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A Monte Carlo simulation method to numerically solve the Enskog equation for a hard-sphere fluid is
proposed. The method is based on and extends Bird’s direct simulation Monte Carlo method to solve the
Boltzmann equation. The main modifications are~a! the two particles of a collision pair are taken from cells
separated a distance equal to the diameter of the spheres;~b! the collision rate is enhanced by a factor that
accounts for the spatial correlations. The method is applied to uniform shear flow and proved to be consistent
with ~i! the exact pressure tensor obtained from the Enskog equation at local equilibrium for large shear rates,
~ii ! the viscous heating equation, and~iii ! the Navier-Stokes shear viscosity obtained from the Enskog equa-
tion. @S1063-651X~96!02007-7#

PACS number~s!: 05.60.1w, 47.50.1d, 83.20.Jp, 02.70.Lq

I. INTRODUCTION

The Boltzmann equation@1,2# provides an adequate
framework for the investigation of nonequilibrium properties
of low-density gases. While continuum hydrodynamic equa-
tions are only useful in the regime of large systems and small
gradients, i.e.,L@l h@l ~whereL is the size of the system,
l h is a characteristic hydrodynamic length, andl is the
mean free path!, the Boltzmann equation is meaningful even
if L and/or l h are comparable to or smaller thanl. Exact
solutions to the Boltzmann equation are rare@3#, but a great
deal of information can be obtained from simplified kinetic
models@4# or from Monte Carlo simulation methods@5#. The
latter have proved to be a flexible and efficient tool to study
the properties of rarefied gases in a wide variety of physical
situations@6#.

The main limitation of the Boltzmann equation is its re-
striction to the regimel h ,l@s, wheres is the effective
range of molecular interactions. In 1922, Enskog@1,2# modi-
fied the Boltzmann equation for hard spheres of diameters
by introducing two crucial changes in the collision integral:
~a! the difference in position between the centers of a collid-
ing pair of molecules is taken into account;~b! the collision
frequency is increased by a factor that accounts for the spa-
tial correlations between the two colliding molecules. Al-
though the Enskog theory ignores the possibility of correla-
tions in the velocities before collision~stosszahlansatz!, it
leads to transport coefficients that are in good agreement
with experimental and simulation values over a wide range
of densities, including those for whichl,s. In addition, the
revised Enskog theory~RET! developed by van Beijeren and
Ernst @7# supports both fluid and crystal equilibrium states
@8#. Thus the RET has the potential of describing fluid, crys-
tal, and metastable states near and far from equilibrium.
However, the intricate mathematical structure of the Enskog
equation has prevented its application to many interesting
physical situations. As in the case of the Boltzmann equa-
tion, two strategies are in principle possible: kinetic models
and simulation methods. Very recently, a simple kinetic
model of the Enskog equation has been proposed@9# that
retains its essential features. The objective of this paper is to
present a Monte Carlo simulation method, based on Bird’s

method for the Boltzmann equation@5#, but that is devised to
solve the Enskog equation. Previous attempts by Alexander
et al. @10# modified Bird’s method so that the hard-sphere
equation of state is obtained at all densities. However, the
transport coefficients at high densities deviate significantly
from those of the Enskog equation.

The organization of this paper is as follows. The Enskog
theory is briefly introduced in Sec. II. The simulation method
is described in Sec. III. As an illustration, the method is
applied in Sec. IV to the time-dependent uniform shear flow
at a high density. Finally, the results are discussed in Sec. V.

II. THE ENSKOG THEORY

Let f (r ,v,t) be the one-particle distribution function.
From it one can obtain the number densityn and the flow
velocity u as

n~r ,t !5E dv f ~r ,v,t !, ~2.1!

n~r ,t !u~r ,t !5E dvvf ~r ,v,t !. ~2.2!

