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A procedure is described for the calculation of the generalized pair distribution functiong(r ,s,s8), where
s is a molecular random variable with distributionf (s), using generalized integral equations familiar from
simple liquid theory. The method is based on expansions of alls-dependent functions in the orthogonal
polynomialspj (s) associated with the weightf (s) and is computationally efficient. To illustrate the proce-
dure, calculations are made for a charge-stabilized, polydisperse colloidal suspension with Schulz distribution
of diameterss. The method can be immediately generalized to fluids with internal degrees of freedom, for
which f (s) must itself be self-consistently determined.@S1063-651X~96!12610-6#

PACS number~s!: 02.70.2c, 82.70.Dd, 61.20.Gy, 61.25.Em

I. INTRODUCTION

Colloidal particles are typically composed of some
10621012 atoms; modeled as solid spheres, they are thus
some 1022104 times the size of atoms. Their density fluc-
tuations in a suspension are detected by light and thermal
neutron scattering. The intuitive feeling that a concentrated
suspension of colloidal particles~stabilized against coagula-
tion! might be viewed as a ‘‘mesoscopic liquid’’ is supported
by the characteristic short-range liquid structure seen in the
scattering data@1#. The description of the structure of these
liquidlike suspensions using the tools of simple atomic liq-
uids is complicated primarily by the fact that the particles of
any given suspension display a continuous distribution of
sizes; i.e., they are inherentlypolydisperse@2,3#.

The most common approach to this problem is to inte-
grate out~at least conceptually! the molecular degrees of
freedom of the suspending fluid, such as water, and describe
the suspension as a collection of mesoscopic particles inter-
acting pairwise through a simple effective potential, typically
hard sphere for sterically stabilized suspensions and screened
Coulomb for charge-stabilized suspensions~with attendant
charge polydispersity!. These models immediately lend
themselves to theoretical methods developed for simple liq-
uids, with the added feature of polydispersity. Thus, size
polydispersity in hard sphere models has been well studied
using the analytic solution of the Percus-Yevick approxima-
tion @4–6#; charge polydispersity has been approximately
mapped onto the same model@7#, while the mean spherical
approximation~MSA! @8# and rescaled MSA@9# have been
applied to monodisperse charged colloids. The most general
theoretical method, applicable to polydisperse particles with
any potential, is the numerical solution of familiar integral
equations of simple liquids@10#. This paper is concerned
with the last of these.

In applying integral equation theory to polydisperse sys-
tems, D’Aguanno and Klein@10# deal with the polydispersity
by replacing the continuous distributionf (s) of particle di-
ameterss with a histogram for a finite set ofn well-chosen
diameters, so that a more tractablen-component mixture
substitutes for the polydisperse system. ‘‘Well-chosen’’ here

means that the histogram for the discreten-component sys-
tem reproduces the first 2n moments of the continuous dis-
tribution, a constraint that is equivalent to Gaussian integra-
tion using the zeroes of thenth orthogonal polynomial
associated with the weight functionf (s). This method
works very well for relatively narrow distributions, for which
a small number of components suffices. For broader distri-
butions requiring larger numbers of components to maintain
numerical accuracy, the ‘‘mixture’’ method using
n(n11)/2 distinct correlation functions becomes computa-
tionally costly. In this paper, we show how expansions in the
same set of orthogonal polynomials as used for the Gaussian
integration avoids the rapid increase in computational cost
for largern while retaining the numerical accuracy of Gauss-
ian quadrature.

II. POLYDISPERSE COLLOIDAL SYSTEMS

Let f (s) be the distribution of particle diameterss in a
homogeneous assembly ofN polydisperse colloidal particles
contained in volumeV at temperatureT. The density of par-
ticles at pointr with diameters is then

r~1!~r ,s!5K (
i51

N

d~r2r i !d~s2s i !L 5r f ~s!, ~1!

wherer5N/V, while the two-body density is

r~2!~r ,s,r 8,s8!

5K (
iÞ j

d~r2r i !d~s2s i !d~r 82r j !d~s82s j !L
5r2f ~s! f ~s8!g~ ur2r 8u,s,s8!, ~2!

which defines the pair distribution functiong(r ,s,s8). In
these expressions,r i is the location of particlei ands i its
diameter; the brackets denote a canonical ensemble average.

Knowledge of the pair distribution function~PDF! yields
the ‘‘measured’’ structure factorSM(k) determined from
static light-scattering experiments@1,11#,
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SM~k!

