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Collective degrees of freedom and multiscale dynamics in spin glasses
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We relate the long-range, long-time correlations during the simulation of disordered complex systems to the
relevant macroscopic effective collective degrees of freedom. We prove that in systems that have an ultramet-
ric space of ground states, the tunneling between vacuums cannot be expressed in terms of spatially disjoint
clusters or in terms of spatial multiscale hierarchies. We relate this to the ultraslow convergence difficulties of
multiscale-cluster algorithms in such systems. On the contrary, in the case of finite connédtiuts) spin
glasses, we are able to find multiscale-cluster algorithms that are much more efficient than the usual methods.
We relate their efficiency explicitly to their action on specific collective degrees of freedom. These degrees of
freedom are responsible for the slowing down of the usual algoritf@i€963-651X96)07510-1

PACS numbdps): 02.70—c, 0.5.45+b

I. COMPLEX SYSTEMS AND MACROS rocally, the slow modes of the simulation dynamics project
out the relevant macrol3]. Therefore, a better theoretical

One of the main characteristics of complex systems iginderstanding of the multiscale structure of the system en-
their computational difficulty: the time necessary for theirables one to construct better algorithms by acting directly on
investigation and/or simulation grows very fast with their the relevant macros. Reciprocally, understanding the success
size [1]. The systematic classification of the difficulty and of a certain algorithm yields a deeper knowledge of the rel-
complexity of computational tasks is a classical problem inevant degrees of freedom of the systesee, for example, the
computer sciencg2]. projection by a parallel transported multigrid of exact lattice

In physical systems, the emergence of long-time scales idtyiah-Singer mode$4].
often related to multiscale spatial structures within the sys- The present paper implements this point of view into the
tem. Long-range and long-time scale hierarchiesiltiscale ~ study of spin glasses. Section Il introduces the basic notions
slowing down are usually related to collective degrees of Of multiscale-cluster algorithm$MCA'’s). Section Il de-
freedom (which we call hereinmacros characterizing the scribes the difficulties in applying MCA’s to generic frus-
effective dynamics at each scale. trated systems. Section IV contains rigorous results that for-

The physical understanding of complex macroscopic phebid macros in ultrametric systems. Section V identifies the
nomena is then often expressed through identifying the reltelevant macros and their role in constructing MCA's for
evant macros and their effective dynamiesg., hadrons in dilute spin glasses. Section VI demonstrates numerically the
the theory of quarks and gluons, Cooper pairs in supercorgfficiency of the resulting MCA. Section VII summarizes the
ductors, phonons in crystals, vortices in superfluids, fluxconclusions. The Appendix contains the proofs of the results
tubes, and instantons, solitons, and monopoles in gauge the®fated in Sec. IV. We interpret the negative results in Secs.
ries). One can entertain the hope that many complex systemi$l and IV and the positive results in Secs. V and VI as
display some kind of universal multiscaling exponents gensupporting, in both directions, the relation between macros
eralizing the scaling critical exponents of the critical sys-and the efficiency of MCA's.
tems. One could hope for the existence of some kind of
multiscale-universality classes generalizing the universality Il. MULTISCALE-CLUSTER ALGORITHMS

classes of renormalization-group theory. Such a situation An example of multiscale effective dynamics and its re-

would have a significant unifying effect on a very wide 1aN98\ated multiscale slowing down is the critical slowing down at

f phenomen reading over most of th ntemporar - " . X
of phenomena spreading over most of the contempo aySCsecond—order phase transitions. There the relaxation time

entific fields. er with th tems site
In the absence of a rigorous theoretical basis for such g erges € systems sizeas
hope, its investigation relies, for the moment, mainly on the ~L2

use of computers. In particular one uses “first-principles”

simulations, which implement directly and without the inter-where z (~2) is the dynamical critical exponent. Conse-

mediary ofad hocapproximations the fundamental physics quently, the typical time needed to produce a large Boltz-

of the systems under study. mann set of decorrelated configurations diverges and the

Usually, it is the dynamics of the macros during simula-standard local Monte Carlo methods become inefficient.

tions that produces the multiscale slowing down and, recip- It was shown that when the detailed knowledge on the
relevant macros is included in the simulation algorithms, the
value of z can be reduced dramaticallgown to 0) [5].

*Electronic address: nathanp@vms.huiji.ac.il These algorithms, which we will call generically here
'Electronic address: sorin@vms.huiji.ac.il, http://shum.huji.ac.i’multiscale-cluster algorithms, allow the very fast and precise
usorin computation of the equilibrium thermodynamic properties of
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the systems. However, their main importance is to guide anthis terminology, the cluster generating procedure(as
validate by objective meanflowering of 2 the intuitive  freeze(with high probability the strong satisfied linkdinks
guesses on the physically relevant macros and their macrevith low energy, (b) delete the strong unsatisfied links
scopic dynamic$3]. (links with high energy, (c) give for weak links an appro-
We are treating the various MCA's in a conceptually uni- priate stochastic chance to both optidfr®zen or deletiop
fied way: as expressions of the macros appearing at various arise, andd) flip the relative signs of spins that beloftay
scales. In fact, many of the explanations in Sec. V on thehe link deletiong to different clusters.
dynamical relevance of the spatial structures manipulated di- In the following we will callloop a closed chain of links
rectly by the macros reduction algorithm can be given

equally in the language of the dynamical algebraic multigrid {Gi,ie ) k=1, .. njig =i}
[6] as well as in the framework of the cluster algorith@nA)
[7]. If the product

In statistical mechanics systems, the objective of MCA'’s
is to generate as fast as possible a representative sample of
configurations. This is realized by acting directly on the mac- k=1n
roscopically relevant macro@n contrast to the usual local
algorithms, which act on the microscopic elementary degreel$ negative the loop is said to Heustrated If a loop is

—

J <0

otk

of freedom. frustrated there exists no spin configuration for which all the
The typical CA works according the following general links of the loop are satisfied.
principles.

