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San Carlos de Bariloche, 8400 Bariloche, Argentina
~Received 30 October 1995; revised manuscript received 25 April 1996!

We present in this paper a theoretical study for the survival probability of a system of independent walkers
in the presence of a dynamic trap by using the multistate continuous-time random-walk approach. The results
presented are exact for any switching-time probability density controlling the dynamic of the trap, in the
one-dimensional case without bias. The influence of a non-Markovian dynamic for the trap is presented and a
comparison with a finite relaxation model is established for the long-time limit.@S1063-651X~96!07010-9#

PACS number~s!: 05.40.1j, 05.60.1w, 02.50.1Ey, 82.20.Fd

I. INTRODUCTION

The survival probability~SP! is a magnitude of funda-
mental importance in many physical and chemical phenom-
ena @1#. Blumen and co-workers@2# have considered the
problem of the SP of oneA and severalB particles such that
theA particle is annihilated at the encounter of aB particle.
Depending on which of the species performs the motion, a
distinction is made between thetrapping ~only theA particle
moves!, the target ~only theB particles move!, and themov-
ing target ~both species move! models.

As an important application of thetarget problem we
mention the Glarum model for dipolar relaxation@3#. In this
model each dipole is supposed to reorient itself in some man-
ner leading to a single relaxation time. It is further assumed
that there are a number of mobile defects also such that when
a defect reaches a dipole, this relaxes instantly. The relax-
ation is described by the response function

C~ t !5exp~2 t/t!F~ t !, ~1.1!

with F(t) the probability that no defect has reached the di-
pole position by timet ~SP!. On the other hand, the expo-
nential contribution takes into account the relaxation of the
dipole in a defect-free region with relaxation timet. In his
proposed solution, Glarum imposed the restriction of taking
into account only the nearest defect at timet50 for calculat-
ingF(t). Bordewijk @4# generalized this model by letting the
dipole to be relaxed by any of the defects present in the
system with concentrationc.

A generalization of the Glarum model was proposed by
Condat@5#, eliminating the assumption of instantaneous re-
laxation by introducing a finite probability that the dipole is
relaxed upon being reached by the defect. This problem was
solved through the master-equation formalism. This formal-
ism was also used by Condat to give an explanation for the
closed-time distribution for ionic channels in cell membranes
@6#.

In a recent paper@7# we started with a generalization of
the target model, which allows an encounter ofA and B
particles without annihilation depending on an internal state

of particleA. Only if theA particle~which will be designed
as ‘‘the trap’’! is active, the annihilation will take place. If
the trap is inactive it behaves as a regular site. This problem
is related to that of particles diffusing in the presence of a
gate that opens and closes at stochastic times@8,9#. Szabo
et al. have used this approach in order to study diffusion
reactions where the reactivity of the species fluctuates in
time, particularly when the accessibility of a binding site of a
protein is modulated by a gate.

II. SURVIVAL PROBABILITY CALCULATION

Consider an infinite lattice with a dynamic trap in a given
site, i.e., an absorbing site whose properties change in time.
Assuming that att50 there is a random distribution of non-
iteracting walkers with a specified concentrationc that are
allowed to perform a Markovian random walk on the lattice,
we have studied the problem of the absorption of these walk-
ers by the dynamic trap@7,9#.

In our model we characterize the changing properties of
the trap by switching between a perfect trap state and a regu-
lar site state~no trap present!. The process is controlled by
two switching-time probability densities denoted byf i j (t),
where f i j (t)dt is the probability that the trap, having ac-
quired the statej at t50, makes a transition to statei be-
tween t and t1dt. The subindicesi , j ( iÞ j ) can take the
values 1~active or perfect trap state! or 2 ~inactive or regular
site state!. Upon arriving at the trap site, the walker may be
absorbed~it leaves the lattice! if the trap is active or if the
trap activates before the walker jumps to another site.

The absorption of a walker can model the relaxation of a
target in the Glarum model. Of course, in a real material the
defects modeled by the walkers are not absorbed, but con-
tinue their walk whether or not the target relaxes. However,
from the point of view of the target under consideration, the
process terminates when the relaxation occurs.

Following Bendler and Shlesinger@10#, to calculate the
survival probability we assume the trap situated at the origin
of a lattice ofV sites withN independent mobile walkers
uniformly distributed, but initially excluded from the origin
on this lattice~this picture corresponds to the dipole and
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defects in Bendler model!. In this way the probability that a
given walker is initially at a particular sites0 is V

21.
We define SP as the probability that no walker has been

absorbed by the trap by timet. As we are considering a
dynamic trap, the first-passage time density in Eq.~38! in
@10# must be replaced by the absorption probability density
~APD! determined in@7#, giving

F~ t !5H 12V21 (
s0Þ0

E
0

t

dt@R11~0,s0 ;t!P1

1R12~0,s0 ;t!P2#J N. ~2.1!

