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Integral equation theory of polydisperse colloidal suspensions
using orthogonal polynomial expansions
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(Received 28 March 1996

A procedure is described for the calculation of the generalized pair distribution furgttionr, '), where
o is a molecular random variable with distributido), using generalized integral equations familiar from
simple liquid theory. The method is based on expansions ofralependent functions in the orthogonal
polynomialsp; (o) associated with the weigli{o) and is computationally efficient. To illustrate the proce-
dure, calculations are made for a charge-stabilized, polydisperse colloidal suspension with Schulz distribution
of diameterso. The method can be immediately generalized to fluids with internal degrees of freedom, for
which f(o) must itself be self-consistently determingé81063-651X96)12610-9

PACS numbsgs): 02.70-c, 82.70.Dd, 61.20.Gy, 61.25.Em

I. INTRODUCTION means that the histogram for the discrateomponent sys-
tem reproduces the firsti2moments of the continuous dis-
Colloidal particles are typically composed of some tribution, a constraint that is equivalent to Gaussian integra-
10°— 10" atoms; modeled as solid spheres, they are thugon using the zeroes of thath orthogonal polynomial
some 16— 10* times the size of atoms. Their density fluc- associated with the weight functioh(o). This method
tuations in a suspension are detected by light and thermayorks very well for relatively narrow distributions, for which
neutron scattering. The intuitive feeling that a concentrate@ Small number of components suffices. For broader distri-
suspension of colloidal particldstabilized against coagula- Putions requiring larger numbers of components to maintain

tion) might be viewed as a “mesoscopic liquid” is supported Numerical - accuracy, the “mixture” method using
by the characteristic short-range liquid structure seen in th8(n+1)/2 distinct correlation functions becomes computa-
scattering datfl]. The description of the structure of these tionally costly. In this paper, we ;how how expansions in th.e
liquidiike suspensions using the tools of simple atomic qu_same set of orthogonal polynomials as used for the Gaussian

uids is complicated primarily by the fact that the particles Ofmtegrauon av_0|ds th_e_rap|d Increase n computational cost
. ; : : o or largern while retaining the numerical accuracy of Gauss-
any given suspension display a continuous distribution Ofan quadrature
sizes; i.e., they are inherentpolydispersd2,3]. '
The most common approach to this problem is to inte-
grate out(at least conceptuallythe molecular degrees of Il. POLYDISPERSE COLLOIDAL SYSTEMS
freedom of the suspending fluid, such as water, and describe | o f(o) be the distribution of particle diametessin a

the suspension as a collection of mesoscopic particles imeﬁomogeneous assembly Nfpolydisperse colloidal particles
acting pairwise through a simple effective potential, typically contained in volume/ at temperaturd. The density of par-
hard sphere for sterically stabilized suspensions and screenggles at pointr with diametero is then

Coulomb for charge-stabilized suspensidmsth attendant

charge polydispersily These models immediately lend N

themselves to theoretical methods developed for simple lig- pV(r,0)= < > 5(f—ri)5(0—ffi)> =pf(o), (1
uids, with the added feature of polydispersity. Thus, size =1

polydispersity in hard sphere models has been well studied

using the analytic solution of the Percus-Yevick approxima-wherep=N/V, while the two-body density is

tion [4—6]; charge polydispersity has been approximately

mapped onto the same mod&l, while the mean spherical @ (r o, r’ 0")

approximation(MSA) [8] and rescaled MSA9] have been

applied to monodisperse charged colloids. The most general  _ . - _— '
theoretical method, applicable to polydisperse particles with ;, A(r=r;)8(o=0y)o(r' —rj) 8o = o)

any potential, is the numerical solution of familiar integral 5 ) ) )

equations of simple liquid§10]. This paper is concerned =p*f(o)f(a")g([r—r'],0,07), 2

with the last of these.