(i) One selects a particular subset of allowed changes for 1Il. MCA DIFFICULTIES IN FRUSTRATED SYSTEMS
the degrees of freedom associated with each site
i=1,... N of the system.[For example, in finite-
temperature S(2) gauge theory, the S@) matrix degree of
freedom on the time-like links is allowed to change only its
sign during a MCA stefi8]. This is an algorithmic expres- ©Of S€C. Il reduced the system to a frustrated [918].
sion of the physical understanding that it is the center of the S°mMe of the most important families of frustrated systems
group that is the relevant degree of freedpifhis reduces € ’the randqmly frustrated systems such as spin glasses
the system to an Ising-like systeB={s,, ... sy}, where (SG'9. A typical SG system presents a complex energy
the Ising variables, can take the values 1. A configura- |andscape consisting of many local minima, separated by

tion is a specific assignment of one of these values for eacfjuge barriers that scale with the size of the system. This is
s.. The interaction energy expressed by the emergence of an ultrametric structure of the

ground-state space and an infinite hierarchy of exponentially
1 divergent relaxation timefl0].
E(S)= EZ Jij(1=s;s)) To understand the difficulties that occur when applying
B MCA'’s to frustrated systems let us analyze in detail a simple

_ _ ) _ ) scenario. Suppose that the first configuratiGd) in the fig-
is parametrized by thénk parameters]; ; associated with ;e

each pair of sites andj. (For notational convenience, we
use in this and the following section a definition of the total

The problem of the applicability of MCA to frustrated
systems arises quite early because most of the cases in which
the MCA did not workwere situations in which the first step

energy that differs by an overall additional constant X /\ Y
Eo= %Ei,j\]i'j from the definition used in the rest of the pa-
per) B
(i) One constructs and updates a system of clusters that
preserves the macroscopic dynamical properties of the initial —— unfrustrated chain.
spin system. The system of clusters and its dynamics is ob- e, frustrated chain.

tained by modifying thelink) parameters); ; between the s an energy ground stat&S). Consider the case that the
pairs of spins K,j). More precisely the linki(j) is either g hsystem andY are linked by two chains of linké and
f‘frozen” _J_i,jz_oo or “deleted” J; ;=0 based on the follow- g (as shown in the figuje
ing classifications. c _ Suppose that in C1 the total energy of the links belonging
Consider the current valuess and s; of the two spins g A s EL=0, while the energy of chaiB is EL=e. Chain
and their current energg(S;)= 3 J; j(1-s’s;). () Ifthe B is therefore unsatisfied, while chakis satisfied. For the
spins are in the low-energy staEe(Sfj)zo the link (i,j) is  simplicity of the argument let as assume that the system is at
called saturated osatisfied Otherwise, the link is said very low temperaturd <e, though the conclusion is valid at
unsatisfied (b) If the difference between the satisfied and higher temperaturesTe) as well.
unsatisfied energies of the link; ;| is large, the link is Assume now that a second GS configuration C2 is ob-
called strong Otherwise it isweak Often the strong-weak tained by flipping in C1 the relative sign of the spins belong-
label is given relative to the actual temperature of the systening to the regionsX and Y such that EE,:O and
For instance, at very high temperatur?é>(|ij|) all the E4=Eg=e. This means that in the ground-state C2 it is
links can be considered weak, while at low temperaturechain A that is satisfied, whileB is unsatisfied. The total
(T<|ij)|) most of the links may be acting as strong. With energy of C2 is equal to the total energy of C1. An efficient
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algorithm should allow one to easily obtain C2 from C1 andMCA'’s capturing this reducible complexity are an efficient
vice versa. computational and conceptual tool.
However, with the usual cluster algorithm, this condition  (ii) In the general case one has to put an exponential com-
is not fulfilled. Indeed, if chai\ is unsatisfiedas it happens putational effort to fully “understand” the structure of the
in C2) so that the chain eventually would be cut by the CA,system. This situation is similar to understanding the archi-
then automaticallyB is satisfied and all its links will be tecture of a labyrinth and is expressed by the theorems of
eventually frozen by the CA. Conversely, Bf is cut, A is  Sec. IV.
uncut (this happens in Q1 Consequently, in any case, at (iii) In some cases the system contains certain macros that
least one of the chain®\ and B is frozen. Therefore are “irreducibly complex.” Yet the interactions between
X and Y are always included by the CA in the same clusterthese macros are tractable by MCA's or other algorithms. In
and there is no way to get from C1 to C2. these cases, MCA's can help reduce the “less complex” part
Therefore it appears that a frustrated disordered system isf the dynamics leaving the “irreducible cores” for a sepa-
not compatible with an efficient updating algorithm. This rate treatment.
argument becomes even strongeKifand Y are linked by The last possibility has been exploited in the parallel
several chains. We will present in Sec. IV some rigorousransported multigrid[16,4] treatment of the fermions in
results extending these intuitions to a wider class of systemgauge field background where the complexity related to the
In a few special cases one can overcome these problemga ge freedom was eliminated at the multigrid level, while
If the problem is local and the structure of the links is com-¢,, macros related to frustration and topolo@yg., Atyiah-

pIeFeI;t/hknfO\?I/n,fthetn étl ‘gwo-ktmnd deletion” milght_heIpT,hsuch Singer zero modéone has developed a meth®] for im-
as in the fully frustrated system on a square |atficH. The spIicit identification, manipulation, and elimination of irre-

two-bond deletion technique can be extended in other sys; . I .
tems to three- and four-bond deletioff2] and even to an ducibly complex macros. Similar intuitions are at the basis of

. C}he successful algorithms for diluted spin glasses described
n-bond procedure. However, in general, the problem woul H V and VI. R nizing the irreducibl molex
still revert to exponentially combinatorial complexity if one ecs. v a - ecog g the irreducibly comple

has noa priori knowledge about which “special” subset of Parts of a complex systefmather than trying vainly to solve
links one should combine. them by multiscale meapsnight be a very important aspect