In Eq. ~2.1! we have considered both possibilities: the trap
is initially active~with probabilityP1! or inactive~with prob-
ability P2512P1!. We assume a uniform probability distri-
bution for the initial position of the walkers.

In the thermodynamic limitN,V→`, with c5N/V
5const, the walker concentration, the SP results

F~ t !5expH 2c(
s0Þ0

E
0

t

dt@R11~0,s0 ;t!P1

1R12~0,s0 ;t!P2#J . ~2.2!

Since our analytical expression for the APD is given in
the Laplace representation, we continue the calculation, tak-
ing the Laplace transform of the exponent in~2.2!

s~u!5LH (
s0Þ0; i51,2

E
0

t

dtR1i~0;t!Pi J
5
1

u (
s0Þ0; i51,2

R1i
0 ~2s0 ;u!

R11
0 ~0;u!

Pi , ~2.3!

whereL stands for Laplace transform and we have used the
solution as expressed in Eq.~21! of @7#. We wish to remark
that this is a general result for a set of noninteracting walkers
in any arbitraryD-dimensional lattice.

III. GENERALIZED GLARUM MODEL

In the previously cited papers@7,9# we have presented an
explicit expression for the APD in the one-dimensional case
without bias, characterized by the walker mean waiting time
(^t& w

215lw) at any lattice site. The APD is given in terms of
R1i0

, which are, in this case,

R11~0,s0 ;u!

5

g
r~uw!

r~ut!
@11ut2r~ut!#

r1@11uw2r~uw!# r

11g
r~uw!

r~ut!

,

R12~0,s0 ;u!5

@11uw2r~uw!# r2
r~uw!

r~ut!
@11ut2r~ut!#

r

11g
r~uw!

r~ut!

,

~3.1!

where we have used the definitions

r5u02s0u, r~x!5Ax~21x!,

f 12[ f 12~u1lw!, f 21[ f 21~u1lw!,

g5
f 21
f 12

S 12 f 12
12 f 21

D , Q5
12 f 12f 21

~12 f 12!~12 f 21!
,

uw5
u

lw
, ut5

Q

lu
~u1lw!21. ~3.2!

To obtain an explicit expression for the SP we substitute
expression~3.1! into ~2.3!. In this situations(u) takes the
form of a geometrical series, which may be evaluated to

s~u!5
1

u

2

uw1r~uw!

11
r~uw!

r~ut!

uw1r~uw!

ut1r~ut!

Mg21

M11

11g
r~uw!

r~ut!

, ~3.3!

with the definitions given in~3.2! andM5P1/P2 . We wish
to emphasize that formula~3.3! is exact for every switching-
time density of the trap:f i j (t). The static trap@P151,
f 21(u)50# and the always nonabsorbing site@P251,
f 12(u)50# can be straightforwardly reobtained from~3.3!.

A. Asymptotic limits

Here, we consider the behavior of the SP exponent in the
limits: t→` andt→0. The calculation is carried out by using
the exact expression given in~3.3! for s(u) and considering
the corresponding limitsu→0 andu→`. To study the long-
time limit we approximate the Laplace transform of the
shifted switching-time probability densities, as given in
~3.2!, in theu→0 limit, by

f 12.a21b2u,
~3.4!

f 21.a11b1u,

where we have defined

ai5 f j i ~lw!, bi5
d f ji
du

~lw!, iÞ j . ~3.5!

This approximation is valid for anyf (u) since the shift in-
troduced by the Laplace transform~see@7# and @9#! elimi-
nates any possible anomalous behavior in theu→0 limit,
inherent in the trap dynamic. Substituting~3.4! into ~3.3! for
s(u) and keeping up to the third order of correction, we get
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s~u!.
A2lu

u3/2
2
1

u S 112
g0
r0

D1A 2

lwu
F141

g0
r0

S 112
g0
r0

D
1

2

r0~u01r0!

Mg021

M11 G , ~3.6!

with the new definitions

g0[g~u50!5
a1~12a2!

a2~12a1!
,

u0[ut~u50!5
a1

12a1
1

a2
12a2

, ~3.7!

r0[r~ut5u0!5Au0~21u0!.

From ~3.6! and using a Tauberian theorem, we get, fort→`,

s~ t !.A8lwt

p
2S 112

g0
r0

D1A 2

lwpt F141
g0
r0

S 112
g0
r0

D
1

2

r0~u01r0!

Mg021

M11 G . ~3.8!

This series expansion coincides with that of Condat~Eq.
~4.5! in @5#! up to second order, identifyingg52r0/g0, where
g is the absorption probability rate defined in@5#. In making
the comparison it must be kept in mind that Condat’s solu-
tion is expressed in the particular time scalelw52. We wish
to emphasize that this coincidence holds only in the long-
time limit, differing both approaches in other time ranges, as
will be shown for some particular cases.

