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We relate the long-range, long-time correlations during the simulation of disordered complex systems to the
relevant macroscopic effective collective degrees of freedom. We prove that in systems that have an ultramet-
ric space of ground states, the tunneling between vacuums cannot be expressed in terms of spatially disjoint
clusters or in terms of spatial multiscale hierarchies. We relate this to the ultraslow convergence difficulties of
multiscale-cluster algorithms in such systems. On the contrary, in the case of finite connectivity~dilute! spin
glasses, we are able to find multiscale-cluster algorithms that are much more efficient than the usual methods.
We relate their efficiency explicitly to their action on specific collective degrees of freedom. These degrees of
freedom are responsible for the slowing down of the usual algorithms.@S1063-651X~96!07510-1#

PACS number~s!: 02.70.2c, 0.5.45.1b

I. COMPLEX SYSTEMS AND MACROS

One of the main characteristics of complex systems is
their computational difficulty: the time necessary for their
investigation and/or simulation grows very fast with their
size @1#. The systematic classification of the difficulty and
complexity of computational tasks is a classical problem in
computer science@2#.

In physical systems, the emergence of long-time scales is
often related to multiscale spatial structures within the sys-
tem. Long-range and long-time scale hierarchies~multiscale
slowing down! are usually related to collective degrees of
freedom ~which we call hereinmacros! characterizing the
effective dynamics at each scale.

The physical understanding of complex macroscopic phe-
nomena is then often expressed through identifying the rel-
evant macros and their effective dynamics~e.g., hadrons in
the theory of quarks and gluons, Cooper pairs in supercon-
ductors, phonons in crystals, vortices in superfluids, flux
tubes, and instantons, solitons, and monopoles in gauge theo-
ries!. One can entertain the hope that many complex systems
display some kind of universal multiscaling exponents gen-
eralizing the scaling critical exponents of the critical sys-
tems. One could hope for the existence of some kind of
multiscale-universality classes generalizing the universality
classes of renormalization-group theory. Such a situation
would have a significant unifying effect on a very wide range
of phenomena spreading over most of the contemporary sci-
entific fields.

In the absence of a rigorous theoretical basis for such a
hope, its investigation relies, for the moment, mainly on the
use of computers. In particular one uses ‘‘first-principles’’
simulations, which implement directly and without the inter-
mediary ofad hocapproximations the fundamental physics
of the systems under study.

Usually, it is the dynamics of the macros during simula-
tions that produces the multiscale slowing down and, recip-

rocally, the slow modes of the simulation dynamics project
out the relevant macros@3#. Therefore, a better theoretical
understanding of the multiscale structure of the system en-
ables one to construct better algorithms by acting directly on
the relevant macros. Reciprocally, understanding the success
of a certain algorithm yields a deeper knowledge of the rel-
evant degrees of freedom of the system~see, for example, the
projection by a parallel transported multigrid of exact lattice
Atyiah-Singer modes@4#.

The present paper implements this point of view into the
study of spin glasses. Section II introduces the basic notions
of multiscale-cluster algorithms~MCA’s!. Section III de-
scribes the difficulties in applying MCA’s to generic frus-
trated systems. Section IV contains rigorous results that for-
bid macros in ultrametric systems. Section V identifies the
relevant macros and their role in constructing MCA’s for
dilute spin glasses. Section VI demonstrates numerically the
efficiency of the resulting MCA. Section VII summarizes the
conclusions. The Appendix contains the proofs of the results
stated in Sec. IV. We interpret the negative results in Secs.
III and IV and the positive results in Secs. V and VI as
supporting, in both directions, the relation between macros
and the efficiency of MCA’s.

II. MULTISCALE-CLUSTER ALGORITHMS

An example of multiscale effective dynamics and its re-
lated multiscale slowing down is the critical slowing down at
second-order phase transitions. There the relaxation timet
diverges with the systems sizeL as

t;Lz,

where z ~;2! is the dynamical critical exponent. Conse-
quently, the typical time needed to produce a large Boltz-
mann set of decorrelated configurations diverges and the
standard local Monte Carlo methods become inefficient.

It was shown that when the detailed knowledge on the
relevant macros is included in the simulation algorithms, the
value of z can be reduced dramatically~down to 0) @5#.
These algorithms, which we will call generically here
multiscale-cluster algorithms, allow the very fast and precise
computation of the equilibrium thermodynamic properties of
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the systems. However, their main importance is to guide and
validate by objective means~lowering of z! the intuitive
guesses on the physically relevant macros and their macro-
scopic dynamics@3#.

We are treating the various MCA’s in a conceptually uni-
fied way: as expressions of the macros appearing at various
scales. In fact, many of the explanations in Sec. V on the
dynamical relevance of the spatial structures manipulated di-
rectly by the macros reduction algorithm can be given
equally in the language of the dynamical algebraic multigrid
@6# as well as in the framework of the cluster algorithm~CA!
@7#.

In statistical mechanics systems, the objective of MCA’s
is to generate as fast as possible a representative sample of
configurations. This is realized by acting directly on the mac-
roscopically relevant macros~in contrast to the usual local
algorithms, which act on the microscopic elementary degrees
of freedom!.

The typical CA works according the following general
principles.

~i! One selects a particular subset of allowed changes for
the degrees of freedom associated with each site
i51, . . . ,N of the system. @For example, in finite-
temperature SU~2! gauge theory, the SU~2! matrix degree of
freedom on the time-like links is allowed to change only its
sign during a MCA step@8#. This is an algorithmic expres-
sion of the physical understanding that it is the center of the
group that is the relevant degree of freedom.# This reduces
the system to an Ising-like systemS5$s1 , . . . ,sN%, where
the Ising variablessk can take the values61. A configura-
tion is a specific assignment of one of these values for each
sk . The interaction energy

E~S!5
1

2(i , j Ji , j~12sisj !

is parametrized by thelink parametersJi , j associated with
each pair of sitesi and j . ~For notational convenience, we
use in this and the following section a definition of the total
energy that differs by an overall additional constant

E05
1
2 ( i , j Ji , j from the definition used in the rest of the pa-

per.!
~ii ! One constructs and updates a system of clusters that

preserves the macroscopic dynamical properties of the initial
spin system. The system of clusters and its dynamics is ob-
tained by modifying the~link! parametersJi , j between the
pairs of spins (i , j ). More precisely the link (i , j ) is either
‘‘frozen’’ Ji , j5` or ‘‘deleted’’ Ji , j50 based on the follow-
ing classifications.