The simulated annealing technique, which helped som80th conceptually and computationally.
systems from getting stuck in local minima, failed to provide
a complete solution in the SG case. A related direction is the
Swenden-WangSW) replica algorithn{7] and its modifica- IV. ULTRAMETRIC SYSTEMS DO NOT HAVE
tions [13], which use simultaneously various replica of the INDEPENDENT MACROS

system in order to identify large spatial regions that act co- _ -
herently. This might work in a few simple cases, in low As explained above, the SG systems present a certain hi-

dimension(until now only two dimensions However, one e_rarchy in thgir energy Iandscape. that is r_espon_sible for the
cannot expect such an algorithm to work for a general frusplerarchy of time scales characterizing thglr multlscale_sllow-
trated system becau€® in general(e.g., for spin glasses N9 down. Th.|s rugged_energy Iandscape is also the origin of
[14]) one can find for each GS exponentially many metathe ultrametric properties of their grour!d—state spas.
stable states with energy close to the ground states. As a One could hope to make some relation between the pres-
result, one needs in general an exponential number of replic@Nce Of an ultrametric hierarchy and the existence of an ef-
in order to fully capture the structure of the systii. The fectlye repre_sentauon of_the dynamics in terms of a_spatlal
spatial regions that have to flip in order to turn variousMultiscale hierarchy of independent macros. This in turn
ground states into one another cannot in general be identifiefould become the basis of an efficient MCA.
and manipulated as independent entitiese in Sec. IV the It turns out that the case is exactly the opposite: the ultra-
relevant theorems for ultrametric systeniEhese limitations ~Metric hierarchy characterizing SG&nsuresthe nonexist-
indicate that one cannot get away from the combinatoriaPNceof a representation of the effective macroscopic dynam-
complexity of the general randomly frustrated problem. TheCS of the complex system in terms of their macroscopic
CA logic of constructing clusters is based logal (see, e.g., d|310|nt subsets(l'.e., a complex ultrametric system is not
[15]) features, implying local criteria such as deleting the€ffectively reducible to a set of subsystgms
unsatisfied links which define the block boundaries in the L&t Us express this in a more precise and rigorous way. In
ferromagnet case. However, in a general case the feature #f€ Appendix we present some more details and the proofs of
the cluster is only apparent in global view, without any the theorems. We will consider Ising-like systems consisting
local signs(see Theorem)3 of spinss;=*1:

The situation can be compared with having to find one’s
way in a labyrinth in phase space: each small local change in
the position of the potential-energy labyrinth walls deter- Q={sk=1,... N}, 1)
mines large unpredictable changes of the solution route de-
pending on details scattered across the entire phase space.
Consequently, we are discerning three main complexityvhere N is the arbitrary size of the system, which in the
cases. thermodynamic limit is taken to be infinity. A configuration

(i) In very simple cases the pattern of complexity is re-is a specific assignment of the spins, e.gQP
ducible (maybe by an iterative multiscale proceduaed the ={s'13, . ,sﬁ}.
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The system has an Ising-like bilinear Hamiltonian that The failure of separability has conceptual implications in
defines an extensive energy. For example, in Sherringtorthe sense that one cannot understand the complex system by
Kirkpatrick [17] -like model analyzing its parts. In this sense an ultrametric system is
conceptually irreducible to simpler entities. We will see in
E(QD)E<QD,QD>=—LE 3 jSPSD. @) Sep. \_/that o_ptimal global algorithms in fact reduce a system
2yNTTF T to its irreducible core.
One is tempted to conclude that the entire discussion of
The metric in the configurations space is defined by the folreductionism can be reformulated in terms of irreducible
lowing distance. If two configuratior@® andQ differ only ~ complex systems, i.e., in place assumingultrametricity
by the sign of the spins belonging to a subgetthen their  and deducing the inexistence of independent dynamical sub-

distance is objects, one can propose tlignamical inseparabilitys the
fundamental property underlying irreducible complexity.
d(Q0,04) = LE (2= 54)2=p( A). 3) Theoremll suggests therefore that one should engage in the
AN o systematic study of the systems that have families of GS’s

differing by strongly overlapping subsets. The topology in-
We shall call a system ultrametrit/M), if with the above  gyced in the system by these subsets might have interesting
metric the space of 'lts Gg’s IS an uétrametrlc space. Namelyyroperties. In the rest of this section, we will give further
for any three GS'91°, (1%, and Q° one has characterization of the subsets that relate(by their flip-
4) ping) different ground states.
Theorem 21f Q° and Q4, differing by the sign of the

Note that for real systems this condition is fulfilled, prob- SPINs in the regionA, are both GS's of dnot necessarily
ably up to measure zero of violations, and up to somelltrametrig system(}, then their actual spin arrangement
small e~d/N [18]. Those limitations do not affect our Q°, restricted to the systetd alone(we denote this particu-
final conclusions, though one should be aware of their existlar configuration of.A by A%, is a GS of the systernd
ence. considered as isolated from the rest(df

The first theorem expresses the fact that one cannot Note that this statement holds not only in low dimensions
hope to travel between various GS’s of an ultrametric(where the surface energy is not extensiveo see in what
system by just identifying and flipping independently variousrespect this statement is nontrivial, note that in the presence

;upsets(macros, ie., collgc;tive objegtd Theorem 1 below  4f the systemA (the complement ofd in Q), the spins in
is independent on the minimal energy property: it holds forsystemA are submitted to the influence of the exterttal
any system with an UM subset of configurations singled out

by some arbitrary propertye.g, GS’s, high magnetization, A.) acyon of the.splns '0.4' Fora.g.eneral subsgt of (2, this
and blue colox] More precisely, we have the following. will bring the spins ofA into positions that are not necessar-
Theorem 1 Consider two subsets! and B of an UM ily optimal in terms of the internald interactions alone.
systemQ that has a GS)°. Assume that the stat€¥* and They would in general be in a position that strikes a com-
Q5 obtained by flipping the spins of set and 53, respec- promise between minimizing the interndl energy and the

d(Q1,0%)<=ma}{d(Q%,0%),d(Q3,0%)].