On the other hand, the short-time behavior is calculated
from the limit of ~3.3! for u→`. In general, we may only
assume that in the limitu→` f (u)→0, which allows us to
calculate the leading term of the series expansion for~3.3!.
Using an Abelian theorem, the short-time behavior is for
t→0

s~ t !;lwP1t. ~3.9!

We can go no further without an explicit expression for
the switching time of the trap. Expression~3.9! is valid in the
limit t!^t&w and t!^t& j , the mean time for the trap in state
j . So the difference between~3.9! and the leading term in the
static trap case is given by the appearance ofP1, the initial
active state probability. But, of course, the transient behavior
of s(t) when the trap is dynamic has a nontrivial solution.

B. Particular cases

We now illustrate the exact transient, for the one-
dimensional case, from~2.3!, considering some typical
switching time for the trap. The SP exponents(t) is plotted
in the time domain. These values were numerically com-
puted using the Laplace inversion algorithmLAPIN @11#.

The first case presented in Fig. 1 corresponds to a Mar-
kovian dynamics for the switching time of the trap controlled
by f i j (t)5l j exp~2l j t! with l j

215^t& j , the mean time
with the trap in statej . In this plot we show thes(t) behavior
for different values of̂ t&2 and we have included the static
~always active! trap case. We have keptlw5l1 fixed and all
times are expressed in units of^t&w .

The change of the mean inactive time, with^t&1 fixed,
appears to have a greater influence in thes(t) behavior than
the change of the mean time^t& j when^t&15^t&2 . Therefore
an increase in the inactive mean time delays thes(t) ap-
proach to the asymptotic limit. On the other hand, diminish-
ing the inactive mean time makess(t), and consequently SP,
get closer to the static case.

The other case, presented in Fig. 2, corresponds to a non-
Markovian dynamics for the switching time, controlled by
the family of functions

f i j ~ t !5
@l j~n11!#n11

G~n11!
tnexp@2l j~n11!t# ~3.10!

with l215^t&.

The parametern gives a measure of the non-Markovianicity
of the trap dynamics, such that then50 case corresponds to
the Markovian dynamics previously discussed, while, on the

FIG. 1. Survival probability exponent vs time
for the Markovian case~see the text!. The walker
mean time ^t&w51 and the mean active time
^t&51 have been kept constant in all the cases
presented. Herêt&25* 0

`t f 12(t)dt.
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other hand, in then→` limit we get a deterministic periodic
dynamics, i.e.,f i j (t)→d(t2^t& j ).

The influence ofn on s(t) is shown in Fig. 2. In this plot
we keep fixed the parameterslw5l1510l2. The variation of
the parameterslj have an influence similar to that observed
in the Markovian case, so these plots have not been included.

An important influence of then parameter variation on the
s(t) behavior is observed. Besides the crossing of the curves
for t.1, there exists a region in the time domain of a nearly
constant behavior for great values ofn. This constant behav-
ior, in turn, delays the relaxation process~there is poor ab-
sorption of walkers in this time range!. The static~always
active! and Markovian~n50! dynamics have also been in-
cluded for reference.

IV. CONCLUSION

In this paper we have presented a systematic approach to
the SP calculation for a set of independent random walks in
the presence of a dynamic trap. This model differs from the

first-passage time approximation, denominated the static case
in this presentation, in that the relaxation upon an encounter
walker target is not necessarily instantaneous, but depends
on an internal state of the dynamic trap. The solution is pre-
sented in an exponential form and the exponent is given by
an exact analytical expression in the Laplace representation
for any probability density function controlling the switching
process of the trap.

We have explored the consequences of this generalization
in the Glarum model for the one-dimensional, non-biased
Markovian diffusion process. The asymptotic limits ofs(t)
exhibit a behavior similar to that predicted by the static trap
or the finite relaxation model@5#, the difference being given
by the coefficients of the series expansion~3.8!. However, it
can be concluded that the rate of the mean inactive time to
the mean active time is the parameter to be taken into ac-
count, when departures from the the first-passage time ap-
proximation are to be considered. In fact, an increase in the
mean inactive time,̂t&2, delays the SP’s decrease.
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@7# M. O. Cáceres, C. E. Budde, and M. A. Re´, Phys. Rev. E52,

3462 ~1995!.
@8# A. Szabo, D. Shoup, S. H. Northrup, and J. A. McCammon, J.

Chem. Phys.77, 4484~1982!.
@9# C. E. Budde, M. O. Ca´ceres, and M. A. Re´, Europhys. Lett.32,

205 ~1995!.
@10# J. T. Bendler and M. F. Shlesinger, inThe Wonderful World of

Stochastics, edited by M. F. Shlesinger and G. H. Weiss
~North-Holland, Amsterdam, 1985!.

@11# G. Honig and U. Hirdes, J. Comput. Appl. Math.10, 113
~1984!.

FIG. 2. Survival probability exponent vs time
for the non-Markovian case. In this plot^t&w51,
^t&151 and^t&2510 have been chosen for all the
curves.
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