Consider the current valuessi
C and sj

C of the two spins

and their current energyE(Si , j
C )5 1

2 Ji , j (12si
Csj

C). ~a! If the
spins are in the low-energy stateE(Si , j

C )50 the link (i , j ) is
called saturated orsatisfied. Otherwise, the link is said
unsatisfied. ~b! If the difference between the satisfied and
unsatisfied energies of the linkuJi , j u is large, the link is
called strong. Otherwise it isweak. Often the strong-weak
label is given relative to the actual temperature of the system.
For instance, at very high temperature (T@uJi , j

C u) all the
links can be considered weak, while at low temperature
(T!uJi , j

C )u) most of the links may be acting as strong. With

this terminology, the cluster generating procedure is~a!
freeze~with high probability! the strong satisfied links~links
with low energy!, ~b! delete the strong unsatisfied links
~links with high energy!, ~c! give for weak links an appro-
priate stochastic chance to both options~frozen or deletion!
to arise, and~d! flip the relative signs of spins that belong~by
the link deletions! to different clusters.

In the following we will call loop a closed chain of links

$~ i k ,i k11!uk51, . . . ,n; i n11[ i 1%.

If the product

)
k51,n

Ji k ,i k11
,0

is negative the loop is said to befrustrated. If a loop is
frustrated there exists no spin configuration for which all the
links of the loop are satisfied.

III. MCA DIFFICULTIES IN FRUSTRATED SYSTEMS

The problem of the applicability of MCA to frustrated
systems arises quite early because most of the cases in which
the MCA did not workwere situations in which the first step
of Sec. II reduced the system to a frustrated one@9,3#.

Some of the most important families of frustrated systems
are the randomly frustrated systems such as spin glasses
~SG’s!. A typical SG system presents a complex energy
landscape consisting of many local minima, separated by
huge barriers that scale with the size of the system. This is
expressed by the emergence of an ultrametric structure of the
ground-state space and an infinite hierarchy of exponentially
divergent relaxation times@10#.

To understand the difficulties that occur when applying
MCA’s to frustrated systems let us analyze in detail a simple
scenario. Suppose that the first configuration~C1! in the fig-
ure

is an energy ground state~GS!. Consider the case that the
subsystemsX andY are linked by two chains of linksA and
B ~as shown in the figure!.

Suppose that in C1 the total energy of the links belonging
to A is EA

150, while the energy of chainB is EB
15e. Chain

B is therefore unsatisfied, while chainA is satisfied. For the
simplicity of the argument let as assume that the system is at
very low temperatureT!e, though the conclusion is valid at
higher temperatures (T,e) as well.

Assume now that a second GS configuration C2 is ob-
tained by flipping in C1 the relative sign of the spins belong-
ing to the regionsX and Y such that EB

250 and
EA
25EB

15e. This means that in the ground-state C2 it is
chain A that is satisfied, whileB is unsatisfied. The total
energy of C2 is equal to the total energy of C1. An efficient
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algorithm should allow one to easily obtain C2 from C1 and
vice versa.

However, with the usual cluster algorithm, this condition
is not fulfilled. Indeed, if chainA is unsatisfied~as it happens
in C2! so that the chain eventually would be cut by the CA,
then automaticallyB is satisfied and all its links will be
eventually frozen by the CA. Conversely, ifB is cut, A is
uncut ~this happens in C1!. Consequently, in any case, at
least one of the chainsA and B is frozen. Therefore
X and Y are always included by the CA in the same cluster
and there is no way to get from C1 to C2.

Therefore it appears that a frustrated disordered system is
not compatible with an efficient updating algorithm. This
argument becomes even stronger ifX and Y are linked by
several chains. We will present in Sec. IV some rigorous
results extending these intuitions to a wider class of systems.

In a few special cases one can overcome these problems.
If the problem is local and the structure of the links is com-
pletely known, then a ‘‘two-bond deletion’’ might help, such
as in the fully frustrated system on a square lattice@11#. The
two-bond deletion technique can be extended in other sys-
tems to three- and four-bond deletions@12# and even to an
n-bond procedure. However, in general, the problem would
still revert to exponentially combinatorial complexity if one
has noa priori knowledge about which ‘‘special’’ subset of
links one should combine.

The simulated annealing technique, which helped some
systems from getting stuck in local minima, failed to provide
a complete solution in the SG case. A related direction is the
Swenden-Wang~SW! replica algorithm@7# and its modifica-
tions @13#, which use simultaneously various replica of the
system in order to identify large spatial regions that act co-
herently. This might work in a few simple cases, in low
dimension~until now only two dimensions!. However, one
cannot expect such an algorithm to work for a general frus-
trated system because~i! in general~e.g., for spin glasses
@14#! one can find for each GS exponentially many meta-
stable states with energy close to the ground states. As a
result, one needs in general an exponential number of replica
in order to fully capture the structure of the system.~ii ! The
spatial regions that have to flip in order to turn various
ground states into one another cannot in general be identified
and manipulated as independent entities~see in Sec. IV the
relevant theorems for ultrametric systems!. These limitations
indicate that one cannot get away from the combinatorial
complexity of the general randomly frustrated problem. The
CA logic of constructing clusters is based onlocal ~see, e.g.,
@15#! features, implying local criteria such as deleting the
unsatisfied links which define the block boundaries in the
ferromagnet case. However, in a general case the feature of
the cluster is only apparent in aglobal view, without any
local signs~see Theorem 3!.

The situation can be compared with having to find one’s
way in a labyrinth in phase space: each small local change in
the position of the potential-energy labyrinth walls deter-
mines large unpredictable changes of the solution route de-
pending on details scattered across the entire phase space.
Consequently, we are discerning three main complexity
cases.