511r
*dsds8 f ~s! f ~s8!b~k,s!b~k,s8!h̃~k,s,s8!

*ds f ~s!b2~k,s!
,

~3!

whereb(k,s) is the form amplitude for spherical particles of
diameters and h̃(k,s,s8) the Fourier transform of the pair
correlation functionh5g21. Further, the PDF provides the
colloidal internal energyU and pressurep, in the form

bU

N
5
1

2
rE drdsds8 f ~s! f ~s8!g~r ,s,s8!bf~r ,s,s8!,

~4!

bp

r
512

1

6
rE drdsds8 f ~s! f ~s8!g~r ,s,s8!r

3
dbf~r ,s,s8!

dr
, ~5!

where f(r ,s,s8) is the effective pair potential and
b51/kBT the inverse temperature, withkB Boltzmann’s con-
stant. The isothermal compressibilityKT ,

1

rkBTKT
5S ]bp

]r D
T

512rE drdsds8 f ~s! f ~s8!c~r ,s,s8!, ~6!

is obtained from the related direct correlation function
c(r ,s,s8), defined below in terms ofg(r ,s,s8) by the
Ornstein-Zernike~OZ! equation. Thus the colloidal PDF
g(r ,s,s8) is the essential quantity for both structure and
thermodynamics.

In a straightforward generalization of simple liquid theory
@12#, the PDF is obtained from the combination of the
Ornstein-Zernike equation,

h~r 12,s1 ,s2![g~r 12,s1 ,s2!21

5c~r 12,s1 ,s2!1rE dr3ds3f ~s3!

3h~r 13,s1 ,s3!c~r 32,s3 ,s2!, ~7!

and the closure relation,

h~r ,s1 ,s2!5exp@2bf~r ,s1 ,s2!1h~r ,s1 ,s2!

2c~r ,s1 ,s2!1b~r ,s1 ,s2!#21. ~8!

Here, b(r ,s1 ,s2) is the so-called bridge function, which
must be approximated. To solve these equations for
g(r ,s1 ,s2), it is convenient to rewrite them in terms of the
indirect correlation functiong5h2c and deconvolute Eq.
~7! using Fourier transforms; this yields

g̃~k,s1 ,s2!5rE
0

`

ds3f ~s3!

3@ c̃~k,s1 ,s3!1g̃~k,s1 ,s3!# c̃~k,s3 ,s2!

~9!

for Eq. ~7! and

c~r ,s1 ,s2!5exp@2bf~r ,s1 ,s2!1g~r ,s1 ,s2!

1b~r ,s1 ,s2!#212g~r ,s1 ,s2! ~10!

for Eq. ~8!, which are now to be solved iteratively for
g(r ,s1 ,s2) given an approximate bridge function
b(r ,s1 ,s2). The PDF is then finally obtained as

g~r ,s1 ,s2!5exp@2bf~r ,s1 ,s2!1g~r ,s1 ,s2!

1b~r ,s1 ,s2!#. ~11!

We remark for completeness that the Fourier transform of a
spherically symmetric function such asc(r ,s1 ,s2) is com-
puted as

c̃~k,s1 ,s2!5
4p

k E
0

`

drrc~r ,s1 ,s2!sinkr, ~12!

whose inverse is

c~r ,s1 ,s2!5
1

2p2r E0
`

dkkc̃~k,s1 ,s2!sinkr. ~13!

Following D’Aguanno and Klein@10#, the final integra-
tion over s3 in Eq. ~9! could be handled with Gaussian
quadrature. Letpj (s), j50,1,2,. . . , with p0(s)51, be the
set of orthonormal polynomials associated with the weight
f (s) and interval (0,̀ ), so that

E
0

`

ds f ~s!pi~s!pj~s!5d i j , ~14!

whered i j is the Kronecker delta. Then Gaussian quadrature
based on then rootssk of pn(s) gives the rule

E
0

`

ds f ~s!y~s!'(
k51

n

wky~sk!, ~15!

with @13#

wk5
1

( j50
n21pj

2~sk!
. ~16!

Equation ~15! is exact if y(s) is a polynomial of degree
2n21 or less. Application of this rule to Eq.~9! produces a
set of equations equivalent to those of ann-component mix-
ture of particles of diameterssk and concentrationwk ,

g̃~k,sk ,s r !5r (
m51

n

wm@ c̃~k,sk ,sm!