A nonequilibrium temperatureT can also be defined by

3
2n~r ,t !kBT~r ,t !5 1

2mE dv@v2u~r ,t !#2f ~r ,v,t !,

~2.3!

wherekB is the Boltzmann constant andm is the mass of a
particle. The kinetic contributions to the pressure tensorP
and the heat fluxq are also velocity moments off :

Pk~r ,t !5mE dv@v2u~r ,t !#@v2u~r ,t !# f ~r ,v,t !,

~2.4!

qk~r ,t !5 1
2mE dv@v2u~r ,t !#2@v2u~r ,t !# f ~r ,v,t !.

~2.5!
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Except in the low-density limit, the potential contributions to
P andq are relevant. In general, they are expressed in terms
of the two-particle distribution function.

Following arguments similar to those leading to the Bolt-
zmann equation, Enskog introduced a kinetic equation forf
in the case of a dense hard-sphere fluid@1,2,11#:

S ]

]t
1v•

]

]r D f ~r ,v,t !5s2E dv1E dŝ Q~ŝ•g!~ŝ•g!@x~r ,r2s! f ~r ,v8,t ! f ~r2s,v18 ,t !2x~r ,r1s! f ~r ,v,t ! f ~r1s,v1 ,t !#.

~2.6!

HereQ(x) is the Heaviside function,g[v2v1 , and the primes on the velocities denote postcollision values:

v85v2~ŝ•g!ŝ,v185v11~ŝ•g!ŝ. ~2.7!

In the standard Enskog theory~SET! @1#, x(r ,r1s)5x(n(r11/2s)), wherex(n) is the equilibrium pair correlation function
at contact corresponding to auniformdensityn. In the revised Enskog theory@7#, however,x(r ,r1s) is identified with the
local equilibrium pair correlation function in anonuniformstate. In that case,x is a functional ofn that can be obtained via
density functional theory@12#. The RET and the SET lead to different predictions in nonhomogeneous states. Therefore the
difference between both theories is relevant in states far from equilibrium~namely, beyond the Navier-Stokes order in the case
of single substances!, as well as in equilibrium crystal and~metastable! glassy states.

A primary consequence of the Enskog theory is that it leads to a collisional transfer of momentum and energy that can be
expressed in terms off . The collisional contributions to the pressure tensor and the heat flux are, respectively@13#,

Pc~r ,t !5 1
2s3mE dvE dv1E dŝ Q~ŝ•g!~ŝ•g!2ŝŝE

0

1

dmx~r2~12m!s,r1ms! f ~r2~12m!s,v,t ! f ~r1ms,v1 ,t !,

~2.8!

qc~r ,t !52Pc~r ,t !•u~r ,t !1 1
2s3mE dvE v1E dŝQ~ŝ•g!~ŝ•g!2~ŝ•G!ŝE

0

1

dmx~r2~12m!s,r1ms!

3 f ~r2~12m!s,v,t ! f ~r1ms,v1 ,t !, ~2.9!

where in Eq.~2.9! G[1/2(v1v1). Explicit expressions for
the Navier-Stokes constitutive equations are obtained from
the Chapman-Enskog method@1#:

Pk5nkBTI2hE
k ~n,T!@¹u1~¹u!†2 2

3 ~¹•u!I#,
~2.10!

P5p~n,T!I2hE~n,T!@¹u1~¹u!†2 2
3 ~¹•u!I#

2zE~n,T!~¹•u!I, ~2.11!

qk52kE
k ~n,T!¹T, ~2.12!

q52kE~n,T!¹T, ~2.13!

where

p~n,T!5nkBT@11 2
3pns3x~n!#, ~2.14!

hE
k ~n,T!5

1

x~n!
@11 4

15pns3x~n!#hB~T!, ~2.15!

zE~n,T!5 4
9n

2s4x~n!~pmkBT!1/2, ~2.16!

hE~n,T!5
1

x~n!
@11 4

15pns3x~n!#2hB~T!1 3
5 zE~n,T!,

~2.17!

kE
k ~n,T!5

1

x~n!
@11 2

5pns3x~n!#kB~T!, ~2.18!

kE~n,T!5
1

x~n!
@11 2

5pns3x~n!#2kB~T!1 3
2

kB
m

zE~n,T!.

