C19 can be integrated directly to
initial temperature, as was done in Appendix B. Here, we ar@btain » and«. Then, use of this result foe in (C17) gives
interested primarily in the heat and momentum fluxes dew. In this way Eqs(25)—(27) are obtained.

1—2Ti+11—32
(1-e)Tor+5(1-3€)
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