tively, in Q° are GS’s too. Then interactions with the rest of the systetd). Theorem 2 finds
) conditions in which the action ofA can be ignored. This
p(ANB)=zmin[p(A),p(B)]. ©) property has interesting unique consequences on the subsets
Namely, the smaller of the set$ and B s.hares at least half Egér:]tsl.)y flipping signs connect the GS's of ultrametric sys
of itself with the larger one. Moreover, if Theorem 3Let Q) be a spin system of the type described
p(A)>p(B) by the energy[Eg. (2)]. Let the space of GS's of) be
ultrametric[Eq. (4)].
then Let 0° andQ* be two configurations of) that differ by
the sign of the spins in a regioA. Assume that bot)° and
p(ANB)=3p(B). 6) 04 are GS's of) (which, according to Theorem 2, implies

that A° is the GS ofA). Then.A° is the unique GS ofd (up

Theorem 1 means that at least half of the spins of one of thg0 a global flipping ofA). This theorem throws some ironic

sets (4 or B) belong to the other set. This is hardly one’s . . o .
idea of two independent sets. In fact, generally, a point be!E'ght qr:hthe propertletﬁ.of GS sl,.tlnt_ultrlametrlc.: SIYStSImSJOtS'th i
longs to an infinite number of strongly overlapping clusters. eriori here Is something qualitatively special in the Sets tha

This implies that locally one has no criterion for constructingConneCt the GS’s of UM systems: the uniqueness of their

the relevant macros. Those can be identified only from &5 S- These sets are very special and do not share at all the
global view. proliferation of vacuums characteristic of typical SG sub-

In conclusion, in ultrametric systems it is ruled out thatSyStems. In fact, these subsets are not UM systems by them-
various regions of the system can be treated as independesftlves: Theorem Il impliesamong other thingsthat these
collective degrees of freedofmacro$. This picture can be Subsets cannot constitute a multiscale hierarchy of UM sub-
extended to finite but small temperatures with the help of theystems included recurrently one in the other. Also the UM
“pure state” concepfl]. system is not self-similar in this sense.
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V. EFFICIENT MCA'’S IN DILUTE SPIN GLASSES of the macro and; is just a “slave” determined by it.
The discouraging arguments of Sec. Il had a rather de- (iv) As seen in the detailed explanations below, when all

pressing effect on the expectations of the practitioners in thgomts (macrpé: with one neighbor are exhausted, all trees
field on the performance of MCA in frustrated systems. WeSNfink to points. _ ,
will see below that these arguments and even the theorems (V) When all points(macrog with two neighbors are ex-
presented in Sec. IV still allow for a significant contribution hausted, all linear chains in the system shrink to length 1.
of MCA's in frustrated systems as long as they possess mac- (Vi) After that, some regular Monte Carl1C) (either
ros. local or global that acts on the new system can be used.
As opposed to fully connected models such as the SK Alternatively, one can keep coarsening the lattice along
model[17], the geometry of the diluted models includes to-the lines above while at the same time performing MC
pological structures capable of engendering such macrosweeps. This procedure is reminiscent of the DAMG pre-
The CA's can then locate and act on large regions of thesented iff6] and may involve/ andW multigrid cycles21].
configuration that are weakly linked to the rest of it. In ad-  As in [6], the reduced degrees of freedom are decided
dition to CA’s we construct a macros reduction algorithmaccording to the geometry of the lattice not according to the
(MRA) that acts explicitly on the same macros on which CAcurrent configuration. Therefore freezing degrees of freedom
acts stochastically. In this way we make explicit the role ofinto such reduced objects does not interfere with the detailed
the macros in both algorithms. The MRA has a structure venpglance.

similar to the dynamical algebraic multiGH®AMG) of [6]. The efficiency of the MRA relies on the following obser-
Since its action is more direct, the MRA is more efficient,,gtions.

than the CA in the models for which it was designege (i) The reduction stage takes negligible tirffew MC
Sec. VI for numerical details However, the CA is more step$ compared to the relaxation part.
versatile. Both are shown in Sec. VI to reach the real GS of (i) The resulting reduced system is much smaller than the

the system in contrast to the local dynamics. original one. For the lattices we have uset=() in the
We consider again the Ising-like system Gaussian case, its volume was 4 times smaller than the initial
volume.

H:_Ez J.ss: (7) (iii) The reduction in the volume has two independent
D I]SISJ ’ . .

i#] effects: the cost of each sweep over the lattice is reduced by
. S a factor proportional to the reduction of the volume and the
with the probability distribution fod; ; , number of sweeps necessary to converge to a ground state is

reduced as a function of the volume depending on the slow-
P(Ji)) =(1=c/N)8(Jij) + (c/N) £(Jjj), (®) ing down characteristics. For spin glasses this might even

) . . ) exceed a polynomial dependence. Let us see now the de-
where f(J;;) is the distribution of the surviving links after iailed mechanisms by which MCA's such as the CA, alge-

the dilution. This model is known as the highly diluted SG braic multigrid, and MRA work where the local algorithm
with finite average connectivitg [ =0(1)]. The probabil-

! ¢ L does not.
ity for a spin to have connectivity in such a system follows
the Poisson distributionexp(—c)/k!.
Many geometric properties of this system are well under- B. Trees
stood[19,2Q. In particular, the system undergoes a percola-
tion transition atc=1. The maximal cluster is o®(logN) Consider a configuration.

for c<1, O(N?3 atc=1, andO(N) for c¢>1, where its
size is explicitly given byP=1—-Py=1—exp(—cP). The
finite connectivity models at low temperature are directly
connected to the graph partitioning problé¢h®,2Q (divid-

ing a graph into subgraphs with minimum connections be-
tween them

A. Macro reduction algorithm

In the Introduction it was claimed that the very existence
of an efficient MCA may help identify relevant macros in the
system. To achieve this we construct a MRA that freezes
explicitly spins into macros and by doing so reprodu@esl
improves the performance of the efficient CA. The MRA
consists of the following iterative steps.