~2.19!

In these equations,hB and kB are the shear viscosity and
thermal conductivity, respectively, derived from the Boltz-
mann equation for hard spheres. Their values are@1#

hB~T!51.01603 5
16 SmkBT

p D 1/2s22, ~2.20!

kB~T!51.02513 15
4

kB
m

hB~T!. ~2.21!

To Navier-Stokes order, there is no distinction between the
SET and the RET, while to Burnett order they differ in two
linear transport coefficients in the momentum flux@14#.

It is convenient to define a mean free pathl for a hard-
sphere fluid asx21 times its low-density value, i.e.,

l~n!5
s

A2pns3x~n!
. ~2.22!
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For a rarefied gas,ns3→0, x(n)→1, ands/l→0. In that
limit, the Enskog equation~2.6! reduces to the Boltzmann
equation for hard spheres. On the other hand, for a density as
moderate asns350.2, s.1.2l and the nonlocal character
of collisions plays an essential role.

III. ENSKOG SIMULATION MONTE CARLO
„ESMC… METHOD

In the early 1960’s, Bird@5# devised the so-called direct
simulation Monte Carlo~DSMC! method to numerically
solve the Boltzmann equation, having been applied since
then to a wide range of phenomena in rarefied gases@6#. In
addition to formal proofs@15–17#, comparisons with known
exact solutions of the Boltzmann equation@15,18,19# show
the accuracy of the DSMC method.

In the DSMC method, a number of particles are placed in
a volume split into cells of sizeDL sufficiently smaller than
the mean free pathl and the hydrodynamic lengthl h ~over
which the hydrodynamic fields change appreciably!. The po-
sitions and velocities of the particles are updated after a time
step Dt sufficiently smaller than the mean free time
t5l/A2kBT/m and the hydrodynamic time th
5l h /A2kBT/m. This is done in two stages. In the first stage
~free-streaming!, the particles move freely and those leaving
the volume are reentered according to the chosen boundary
conditions. In the second stage~collisions!, particles within
the samecell are randomly chosen as collision partners~ac-
cording to the interaction law considered! and postcollision
velocities are assigned. The DSMC method and the Boltz-
mann equation have theapparentinconsistency of yielding
transport coefficients that depend on the features of the in-
teraction@cf. Eqs.~2.20! and ~2.21!#, while the equation of
state is that of an ideal gas (p5nkBT). In order to remove
this inconsistency in the special case of hard spheres, Alex-
anderet al. @10# have recently modified the DSMC method
in two aspects. First, the two particles of an accepted colli-
sion pair are displaced a certain vector distance6s after the
collision step. Second, the collision rate at a given cell~of
density n) is enhanced by a factorx(n). This modified
method, the so-called consistent Boltzmann algorithm
~CBA!, leads to the correct equilibrium equation of state, Eq.
~2.14!, but yields transport coefficients that differ from those
of the Enskog theory, except in the low-density limit. In fact,
no claim is made in Ref.@10# of the CBA being a numerical
solution of the Enskog equation.

Our objective is to extend the DSMC method to represent
a numerical solution to the Enskog equation. LetV be the
volume of the system, which is split into cells of typical size
DL!l,l h . Notice that at finite densityDL could be com-
parable to or even smaller thans, while in the low-density
limit it is fully consistent to takeDL@s. A numberN of
particles are introduced att50 with random positions and
velocities sampled from the initial distribution function. In
order to improve the statistics,N should be as large as pos-
sible, as happens with the DSMC method@5#. ThusN/V is
not necessarily equal to the average densityn̄ of the physical
system we want to simulate. In fact, the ratiog[n̄/(N/V) is
a constant that has a technical character and can be chosen
independently of the physical parametern̄. The coarse-
grained local density of cellI is nI5(NI /VI)g, whereNI

and VI are the number of particles and volume of cellI ,
respectively. To update the positions and velocities a free-
streaming stage and a collision stage are decoupled over a
time stepDt!t,th , just as in the DSMC method and the
CBA. The only difference lies in the treatment of the colli-
sion stage. For every particlei51, . . . ,N the following steps
are taken.