~i! In very simple cases the pattern of complexity is re-
ducible~maybe by an iterative multiscale procedure! and the

MCA’s capturing this reducible complexity are an efficient
computational and conceptual tool.

~ii ! In the general case one has to put an exponential com-
putational effort to fully ‘‘understand’’ the structure of the
system. This situation is similar to understanding the archi-
tecture of a labyrinth and is expressed by the theorems of
Sec. IV.

~iii ! In some cases the system contains certain macros that
are ‘‘irreducibly complex.’’ Yet the interactions between
these macros are tractable by MCA’s or other algorithms. In
these cases, MCA’s can help reduce the ‘‘less complex’’ part
of the dynamics leaving the ‘‘irreducible cores’’ for a sepa-
rate treatment.

The last possibility has been exploited in the parallel
transported multigrid@16,4# treatment of the fermions in
gauge field background where the complexity related to the
gauge freedom was eliminated at the multigrid level, while
for macros related to frustration and topology~e.g., Atyiah-
Singer zero modes! one has developed a method@3# for im-
plicit identification, manipulation, and elimination of irre-
ducibly complex macros. Similar intuitions are at the basis of
the successful algorithms for diluted spin glasses described
in Secs. V and VI. Recognizing the irreducibly complex
parts of a complex system~rather than trying vainly to solve
them by multiscale means! might be a very important aspect
both conceptually and computationally.

IV. ULTRAMETRIC SYSTEMS DO NOT HAVE
INDEPENDENT MACROS

As explained above, the SG systems present a certain hi-
erarchy in their energy landscape that is responsible for the
hierarchy of time scales characterizing their multiscale slow-
ing down. This rugged energy landscape is also the origin of
the ultrametric properties of their ground-state space@25#.

One could hope to make some relation between the pres-
ence of an ultrametric hierarchy and the existence of an ef-
fective representation of the dynamics in terms of a spatial
multiscale hierarchy of independent macros. This in turn
would become the basis of an efficient MCA.

It turns out that the case is exactly the opposite: the ultra-
metric hierarchy characterizing SG’sensuresthe nonexist-
enceof a representation of the effective macroscopic dynam-
ics of the complex system in terms of their macroscopic
disjoint subsets~i.e., a complex ultrametric system is not
effectively reducible to a set of subsystems!.

Let us express this in a more precise and rigorous way. In
the Appendix we present some more details and the proofs of
the theorems. We will consider Ising-like systems consisting
of spinssk561:

V5$skuk51, . . . ,N%, ~1!

whereN is the arbitrary size of the system, which in the
thermodynamic limit is taken to be infinity. A configuration
is a specific assignment of the spins, e.g.,VD

5$s1
D , . . . ,sN

D%.
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The system has an Ising-like bilinear Hamiltonian that
defines an extensive energy. For example, in Sherrington-
Kirkpatrick @17# -like model

E~VD![^VD,VD&52
1

2AN(
i , j

Ji , j si
Dsj

D . ~2!

The metric in the configurations space is defined by the fol-
lowing distance. If two configurationsV0 andVA differ only
by the sign of the spins belonging to a subsetA, then their
distance is

d~V0,VA!5
1

4N(
i

~si
02si

A!2[r~A!. ~3!

We shall call a system ultrametric~UM!, if with the above
metric the space of its GS’s is an ultrametric space. Namely,
for any three GS’sV1, V2, and V3 one has

d~V1,V2!<max@d~V1,V3!,d~V3,V2!#. ~4!

Note that for real systems this condition is fulfilled, prob-
ably up to measure zero of violations, and up to some
small e;d/N @18#. Those limitations do not affect our
final conclusions, though one should be aware of their exist-
ence.

The first theorem expresses the fact that one cannot
hope to travel between various GS’s of an ultrametric
system by just identifying and flipping independently various
subsets~macros, i.e., collective objects!. @Theorem 1 below
is independent on the minimal energy property: it holds for
any system with an UM subset of configurations singled out
by some arbitrary property~e.g, GS’s, high magnetization,
and blue color!.# More precisely, we have the following.

Theorem 1. Consider two subsetsA and B of an UM
systemV that has a GSV0. Assume that the statesVA and
VB obtained by flipping the spins of setsA andB, respec-
tively, in V0 are GS’s too. Then

r~AùB!> 1
2min@r~A!,r~B!#. ~5!

Namely, the smaller of the setsA andB shares at least half
of itself with the larger one. Moreover, if

r~A!.r~B!

then

r~AùB!5 1
2r~B!. ~6!

Theorem 1 means that at least half of the spins of one of the
sets (A or B) belong to the other set. This is hardly one’s
idea of two independent sets. In fact, generally, a point be-
longs to an infinite number of strongly overlapping clusters.
This implies that locally one has no criterion for constructing
the relevant macros. Those can be identified only from a
global view.

In conclusion, in ultrametric systems it is ruled out that
various regions of the system can be treated as independent
collective degrees of freedom~macros!. This picture can be
extended to finite but small temperatures with the help of the
‘‘pure state’’ concept@1#.

The failure of separability has conceptual implications in
the sense that one cannot understand the complex system by
analyzing its parts. In this sense an ultrametric system is
conceptually irreducible to simpler entities. We will see in
Sec. V that optimal global algorithms in fact reduce a system
to its irreducible core.

One is tempted to conclude that the entire discussion of
reductionism can be reformulated in terms of irreducible
complex systems, i.e., in place ofassumingultrametricity
and deducing the inexistence of independent dynamical sub-
objects, one can propose thisdynamical inseparabilityas the
fundamental property underlying irreducible complexity.
Theorem 1 suggests therefore that one should engage in the
systematic study of the systems that have families of GS’s
differing by strongly overlapping subsets. The topology in-
duced in the system by these subsets might have interesting
properties. In the rest of this section, we will give further
characterization of the subsetsA that relate~by their flip-
ping! different ground states.

