PHYSICAL REVIEW E VOLUME 54, NUMBER 4 OCTOBER 1996
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Toyonori Munakata and Satoshi Oyama
Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan
(Received 7 March 1996

Adaptation, i.e., slow time variation of control parameters to achieve better performance, which is usually
estimated by some object or cost function, is investigated based on linear-response theory. Adaptive Monte
Carlo methods such as entrofyr multicanonical sampling and nonsupervised Hebbian learning are derived
from the criterion that the cosgor gain should be expressed in terms(geéneralizeglautocorrelation response
functions. Our approach also gives an approximate expression for the cooling rate in simulated annealing in
terms of heat capacity and energy diffusip81063-651X96)10409-§

PACS numbds): 02.70.Lq

An adaptive approach, which has been developed mainly_
in some branches of engineering, such as control and operapc(E)“J dx S(E—E(x))e B/ T=eSE"ET=g FEDIT,
tional research, is now gathering much attention from statis- (4)
tical physics in connection with Monte Carlo methods and
learning in neural network models and so on. By adaptatiowhenT is small and effects of thermal noise become weak,
we do not mean the response to a changing environment @he time serie$x,} is usually trapped in a local minimum of
the intrinsic adaptatiofl], which has no object function to E(x) for a long time[proportional to expdE,/T) with AE,
be maximized. Here it is meant specifically to express slowthe energy barridy resulting in a nonergodic sampling. This
time variation of system parameters in order to perform calieads to difficulty in dealing with a first-order phase transi-
culations more efficiently for our purposes. As examples weion because the free energyT,E) in Eq. (4) has a double-
only mention temperature control in simulated annealingyell structure with a large energy barriek E,>T) to cross
(SA) [2], some adaptive Monte Carlo methd@s4], and the  and also an extremely slow cooling rate in the [ which
Hebbian law in neural network learni]. It is to be noted  requires the limifT—0 to attain the global minimum d&(x).
that usually the adaptation process is very slow to ensure that To cope with the disadvantages of the Metropolis sam-
we could arrive at a desire@inknown) attractor with high  pling (2) with A=E/T, a so-called entropy samplirt§S) [7]
probability, which gives rise to the possibility of applying has been proposed, which enables a direct and adaptive cal-
linear-response theoryL RT) [6] to some adaptation and culation of S(E) as follows. We perform a Monte Carlo
learning problems as discussed below. simulation with a trial functionA4(E(x)) in Eq. (2) and ob-

We take a system with ener@(x) at a phase point and  tain an energy histogram(E). Since the equilibrium energy
introduce for later convenience a density of stdd&) and  distribution 5A0(E) is proportional to ex{B(E)—Ay(E)],

the entropyS(E) defined by the region satisfyingS(E)>A,(E) is sampled more often
than the regior8(E) <Ay(E) and we updaté\,(E) by
Q(E)IJ dx 8(E—E(x)), S(E)=InQ(E). (1) AL(E)=Ao(E)+Inh(E) (5)

and continue the procedure until we haveE&independent
histogram, where ouf function is equal tdS(E) up to an
additive constanf4,8].

To derive and investigate the ES from a microscopic
viewpoint, we introduce, corresponding to the Markov pro-
W(x—x")/W(X"—X)=exd A(x) —A(X")]. (20 cess(2), the Langevin dynamics

First let us consider a general Metropolis Monte Carlo
method with the transition probabilityV(x—x") from the
point x to X, satisfying the detailed balance condition

In the Markovian time serie$x,} generated byW(x—x"), dx/dt=—VA(E(x))+1(t), (6)

the occurrence probability ofx is proportional to o

exf—A(X)]. Thus, if we takeA(x)=E(x)/T, with T the tem-  Where the random forcgt)=[f,(t),...,fy(t)] satisfies the

perature of the system, we have a canonical distribution ~ fluctuation-dissipation relation

fi(Hf (t"))=26,;6(t—t"). 7

pe(X)=ex ~ECIITIZ,. @ HONE) =202 "
The Fokker-Planck equatiaiffPE)

for which the energy distributiop(E) is obtained from Eq.
(1) as pxD/at=V-[p(x,) VA(E(X))+Vp(x,t)] (8
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gives the equilibrium distributiom(x)cexd —A(E(x))] as
the Markov process Eq2) does. Thus it is possible to
implement the ES by combining the update algoritkn
with the Langevin sampling E@6) instead of the Metropolis
one, Eq.(2).