~i! Choose at random with equiprobability a given direc-
tion ŝi .

~2! Choose at random with equiprobability a test particle
j belonging to the cellJ that contains the pointr i1sŝi . In
general, the cellJ is different from the cellI containing the
point r i .

~3! The probability of accepting the collision between par-
ticles i and j is equal to the collision rate times the time step:

v i j5s24pQ~ŝi•gi j !~ŝi•gi j !x~r i ,r i1sŝi !nJDt,
~3.1!

where gi j[vi2vj . In the SET, x(r i ,r i1sŝi)5x(nI 8),
where the cellI 8 is the one containing the pointr i1

1
2sŝi . In

the RET,x(r i ,r i1sŝi) must be computed from the knowl-
edge of the density in all cells,$nK%.

~4! If the collision is rejected, makevi85vi and go to step
~III !. Otherwise, assign to particlei the postcollision velocity
vi85vi2(ŝi•gi j )ŝi , once the collision stage has finished for
all the particles. The role of particlej is to sample the ve-
locity distribution in the cellJ, so that its velocity remains
unchanged.

~5! Take the next particle and repeat the process.
The physical quantities are evaluated at every cell by av-

eraging over the particles inside that cell and also over an
ensemble ofN different realizations. In each realization, the
local flow velocity, the local kinetic pressure tensor, and the
local kinetic heat flux are, respectively,

uI5
1

NI
(
iPI

vi , ~3.2!

PI
k5

g

VI
m(

iPI
~vi2uI !~vi2uI !, ~3.3!

qI
k5

g

VI

1
2m(

iPI
~vi2uI !

2~vi2uI !. ~3.4!

The local collisional pressure tensor and heat flux are@20#

PI
c52 1

2

gs

VIDt
m(

iPI
~vi82vi !ŝi , ~3.5!

qI
c52PI

c
•uI2

1
4

gs

VIDt
m(

iPI
~v i8

22v i
2!ŝi . ~3.6!

In the low-density limit (s/l→0), the size of the cells
DL can be taken much larger thans. Consequently, particle
j in step III belongs to the same cell as particlei (J5I ). In
addition,x→1 and the probabilityv i j in Eq. ~3.1! becomes

v i j54pQ~ŝi•gi j !~ŝi•gi j !
NI /VI

N/V

Dt

A2pl
, ~3.7!

440 54JOSÉMARÍA MONTANERO AND ANDRÉS SANTOS



where use has been made of Eq.~2.22!. Thus in that limit our
method is equivalent to Nanbu’s scheme of the DSMC
method@16#.

IV. APPLICATION TO UNIFORM SHEAR FLOW

In order to assess the validity of the ESMC method de-
scribed in the preceding section, we have applied it to the
uniform shear flow~USF!. This nonequilibrium state is char-
acterized@21# by a constant density, a linear velocity profile
u(r )5a•r , aab5adxadyb (a being the constant shear rate!,
uniform temperature and pressure tensor, and zero kinetic
heat flux. The appropriate boundary condition leading to this
state is that of Lees and Edwards@22#, which for one-particle
distribution function reads@23#

f̃ ~ r̃ ,ṽ,t !u ỹ52L/25 f̃ ~ r̃ ,ṽ,t !u ỹ51L/2 , ~4.1!

where r̃[r2a•r t, ṽ[v2a•r , and f̃ ( r̃ ,ṽ,t)[ f (r ,v,t). In
Eq. ~4.1!, L is the size of the system along they axis. Since
there are no boundary layers in the USF, the value ofL does
not play any relevant role. Conservation of energy yields the
heating equation

de

dt
52aPxy , ~4.2!