Theorem 2. If V0 andVA, differing by the sign of the
spins in the regionA, are both GS’s of a~not necessarily
ultrametric! systemV, then their actual spin arrangement
V0, restricted to the systemA alone~we denote this particu-
lar configuration ofA by A0), is a GS of the systemA
considered as isolated from the rest ofV.

Note that this statement holds not only in low dimensions
~where the surface energy is not extensive!. To see in what
respect this statement is nontrivial, note that in the presence
of the systemĀ ~the complement ofA in V), the spins in
systemA are submitted to the influence of the external~to
A) action of the spins inĀ. For a general subsetA of V, this
will bring the spins ofA into positions that are not necessar-
ily optimal in terms of the internalA interactions alone.
They would in general be in a position that strikes a com-
promise between minimizing the internalA energy and the
interactions with the rest of the system (Ā). Theorem 2 finds
conditions in which the action ofĀ can be ignored. This
property has interesting unique consequences on the subsets
that by flipping signs connect the GS’s of ultrametric sys-
tems.

Theorem 3. Let V be a spin system of the type described
by the energy@Eq. ~2!#. Let the space of GS’s ofV be
ultrametric@Eq. ~4!#.

Let V0 andVA be two configurations ofV that differ by
the sign of the spins in a regionA. Assume that bothV0 and
VA are GS’s ofV ~which, according to Theorem 2, implies
thatA0 is the GS ofA). ThenA0 is the unique GS ofA ~up
to a global flipping ofA). This theorem throws some ironic
light on the properties of GS’s in ultrametric systems.A pos-
teriori there is something qualitatively special in the sets that
connect the GS’s of UM systems: the uniqueness of their
GS’s. These sets are very special and do not share at all the
proliferation of vacuums characteristic of typical SG sub-
systems. In fact, these subsets are not UM systems by them-
selves: Theorem III implies~among other things! that these
subsets cannot constitute a multiscale hierarchy of UM sub-
systems included recurrently one in the other. Also the UM
system is not self-similar in this sense.
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V. EFFICIENT MCA’S IN DILUTE SPIN GLASSES

The discouraging arguments of Sec. III had a rather de-
pressing effect on the expectations of the practitioners in the
field on the performance of MCA in frustrated systems. We
will see below that these arguments and even the theorems
presented in Sec. IV still allow for a significant contribution
of MCA’s in frustrated systems as long as they possess mac-
ros.

As opposed to fully connected models such as the SK
model @17#, the geometry of the diluted models includes to-
pological structures capable of engendering such macros.
The CA’s can then locate and act on large regions of the
configuration that are weakly linked to the rest of it. In ad-
dition to CA’s we construct a macros reduction algorithm
~MRA! that acts explicitly on the same macros on which CA
acts stochastically. In this way we make explicit the role of
the macros in both algorithms. The MRA has a structure very
similar to the dynamical algebraic multiGrid~DAMG! of @6#.
Since its action is more direct, the MRA is more efficient
than the CA in the models for which it was designed~see
Sec. VI for numerical details!. However, the CA is more
versatile. Both are shown in Sec. VI to reach the real GS of
the system in contrast to the local dynamics.

We consider again the Ising-like system

H52
1

2(iÞ j
Ji j sisj , ~7!

with the probability distribution forJi , j ,

P~Ji j !5~12c/N!d~Ji j !1~c/N! f ~Ji j !, ~8!

where f (Ji j ) is the distribution of the surviving links after
the dilution. This model is known as the highly diluted SG
with finite average connectivityc @5O(1)#. The probabil-
ity for a spin to have connectivityk in such a system follows
the Poisson distributionckexp(2c)/k!.

Many geometric properties of this system are well under-
stood@19,20#. In particular, the system undergoes a percola-
tion transition atc51. The maximal cluster is ofO(logN)
for c,1, O(N2/3) at c51, andO(N) for c.1, where its
size is explicitly given byP512P0512exp(2cP). The
finite connectivity models at low temperature are directly
connected to the graph partitioning problem@19,20# ~divid-
ing a graph into subgraphs with minimum connections be-
tween them!.

A. Macro reduction algorithm

In the Introduction it was claimed that the very existence
of an efficient MCA may help identify relevant macros in the
system. To achieve this we construct a MRA that freezes
explicitly spins into macros and by doing so reproduces~and
improves! the performance of the efficient CA. The MRA
consists of the following iterative steps.

~i! Access the pointsi of the system iteratively starting
with the ones with lowest connectivity.

~ii ! For an accessed pointi find its strongest connection
Ji , j , defined byuJi , j u.uJi ,ku for all kÞ j .

~iii ! Freezesi andsj into a macro such that2siJi , j sj is
minimal. From now on the value ofsj alone labels the state

of the macro andsi is just a ‘‘slave’’ determined by it.
~iv! As seen in the detailed explanations below, when all

points ~macros! with one neighbor are exhausted, all trees
shrink to points.

~v! When all points~macros! with two neighbors are ex-
hausted, all linear chains in the system shrink to length 1.

~vi! After that, some regular Monte Carlo~MC! ~either
local or global! that acts on the new system can be used.

Alternatively, one can keep coarsening the lattice along
the lines above while at the same time performing MC
sweeps. This procedure is reminiscent of the DAMG pre-
sented in@6# and may involveV andWmultigrid cycles@21#.

As in @6#, the reduced degrees of freedom are decided
according to the geometry of the lattice not according to the
current configuration. Therefore freezing degrees of freedom
into such reduced objects does not interfere with the detailed
balance.

The efficiency of the MRA relies on the following obser-
vations.

~i! The reduction stage takes negligible time~few MC
steps! compared to the relaxation part.

~ii ! The resulting reduced system is much smaller than the
original one. For the lattices we have used (c52) in the
Gaussian case, its volume was 4 times smaller than the initial
volume.

~iii ! The reduction in the volume has two independent
effects: the cost of each sweep over the lattice is reduced by
a factor proportional to the reduction of the volume and the
number of sweeps necessary to converge to a ground state is
reduced as a function of the volume depending on the slow-
ing down characteristics. For spin glasses this might even
exceed a polynomial dependence. Let us see now the de-
tailed mechanisms by which MCA’s such as the CA, alge-
braic multigrid, and MRA work where the local algorithm
does not.