In applying integral equation theory to polydisperse sys-which defines the pair distribution functiag(r,o,c’). In
tems, D’Aguanno and Kleifil0] deal with the polydispersity these expressions; is the location of particlé and o its
by replacing the continuous distributidiio) of particle di-  diameter; the brackets denote a canonical ensemble average.
ameterso with a histogram for a finite set af well-chosen Knowledge of the pair distribution functiofiPDF yields
diameters, so that a more tractablecomponent mixture the “measured” structure factoB"(k) determined from
substitutes for the polydisperse system. “Well-chosen” herestatic light-scattering experimenits,11],
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(k) _ e
_ v(K,01,00)=p | dosf(og)
Jdodo'f(o)f(o")b(k,a)b(k,o")h(k,o,0") 0

i [daf(o)b?(k,0) ’ X[C(k,01,03)+¥(K,01,03)[C(k,03,07)
() 9
whereb(k, o) is the form amplitude for spherical particles of for Eq. (7) and
diametero andh(k,o,0") the Fourier transform of the pair c(r. .o o) =exd — r o o)+ vr.oq.0
correlation functiorh=g— 1. Further, the PDF provides the (ro1,02) H=pe(r.on02)+7(101.02)
colloidal internal energyJ and pressurg, in the form tb(r,oq,02)]=1=9(r,oq,05)  (10)
BU 1 for Eq. (8), which are now to be solved iteratively for
L _pf drdoda’ f(o)f(o")g(r,o,0")Be(r,0,0"), v(r,o1,05) given an approximate bridge function
N 2 @ b(r,oq,05). The PDF is then finally obtained as
g(r,(fl,(fz):eXF[_B¢(r,Ul,02)+7(r,01,0’2)
1
%=1—gpf drdoda’ f(o)f(o")g(r,o,0")r +b(r,o1,07)]. (13)
dBb(r,o.0") We remark for completeness that the Fourier transform of a
xd— (5) spherically symmetric function such a¢r,o,05) is com-
r

puted as

where ¢(r,o,0') is the effective pair potential and
B=1/kgT the inverse temperature, wiklz Boltzmann’s con-
stant. The isothermal compressibiliy,

4 o0
E(kaﬂlyﬂz):%fo drre(r,oq,05)sinkr, (12

whose inverse is

1 (&/Bp
= — 1 «® —~ .
PkBTKT &p T C(r,O'l,O'Z):_Zf dkkdk,a’l,oz)smkr. (13)
27°r Jg
:1—PJ drdodo’f(o)f(a’)c(r,0,0"), (6) Following D’Aguanno and Klei{10], the final integra-

tion over o3 in EqQ. (9) could be handled with Gaussian
quadrature. Lep;(o), j=0,1,2,. .., with pp(c)=1, be the
set of orthonormal polynomials associated with the weight
f(o) and interval (02), so that

is obtained from the related direct correlation function

c(r,o,0"), defined below in terms ofy(r,o,0') by the

Ornstein-Zernike(OZ) equation. Thus the colloidal PDF

g(r,o,0') is the essential quantity for both structure and w

thermodynamics. f dof(o)pi(o)pj(o)=4j, (14
In a straightforward generalization of simple liquid theory 0

[12], the PDF is obtained from the combination of the . i
Ornstein-Zernike equation, where §;; is the Kronecker delta. Then Gaussian quadrature

based on the roots o of p,(o) gives the rule

h(riz,01,02)=9(rp,01,0,)—1 @ n
| daotonior~3 wyoy, i

:C(r12101.02)+PJ dradosf(os) ° -

with [13]
Xh(ri3,01,03)C(r3,03,07), (7)
1
and the closure relation, Wk:gjﬂ;gpf(gk) ' (16
h(r,oq,05)=exd — Bo(r,01,05)+h(r,oq,05) Equation (15) is exact if y(o) is a polynomial of degree