1g̃~k,sk ,sm!# c̃~k,sm ,s r !. ~17!
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Gaussian integration is generally very efficient in numerical
work. However, thenumberof distinct correlation functions
that must be stored and manipulated with this approach
grows quadratically withn, which rapidly increases the com-
putational cost. In the next section we show how the same
ingredients can be used while largely avoiding this increas-
ing cost.

III. ORTHOGONAL POLYNOMIAL EXPANSIONS

The alternative to Eq.~17! is based on expansions of all
functions ofs in the orthonormal polynomialspj (s). We
assume thepj (s) are complete, so that any functiony(s)
can be expanded in this set,

y~s!5(
j50

`

yjpj~s!, ~18!

with the expansion coefficients determined as

yj5E
0

`

ds f ~s!y~s!pj~s!, ~19!

which follows from Eq.~14!. The numerical~approximate!
version of these equations using then roots ofpn(s) read

y~sk!5 (
j50

n21

yjpj~sk!, ~20a!

yj5 (
k51

n

wky~sk!pj~sk!. ~20b!

Pair functions such asg(r ,s1 ,s2) are similarly expanded as

g~r ,s1 ,s2!5 (
i , j50

`

g i j ~r !pi~s1!pj~s2!, ~21!

with the inverse

g i j ~r !5E ds1ds2f ~s1! f ~s2!g~r ,s1 ,s2!pi~s1!pj~s2!.

~22!

The numerical versions are

g~r ,sk ,sm!5 (
i , j50

n21

g i j ~r !pi~sk!pj~sm!, ~23a!

g i j ~r !5 (
k,m51

n

wkwmg~r ,sk ,sm!pi~sk!pj~sm!.

~23b!

Similar expansions hold for the other pair functions and
their Fourier transforms. The unknown now becomes the set
of functionsg i j (r ).

With these expansions, the OZ equation~9! becomes

g̃ i j ~k!5r(
k

@ c̃ik~k!1g̃ ik~k!# c̃k j~k!, ~24!

or, in matrix form,

G̃~k!5r@C̃~k!1G̃~k!#C̃~k!, ~25!

which has the solution

G̃~k!5rC̃~k!C̃~k!@ I2rC̃~k!#21. ~26!

In these equationsG̃(k), C̃(k) are symmetric matrices with
elementsg̃ i j (k), c̃i j (k) and I is the unit matrix.

With these developments, the iterative solution of Eqs.~9!
and ~10! for the unknownsg i j (r ) can be summarized as a
sequence of four steps that make up one iteration:

~i! g i j (r )→ci j (r ): Closure. Construct

g~r ,s1 ,s2!5(
i , j

g i j ~r !pi~s1!pj~s2! ~27!

from the current coefficientsg i j (r ), as well asf(r ,s1 ,s2)
andb(r ,s1 ,s2) from appropriate expressions.~In most ap-
proximations, the bridge function is implicitly defined by the
functional form of the closure equation.! Then form

h~r ,s1 ,s2!5exp@2bf~r ,s1 ,s2!1g~r ,s1 ,s2!

1b~r ,s1 ,s2!#21 ~28!

and numerically evaluate the coefficients

hi j ~r !5E ds1ds2f ~s1! f ~s2!h~r ,s1 ,s2!pi~s1!pj~s2!

~29!

using Eq.~23b! to get finally

ci j ~r !5hi j ~r !2g i j ~r !. ~30!

~ii ! ci j (r )→ c̃i j (k): Transforms. Evaluate the transforms

c̃i j ~k!5
4p

k E
0

`

drrci j ~r !sinkr. ~31!

~iii ! c̃i j (k)→g̃ i j (k): OZ equation. Perform the matrix op-
erations

G̃~k!5rC̃~k!C̃~k!@ I2rC̃~k!#21 ~32!

for the newg̃ i j (k).
~iv! g̃ i j (k)→g i j (r ): Inverse transforms. Evaluate the in-

verse transforms

g i j ~r !5
1

2p2r E0
`

dkkg̃ i j ~k!sinkr. ~33!

This completes one iteration. The cycle~i!–~iv! is repeated
until self-consistency of theg i j (r ) is achieved.