where e is the internal energy density, which for hard
spheres ise5 3

2nkBT. Equation~4.2! can be derived from the
Liouville equation@21# and is therefore exact. It implies that
the USF is a time-dependent state. In order to compensate for
this viscous heating effect, a nonconservative drag force is
usually introduced in molecular dynamics simulations@24#.
Here, however, we prefer not to introduce such a thermostat
since Eq.~4.2! provides us with an extra consistency test of
our method. The USF~without thermostat! has been ana-
lyzed via molecular dynamics@25#, the DSMC method@26#,
the Bhatnagar-Gross-Krook model kinetic equation@27#, and
the Boltzmann equation@28#.

The identification of a hydrodynamic length and time is
straightforward in the case of the USF:

l h5A2kBT/ma21, ~4.3!

th5a21. ~4.4!

Since the temperature increases in time, so doesl h , while
th remains constant. Alternatively, the hard-sphere mean free
path l is stationary but the mean free timet decreases as
time elapses. As a consequence, the uniformity parameter@2#
l/l h5t/th monotonically decreases and the system asymp-
totically tends towards that of~local! equilibrium.

We have solved the Enskog equation for the USF by ap-
plying the ESMC method. Since the densityn is uniform
~except for the fluctuations inherent to a Monte Carlo
method!, there is no difference between the SET and the
RET, so thatx(r i ,r i1sŝ)nJ5x(n)n in step~3!. We have
chosen the rather large densityns350.8, which corresponds
to s514.3l @29#; in that casehE

k /hE.0.1. The cells have
been defined as layers of widthDL orthogonal to they axis.
The numerical values of the technical parameters are
L5s, N5105, N55, DL51022s, Dt51.1731022t. No-

tice that the time stepDt is not a constant, but it decreases as
the system evolves@26#. The initial distribution function has
been that of local equilibrium,

f ~r ,v,0!5nS m

2pkBT0
D 3/2exp@2m~v2a•r !2/2kBT0#,

~4.5!

with two choices for the shear rate:a51.5A2kBT0 /m/s and
a5A2kBT0 /m/s. In the particular case of Eq.~4.5!, the
Enskog expression for the collisional part of the pressure
tensor, Eq.~2.8!, becomes@13#

Pc~ t50!5 3
4p p

c~n!E dŝ ŝŝ$~11a* 2ŝx
2ŝy

2!

3@12erf~a* ŝxŝy /A2!#

2A 2
p a* ŝxŝye

2a* 2ŝx
2ŝy

2/2%, ~4.6!

wherepc(n)5 2
3pn

2kBT0s
3x(n) anda*[as/A2kBT0 /m.

Three different tests have been applied to the simulation
method:~i! consistency with Eq.~4.6!, ~ii ! consistency with
the exact equation~4.2!, and ~iii ! consistency in the limit
l/l h→0 with the Navier-Stokes pressure tensor obtained
from the Enskog theory. In connection with the first test, we
plot in Fig. 1uPab

c u/pc as a function ofa* from Eq.~4.6! and
from the ESMC method~here withN5500) using the dis-
tribution ~4.5!. The agreement is excellent. The simulation
method correctly takes into account that, except for small
values ofa* , the relative velocity of two colliding particles
separated by a vectors can be significantly different from
zero. In the CBA, on the other hand, both particles of any
colliding pair belong to the same cell, so that their velocities
are sampled from the same distribution; consequently,
Pc(t50)5pc(n)I.

Next, we compare in Fig. 2 the temperatureT(t) as ob-
tained directly from the mean kinetic energy, Eq.~2.3!, with
that obtained from Eq.~4.2!,

FIG. 1. Plot of Pxx
c /pc5Pyy /p

c ~—!, Pzz
c /pc ~– – –!, and

2Pxy
c /pc ~- - -! as functions ofa* from Eq. ~4.6!. The circles

represent the values obtained from the ESMC method~with
N5105 particles andN5500 realizations! using the distribution
~4.5!.
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T~ t !5T02
2
3

a

nkB
E
0

t

dt8Pxy~ t8!. ~4.7!