2n—1 or less. Application of this rule to E@9) produces a
—c(r,01,02) +0(r,01,02)]=1. (8)  set of equations equivalent to those ofraomponent mix-
ture of particles of diameters, and concentratiom, ,
Here, b(r,o1,05,) is the so-called bridge function, which
must be approximated. To solve these equations for - -
g(r,oq1,07), it is convenient to rewrite them in terms of the V(k"fkv“r)zpn;l W[ (K, 0m)
indirect correlation functiony=h—c and deconvolute Eqg.
(7) using Fourier transforms; this yields +y(Kk, o, om IC(K,o0m,0,). (17

n
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Gaussian integration is generally very efficient in numerical T'(k)=p[C(k)+T(k)]C(k), (25)

work. However, thenumberof distinct correlation functions

that must be stored and manipulated with this approackvhich has the solution

grows quadratically witm, which rapidly increases the com- _ o _

putational cost. In the next section we show how the same I'(k)=pC(k)C(K)[I —pC(k)]_l. (26)

ingredients can be used while largely avoiding this increas- - -

ing cost. In these equationk(k), C(k) are symmetric matrices with
elementsy;;(k), Cij(k) and! is the unit matrix.

. ORTHOGONAL POLYNOMIAL EXPANSIONS With these developments, the iterative solution of Ef5.

and (10) for the unknownsy;;(r) can be summarized as a

The alternative to Eq(17) is based on expansions of all sequence of four steps that make up one iteration:
functions of o in the orthonormal polynomialg;(o). We (i) 7;(r)—cij(r): Closure Construct

assume thep;(o) are complete, so that any functigrfo)

can be expanded in this set,
¥(1,01,02)= 2 %;(NPi(o)pi(o2) 27

y(g):;o yipi(o), 18 tom the current coefficient;; (r), as well asp(r,aq,0)

_ _ o _ andb(r,o;,0,) from appropriate expressiondn most ap-
with the expansion coefficients determined as proximations, the bridge function is implicitly defined by the
functional form of the closure equatignThen form

yj:Jo dof(a)y(o)p;(a), (19 h(r,o1,05)=exd — B, 01,09)+ H(F,01.0)

which follows from Eq.(14). The numericaapproximate +b(r,oy,02)]-1 (28)

version of these equations using theoots ofp,(o) read and numerically evaluate the coefficients

n—1
y(@0=2 yipi(ow, (209 hij(r>=f do1doyf (1) f(a)h(r,01,02)pi(a)py(o2)
n (29
YjZKZl WY (o) Pj( o) - (20D using Eq.(23b) to get finally
Cij(r)=h;;(r)—y;(r). (30)

Pair functions such ag(r,o;,05) are similarly expanded as
o (ii) cij(r)—<jj(k): Transforms Evaluate the transforms
Yoo = 2 i(DP(a)p(or). (2D -
. _ ' E”(k):Tfo drre;j(r)sinkr. (3D
with the inverse
(i) ij (k) —7ij(k): OZ equation Perform the matrix op-
Yij(r):f dodo,yf(o) (o) y(r,o1,02)pi(a1)pj(0). erations

(22 T'(k)=pC(K)C(K)[I = pC(K)]* (32

The numerical versions are —
for the newvy;; (k).
n-1 (iv) %i; (k)= ij(r): Inverse transformsEvaluate the in-
Y(r,00,0m= 2 % (NDPi(opj(om), (233 verse transforms
ij=0

1 o0
. yi(N) === dkKky; (k)sinkr. (33
'y”(l’)= 2 Wka'}’(r,O'k;O'm)pi(o'k)pj(a'm)- J 27T2rJ;) |
k,m=1

(23  This completes one iteration. The cydig—(iv) is repeated
o _ _ _ until self-consistency of the;;(r) is achieved.
Similar expansions hold for the other pair functions and  other quantities can be expressed directly in terms of the
their Fourier transforms. The unknown now becomes the s&fomputed coefficients. Thus, the number-number pair distri-

of functionsy; (r). ' bution function is
With these expansions, the OZ equati® becomes

gNN(r)EJ doydo,f(oq)f(02)a(r,o1,02)=0godr),

’%,—(k)a@ [Cik(K) + T (K) T (K), (24) a0

or, in matrix form, while similarly the number-number structure factor is
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1000

