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Monte Carlo simulation method for the Enskog equation
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A Monte Carlo simulation method to numerically solve the Enskog equation for a hard-sphere fluid is
proposed. The method is based on and extends Bird’s direct simulation Monte Carlo method to solve the
Boltzmann equation. The main modifications &aethe two particles of a collision pair are taken from cells
separated a distance equal to the diameter of the sphéiesie collision rate is enhanced by a factor that
accounts for the spatial correlations. The method is applied to uniform shear flow and proved to be consistent
with (i) the exact pressure tensor obtained from the Enskog equation at local equilibrium for large shear rates,
(i) the viscous heating equation, afiil) the Navier-Stokes shear viscosity obtained from the Enskog equa-
tion. [S1063-651X96)02007-7

PACS numbg(s): 05.60+w, 47.50+d, 83.20.Jp, 02.70.Lq

I. INTRODUCTION method for the Boltzmann equati¢8], but that is devised to
solve the Enskog equation. Previous attempts by Alexander
The Boltzmann equatiori1,2] provides an adequate et al. [10] modified Bird’s method so that the hard-sphere
framework for the investigation of nonequilibrium properties €quation of state is obtained at all densities. However, the
of low-density gases. While continuum hydrodynamic equairansport coefficients at high densities deviate significantly
tions are only useful in the regime of large systems and smaffom those of the Enskog equation.
gradients, i.e.L.>/,>\ (whereL is the size of the system,  The organization of this paper is as follows. The Enskog
/\ is a characteristic hydrodynamic length, andis the theory is briefly introduced in Sec. II. The simulation method
mean free path the Boltzmann equation is meaningful even is described in Sec. Ill. As an illustration, the method is
if L and/or/h are Comparab|e to or smaller than Exact applied in Sec. IV to the time-dependent uniform shear flow
solutions to the Boltzmann equation are rE8g but a great  at a high density. Finally, the results are discussed in Sec. V.
deal of information can be obtained from simplified kinetic
models[4] or from Monte Carlo simulation methodlS]. The Il. THE ENSKOG THEORY
latter have proved to be a flexible and efficient tool to study
the properties of rarefied gases in a wide variety of physical Let f(r,v,t) be the one-particle distribution function.
situations[6]. From it one can obtain the number densityand the flow
The main limitation of the Boltzmann equation is its re- velocity u as
striction to the regime’}, ,A>0o, whereo is the effective
range of molecular interactions. In 1922, Enskag] modi-
fied the Boltzmann equation for hard spheres of diameter
by introducing two crucial changes in the collision integral:
(a) the difference in position between the centers of a collid-
ing pair of molecules is taken into accoufi) the collision n(r,t)u(r,t)=f dvvf(r,v,t). (2.2
frequency is increased by a factor that accounts for the spa-
tial correlations between t_he two colliding _m(_)lecules. Al- A nonequilibrium temperatur& can also be defined by
though the Enskog theory ignores the possibility of correla-
tions in the velocities before collisiofstosszahlansalz it
leads to transport coefficients that are in good agreement %n(r,t)kBT(r,t)zémf dv[v—u(r,t)]?f(r,v,1),
with experimental and simulation values over a wide range
of densities, including those for which<o. In addition, the
revised Enskog theorRET) developed by van Beijeren and
Ernst[7] supports both fluid and crystal equilibrium Statesparticle. The kinetic contributions to the pressure teriRor

[8]. Thus the RET has the potential of describing fluid, crys- )
tal, and metastable states near and far from equilibriu :_:\nd the heat flux are also velocity moments df

However, the intricate mathematical structure of the Enskog

equation has prevented its application to many interesting Pk(r,t)zmj dv[v—u(r,)][v—u(r,0)]f(r,v,1),
physical situations. As in the case of the Boltzmann equa-

tion, two strategies are in principle possible: kinetic models 2.4
and simulation methods. Very recently, a simple kinetic
model of the Enskog equation has been propd€ddhat K 3 2

retains its essential features. The objective of this paper is to gi(r.n= sz dviv=u(r.) I v=u(r.n]i(rv..
present a Monte Carlo simulation method, based on Bird's (2.5

n(r,t):j dvf(r,v,t), (2.1

2.3

wherekg is the Boltzmann constant amd is the mass of a
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Except in the low-density limit, the potential contributions to  Following arguments similar to those leading to the Bolt-
P andq are relevant. In general, they are expressed in termgmann equation, Enskog introduced a kinetic equatiorf for

of the two-particle distribution function. in the case of a dense hard-sphere fldi,11:
J “ “ ~
(E +v- o f(r,v,t)= O'ZJ dv1J doO®(o-g)(o- Q) x(r,r—o)f(r,vV O)f(r—ovy,t)— x(r,r+ o) f(r,v,t)f(r+o,vy,t)].
(2.6
Here ®(x) is the Heaviside functiog=v—v,, and the primes on the velocities denote postcollision values:
V'=v—(o-g)o,vi=Vi+(0o-0)0. 2.7

In the standard Enskog theof$ET) [1], x(r,r+ o) = x(n(r +1/20)), wherey(n) is the equilibrium pair correlation function
at contact corresponding toumiform densityn. In the revised Enskog theofy], however,x(r,r + o) is identified with the
local equilibrium pair correlation function in monuniformstate. In that casey is a functional ofn that can be obtained via
density functional theory12]. The RET and the SET lead to different predictions in nonhomogeneous states. Therefore the
difference between both theories is relevant in states far from equilidnamely, beyond the Navier-Stokes order in the case
of single substancgsas well as in equilibrium crystal an@netastableglassy states.