The FPE for the energy distribution functiop(E,t)
[=fdx SE—E(X))p(x,t)] is derived by operating'dx &(E
—E(x)) on both sides of Eq8). Under the assumption that
p(x,t) depends orx through energyE(x), we obtain

Ip(E,t)/at= (3l JE)[D(E){pP(E,t)d(A—S)/dE
+Jp(E, 1)/ JE}]=LP(E,1), 9

where the diffusion constarid(E) in the energy space is
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t
M(t)zf ds(D(E)SA’(E)d{Inpa }(E,$)/IE)5, ,
0 0
(16)
where( )5, Ede";SAO(E)--- and
{ln’ﬁAo}(Els)EeXF{LTS]In‘b’AO(E)1 (17)
with LT defined to be adjint to L, ie.,

fdE f(E)Lg(E)=JdE g(E)L"f(E) for arbitrary functions

f andg [6(b)]. In order to makeM(t) large, or at least a
positive quantityM (t) should be expressed, with some posi-
tive measureg(E), as a kind of generalized autocorrelation
function

defined to be the microcanonical ensemble average of

IVEXP?,

D(E)=f dx 5(E—E(x))|VE(x)|2/ f dx 8(E—E(x)).
(10

It is seen from Eq.(9) that the equilibrium distribution is
given byp,(E)xexd —A(E) + S(E)].

We now consider the following situation. With a trial
function A(E) =Ay(E) we solve the Langevin equatide)
to obtain the sample poifi(t;)} (i=1,...M) in the time
region — ,<t=<0. We taker, long so that we can consider
that the energy distribution at=0, p(E, t=0), calculated
from {x(t))} (i=1,...M) is approximately an equilibrium
one

B(E,t=0)=exf S(E) — Ao(E))/Zo=Pa(E). (1D)
At t=0 we changeiy(E) to
A1(E)=Ao(E)+ SA(E) (12)

t
M(t)=f0dsf dE p(E)G(E,s)G(E)

Ef ds{G(E,S)G(E))pEJ dsgs) (19

for which g(s= 0)=<G2(E)>p>0. From the above the first
candidate foréA(E) is

SA(E)=¢€ Inb‘AO(E), (19
for which M(t) is expressed as Eq(18) with p(E)
=D(E)'5AO(E)>0 ande is a small constant to control the

rate of adaptation. We could also choa$& as defined by
D(E)SA'(E)=e€d In'ﬁAO(E)/dE. In this caseSA depends on

D(E), of which we have no knowledge in the process of
adaptation. We note that E(L9) (with e=1) precisely cor-
responds to the ES updaf®). Repeating the proceduf&?)
and (19), we finally reach the situation whereﬁ,%(E)
=const[M(t)=0] and from Eq.(11) this is equivalent to
Ay(E)=S(E) up to an additive constant. This is also consis-

and our problem now is how to find the small adaptationtent with the FPE(9), which gives a uniform distribution
SA(E) appropriate for our purpose. Since ES aims at thevhenA=S.,

uniform sampling in the energy spa¢4], we take as an
object function the information entropyifference

M(t)=— f dE[P(E,t)INp(E,t) —P(E,0)Inp(E,0)]
13

and study howM (t) behaves in response 8A(E). Here we

regard SA(E) as a small perturbation and express the

Fokker-Planck operatdr, with A=A;=Ay+ A in Eq. (9),
asLy+ oL, wherel is theL operator withA=A, and
6L=(9/9E)D(E)SA’'(E), (14

where SA’'(E)=dSA(E)/dE. Setting ﬁ(E,t)=5AO(E)
+ 5p(E,t), we immediately obtairsp(E,t) up to a linear
response as

t
Sp(E,t)= fo exp(Ls) 5L"p'AO(E), (15

and from Eq.(13) we have

As an example of the ES we consider a sysf{@inof N
(=10) coupled Duffing oscillators

N
E(x)= 21 [X2/2+x14]1—{2B/(N—1)(N-2)}

X E XinXk, (20)

i<j<k

which approximately models mode dynamics for the liquid-
solid phase transition witk; denoting Fourier amplitude of a
density wave for a crystalline solids. In Fig. 1 we show how
A(E) converges taS(E) under the adaptatiokb) for the
time increment of 19 Monte Carlo steps, starting from
A(E)=0[B=3 in Eq.(20)]. We see that it takes long time
before A(E) gets some weight in the regidé<0 and the
origin for this slow penetration of the energy distribution
acrossE=0 can be traced tB(E) [Eqg. (10)], shown in Fig.