SNN(k)EJ dodo[f(oq) 80— 03)

+pf(o)f(o2)h(K, 0,02)]= 1+ phoo(K). g
(35
o 8
The measured structure factor, E§), depends orall the - °
pair correlation function coefficients, %
b4

400

31 b (k)b (k)hy; (K)

SMk)=1+p ,
b7 (k)

(36)

200

where theb;(k) are the expansion coefficients of the form

amplitudeb(k, o). °
Equationg4) and(5) for the energy and pressure can also

be expanded in coefficients g{r,o,,05) and ¢(r,oq,05)

or evaluated directly using(r,o;,0,) from Eq. (11) and

Gaussian quadrature. In fact, it is useful to compute these FIG. 1. The functionA(c) from Eq. (46) (line) evaluated for

quantities both ways as an internal check. The inverse conit=4 (crossesandn=10 (circles ats,=0.3.

pressibility, Eq.(6), is immediately found as

without the need for a proportionate increase in the number
=1 py(0) 37) of coefficientsused, thus unlinking the upper limits in the
0oL paired summations of Eq§20a and(233.
We will thus understand that while-point integration is
Finally, we show in the Appendix that the colloidal excessysed in stei) to numerically evaluate E429), the sums in

pkeTKr

free energyA can be expressed as Eq. (27) will be overn’ terms, wheren’ <n, and the matri-
BA 1 1 ces in step(ii) will correspondingly ben’ Xn’ in size;n’
N Epf dr[coo(r)+ EiEj [Cizj(r)— 7i2j(f)] will be determined empirically.

1 dk ~ ~ IV. RESULTS FOR THE SCHULZ DISTRIBUTION
- Z_J Zy3tindetl+pH(K)]— tpH(K) ]}
pl (2m) In this section, we present results obtained for charge-
1 1 abyj(r;€) stabilized, polydisperse colloidal suspensions using the or-
+§pf drf ng gij(r;g)a—g, (38 thogonal expansion method of Sec. Ill. The particle diam-
o eterso are taken to be distributed about a mean diameter

Whereﬁ(k) is the matrix with eIementEij(k) anddetandtr according to the Schuligamma distribution[14],

are the determinant and trace operations. The last term in Eq.
(38) must be approximated. For the HNC equation of the
next section, for example, it is neglected. f(o)=

A numerical example will illustrate the practical advan-
tage to be gained by expanding the unknowns in orthogonal
ponynomials tailored to the distribution functido). Con-
sider the function

atl a.aef(awtl)a'/oi

T(at+t1)

at+l

o

(40

40
T
4

0,2 eb(r

A(U):al—FbU'

(39

20
:

shown in Fig. 1, wher@ andb are constants defined in the
next section for the shielded Coulomb potential. The expan-
sion coefficientsA; of this function forn=4 andn=10 were o
computed using Eq(20b) and the renormalized associated
Laguerre polynomials of the next section. The results are
shown in Fig. 2; it is clear that the coefficients for j>4

are negligible. When the functiof(o) is reconstructed us-
ing Eq.(209, seen in Fig. 1, the more detailed results shown ——
for n=10 are in practice obtainable from just the first four )
coefficientsA; . (It should be noted in Fig. 2 that these co- J

incide for then=4 andn=10 computation$.This means

that the number of pointa in a numerical quadrature like FIG. 2. CoefficientsA; of the functionA(s) from Fig. 1 for
Eqg. (20b or (23b) can be increased for greater accuracyn=4 (crossesandn=10 (circles.