B. Trees

Consider a configuration.

Assume thatX is minimal if si511. Then the energy is
minimized if all s’s on the tree sites are11. However , a
simple MC algorithm might have problems in reaching this
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minimal energy configuration. For instance, if one has

then even after ensuringsi511, sj will have two neighbors
with s521 and will refuse flipping tosj511. In contrast,
the CA will first freeze all the links belonging to the tree,
delete the (i , j ) link, and only then perform a flip of the
obtained macro in one painless step.

Similarly, MRA will identify the leaves and transform its
sites into a macro. Eventually, the algorithm will create a
macro standing in for the entire tree. Clearly one can now
update the macro of the new system in one step and then
return to the explicit microscopic representation.

C. Linear chains in Gaussian distributions

Consider a configuration of the type

The subsetsA,B,CD ~‘‘drops’’ ! can be considered as mac-
ros and minimized separately. Assume that the blockE mini-
mization strongly prefers a particular position fori and j . For
definitiveness takesi511 andsj511 and assume that the
product of the links joiningi to j is 21. The minimal en-
ergy configuration is therefore frustrated. In order to find the
minimum one has to reach the configuration with only one
unsatisfied link in the entire chain and make it such that the
frustration resides on the link with the lowestuJu in the
chain.

As we mentioned in Sec. V B, the CA mainly freezes the
strong satisfied links, flips the sign of the strong frustrated
ones, and keeps trying the weak ones. This quickly ap-
proaches the configuration with the frustration on the weak-
est link.

The MRA also puts together the satisfied strong links into
macros. Once the entireī j line is transformed into just one
macro~with the strength of its lowest link! one can compare
the price of its frustration to the price of frustratingE ~and
decide which of the two should remain unsatisfied!.

FIG. 1. E(t), the energy per spin as a function of the running
time, for Metropolis dynamics, the cluster algorithm~CA!, and the
macro reduction algorithm~RA! for a c52, N55000 lattice at
T;0.3Tc . In the last 1000 MCS we setT50.

FIG. 2. Same as Fig. 1, but with an annealing schedule over the
rangeTP2.020.
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D. Strongly coupled islands

Consider a situation in which there are islands of sites
related by very strong links submerged in a sea of links that
are much weaker.

The filled zones in the figure are the islands of strong links
and we did not draw their sites explicitly.~Beware. In many
aspects, this figure might be quite misleading, especially in
the infinite-dimensional case.!

Suppose the strong links are of lower density and possibly
below the percolation. Suppose that the energy of the spins
within the strong islands was somewhat minimized. The
equilibration of the relative signs between the various islands
is very inefficient by local updating because none of the
spins of an island would accept flipping without the entire
island doing so.

To check a simple example of such a case, we considered
a model~the weak-strong model! in which the link distribu-
tion is given by

f ~J!5
a

2
@d~J2e!1d~J1e!#

1
~12a!

2
@d~J21!1d~J11!#. ~9!

By defining each island as a macro, the MRA can of course
realign an entire island in one step and with quite high ac-
ceptance. Then CA is efficient too insofar as it freezes the
strong links and it allows the others to reach an equilibrium
~especially when annealing is applied!. However, in a gen-
eral case, the MRA is more difficult to apply, while the CA
is still quite efficient in implicitly identifying macros in a
stochastic manner. As we report in Sec. VI, we found indeed
for the weak-strong model a huge gap between the satisfied
energy per spin achieved by a MCA on one side and by a
local Metropolis dynamics on the other.

VI. COMPARING THE LOCAL MC
TO THE MRA AND CA

The results in this section show that the multiscale-cluster
algorithms not only converge faster than the usual methods,

but they reach ground states that are unaccessible to the local
methods in any practical time. As seen below, this is espe-
cially true when one uses an annealed schedule, in which the
temperature is gradually lowered. The temperature variation
enables the CA to act on clusters at various scales, corre-
sponding to the different temperatures, and to address and
freeze first the stronger links into small but very strongly
coupled islands. At lower energies larger, loosely coupled
islands are formed and acted upon. In addition, the imple-
mentation of the MRA is shown to be more efficient than the
CA both on the rate of convergence and in the effective size
of the system~as explained in Sec. V, each sweep in the
MRA is actually smaller than the CA sweep, due to the re-
duced size of the system in the MRA case!.

A. Dilute SG model in the Gaussian case

Simulations on the model defined by Eqs.~7! and~8! with
a Gaussian distribution for the linksf (J)}exp(2J2) were
carried out comparatively using local dynamics~Metropolis!,
the cluster algorithm@22# and the macros reduction algo-
rithm.

The simulations were carried out for various connectivity
values c and at temperatures below the glassy transition
Tc . The size of the system was between 1000 and 5000 sites.
The results were averaged over at least ten different samples.
A typical result is presented in Fig. 1. In Fig. 1 one sees the
evolution of the energy of the system (n55000) monitored
during its computer simulation@up to 50 000 Monte Carlo
steps~MCS! per spin#. One can clearly see a gap between the
energies reached with the global dynamics~the CA and
MRA! and the local dynamics. The MRA gets exactly the
same energy level as the CA, but it converges much faster.

In order to emphasize those features, we performed mea-
surements using simulated annealing for the above dynam-
ics. In Fig. 2 one can see a similar picture of the gap between
the energies reached with the global dynamics~the CA and
MRA! and the local dynamics. This suggests that the CA and
MRA converge faster than the usual methods and reach the

FIG. 3. Weak link energyEW(t) as a function of the running
time, for the weak-strong model, withc52, a50.7,N55000, and
T50.5JW . The strong and the weak links were scaled to 100 and
1, respectively. The solid and the dotted lines indicate cluster and
Metropolis dynamics, respectively. Inset: the first 50 steps.
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true ground states which are unaccessible to the local meth-
ods in any practical time.