Other quantities can be expressed directly in terms of the
computed coefficients. Thus, the number-number pair distri-
bution function is

gNN~r ![E ds1ds2f ~s1! f ~s2!g~r ,s1 ,s2!5g00~r !,

~34!

while similarly the number-number structure factor is
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SNN~k![E ds1ds2@ f ~s1!d~s12s2!

1r f ~s1! f ~s2!h̃~k,s1 ,s2!#511rh̃00~k!.

~35!

The measured structure factor, Eq.~3!, depends onall the
pair correlation function coefficients,

SM~k!511r
( i , jbi~k!bj~k!h̃i j ~k!

( jbj
2~k!

, ~36!

where thebj (k) are the expansion coefficients of the form
amplitudeb(k,s).

Equations~4! and~5! for the energy and pressure can also
be expanded in coefficients ofg(r ,s1 ,s2) andf(r ,s1 ,s2)
or evaluated directly usingg(r ,s1 ,s2) from Eq. ~11! and
Gaussian quadrature. In fact, it is useful to compute these
quantities both ways as an internal check. The inverse com-
pressibility, Eq.~6!, is immediately found as

1

rkBTKT
512r c̃00~0!. ~37!

Finally, we show in the Appendix that the colloidal excess
free energyA can be expressed as

bA

N
52

1

2
rE dr H c00~r !1

1

2(i , j @ci j
2 ~r !2g i j

2 ~r !#J
2

1

2rE dk

~2p!3
$ lndet@ I1rH̃~k!#2 tr@rH̃~k!#%

1
1

2
rE drE

0

1

dj(
i , j

gi j ~r ;j!
]bi j ~r ;j!

]j
, ~38!

whereH̃(k) is the matrix with elementsh̃i j (k) and det and tr
are the determinant and trace operations. The last term in Eq.
~38! must be approximated. For the HNC equation of the
next section, for example, it is neglected.

A numerical example will illustrate the practical advan-
tage to be gained by expanding the unknowns in orthogonal
ponynomials tailored to the distribution functionf (s). Con-
sider the function

A~s!5a
s2ebs

11bs
, ~39!

shown in Fig. 1, wherea andb are constants defined in the
next section for the shielded Coulomb potential. The expan-
sion coefficientsAj of this function forn54 andn510 were
computed using Eq.~20b! and the renormalized associated
Laguerre polynomials of the next section. The results are
shown in Fig. 2; it is clear that the coefficientsAj for j.4
are negligible. When the functionA(s) is reconstructed us-
ing Eq.~20a!, seen in Fig. 1, the more detailed results shown
for n510 are in practice obtainable from just the first four
coefficientsAj . ~It should be noted in Fig. 2 that these co-
incide for then54 andn510 computations.! This means
that the number of pointsn in a numerical quadrature like
Eq. ~20b! or ~23b! can be increased for greater accuracy

without the need for a proportionate increase in the number
of coefficientsused, thus unlinking the upper limits in the
paired summations of Eqs.~20a! and ~23a!.

We will thus understand that whilen-point integration is
used in step~i! to numerically evaluate Eq.~29!, the sums in
Eq. ~27! will be overn8 terms, wheren8,n, and the matri-
ces in step~iii ! will correspondingly ben83n8 in size; n8
will be determined empirically.

IV. RESULTS FOR THE SCHULZ DISTRIBUTION

In this section, we present results obtained for charge-
stabilized, polydisperse colloidal suspensions using the or-
thogonal expansion method of Sec. III. The particle diam-
eterss are taken to be distributed about a mean diameter
s̄ according to the Schulz~gamma! distribution @14#,

f ~s!5S a11

s̄
D a11

sae2~a11!s/ s̄

G~a11!
, ~40!

FIG. 1. The functionA(s) from Eq. ~46! ~line! evaluated for
n54 ~crosses! andn510 ~circles! at ss50.3.

FIG. 2. CoefficientsAj of the functionA(s) from Fig. 1 for
n54 ~crosses! andn510 ~circles!.
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where G(z) is the gamma function. The moments of this
distribution are

^s j&5
G~ j1a11!

G~a11! S s̄

a11D
j

, ~41!

and so the relative standard deviation is

ss5
~^s2&2^s&2!1/2

^s&
5

1

~a11!1/2
, ~42!

which will be used to characterize the suspensions and define
the parametera. The orthonormal polynomials for the
Schulz distribution are

pj~s!5F j !G~a11!