A/
RS

-20
T
1
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where I'(z) is the gamma function. The moments of this
distribution are

j_TPG+a+1) o |\ a1
()= Ta+rD |ar1 (43
and so the relative standard deviation is
(G G 4o
T ey (a D™ 42

which will be used to characterize the suspensions and defirf@Y

the parametera. The orthonormal polynomials for the

Schulz distribution are
B I'"(a+1) L(@ 1 o 43
pj(o)= T(j+a+D)| U (at ); , (43

where theLf“)(t) are the associated Laguerre polynomials.

The charged mesospheres are assumed to have a const3

surface charge density, so that their charge polydispersity
mapped onto the size polydispersity according to

2
Z(O’):Z;(% ,

whereZ-is the charge on a particle of mean diameteand
to interact, beyond hard sphere contact, through a screene
Coulomb potential,

(44)

0o ifr<0'12
BA.01.02) =0 A (o A(om)exp = kr)ir, i r> 00,
(45)
Where()'12= %((Tl+ 0'2) and
Z(o) LY %exp kal2)
)= 1+ kol2 (46)
Here, Lg=e*/4mesekgT is the Bjerrum length and

k=(4mLgpZ)Y? is the inverse Debye-Hikel screening
length, withZ=Z{1+5s?).

This is the same model studied by D’Aguanno and Klein
[10]. To illustrate the polynomial expansion method, we
have recalculated their results for the state with 250 A,
Z-=200, and Lg=7.01 A, at the reduced density
po>=0.005, using the hypernetted chaHNC) [12] and
Rogers-YoungRY) [15] closures,

gHNC(r!0-110-2):exq_:8¢(r10-1!0-2)+Y(rvo-lao-z)]l

(47)
gRY(r,oq,00)=exd — Bp(r,01,07)]
{1+ eXH:Q(r)y(r!o-lvo-Z)]_l
q(r)
(48)
The RY closure features a mixing function,
q(r)=1-e™, (49)
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TABLE I. Thermodynamics of a polydisperse colloidal suspen-
sion with shielded-Coulomb potential and Schulz distribution of
relative standard deviatiog,. Monte Carlo(MC) data are from
D’Aguanno and Kleinf10,16.

s, BUIN  Bplp—1  pkgTKy  BAIN
MC 28.00 47.50
RY 0 28.30 47.78 0.00851
HNC 28.71 48.20 0.00999  31.91
MC 27.66 47.14
01  27.94 47.45 0.00854
HNC 28.35 47.87 0.01005  31.55
MC 26.64 46.16
RY 02  26.89 46.48 0.00863
HNC 27.31 46.90 0.01025  30.49
MC 24.97 44.50
RY 03 2524 44.86 0.00879
HNC 25.67 45.30 0.01059  28.83
Xt 04 2312 42.65 0.00903
|§ 23.56 43.10 0.01111  26.68
05  20.70 39.92 0.00939
HNC 21.15 40.39 0.01183  24.22

with a parameten that is chosen to enforce consistency
between the inverse compressibility gotten from E).and
that obtained by numerical differentiation of E®).

ed The computed thermodynamic values are shown in Table
| for five Schulz distributions of increasing widtk, = 0.1,

0.2, 0.3, 0.4, and 0.5, as well as the monodisperse case,
s,=0, for reference. The present integral equation results are
in good agreement with those found ear(i0,16 for s, up

to 0.3 using the “mixture” method. Comparison with the
Monte Carlo data of D’Aguanno and Kleifl0,16], also
shown in Table |, confirms that the RY approximation is
producing the more reliable results, as is the case with mono-
disperse systemgl5]. The number of coefficientsy;;(r)
used in these calculations ranged up to 15, corresponding to
n’'<5 (n'=4 is adequate while the Gaussian quadratures
were carried out witm=7 points.[In fact, because the poly-
nomials are divergent for large, the smallesh had to be
used for the largess,, since the diverging values of the
pj(o) led eventually to numerical divergence of the re-
summedy(r,oq,05) in EQ. (27) for o values farther out in

the wing] The grids on the andk axes were constructed
with  N=1024 points and intervalsAr/c=0.1 and
Ak=7/NAr.