2, which is small neaE=0. From Fig 1 a double tangent
can be drawn foB=3, indicating that a first-order transition
at T=T, occurs that is not sharp. Similiar nonsharp transi-
tion is also observed in the model of protein foldift].
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FIG. 1. Convergence of(E) to S(E) with 10° Monte Carlo FIG. 3. Probability distribution functiop(X) for T=5.0 (full
steps for each adaptatigB=3). Initially A(E) is set equal to 0.  curve, T=2.5(dashed curve andT=1.7 (B=3).

From the relation /= (9S/JE) we haveT,=2.5. Finally, in ~ with F(E,T) andD(E) defined by Egs(4) and(10), respec-
Fig. 3 we show the order-parameter distributiontively.
p(X)(X==x;/N) for T=5.0, 2.5, and 1.1B=3). This is The situation for the SA is as follows. For tintec0 our
obtained by first calculatingS(E,X)=[dx E—E(x))&X  system is assumed to be in equilibrium at temperaflje
—X(x)) by the (generalizel ES and then performing in-  thusp(E, t=0)=exp[S(E) —E/T]/Z.. At t=0 we decrease
tegration p(X) = [dE exd —E/T+S(E,X)]. We observe a T by 6T, T(t>0)=T- 4T, and we are interested in how the
transition of(X) from (X)=0 to(X)=2.5 asT decreases from average of energyE(t)) behaves in response to annealing.
5.0 to 1.7. FoB<2.7,p(X) has a one-peak structure for all Since we assume thaiT is small we can apply LRT to
temperature and we have no phase transition. calculate{E(t))=[dE P(E,t)E. Precisely following the ar-
Before proceeding to learning in a neural network, wegument that led to Eq(16), we readily obtain the energy
study the problem of cooling rate in the J&] based on drop
LRT and the Langevin modéb). Here it is noted thaf\(E)

is replaced byE itself and the relation(7) becomes _ _ jt _
(Fi() (")) =2T8&; 8(t—t). The FPE now takes the form (E())~(E(0))|=(8T/T) | d<(D(E)IE(E,8)/7E)5,
(23

P,/ t=V-[p(x,t) VE(X) + TVp(X,t)]=Lgpp,
whereE(E,s)=exp(L's)E, with L denoting the adjoint op-
_ o S _ erator of L, Eq. (22. It is interesting to note that since
with the equilibrium distribution given by Ed3). The FPE  £(E 0)=E we can express the integrand in E83) in the
for the energy distribution is readily derived from E@1),  form of a (generalizel autocorrelation function
as before, to have (9E(E,s)/JEIE(E,0)/0E)p ()5, Actually, with some ma-
IP(E,t)/at=(al JE)[D(E){P(E,t)oF (E, T)/9E nipulation on Eq_.(23) or directly _applying LRT to Eq(2),
we have an equivalent expression
+Tdp(E,1)/9E}]=LDp, (22)

t
[{E(1)) =(E(0))|=(STIT) fod%VE(X,S)'VE(X,O)%C,
(23)

2000 T T T

whereE(x,s)=exp({es)E(x) with L} an adjoint operator
of Lgpin Eqg. (21). Denoting by the relaxation time of the
correlation function and noting th@E(E, s=0)/dE=1, we

1000 can estimate E(23) approximately as

D(E)

[(E(t>17r)) —(E(0))|=(ST/T)(D(E))5 7. (24

On the other hand, it is easy to calculate the average energy
atT— 6T, (E)7_ st to obtain

%0 20 o 20 20 P (E)r— st—(E)7|= ST((E—(E)7)?)1/T?=6TC(T),
energy E (25)

FIG. 2. Diffusion constanD(E) [Eq. (10)] obtained from the with C(T) the specific heat of the system. Equatid@g)
ES simulation(B=3). and (25) yield an expression for the cooling rafe [11],
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Now the situation we are interested in is as follows. At
t=0 the system is in equilibrium, as described by E2)
with some interactionJ;;. In order to embed a pattern
{si}={&} (i=1,...N) in the network we changéd; to
h;+ éh; att=0 and try to find the desirable adaptatiéh;
based on LRT. As in Eq15) we have

10 T

<D(E)>/C(T)

t
p(s;t)=pc(s)+Jods exd Lgs]oLgpc(s) (31)

and L is readily seen from Eq28) and

f(Si|hi + 5h|) = f(S,|h,)[l+(5h, /T){S| —tanl‘(hi /T)}]
6 7 8 9 10 (32)
to be given by

FIG. 4. (D(E)}EC/C(T) as a function of temperatuf®=3).

R(T)= 6T/ 7= ST(D(ENZATCT)].  (26) SLPe(9)=(2M) 2 SisiQAIPe(S), (33

Equation(26) states that whe@ becomes large, slow cool- Where Q(s)={exp(—h;s;/T)/[[exp(h;/T) +exp(—h;/T)]} is
ing is required, as noticed by Kirkpatrick, Gelatt, and VecchiPositive definite.