(i) Access the points of the system iteratively starting
with the ones with lowest connectivity. - - - ===

(ii) For an accessed pointfind its strongest connection
J;j, defined by|J; ;|>[J; | forall k#j. Assume thatX is minimal if s;=+1. Then the energy is

(i) Freezes; ands; into a macro such thats;J; ;s; is  minimized if all s's on the tree sites are-1. However , a
minimal. From now on the value & alone labels the state simple MC algorithm might have problems in reaching this
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minimal energy configuration. For instance, if one has

then even after ensurirg= + 1, s; will have two neighbors
with s=—1 and will refuse flipping tes;=+ 1. In contrast,
the CA will first freeze all the links belonging to the tree,
delete the i,j) link, and only then perform a flip of the
obtained macro in one painless step.

Similarly, MRA will identify the leaves and transform its
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FIG. 1. E(t), the energy per spin as a function of the running
time, for Metropolis dynamics, the cluster algoriti@A), and the
macro reduction algorithnfRA) for a c=2, N=5000 lattice at
T~0.3T,. In the last 1000 MCS we sdt=0.

The subset®\,B,CD (“drops”) can be considered as mac-
ros and minimized separately. Assume that the bBckini-
mization strongly prefers a particular position faandj. For
definitiveness take;= +1 ands;= +1 and assume that the
product of the links joining to j is —1. The minimal en-
ergy configuration is therefore frustrated. In order to find the
minimum one has to reach the configuration with only one
unsatisfied link in the entire chain and make it such that the
frustration resides on the link with the lowekl| in the
chain.

As we mentioned in Sec. V B, the CA mainly freezes the
strong satisfied links, flips the sign of the strong frustrated
ones, and keeps trying the weak ones. This quickly ap-
proaches the configuration with the frustration on the weak-
est link.

sites into a macro. Eventually, the algorithm will create a The MRA also puts together the satisfied strong links into
macro standing in for the entire tree. Clearly one can nownacros. Once the entiiig line is transformed into just one
update the macro of the new system in one step and themacro(with the strength of its lowest linkone can compare

return to the explicit microscopic representation.

C. Linear chains in Gaussian distributions
Consider a configuration of the type

the price of its frustration to the price of frustratifig(and
decide which of the two should remain unsatisfied
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FIG. 2. Same as Fig. 1, but with an annealing schedule over the
rangeT € 2.0-0.
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D. Strongly coupled islands

Consider a situation in which there are islands of sites g5 | e 1

related by very strong links submerged in a sea of links that

are much weaker.
-0.35 b
El - - - -
-0.45 i
-0.55 b
-0.65 ! ! . !

0 20000 40000 60000 80000 100000

t

FIG. 3. Weak link energye(t) as a function of the running
time, for the weak-strong model, witt+2, a=0.7, N=5000, and
T=0.8Jy,. The strong and the weak links were scaled to 100 and
1, respectively. The solid and the dotted lines indicate cluster and
Metropolis dynamics, respectively. Inset: the first 50 steps.

but they reach ground states that are unaccessible to the local
methods in any practical time. As seen below, this is espe-
The filled zones in the figure are the islands of strong linkscially true when one uses an annealed schedule, in which the
and we did not draw their sites explicitifBeware. In many temperature is gradually lowered. The temperature variation
aspects, this figure might be quite misleading, especially irenables the CA to act on clusters at various scales, corre-
the infinite-dimensional case. sponding to the different temperatures, and to address and
Suppose the strong links are of lower density and possibljreeze first the stronger links into small but very strongly
below the percolation. Suppose that the energy of the spingoupled islands. At lower energies larger, loosely coupled
within the strong islands was somewhat minimized. Theislands are formed and acted upon. In addition, the imple-
equilibration of the relative signs between the various islandgnentation of the MRA is shown to be more efficient than the
is very inefficient by local updating because none of theCA both on the rate of convergence and in the effective size
spins of an island would accept flipping without the entireof the system(as explained in Sec. V, each sweep in the
island doing so. MRA is actually smaller than the CA sweep, due to the re-
To check a simple example of such a case, we considerediced size of the system in the MRA case
a model(the weak-strong modeln which the link distribu-
tion is given by

A. Dilute SG model in the Gaussian case

_a _ Simulations on the model defined by E¢#). and(8) with
f)= 2[5(‘J )+ alte)] a Gaussian distribution for the link{J)=exp(—J?) were
carried out comparatively using local dynamitsetropolis,

n (1;a)[8(‘]_1)+5(\]+1)]. 9) :ir;ﬁng:luster algorithn{22] and the macros reduction algo-

The simulations were carried out for various connectivity

By defining each island as a macro, the MRA can of COUrS§51ues ¢ and at temperatures below the glassy transition

realign an entire island in one step and with quite high ac—TC_ The size of the system was between 1000 and 5000 sites.

ceptance. Then .CA is efficient too insofar as it free'z.es. theI'he results were averaged over at least ten different samples.
strong links and it allows the others to reach an equmbrlumA typical result is presented in Fig. 1. In Fig. 1 one sees the

(especially when annealing is appljedHowever, in a gen- ; ;
. e : evolution of the energy of the system=5000) monitored
eral case, the MRA is more difficult to apply, while the CA during its computer gi)r/nulatiob.])é to 5§000 lz/lonte Carlo

is still quite efficient in implicitly identifying macros in a ;
stochastic manner. As we report in Sec. VI, we found indee teps(MCS) per spirl. One can clearly see a gap between the

for the weak-strong model a huge gap between the satisfiqd] ergies reached with the global dynami¢se CA and

, hieved b MCA id db RA) and the local dynamics. The MRA gets exactly the
energy per spin achieved by a on one side and bY d5me energy level as the CA, but it converges much faster.
local Metropolis dynamics on the other.