Comparisons of the computed pair distribution and scat-
tering functions with simulation have already been made by
D’Aguanno and Klein10,11]. Here we display some of the
coefficients of these functions.

Local fluctuations in density and size may be expressed in
normalized form as

1 N
5Po(r)=;(j21 5(r—rj>—p), (509

N
5p1<r>—0p (Z S(r—r;)— ap) (50b)
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FIG. 3. Coefficients of the pair distribution function,  FIG. 4. Coefficients of the pair distribution function,
9(r,01,07), from the RY equation as,=0.3: goo(r), solid line;  g(r,oy,0), from the RY equation as,=0.3: g(r), solid line;
g1o(r), dashed linegy(r), dash-dot line. g.1(r), dashed lineg,,(r), dash-dot line.

Their spatial correlations are then given by
iIn m =— fdrdx f(X2)g(r,xq,X5)
o(r) dxy | fo(xq) P 2 2
(8po(r) 6po(0)) =——+[goo(r) — 11, (513
P X&B(f)(r!XIIXZ)
X
(8p1(r) po(0)) = —g1o(r), (51b '
8(r) __Z [Pf dr; Oik(r) Bey;(r)
<5P1(r)5P1(0)>:T+911(r)- (519 !
dp; (Xl)
XPpi(x1)—y (52

The functionsggo(r), g1o(r), andgq4(r) for these corre-
lations are shown in Fig. 3 for the case with=0.3 calcu-
lated with the RY equation using’=5 andn=10. (The  where fy(x) is the unperturbed distribution in an isolated
data in Figs. 1 and 2 are also fgy=0.3) We note first that atom and thep;(x) are the orthogonal polynomials for the
for this colloidal state the hard core is completely masked by:urrentf(x) Recalculation off (x) from this equation will
the Coulomb repulsion of the surface charges. Further, the
higher-order correlations become progressively weaker and
shorter ranged. These features continue to hold for the cor-
relation functionsg,g(r), g-1(r), g25(r), seen in Fig. 4. In
Figs. 5 and 6, we display the Fourier transform of these 3
functions in dimensionless form as;; (k).

In contrast to the relatively slow vanishing of tog(r)
coefficients with increasing’, seen in Figs. 3 and 4, the
coefficientsy;;(r), which are summed in Eq27), decrease
significantly for each successive increase in mgy( ensur-
ing rapid convergence of that summation. The first six of
these for the same case §f=0.3 are displayed in Figs. 7 w|[
and 8. Tl

The basic technique of expansions in orthogonal polyno-
mials tailored to the distribution functiof(x) of the extra
degrees of freedom in a generalized pair distribution func-
tion g(rq2,X1,X2) mMay be readily applied to other systems,
such as fluids of polarizable moleculg¢$7,18. For such
internal degrees of freedom, the distribution functidx)
will itself be subject to iterative calculation. Perhaps the
most direct route between the liquid structure and the inter- FIG. 5. Coefficients of the Fourier transform of the pair corre-
nal degrees of freedom is the first member of the Born-Greefation function, ph(k 01,07), from the RY equation as,=0.3:
hierarchy[19], phoo(K), solid line; phy(K), dashed linephy,(k), dash-dot line.
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FIG. 6. Coefficients of the Fourier transform of the pair corre- FIG. 8. Coefficients of the indirect correlation function,

lation function, ph(k,y o), from the RY equation af,=0.3: y(r,01,0,), from the RY equation as,=0.3: yy(r), solid line;
phyo(k), solid line; ph,4(K), dashed lineph,,(k), dash-dot line. ¥1(r), dashed linezy,,(r), dash-dot line.

then generally require a recalculation of new orthogonal
polynomials, using Gram-Schmidt orthogonalizatif20],  roike [21]. Define the partition function
for the next iteration of the structure calculation. The process
continues until a self-consisteffx) is achieved.