[2]. Also careful cooling is necessary, as noted in connection Intuitively one may take the overldf 2]

with Figs. 1 and 2, whefiD(E))5_becomes small because it

takes a long time for an excursion in the energy space. From m(t)=>, p(sit)s- &#N=(s(t))- &N (34
Fig. 4, which depictD(E))5_/C(T) for the model(20) s
(B=3) as a function off, it is seen that the rate has a mini- as the appropriate object function to be maximized. The re-
mum R qin around the transition point=T,. In order to sponse tosh, is
avoid trapping in an nonequilibrium state or a glass transition !
we must keep the cooling rate smaller than that given by Eqg. t
(26). It is to be noted that Eq26) gives a general but rather 5m(t):(2/NT)f (& 8(s)6h-s(0))qp, , (35)
rough estimate of the cooling rate because in actual SA pro- 0
cesses the Kramers time eX¥,/T) plays an important
role, as stated below the line of E@).

Finally, let us consider a network model consistingh\bf
formal neuronglsing sping, with the Hamiltonian sh=e£ or sh=e& (i=1,...N), (36)

with s(s)=exr[LI;s]s as usual. From Eq35) we immedi-
ately notice that by setting

__1 e we have a generalized autocorrelation function expression
E(s) zi,j%‘;j) JijSis - @n for Sm(t). The choice(36) is nothing but an externdton-
stan} field along the pattern. As another candidate for the
Glauber dynamics of the system is described by the mastebject function we can take

equation[12]
p(s=&1)=(d(s— ). (37)
IP(Sy,...,SN ) ot= —Z 2 sisi f(—s{|h;) Equation(37) means that one should increase the probability
b osi=x1 that the system takes the configuratené. This time let us
, employ the adaptatiod;;— J;; + 6J;; or
XP(Sy,..S .- ,Sn ) =Lgp,
(28 5hi=j %i) 5Jiij (38)
where the transition probability of spin from —s; to s
under the fielch,==; (.;,J;;s; is defined to be and from Egs(37) and(33) we have
f(s,|h)=exp(h;s, IT)/[exp(h; /t) +exp(—h, /T)]. op(s=&t)
(29 t
=(2/T)J ds<{exp(Lgs)5(s—§)}Z 8Jijsis;
The (canonical equilibrium distribution functiorp,. is given 0 bl Qp,
oy (39

_ " Since in the integrangd=¢ at s=0 we are led to the Hebbian
s =e sh; /(2T Z.. 30
Pe(9) xp(Z ihi /( ))/ c G0 e
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8Jj= €& (€>0) (40) on LRT, which has been traditionary used to study the re-
sponse of physical systems to external figlgls It is hoped
from the condition that the integrand is positivesatO. that LRT could shed some light on wider problems in learn-

In this paper some problems related to the[EBthe SA  ing and information processing, which now gather much in-
[2], and learning in a neural netwofk2] were studied based terest from many branches of natural science.

[1] N. H. Packard, inArtificial Life, SFI Studies in the Science of [7] That the ES[4] and the multicanonical samplinf8] are

Complexity edited by C. LaugtorfAddison-Wesley, Reading, equivalent is shown by B. A. Berg, U. H. E. Hansmann, and Y.
MA, 1988). Okamoto, J. Phys. Chen89, 2236 (1995. In this paper we
[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Scien220, take the ES approach for convenience of presentation.
671(1983. [8] J. Lee and M. Y. Choi, Phys. Rev. 0, R651(1994).
[3]B. A. Berg and T. Neuhans, Phys. Rev. Le#8, 9 [9] T. Munakata, J. Phys. Soc. Jg0, 2800(199)); S. A. Alex-
(1992. ander and J. McTague, Phys. Rev. Ldit, 702(1978.
[4] J. Lee, Phys. Rev. Let?1, 211(1993. [10] Ming-Hong Hao and Horald A. Scheraga, J. Chem. Phgg,
[5] J. Herz, A. Krogh, and R. G. Palmemtroduction to the 1334(1995.
Theory of Neural ComputatioifAddison-Wesley, Reading, [11] 6T must be small enough to ensure the applicability of the
MA, 1991). LRT.

[6] (8 R. Kubo, J. Phys. Soc. Jpd2, 570 (195%; (b) T. Mu- [12] D. J. Amit, Modeling Brain Function(Cambridge University
nakata, Phys. Rev. BO, 2351(1994). Press, Cambridge, England, 1989