As seen in Figs. 1 and 2, the MRA converges faster than
the CA. This reduction in the slowing down is related to the
fact that the reduced system has a much smaller volume than
the initial one. In fact, the gain in CPU time is much larger
than seen from the graphs because the graphs show the en-
ergy evolution measured in MCS per spin. More precisely,
due to the reduction of the volume, a sweep over the reduced
lattice takes about 1/4 of the CPU time necessary to sweep
the initial lattice~we measured that forc52 the MRA relax-
ation steps need to act only on about 25% of the initial
system!.

B. Weak-strong model

The simulations of the weak-strong model@Eq. ~9!# were
compared with the analytical results in@23#. In @23# the self-
consistent description of the low temperatures of the weak-
strong model was based on the probability distribution of the
local field defined byhi[T tanh21^Si&T . Physically, this field
is the first excitation, namely, in the limitT→0, anduhi u is
the minimum energy cost for flipping thei th spin from its
GS by the ‘‘best’’ reorganization of the system. This local
field is in truth an oxymoron, since it depends on global
properties of the cluster. The exchange field( j Ji jmj , on the
other hand, is truly a local property depending on the local
connectivity ~note thatuhi u<u( j Ji jmj u). It was found that
within the replica symmetry assumption the GS energy of the
weak links is given by

EW52
1

2
caP0

2e1
1

2
c~12a!(

k50

`

~124sk
2!e2h̄, ~10!

wheresk5P0/21( l51
k Pl andh̄5(h52`

` uhuP(h). Note that
the energy of the strong linksES52 1

2 c(12a) is eliminated
from Eq. ~10!.

The explicit value ofEW depends on the local field
P(h), which in general is difficult to calculate. Nevertheless,
after some work,P(h) can be determined from the equation

P~h!5e2cQE
2`

` dy

2p
expF2 iyh1

cQa

2
~eiye1e2 iye!

1c~12a!(
l51

`

Pl~e
iyl e1e2 iy l e!G . ~11!

The resultingP(h) can then be compared with the usual
random J561 result Pl5exp(2cQ)Iulu(cQ) @23#, where
I l(x) is the modified Bessel function. The graphs of the two
Pl ’s are presented in the inset of Fig. 3. Note that after scal-
ing e to 1, thePl for the two cases are very close. However,
the values of theexchange fieldare very different: in the
J561 case the exchange field of a spin is usually not far
from its local field ~around the number of its neighbors!,
while in the weak-strong model the local field isO(e) vs the
exchange field, which isO(1). The fact that Pl is much
smaller, raises the hope that a global dynamics will be supe-
rior to the local one. This is confirmed by the experiments
below.

C. Performance of the local dynamics vs the CA
in the weak-strong model

In the first set of runs we choose the connectivityc ~the
average number of neighbors! and the fraction of the strong
links (12a) such that the density of the strong links by
themselves is below the percolation threshold
cS5c(12a),1. It is clear that in this situation all the
strong links are unfrustrated and the frustration is located
only on the weak links. Therefore only the energy of the
weak linksEW is to be considered. In Fig. 3 one can see a
large steady difference (35%) in the energy between the
local dynamics and that of the cluster dynamics.

Weak-strong mode with simulated annealing

In the second set of runs on the weak-strong model, we
performed measurements using simulated annealing for both
global and local dynamics~Fig. 4!. This was performed by
cooling over a wide range of temperatures. At larger tem-
peratures, there were the strong links that reached their mini-
mal energy and only then, at lower temperatures, the weak
links adapted to the strong links environment.

The clear energy difference between the local and cluster
cases is due to the fact that the local dynamics is totally stuck
since the probability of flipping a cluster consisting of strong
links is practically zero for the local algorithm. On the other
hand, the CA ‘‘knows’’ how to deal with the strong link
structures by treating them as only ‘‘one degree of freedom’’
for each cluster. In other words, the CA is extremely efficient
in solving the problem of how to arrange the weak links in
the environment of the strong links.

The mean-field solution for such models@23# is known to
be unstable@24#. However, in Fig. 4 one can see that the
analytical GS@23#, is in very good agreement with the aver-
aged GS energy obtained by the CA.

FIG. 4. EW(t) for the weak-strong model, withc52 and
a50.7. The annealing schedule range isTP12320, with
DT510 for T.3 andDT50.1 forT,3. The solid and the dotted
lines indicate cluster and Metropolis dynamics, respectively. The
horizontal line denotes the analytical GS. Inset:Pl for the weak-
strong case~solid line! and theJ561 case~dotted line!.
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VII. OUTLOOK

Identifying the nature and the dynamics of the macros
may help understand the complex multiscale nature of a sys-
tem. The techniques for identifying the relevant macros lead
to a deeper understanding of the way the macroscopic de-
scription of our world arises in the study of complex systems
composed of simple microscopic elements.

The macros can be multiscale reducible, but in many
cases there might exist complex irreducible cores. While
such irreducible macros might have fortuitous characteristics
such as lack generality and present nongeneric properties,
they might be very important if the same set of cores appears
recurrently in biological, neurological, or cognitive systems
in nature.

In such situations, rather than trying to understand the
macros structure, dynamics, and properties on general~mul-
tiscale, analytic! grounds as collections of their parts, one
may have to recognize the unity and uniqueness of these
macros and resign oneself in just making an as intimate as
possible acquaintance with their features. One may still try to
treat them by the implicit elimination method@3# where the
complex objects are presenting, isolating, and eliminating
themselves by the very fact that they are projected out by the
dynamics as the slow-to-converge modes.

ACKNOWLEDGMENTS

The research reported in this paper has been supported in
part by grants from the Germany-Israel Foundation and from
the Israeli Academy of Sciences and Humanities. This paper
was completed during a visit at ICTP and SISSA. Discus-
sions with D. Kandel, I. Kanter, G. Mack, and M. Virasoro
are gratefully acknowledged.