In order to emphasize those features, we performed mea-
V. COMPARING THE LOCAL MC ;uremer_ns using simulated gnnealing for the above dynam-
TO THE MRA AND CA ics. In F|g._ 2 one can see a similar picture of the gap between

the energies reached with the global dynanitbe CA and
The results in this section show that the multiscale-clusteMRA) and the local dynamics. This suggests that the CA and
algorithms not only converge faster than the usual method$yIRA converge faster than the usual methods and reach the
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. : : , The explicit value ofE,, depends on the local field
k . P(h), which in general is difficult to calculate. Nevertheless,
after some workP(h) can be determined from the equation

-0.05 F

© dy cQa . _
-0.25 ¢ < —e—cQ| L —ij 2= (elYer gmive
P(h)=e szwexr{ iyh+ > (e¥Ye+e™e)

-0.45 +C(1—a)|§1 Py(e'e+ e_iy'f)} (11)

The resultingP(h) can then be compared with the usual
, , , K random J==*1 result P;=exp(—cQ)lj(cQ [23], where
0 20000 40000 o 60000 80000 100000 I,(x) is the modified Bessel function. The graphs of the two
P,’s are presented in the inset of Fig. 3. Note that after scal-
FIG. 4. Ey(t) for the weak-strong model, witt=2 and ing e to 1, theP, for the two cases are very close. However,
a=0.7. The annealing schedule range B®<123-0, with the values of theaxchange fielcare very different: in the
AT=10 forT>3 andAT=0.1 for T<3. The solid and the dotted J= +1 case the exchange field of a spin is usually not far
lines indicate cluster and Metropolis dynamics, respectively. Thefrom its local field (around the number of its neighbrs
horizontal line denotes the analytical GS. Insef:for the weak-  while in the weak-strong model the local field@ €) vs the
strong casesolid line) and theJ=+1 case(dotted ling. exchange field, which i€©(1). The fact that P, is much
smaller, raises the hope that a global dynamics will be supe-

true ground states which are unaccessible to the local metfiior to the local one. This is confirmed by the experiments
ods in any practical time. below.
As seen in Figs. 1 and 2, the MRA converges faster than
the CA. This reduction in the slowing down is related to the
fact that the reduced system has a much smaller volume than
the initial one. In fact, the gain in CPU time is much larger
than seen from the graphs because the graphs show the en-In the first set of runs we choose the connectivtythe
ergy evolution measured in MCS per spin. More preciselyaverage number of neighbgrand the fraction of the strong
due to the reduction of the volume, a sweep over the reducdihks (1—a) such that the density of the strong links by
lattice takes about 1/4 of the CPU time necessary to sweefiemselves is  below the percolation  threshold
the initial lattice(we measured that far=2 the MRA relax- Cs=c(l1l—a)<1. It is clear that in this situation all the
ation steps need to act only on about 25% of the initialstrong links are unfrustrated and the frustration is located
system. only on the weak links. Therefore only the energy of the
weak linksE,y is to be considered. In Fig. 3 one can see a
B. Weak-strong model large steady difference (35%) in the energy between the
local dynamics and that of the cluster dynamics.

-0.65

C. Performance of the local dynamics vs the CA
in the weak-strong model

The simulations of the weak-strong modEjq. (9)] were
compared with the analytical results[i23]. In [23] the self- Weak-strong mode with simulated annealing
consistent description of the low temperatures of the weak-

strong model was based on the probability distribution of the !N the second set of runs on the weak-strong model, we
local field defined by, =T tanh {S);. Physically, this field performed measurements using simulated annealing for both

is the first excitation, namely, in the lim—0, and|h;| is  9'oPal and local dynamicéFig. 4). This was performed by
the minimum energy cost for flipping thigh spin from its cooling over a wide range of temperatures. At larger tem-
GS by the “best” reorganization of the system. This local peratures, there were the strong links that reached their mini-
field is in truth an oxymoron, since it depends on globalMal €nergy and only then, at lower temperatures, the weak
properties of the cluster. The exchange figld;;m; , on the links adapted to the strong links environment.

other hand, is truly a local property depending on the local The_ clear energy difference between the' Ioc_aI and cluster
connectivity (note that|h;|<|=,J;;m;). It was found that cases is due to the fact that the local dynamics is totally stuck

within the replica symmetry assumption the GS energy of th ince the probability of flipping a cluster consisting of strong
weak links is given by inks is practically zero for the local algorithm. On the other

hand, the CA “knows” how to deal with the strong link

1 1 * _ structures by treating them as only “one degree of freedom”
Ew=— ECaP(Z)E‘f' Ec(l—a) 2 (1—40{)6— h, (10)  for each cluster. In other words, the CA is extremely efficient
k=0 in solving the problem of how to arrange the weak links in

the environment of the strong links.

K — The mean-field solution for such mod¢®3] is known to
whereo=Po/2+3{_, Py andh=3;___|h[P(h). Note that o nstablg24]. However, in Fig. 4 one can see that the
the energy of the strong linkss= — 3 c(1—a) is eliminated  analytical G§23], is in very good agreement with the aver-
from Eq. (10). aged GS energy obtained by the CA.
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VIl. OUTLOOK 0 A 1 2 o Ao
Identifying the nature and the dynamics of the macros dQ%09=78 i (si=s7)"=p(A). (A3)
may help understand the complex multiscale nature of a sys-
tem. The techniques for identifying the relevant macros lead A configuration—QDz{—s?, . ,—sﬁ} differing from
to a deeper understanding of the way the macroscopic dé3® only by a global change of sign is considered to be
scription of our world arises in the study of complex systemsidentical to QP. This brings the support of the function
composed of simple microscopic elements. d(Q1,Q2) into the interval[0,0.5].