The results of Fig. 2 have been obtained from the CBA and
the ESMC methods withDL/s51022 and DL/s50.5.
While a strong inconsistency exists in the case of the CBA
with both values ofDL/s, in the ESMC method the two
criteria to measure the temperature are practically indistin-
guishable if DL is sufficiently small (DL51022s
50.143l). For long timesPxy}T

1/2, so thatT1/2 becomes a
linear function of time.

Finally, we perform the test~iii !. The kinetic and colli-
sional parts of the pressure tensor have been computed as a
function of time. From the elementPxy5Pxy

k 1Pxy
c , a time-

dependent shear viscosity is defined ash52Pxy /a; its ki-
netic parthk is defined in a similar way. These shear viscosi-
ties, relative to their Navier-Stokes values given by the

Enskog theory@Eqs.~2.15! and~2.17!#, are plotted in Figs. 3
and 4. Rather than plotting them as functions of time, we
have taken the~time-dependent! squared uniformity param-
eter (l/l h)

2 as the physically relevant variable; (l/l h)
2 is a

decreasing function oft sincel h increases~roughly linearly!
with t. The abscissa is (l/l h)

2 instead ofl/l h because in
the USF the first correction of the shear viscosity to its
Navier-Stokes value is expected to be of second order in the
uniformity parameter~super-Burnett order!. After a transient
regime of a few mean free times, the curves corresponding to
the two different initial conditions practically coincide. This
means that a hydrodynamic regime, independent of the initial
preparation of the system, has been reached. In this hydro-
dynamic regime, the ratioshk/hE

k andh/hE are, for a given
density ns3, material functions of (l/l h)

2. Since in this
section we are more interested in validating our simulation
method than in analyzing rheological effects~for instance,
shear thinning!, the values of (l/l h)

2 considered in the
simulations have been very small. From Figs. 3 and 4 it is
evident that in the hydrodynamic regimehk/hE

k and h/hE

fluctuate around 1. The limitl/l h→0 is strictly unattainable
in the USF because it requires an infinite amount of time.
Also, the signal-to-noise ratio decreases in that limit so that
the fluctuations increase.

The diagonal elements of the pressure tensors, relative to
their equilibrium values, are plotted in Figs. 5 and 6. Some
of the comments about Figs. 3 and 4 also apply here. Ex-
trapolation of the curves tol/l h→0 shows an excellent
agreement with the predictions of the Enskog theory. More-
over, viscometric effects of Burnett order are clearly appar-
ent. If we introduce the~dimensionless! viscometric func-
tions C15(Pyy /p2Pxx /p)/(l/l h)

2 and C25(Pzz/p
2Pyy /p)/(l/l h)

2, our simulation data yieldC1524.6 and
C25222.8 for ns350.8, while C1522.569 and
C250.218 in the limitns3→0 @1,26#. It is worthwhile to
remark thatC2 is small and positive at zero density, while it
is large and negative at high density.

V. DISCUSSION

In this paper we have proposed a Monte Carlo simulation
method that qualifies as a numerical solution of the Enskog
equation. This Enskog simulation Monte Carlo method is

FIG. 2. Time dependence of the temperature as obtained directly
from the mean kinetic energy~solid lines! and as obtained indirectly
from Eq. ~4.7! ~dashed lines!. They correspond to~a! the ESMC
method withDL51022s, ~b! the ESMC method withDL50.5s,
~c! the CBA withDL51022s, and ~d! the CBA withDL50.5s.
The density isns350.8 and the shear rate isa*51.