APPENDIX:

We present in this Appendix the proofs of the theorems.
We will consider Ising-like systems consisting of spin
sk561:

V5$skuk51, . . . ,N%, ~A1!

whereN is the arbitrary size of the system, which in the
thermodynamic limit is taken to infinity. A configura-
tion is a specific assignment of the spins, e.g.,VD

5$s1
D , . . . ,sN

D%.
The system has an Ising-like bilinear Hamiltonian that

defines an extensive energy. For example, in a SK@17# -like
model ~with Ji , jPR)

E~VD![^VD,VD&52
1

2AN(
i , j

Ji , j sI
DsJ

D . ~A2!

Note that in spite of this shorthand ‘‘scalar product’’ nota-
tion, the ‘‘norm’’ it defines is not positive; we will use only
its bilinear properties.

The metric in the configurations space is defined by the
following distance: If two configurationsV0and VA differ
~only! by the sign of the spins belonging to a subsetA, then
their distance@note that in a finite systemr(A)5 ~the num-
ber of elements inA)/N] is

d~V0,VA!5
1

4N(
i

~si
02si

A!2[r~A!. ~A3!

A configuration2VD5$2s1
D , . . . ,2sN

D% differing from
VD only by a global change of sign is considered to be
identical to VD. This brings the support of the function
d(V1,V2) into the interval@0,0.5#.

We shall call a system ultrametric if with the above metric
the space of its GS’s is an ultrametric space.@Actually, the
theorem below is independent of the minimal energy prop-
erty: it holds for any system with an UM subset of configu-
rations singled out by some arbitrary property~e.g, GS’s,
high magnetization, and blue color!.# Namely, for any three
GS’sV1, V2, V3 one has

d~V1,V2!<max@d~V1,V3!,d~V3,V2!#. ~A4!

For the proof of Theorem 1 we have the following.
Proof. ~i! By definition d(VA,V0)5r(A), d(VB,V0)

5r(B), and d(VB,VA)5r(A)1r(B)22r(AùB). ~ii !
On the other hand, the UM system~15! implies, in our
case, either~a! all the distances are equald(V0,VA)
5d(V0,VB)5d(VA,VB) or ~b! two of the distances are
equal and the third is shorter.~iii ! Considering~i! and ~ii !
for V0, VA, and VB and ~without loss of generality! as-
suming thatr(A)>r(B), one has one of the following
possibilities: ~iia! is valid, in which caser(A)5r(B)
5 2r(A) 22r(AùB) ⇒ r(AùB) 5 1/2r(A)r(A)5r(B)
5 2r(A) 2 2r(AùB) ⇒ r(AùB) 5 1/2r(A) 5 1/2r(B);
~iib! is valid and r(A)5r(B).2r(A)22r(AùB), in
which caser(AùB).1/2r(A)51/2r(B); or ~iib! is valid
and r(A)5r(A)1r(B)22r(AùB), in which case
r(AùB)51/2r(B).

In any of these three possibilities the desired relation@Eq.
~A5!# is fulfilled:

r~AùB!> 1
2min@r~A!,r~B!#.

h

Here we list further notations. In the following manipulations
we will use the definitions and conventions below. Assume
thatV is a system with Eq.~A1! as its energy andM is a
subsetM,V. V0 is the initial configuration ofV:
V05$si

0%.MD is the restriction of some arbitrary configu-
ration VD to the subsystemM, namely, MD

5$si
DusiPM%. The energy associated withMD excluding

its interaction with the rest ofV is

E~MD![^MD,MD&52
1

2AN (
i , j ~si ,sjPM!

Ji , j si
Dsj

D .

~A5!

Let M̄ be the complementary ofM in V (M̄ùM5B and
M̄øM5V). Its energy in the configurationVD is

E~M̄D!5^M̄D,M̄D&52
1

2AN (
i , j ~si ,sjPM̄!

Ji , j si
Dsj

D .

~A6!
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The interaction energy between such disjoint parts of a con-
figuration will be noted by

^M̄D,MD&1^MD,M̄D& ~A7!

52
1

2AN
(

siPM,sjPM̄

Ji , j si
Dsj

D ~A8!

2
1

2AN
(

siPM̄,sjPM

Ji , j si
Dsj

D52^M̄D,MD&.

~A9!

We will use the formal notation

VD5M̄D1MD, ~A10!

which ensures that

^M̄D1MD,M̄D1MD& ~A11!

5^MD,MD&1^M̄D,M̄D&12^MD,M̄D&. ~A12!

We will use similar sum notations for any configuration that
is specified in terms of specific spin configurations of disjoint
subsets coveringV. The scalar product̂,& ~A2! is distribu-
tive with respect to this sum. LetVM be a configuration
obtained fromV0 by flippingM, namely,si

M52si
0 if si

PM and si
M5si

0 otherwise. We will use, in this case, the
notation

VM5M̄02M0. ~A13!

This notation has the advantage that, according to~A2!,

E~VM![^M̄02M0,M̄02M0& ~A14!

5^M0,M0&1^M̄0,M̄0&22^M0,M̄0&. ~A15!

Definition.Let A be a subset of the systemV or V itself
(A#V). We say a configurationAD is aC ground state of
A, @in shortSG(A,C) from now on# if

E~AD!2E~Ag![^AD,AD&2^Ag,Ag&,C, ~A16!

whereAg is the state with the absolute minimum energy in
A andC is a positive constant. In other words,E(AD) is up
to C a minimum of the energy of the subsetA, E(AK);K.

Theorem 2.If V0 and VA differing by the sign of the
spins in the regionA are bothGS(V,C) in a ~not necessarily
ultrametric! systemV, thenA0 is GS(A,C).

Proof. Note that the statesV0 andVA can be written

V05Ā01A0 ~A17!

and, respectively,

VA5Ā02A0. ~A18!

Accordingly, their energies are

E@V0#[^V0,V0&5^A0,A0&1^Ā0,Ā0&12^A0,Ā0&,
~A19!

E@VA#[^VA,VA&5^A0,A0&1^Ā0,Ā0&22^A0,Ā0&.
~A20!

Without loss of generality one can assumeE@V0#>E@VA#
~otherwise one can interchange the names ofV0 andVA).
This implies

4^A0,Ā0&>0. ~A21!