1 N
Q<§)=Wf 11 {arjdojf(ay)}
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APPENDIX for the partially charged system. Then differentiation of
BA(§)=—1InQ(¢) gives
An expression for the colloidal free energy in terms of
correlation functions is readily obtained using the well- dﬂA(f)_<Zj e ,Ui,01)>

known artifice of a “charging” parametef, O<¢<1. The dé

following calculation is adapted from that of Morita and Hi- ¢

1
:ENPJ’ drdoido,f(o)f(o2)g(r,01,02;6)

><,8¢(r,0'1,0'2), (AZ)
so that the excess free ener@yé) is expressed in terms of

the pair distribution functiomy(r,o,05;¢) for the partially
charged system. From E(L1), this function can be written

g(rio-laa-Z;g):qu:_§ﬁ¢(r101102)+ ’Y(ria-lvo-Z;g)

+b(r,0’1,0’2;§)], (A3)
and so we get
&g(r,a' !0-2;6)
PO T P U S &—]-g:g(raa-lvo-z;g) _ﬁ¢(r10-170-2)
15 20
r/o d
+(9—6[7“,01,02;5)4—b(r,a'l,(rz;g)]
FIG. 7. Coefficients of the indirect correlation function, (A4)

v(r,oq,05), from the RY equation a$,=0.3: yy(r), solid line;
v10(r), dashed line;y,4(r), dash-dot line. or
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g(r,o1,02;8)Be(r,01,07)
d 1, oh(r,oq,07;8)
= &§ h(r, 0'1,0'215)+§h (r,o1,02;6)—9(r,01,02,6) y(r,01,05;¢) +C(r,0'1:0'2;§)&—§

ab(r,o1,02;8)

+g(r10-110-21§) &g (AS)
The left-hand side ofA5) is just the integrand of EqA2); substitution into(A2) yields
BA 1 1,
W:—Epj drdoydo,f(oy)f(op)| h(r,oq,0,)+ Eh (r,o1,02)—9(r,oq,02)y(r,o1,07)
1 5h(r,0'1,0'2;§)
o0 | drdodostiontion [ dectr.on, om0 TR
0
1 1 &b(rvo-laa-z;f)
+ EPI drdoldozf(a'l)f(az)fo dgg(r,o'lya'z;f)a—g- (AB)

The second term in this expression can be integrated in Fourier transform representation as follows. K&%n Ets easy
to show that the matricedd andC satisfy

[1+pH(k;£)] *=1-pC(K,£). (A7)

Then, using the matrix identitgindetM/dé= tr[M ~1dM/d&] for matrix M, we have

Inde(l+ H(k;&)]= tr{ [1 - pC(k; &)] Mk & (A8)
Py p p P |
and thus
tr p26<k;g>‘9Hf9?§)}= - %{Inde(l +pH(k;£)]— t{pH(k: &)1} (A9)
But the second term in EqA6) can be written
1 oh(r,oq,05;
30| oottt [ atetr oy TR
1 dk Koy,

— 50| adodastontion | dfc(kal,az,a%

1 dk (1 ah”(k & 1 dk (1 ~  GH(k§)

_EPIWJ' de Cij(k;&)——— =2 (277)3fo dé tr| p?C(k; ) 7% } (A10)

Thus, with(A9) and (A10), Eq. (A6) becomes

BA 1 1, .
W——Epf drdoydoaf(01)f(02)) Cr,o1,02) + S[CA(r,01,02) = ¥*(1,01,07)]

1 dk ~ ~ 1 1 ab(r,o1,02;§)
Zf —(ZW)S{Inde[HpH(k)]— trf pH(k) ]} + Epf drdaldazf(ol)f(vz)fo d§9(f101,02;§)&—§’

(A1)

after substitution oh= y+c in the first term; orthogonal polynomial expansions of the remaining functionsfiofally yields
Eq. (39).
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