FIG. 3. Kinetic shear viscosity, relative to its Navier-Stokes
value, as a function of the squared uniformity parameter (l/l h)

2.
The density isns350.8 and the shear rates area*51 ~solid line!
anda*51.5 ~dashed line!.

FIG. 4. The same as in Fig. 3, but for the total shear viscosity.
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based on and extends Bird’s direct simulation Monte Carlo
method to solve the Boltzmann equation. Since in the Bolt-
zmann equation the collisions are local, the colliding partners
in DSMC method are taken from the same cell. The Enskog
equation, on the other hand, correctly takes into account that
the centers of two colliding hard spheres are separated by a
distance equal to the sphere diameters. Thus in the ESMC
method each particle of a given colliding pair belongs, in
general, to a different cell. In addition, the collision rate is
enhanced by a factorx that depends on the density field and
the locations of both colliding particles. This factor can be
implemented according to the standard Enskog theory or the
revised Enskog theory. While the DSMC method is useful to
study the regimesl h;l and l h!l ~wherel is the mean
free path andl h is the hydrodynamic length!, but is re-
stricted tos!l,l h ~low-density limit!, our method has ac-
cess to the regimess;l ands@l as well.

As an illustration, we have applied the ESMC method to
the ~unthermostatted! uniform shear flow. Since the ESMC
method reduces, by construction, to the DSMC method in the

low-density limit, we have carried out a stringent test by
choosing a very high density (ns350.8), even though the
Enskog theory is not expected to be adequate in that case.
We have checked that the method~i! reproduces the exact
pressure tensor obtained from the Enskog equation at local
equilibrium for a wide range of shear rates,~ii ! is consistent
with the energy balance equation describing viscous heating,
and~iii ! yields the correct Enskog values for the elements of
the pressure tensor in the Navier-Stokes limit. In the special
case of the uniform shear flow, the factorx is a constant, so
that there is no distinction between the SET and the RET.
Thus in this case the ESMC method is as computationally
efficient as the DSMC method for comparable values of the
ratio l/l h . In fact, we have found@30# an excellent agree-
ment between the simulation and the theoretical values of the
shear viscosity over the whole range of densities. A similar
agreement has been found in the cases of the thermal con-
ductivity @31# and the self-diffusion coefficient@32# by using
the homogeneous heat@33# and color @34# states, respec-
tively.

It is known that the RET is asymptotically exact at short
times, admits as stationary solutions the equilibrium distribu-
tion functions of both fluid and crystal, and predicts transport
coefficients in excellent agreement with computer simulation
values even for densities such thatl,s. This means that the
RET represents an adequate framework to investigate a wide
variety of phenomena, including the kinetics of metastable
states. From this point of view, it is obviously desirable to
have an efficient, flexible, and accurate method to solve the
Enskog equation. In our opinion, a good candidate for such a
method is the one proposed in this paper.

Although our main motivation to develop the ESMC al-
gorithm was to solve the Enskog equation rather than to be
more efficient than molecular dynamics simulations, it is
worthwhile to stress the computational advantage of the
former in the regime of low and moderate densities. At low
densities, hard-sphere molecular dynamics is inefficient be-
cause of the large number of possible collision partners
within a neighborhood of a few mean free paths@10#. In fact,
statistical inefficiency~defined as the long-sample limiting
ratio of the observed variance to that expected for uncorre-
lated Gaussian statistics! is inversely proportional to density
@35#. From the analysis of Ref.@10#, we can estimate that, on
a single processor computer, Monte Carlo algorithms~such
as the DSMC, CBA, and ESMC! become more efficient than
hard-sphere molecular dynamics atns3&0.3. An extra ad-
vantage appears in states with a certain symmetry~e.g., spa-
tial homogeneity, gradients along only one direction, etc.!
that can be exploited to choose simple geometries for the
cells in the Monte Carlo methods.
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FIG. 5. Plot of~a! Pxx
k /nkBT, ~b! Pyy

k /nkBT, and~c! Pzz
k /nkBT

as functions of the squared uniformity parameter (l/l h)
2. The den-

sity is ns350.8 and the shear rates area*51 ~solid line! and
a*51.5 ~dashed line!.

FIG. 6. The same as in Fig. 5, but for the diagonal elements of
the total pressure tensor, relative to their equilibrium values.
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