Now assume thatA0 is not aSG(A,C). Then there exists
a subsetX,A that can be flipped to bring the systemA to
the absolute minimum@SG(A,0)#. Using the notation~A13!
this state can be written

AX5X̄ A
02X 0, ~A22!

whereX̄A is the complement ofX in A. The assumption that
A0 is notSG(A,C) then reads

E@A0#2E@AX#[^X̄ 0
A1X 0,X̄ 0

A1X 0&

2^X̄ 0
A2X 0,X̄ 0

A2X 0& ~A23!

[4^X 0,X̄ 0
A&&C. ~A24!

Note that if AX5X̄ 0
A2X 0 is a ground state ofA, so is

2AX52X̄ 0
A1X 0. However, by including the subsetA in

the whole systemV, the sign of its interaction with the rest
of the systemĀ0 has opposite sign in the two cases.

This leads to the following total energies in terms of the
configurations of the subsetsX, X̄A and Ā:

E@V0#[^V0,V0&[^Ā 01X̄ 0
A1X 0,Ā 01X̄ 0

A1X 0&,
~A25!

E@VX#[^VX,VX&[^Ā 01X̄ 0
A2X 0,Ā 01X̄ 0

A2X 0&,
~A26!

E@V X̄A#[^V X̄A,V X̄A&[^Ā 02X̄ 0
A1X 0,Ā 02X̄ 0

A1X 0&.
~A27!

Consequently, taking the combination~A25! and~A28! plus
~~A25!–~A27! one gets

~E@V 0#2E@VX# !1~E@V 0#2E@V X̄A# !

54~^X 0,Ā 0&1^X 0,X̄ 0
A&!14~^X̄ 0

A ,Ā 0&1^X̄ 0
A ,X 0&!

54^A 0,Ā 0&18^X 0,X̄ 0
A&. ~A28!

According to~A21! and~A24!, the right-hand term is larger
than 2C, therefore, the same should hold for the left-hand
term. This means that at least one of the brackets in the
left-hand term is larger thanC:

~E@V 0#2E@V2# !.C or ~E@V 0#2E@V2# !.C.

However, according to~A16! this contradicts the initial state-
ment thatV 0 is aSG(V,C). The contradiction can only be
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attributed to our assumption thatA 0 is not aSG(A,C). This
proves the theorem by reduction to the absurd. j

Note that one can takeC50 and then the whole theorem
can be referred to as absolute ground states.

Theorem 3.Let V be a spin system of~A2! type. Let the
space ofGS(V,3C) be ultrametric~A4!. LetV0 andVA be
two configurations that are differing by the sign of the spins
in a region A. Assume that bothV0 and VA are
GS(V,C)’s which, according to Theorem 2, implies that
A0 is aGS(A,C). Then,A is the uniqueGS(A,C) of A
~up to a global flipping ofA!.

Proof. If A has anotherSG(A,C), that state can be ob-
tained by flipping a certain subsetX,A. The expression of
the newSG(A,C) in terms of the configurations on the sub-
setsX and X̄A ~its complement inA) will be

AX5X̄A 02X 0. ~A29!

The assumption that bothX̄A 02X 0 andA 0[X̄A 01X 0 are
SG(A,C) implies

2C,^X̄A02X 0,X̄A02X 0&2^A 0,A 0&,C, ~A30!

i.e.,

2C,24^X 0,X̄A0&,C. ~A31!

The total energies of the fullV configurations that can be
formed with the various configurations on the subsetsX,
X̄A , andĀ 0 are

E@V 0#[^V 0,V 0&[^Ā 01X̄ A
01X 0,Ā 01X̄ A

01X 0&,
~A32!

E@VA#[^VA,VA&[^Ā 02X̄ A
02X 0,Ā 02X̄ A

02X 0&,
~A33!

E@VX#[^VX,VX&[^Ā 01X̄ A
02X 0,Ā 01X̄ A

02X 0&,
~A34!

E@V X̄A#[^V X̄A,V X̄A&[^Ā 02X̄ A
01X 0,Ā 02X̄ A

01X 0&.
~A35!

Taking into account that both~A32! and ~A33! represent
SG(V,C) energies@and assuming without loss of generality
that ~A33! is lower# one gets for their difference@~A32! and
~A33!# the inequalities

0,4^Ā 0,X̄A01X 0&,C. ~A36!

The configurations in~A34! and~A35! are not guaranteed
to beSG(V,C), so for the combinations~A32!–~A34! and
~A32!–~A35! respectively, one gets inequalities in only one
direction

E@V 0#2E@VX#[4^Ā 01X̄A0,X 0&,C, ~A37!

E@V 0#2E@V X̄A#[4^Ā 01XA0,X̄ 0&,C, ~A38!

respectively. By considering the combinations~A37! plus
~A31! and ~A38! plus ~A31! one gets

4^Ā 0,X 0&,2C ~A39!

and, respectively,

4^Ā 0,X̄ A
0&,2C. ~A40!

Substituting~A39! and ~A40!, respectively, in the left rela-
tion of ~A36! one gets

4^Ā 0,X 0&.22C ~A41!

and

4^Ā 0,X̄ A
0&.22C. ~A42!

This in turn implies@using ~37!#

4^Ā 01X̄ A
0,X 0&.23C ~A43!

and, respectively,

4^Ā 01XA0,X̄ 0&.23C. ~A44!

But ~A43! and~A44! are, according to the identities in~A37!
and ~A38!, the difference between the energies of the con-

figurationsV 0 andVX (V 0 andV X̄A). Therefore, one gets
the bounds

E@V 0#2E@VX#,23C, ~A45!

E@V 0#2E@V X̄A#,23C, ~A46!

i.e., the states obtained by flippingX and X̄A are both
SG(V,3C). However, given thatSG(V,3C) space is UM
and according to Theorem 1, this would oblige the setsX and
X̄A to share at least half of the spins of the smaller of them.
Since the two sets are by definition disjoint, we reached a
contradiction. This reduces to absurd our assumption that
there exists more than oneSG(A,C). j
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