The macros can be multiscale reducible, but in many We shall call a system ultrametric if with the above metric
cases there might exist complex irreducible cores. Whilehe space of its GS’s is an ultrametric spajgkctually, the
such irreducible macros might have fortuitous characteristicsheorem below is independent of the minimal energy prop-
such as lack generality and present nongeneric propertiesrty: it holds for any system with an UM subset of configu-
they might be very important if the same set of cores appeangtions singled out by some arbitrary propefg.g, GS'’s,
recurrently in biological, neurological, or cognitive systemshigh magnetization, and blue cojdrNamely, for any three

in nature. GS's 0!, 02 03 one has
In such situations, rather than trying to understand the
macros structure, dynamics, and properties on gefteral- d(Q,0%)<ma{d(Q!,0%),d(Q3,0?)]. (A4)

tiscale, analytig grounds as collections of their parts, one

may have to recognize the unity and uniqueness of theseor the proof of Theorem 1 we have the following.
macros and resign oneself in just making an as intimate as Proof. (i) By definition d(Q*,Q°%=p(A4), d(Q? Q%
possible acquaintance with their features. One may still try to=p(B), and d(Q5,Q4)=p(A)+p(B)—2p(ANB). (i)
treat them by the implicit elimination methd8] where the  On the other hand, the UM systefd5) implies, in our
complex objects are presenting, isolating, and eliminatingase, either(a) all the distances are equal(Q° Q)
themselves by the very fact that they are projected out by the=d(Q°,Q5)=d(Q*,Q7) or (b) two of the distances are

dynamics as the slow-to-converge modes. equal and the third is shortefiii) Considering(i) and (ii)
for Q° Q4 and QOF and (without loss of generality as-
ACKNOWLEDGMENTS suming thatp(A)=p(B), one has one of the following

o possibilities: (iia) is valid, in which casep(A)=p(B)

The research reported in this paper has been supported in 20(A) —2p(ANB) = p(ANB) = 1/2p(A) p(A) = p(B)
part by grants from the Germany-Israel Foundation and from. 20(A) — 2p(ANB) = p(ANB) = 1/2p(A) = 1/2p(B);
the Israeli Academy of Sciences and Humanities. This Papefih) is valid and p(A)=p(B)>2p(A)—2p(ANB) ir,1

was completed during a visit at ICTP and SISSA. DiSCUS-WhiCh CaSEp(.AﬂB)>l/2p(.A)=1/2p(B); or (iib) is valid
sions with D. Kandel, I. Kanter, G. Mack, and M. Virasoro 44 p(A)=p(A)+p(B)—2p(ANB), in which case

are gratefully acknowledged. p(ANB)=1/20(B).
In any of these three possibilities the desired relaf®oa.
APPENDIX: (A5)] is fulfilled:

We present in this Appendix the proofs of the theorems.
We will consider Ising-like systems consisting of spin
S==* 1:

p(ANB)=3zmin[p(A),p(B)].

O

O={sdk=1,... N}, (A1) Here we list further notations. In the following manipulations

thermodynamic limit is taken to infinity. A configura- thatQ) is a system with Eq(Al) as its energy and\ is a
tion is a specific assignment of the Spinsy e@,D subset MCQ). Q° is the initial conflguratlon of O):

—{sP, ... DL 0°={s”}. MP is the restriction of some arbitrary configu-
The system has an lIsing-like bilinear Hamiltonian thatratiog QP to the subsystem M, namely, /V_lD
defines an extensive energy. For example, in g BK -like ={s’|s;e M}. The energy associated witht® excluding
model (with J; ;e R) its interaction with the rest of) is
E(Q°)=(QP,QP)=- LE Jijsrsy. (A2 E(MP)=(MP, MP)=— 1 >3 :sPsP.
’ 2yNT7 T ' 2N s’ seny
(A5)

Note that in spite of this shorthand “scalar product” nota- o L
tion, the “norm” it defines is not positive; we will use only Let M be the complementary o¥1 in Q (MN M= and

its bilinear properties. _ _ _ MUM=Q). Its energy in the configuratiof® is
The metric in the configurations space is defined by the

following distance: If two configuration§%and Q-+ differ o L 1

(only) by the sign of the spins belonging to a suhgethen E(MP)=(MP MPy=—— > J; jSPS}D )

their distancdnote that in a finite system(.4) = (the num- 2\/Ni,j(si e M

ber of elements ind)/N] is (AB6)
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The interaction energy between such disjoint parts of a con- E[Q0]=(0°,Q0%=(A°, A°>+<A° A°>+2<A° AO)

figuration will be noted by (A19)
A D AqD D — — —
<M ,M >+<M ,M > (A?) E[Q'A]E<QA,QA>=<AO,AO>+<AO,AO>_2<AO,AO>.
1 (A20)
=—— X _dissy (A8)  without loss of generality one can assufBg)°]=E[Q*]
2VN sieMsjem (otherwise one can interchange the name$)8fand Q%).
This implies
1 —— —
T 2 JsPsP=2(MP MP). 4( A°, A% =0. (A21)
sie Msje M
J (A9) Now assume thatl® is not aSg(.A,C). Then there exists
i _ a subsetYC A that can be flipped to bring the systemto
We will use the formal notation the absolute minimuriSg(.4,0)]. Using the notatiorfA13)
QP = AP+ P, (AL0) this state can be written
X_"10_ 10
which ensures that AT=Xp= A (A22)
<MD+MD,MD+MD> (A11) whereFA is the complement aft' in A. The assumption that

AP is not Sg(.A,C) then reads

= (MO MO HMPAMOY - 2AMOMP). - (A12) E[A°] — E[ A= (X0, + X0, X0, + X0)

We will use similar sum notations for any configuration that (A= XXX (A23)
is specified in terms of specific spin configurations of disjoint . 0 5o

subsets coverin€). The scalar produgt,) (A2) is distribu- =47, X7))C. (A24)
tive with respect to this sum. Le®™ be a configuration
obtained fromQ° by flipping M, namely,s*'=—s if s;

e M andsM=s{ otherwise. We will use, in this case, the
notation

Note that if AY=X%— A" is a ground state of4, so is
— A%=—x0,+ X0 However, by including the subset in
the whole systenf), the sign of its interaction with the rest
of the systemA° has opposite sign in the two cases.
M= 10— Ay, (A13) This leads to the following total energies in terms of the
configurations of the subsef§ X, and A:

This notation has the advantage that, accordin(A®), . .