G~ j1a11!G 1/2L j
~a!S ~a11!

s

s̄
D , ~43!

where theL j
(a)(t) are the associated Laguerre polynomials.

The charged mesospheres are assumed to have a constant
surface charge density, so that their charge polydispersity is
mapped onto the size polydispersity according to

Z~s!5Zs̄S s

s̄
D 2, ~44!

whereZs̄ is the charge on a particle of mean diameters̄, and
to interact, beyond hard sphere contact, through a screened
Coulomb potential,

bf~r ,s1 ,s2!5H `, if r,s12

A~s1!A~s2!exp~2kr !/r , if r.s12,
~45!

wheres125
1
2(s11s2) and

A~s!5
Z~s!LB

1/2exp~ks/2!

11ks/2
. ~46!

Here, LB5e2/4pe0ekBT is the Bjerrum length and
k5(4pLBrZ̄)1/2 is the inverse Debye-Hu¨ckel screening
length, withZ̄5Zs̄(11ss

2).
This is the same model studied by D’Aguanno and Klein

@10#. To illustrate the polynomial expansion method, we
have recalculated their results for the state withs̄5250 Å,
Zs̄5200, and LB57.01 Å, at the reduced density
rs̄350.005, using the hypernetted chain~HNC! @12# and
Rogers-Young~RY! @15# closures,

gHNC~r ,s1 ,s2!5exp@2bf~r ,s1 ,s2!1g~r ,s1 ,s2!#,
~47!

gRY~r ,s1 ,s2!5exp@2bf~r ,s1 ,s2!#

3H 11
exp@q~r !g~r ,s1 ,s2!#21

q~r ! J .
~48!

The RY closure features a mixing function,

q~r !512e2lr , ~49!

with a parameterl that is chosen to enforce consistency
between the inverse compressibility gotten from Eq.~6! and
that obtained by numerical differentiation of Eq.~5!.

The computed thermodynamic values are shown in Table
I for five Schulz distributions of increasing width,ss 5 0.1,
0.2, 0.3, 0.4, and 0.5, as well as the monodisperse case,
ss50, for reference. The present integral equation results are
in good agreement with those found earlier@10,16# for ss up
to 0.3 using the ‘‘mixture’’ method. Comparison with the
Monte Carlo data of D’Aguanno and Klein@10,16#, also
shown in Table I, confirms that the RY approximation is
producing the more reliable results, as is the case with mono-
disperse systems@15#. The number of coefficientsg i j (r )
used in these calculations ranged up to 15, corresponding to
n8<5 (n854 is adequate!, while the Gaussian quadratures
were carried out withn>7 points.@In fact, because the poly-
nomials are divergent for larges, the smallestn had to be
used for the largestss , since the diverging values of the
pj (s) led eventually to numerical divergence of the re-
summedg(r ,s1 ,s2) in Eq. ~27! for s values farther out in
the wing.# The grids on ther and k axes were constructed
with N51024 points and intervalsDr /s̄50.1 and
Dk5p/NDr .

Comparisons of the computed pair distribution and scat-
tering functions with simulation have already been made by
D’Aguanno and Klein@10,11#. Here we display some of the
coefficients of these functions.

Local fluctuations in density and size may be expressed in
normalized form as

dr0~r !5
1

r S (
j51

N

d~r2r j !2r D , ~50a!

dr1~r !5
1

s̄rss
S (
j51

N

s jd~r2r j !2s̄r D . ~50b!

TABLE I. Thermodynamics of a polydisperse colloidal suspen-
sion with shielded-Coulomb potential and Schulz distribution of
relative standard deviationss . Monte Carlo~MC! data are from
D’Aguanno and Klein@10,16#.

ss bU/N bp/r21 rkBTKT bA/N

MC 28.00 47.50
RY 0 28.30 47.78 0.00851
HNC 28.71 48.20 0.00999 31.91
MC 27.66 47.14
RY 0.1 27.94 47.45 0.00854
HNC 28.35 47.87 0.01005 31.55
MC 26.64 46.16
RY 0.2 26.89 46.48 0.00863
HNC 27.31 46.90 0.01025 30.49
MC 24.97 44.50
RY 0.3 25.24 44.86 0.00879
HNC 25.67 45.30 0.01059 28.83
RY 0.4 23.12 42.65 0.00903
HNC 23.56 43.10 0.01111 26.68
RY 0.5 20.70 39.92 0.00939
HNC 21.15 40.39 0.01183 24.22
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Their spatial correlations are then given by

^dr0~r !dr0~0!&5
d~r !

r
1@g00~r !21#, ~51a!