_ _ E[Q°]=(0° 0% =(A%+ X%+ X0, A%+ X0, + X0),
E(QM)=(M°— MO, MO~ MO) (A14) (A25)

= (MO, MO) + (MO MO —2( MO MO).  (AL5) E[QY]=(Q%0%=(A%+ X0 — X0, A%+ X0, — X0),
(A26)

Definition. Let A be a subset of the systefh or ) itself E[Q;A]E«);A Q;A\)E(,F—FAJJKO AO— A0, 1 X0,
(ACQ). We say a configuratiom® is aC ground state of ' ’ (A27)
A, [in shortSg(A,C) from now on if

o . Consequently, taking the combinatioh25) and (A28) plus
E(A”) —E(A9)=(A",A°) — (A%, A% <C, (Al6) ((A25)—(A27) one gets

where A9 is the state with the absolute minimum energy in 07_ 7y 4 07_ Xp
A andC is a positive constant. In other words(.AP) is up (E[QT—E Q7D +(ELQT]-EQ7])

to C a minimum of the energy of the subsdt E(AX)VK. =4(<X°,A°>+<X°,X°A>)+4(<X°A,A°>+<X°A,X°>)
Theorem 2.1f Q° and QA differing by the sign of the _ _
spins in the regiond are bothG S(€2,C) in a (not necessarily =4(A% A% +8(Xx°,X0%,). (A28)
ultrametrig system(), then 4° is GS(A4,C).
Proof. Note that the state®? and Q” can be written According to(A21) and(A24), the right-hand term is larger
o than 2, therefore, the same should hold for the left-hand
0%= A%+ A° (A17) term. This means that at least one of the brackets in the

left-hand term is larger tha@:
and, respectively,
o (E[Q°]-E[Q?])>C or (E[Q°]-E[Q?])>C.
QA= A%— A°, (A18)
However, according t0A16) this contradicts the initial state-
Accordingly, their energies are ment thatQ © is a Sg(2,C). The contradiction can only be
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attributed to our assumption thait® is not aSg(.4,C). This The configurations ittA34) and(A35) are not guaranteed
proves the theorem by reduction to the absurd. m to beSs(Q,C), so for the combinationsA32)—(A34) and
Note that one can také=0 and then the whole theorem (A32)—(A35) respectively, one gets inequalities in only one
can be referred to as absolute ground states. direction
Theorem 3Let () be a spin system dfA2) type. Let the 0 T D0 w0
space 0fG §(,3C) be ultrametriqA4). Let Q° andQ4 be E[Q°]-E[Q7]=4(A"+ XL, A7)<C,  (A37)
two configurations that are differing by the sign of the spins — — —
in a region A Assume that bothQ® and Q* are E[Q°]-E[Q"]=4(A%+ A3, X% <C, (A39)

GY,C)’'s which, according to Theorem 2, implies that . S o
A%is aG(A,C). Then, A° is the uniqueGS(A,C) of A respectively. By considering the combinatio®37) plus
(up to a globél flipping 6tA). ' (A31) and(A38) plus (A31) one gets

Proof. If A has anotheSg(.A,C), that state can be ob- A(A° ¥ <2C A39
tained by flipping a certain subs&tC .A. The expression of (ALY (A39)
the newSg(A,C) in terms of the configurations on the sub- and, respectively,
setsX’ and X4 (its complement in4) will be — =
_ 4( A% x%)<2cC. (A40)

AY=2,°-X°. (A29) _— . :
o o Substituting(A39) and (A40), respectively, in the left rela-

The assumption that both, °— A% and A%= X, °+ x° are ~ tion of (A36) one gets
Sc(A,C) implies

S 4(A°, X% >—2C (Ad1)
—C<(AR- A% - A%~ (A% A% <C, (A30) 4
ie., 4A°,x%)>—2C. (A42)
0 4,0
—C<—4(Xx°% Xx5)<C. (A3D)  This in turn implies[using (37)]
The total _energies o_f the fum_ configurations that can be 4<F+F,X°)> -3C (A43)
formed with the various configurations on the subs&fs
X5, and A° are and, respectively,
E[Q°1=(Q°,0 %) =(A%+ X0+ x°, A%+ x0+ x0), 4(A%+ X2, X% > -3C. (Ad44)
A32
o o (A32) But (A43) and(A44) are, according to the identities {A37)
E[QA]=(QA QA =(A— x0— 10 40— x9— x0), and (A38), the difference between the energies of the con-
(A33) figurationsQ © and Q% (Q° andQ*4). Therefore, one gets
N X — = 6% =0 o the bounds
E[QF]=(QQN=(A+ X, — X", A+ X, — A7),
< < ’ g (>AB4) E[Q°]-E[QY]<-3C, (A45)
E[ Q%] = (0%, %) = (40— A0+ 0, 40— A0+ x0). E[Q°]-E[Q%]<-3C, (A46)

A35 -
(A35) i.e., the states obtained by flipping and X, are both

Taking into account that botlliA32) and (A33) represent Sg({2,3C). However, given thaSg((2,3C) space is UM
Ss(,C) energiedand assuming without loss of generality and according to Theorem 1, this would oblige the sétnd
that (A33) is lower] one gets for their differenddA32) and X, to share at least half of the spins of the smaller of them.

(A33)] the inequalities Since the two sets are by definition disjoint, we reached a
S — contradiction. This reduces to absurd our assumption that
0<4(A° X7+ x%<C. (A36)  there exists more than or8(.A,C). [}
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