^dr1~r !dr0~0!&52g10~r !, ~51b!

^dr1~r !dr1~0!&5
d~r !

r
1g11~r !. ~51c!

The functionsg00(r ), g10(r ), andg11(r ) for these corre-
lations are shown in Fig. 3 for the case withss50.3 calcu-
lated with the RY equation usingn855 and n510. ~The
data in Figs. 1 and 2 are also forss50.3.! We note first that
for this colloidal state the hard core is completely masked by
the Coulomb repulsion of the surface charges. Further, the
higher-order correlations become progressively weaker and
shorter ranged. These features continue to hold for the cor-
relation functionsg20(r ), g21(r ), g22(r ), seen in Fig. 4. In
Figs. 5 and 6, we display the Fourier transform of these
functions in dimensionless form asrh̃i j (k).

In contrast to the relatively slow vanishing of thegi j (r )
coefficients with increasingn8, seen in Figs. 3 and 4, the
coefficientsg i j (r ), which are summed in Eq.~27!, decrease
significantly for each successive increase in max(i , j ), ensur-
ing rapid convergence of that summation. The first six of
these for the same case ofss50.3 are displayed in Figs. 7
and 8.

The basic technique of expansions in orthogonal polyno-
mials tailored to the distribution functionf (x) of the extra
degrees of freedomx in a generalized pair distribution func-
tion g(r 12,x1 ,x2) may be readily applied to other systems,
such as fluids of polarizable molecules@17,18#. For such
internal degrees of freedom, the distribution functionf (x)
will itself be subject to iterative calculation. Perhaps the
most direct route between the liquid structure and the inter-
nal degrees of freedom is the first member of the Born-Green
hierarchy@19#,

d

dx1
lnF f ~x1!f 0~x1!

G52rE drdx2f ~x2!g~r ,x1 ,x2!

3
]bf~r ,x1 ,x2!

]x1

52(
i , j

FrE dr(
k
gik~r !bfk j~r !G

3pi~x1!
dpj~x1!

dx1
, ~52!

where f 0(x) is the unperturbed distribution in an isolated
atom and thepj (x) are the orthogonal polynomials for the
current f (x). Recalculation off (x) from this equation will

FIG. 3. Coefficients of the pair distribution function,
g(r ,s1 ,s2), from the RY equation atss50.3: g00(r ), solid line;
g10(r ), dashed line;g11(r ), dash-dot line.

FIG. 4. Coefficients of the pair distribution function,
g(r ,s1 ,s2), from the RY equation atss50.3: g20(r ), solid line;
g21(r ), dashed line;g22(r ), dash-dot line.

FIG. 5. Coefficients of the Fourier transform of the pair corre-
lation function,rh̃(k,s1 ,s2), from the RY equation atss50.3:
rh̃00(k), solid line;rh̃10(k), dashed line;rh̃11(k), dash-dot line.
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then generally require a recalculation of new orthogonal
polynomials, using Gram-Schmidt orthogonalization@20#,
for the next iteration of the structure calculation. The process
continues until a self-consistentf (x) is achieved.
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APPENDIX

An expression for the colloidal free energy in terms of
correlation functions is readily obtained using the well-
known artifice of a ‘‘charging’’ parameterj, 0<j<1. The
following calculation is adapted from that of Morita and Hi-

roike @21#. Define the partition function

Q~j!5
1

VNE )
j51

N

$dr jds j f ~s j !%

3expF2jb(
i, j

f~r i j ,s i ,s j !G ~A1!

for the partially charged system. Then differentiation of
bA(j)52 lnQ(j) gives

dbA~j!

dj
5K (

i, j
bf~r i j ,s i ,s j !L

j

5
1

2
NrE drds1ds2f ~s1! f ~s2!g~r ,s1 ,s2 ;j!

3bf~r ,s1 ,s2!, ~A2!

so that the excess free energyA(j) is expressed in terms of
the pair distribution functiong(r ,s1 ,s2 ;j) for the partially
charged system. From Eq.~11!, this function can be written

g~r ,s1 ,s2 ;j!5exp@2jbf~r ,s1 ,s2!1g~r ,s1 ,s2 ;j!

1b~r ,s1 ,s2 ;j!#, ~A3!

and so we get

]g~r ,s1 ,s2 ;j!

]j
5g~r ,s1 ,s2 ;j!H 2bf~r ,s1 ,s2!

1
]

]j
@g~r ,s1 ,s2 ;j!1b~r ,s1 ,s2 ;j!#J

~A4!

or

FIG. 7. Coefficients of the indirect correlation function,
g(r ,s1 ,s2), from the RY equation atss50.3: g00(r ), solid line;
g10(r ), dashed line;g11(r ), dash-dot line.

FIG. 6. Coefficients of the Fourier transform of the pair corre-
lation function,rh̃(k,s1 ,s2), from the RY equation atss50.3:
rh̃20(k), solid line;rh̃21(k), dashed line;rh̃22(k), dash-dot line.

FIG. 8. Coefficients of the indirect correlation function,
g(r ,s1 ,s2), from the RY equation atss50.3: g20(r ), solid line;
g21(r ), dashed line;g22(r ), dash-dot line.
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g~r ,s1 ,s2 ;j!bf~r ,s1 ,s2!

52
]

]j Fh~r ,s1 ,s2 ;j!1
1

2
h2~r ,s1 ,s2 ;j!2g~r ,s1 ,s2 ;j!g~r ,s1 ,s2 ;j!G1c~r ,s1 ,s2 ;j!

]h~r ,s1 ,s2 ;j!

]j

1g~r ,s1 ,s2 ;j!
]b~r ,s1 ,s2 ;j!

]j
. ~A5!

The left-hand side of~A5! is just the integrand of Eq.~A2!; substitution into~A2! yields

bA

N
52

1

2
rE drds1ds2f ~s1! f ~s2!Fh~r ,s1 ,s2!1

1

2
h2~r ,s1 ,s2!2g~r ,s1 ,s2!g~r ,s1 ,s2!G

1
1

2
rE drds1ds2f ~s1! f ~s2!E

0

1

djc~r ,s1 ,s2 ;j!
]h~r ,s1 ,s2 ;j!

]j

1
1

2
rE drds1ds2f ~s1! f ~s2!E

0

1

djg~r ,s1 ,s2 ;j!
]b~r ,s1 ,s2 ;j!

]j
. ~A6!

The second term in this expression can be integrated in Fourier transform representation as follows. From Eq.~25!, it is easy
to show that the matricesH̃ and C̃ satisfy

@ I1rH̃~k;j!#215I2rC̃~k,j!. ~A7!

Then, using the matrix identitydlndetM /dj5 tr@M21dM/dj# for matrixM , we have

]

]j
lndet@ I1rH̃~k;j!#5 trH @ I2rC̃~k;j!#r

]H̃~k;j!

]j J , ~A8!

and thus

trFr2C̃~k;j!
]H̃~k;j!

]j G52
]

]j
$ lndet@ I1rH̃~k;j!#2 tr@rH̃~k;j!#%. ~A9!

But the second term in Eq.~A6! can be written

1

2
rE drds1ds2f ~s1! f ~s2!E

0

1

djc~r ,s1 ,s2 ;j!
]h~r ,s1 ,s2 ;j!

]j

5
1

2
rE dk

~2p!3
ds1ds2f ~s1! f ~s2!E

0

1

dj c̃~k,s1 ,s2 ;j!
]h̃~k,s1 ,s2 ;j!

]j

5
1

2
rE dk

~2p!3
E
0

1

dj(
i , j

c̃i j ~k;j!
]h̃i j ~k;j!

]j
5

1

2rE dk

~2p!3
E
0

1

dj trFr2C̃~k;j!
]H̃~k;j!

]j G . ~A10!

Thus, with~A9! and ~A10!, Eq. ~A6! becomes

bA

N
52

1

2
rE drds1ds2f ~s1! f ~s2!H c~r ,s1 ,s2!1

1

2
@c2~r ,s1 ,s2!2g2~r ,s1 ,s2!#J

2
1

2rE dk

~2p!3
$ lndet@ I1rH̃~k!#2 tr@rH̃~k!#%1

1

2
rE drds1ds2f ~s1! f ~s2!E

0

1

djg~r ,s1 ,s2 ;j!
]b~r ,s1 ,s2 ;j!

]j
,

~A11!

after substitution ofh5g1c in the first term; orthogonal polynomial expansions of the remaining functions ofs finally yields
Eq. ~38!.
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