A primary consequence of the Enskog theory is that it leads to a collisional transfer of momentum and energy that can be
expressed in terms df. The collisional contributions to the pressure tensor and the heat flux are, respgdtBlely

P°(r,t)=%a3mf dvf dvlf da'(6"g)((}-g)zt}(}fld,u,)((r—(1—,u)a',r+,LL0')f(I’—(1—,LL)(T,V,'[)f(r+,U,O',Vl,t),
0
(2.8

qe(r,t)=—P(r,t)-u(r,t)+ 3o mf dvf vlf do®(o-9)(0o-9)%(o-G) f dux(r—(1—w)o,r+uo)

Xf(r—=(1-w)o,v,t)f(r+uo,vy,t), (2.9

where in Eq.(2.9) G=1/2(v+v,). Explicit expressions for . 1 . 5
the Navier-Stokes constitutive equations are obtained from kg(n,T)= m[lJr smnox(n)]xg(T), (2.18
the Chapman-Enskog methéd]:

Pi=nkgTI—7E(n T)[Vu+(Vu)'= (V- ], ke(n,T)= i[1+ 2mnaiy(n)]? KB(T)+— 2 e(n,T).

(2.10
(2.19
P=p(n,T)I=7g(n,T)[Vu+(Vu)'=5(V-u)l]
In these equationsyg and g are the shear viscosity and
—Le(n,T)(V-u)l, (21D thermal conductivity, respectively, derived from the Boltz-
mann equation for hard spheres. Their valueg| afe

q“=— k§(n, T)VT, (2.12
kB 1/2 )
— 5 -
q=—«e(n,T)VT, (2.13 7(T)=1.0160< 1—6<—7T ) o e, (2.20
where
(T)=1.0251x ke (T) (2.29
p(NT)=nkgT[1+3mno’x(n)], (214 LT e '
. 1 To Navier-Stokes order, there is no distinction between the
7e(n, T)= 0] ——[1+57na®x(N)]7g(T), (2.19  SET and the RET, while to Burnett order they differ in two
linear transport coefficients in the momentum f[4].
_ 4.2 4 12 It is convenient to define a mean free pattor a hard-
Ge(n,T)=gn o x(n) (mmigT) ™, (2.16 sphere fluid ag, ! times its low-density value, i.e.,
n,T)=——=[1+5mno3x(n)*na(T)+ 2Le(n,T),
7e(n,T) x(n)[ 15 x(N)]°7g(T)+5{e(n,T) A ()= o (2.22

(2.1 \/Ewn03x(n).
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For a rarefied gag)o*—0, y(n)—1, ande/A—0. In that andV, are the number of particles and volume of cell
limit, the Enskog equatiori2.6) reduces to the Boltzmann respectively. To update the positions and velocities a free-
equation for hard spheres. On the other hand, for a density asreaming stage and a collision stage are decoupled over a
moderate ano>=0.2, 0=1.2\ and the nonlocal character time stepAt<rt;, just as in the DSMC method and the

of collisions plays an essential role. CBA. The only difference lies in the treatment of the colli-
sion stage. For every partidle=1, . . . N the following steps
IIl. ENSKOG SIMULATION MONTE CARLO are taken. . . " . .
(ESMC) METHOD (i) Choose at random with equiprobability a given direc-
tion o .

In the early 1960’s, Bird5] devised the so-called direct (2) Choose at random with equiprobability a test particle
simulation Monte Carlo(DSMC) method to numerically | belonging to the celll that contains the point+oo;. In
solve the Boltzmann equation, having been applied sincgeneral, the cell is different from the cell containing the
then to a wide range of phenomena in rarefied gg8kdn  pointr; .
addition to formal proof$15—17, comparisons with known (3) The probability of accepting the collision between par-
exact solutions of the Boltzmann equatiftb,18,19 show ticlesi andj is equal to the collision rate times the time step:
the accuracy of the DSMC method. A A .

In the DSMC method, a number of particles are placed in ~ wj;= 02470 (0;-0;)(0i- G;) x(I; I+ oo;)nyAt,

a volume split into cells of sizAL sufficiently smaller than 3.1

the mean free patk and the hydrodynamic lengt, (over
which the hydrodynamic fields change appreciablihe po- ) o . X
sitions and zelociéc/ies of the particlesgare I?J?Odated B:fte?a tim here the cell " is th? one containing the point+ 30; . In
step At sufficiently smaller than the mean free time the RET, x(ri.ri + oo;) must be computed from the know-
=M 2kgT/m and the hydrodynamic time t edge of the der_ls_|ty n aII_ cellényc}. ;L

=/ I\2kgT/m. This is done in two stages. In the first stage (4) If the collision is rejected, make/ =v; and go to step

(free-streaming the particles move freely and those leaving (I,”_)' OtheAr\lee,Aasagn o r‘]) art|(:|i|§the postcollr:smr; V.elr? cgc);
the volume are reentered according to the chosen bounda}’jf_vi_("i -j) ai, once the collision stage has finished for
all the particles. The role of particlgis to sample the ve-

conditions. In the second stageollisions, particles within e PATLIMIES. i ) '
the samecell are randomly chosen as collision partnés- locity distribution in the cellJ, so that its velocity remains
cording to the interaction law considejeand postcollision ~Unchanged. _

velocities are assigned. The DSMC method and the Boltz- (5 Take the next particle and repeat the process.

mann equation have thepparentinconsistency of yielding The physical quantities are evaluated at every cell by av-
transport coefficients that depend on the features of the ir€r@ging over the particles inside that cell and also over an
teraction[cf. Egs.(2.20 and (2.21)], while the equation of ensemble of\ different realizations. In each realization, the
state is that of an ideal gap€nksT). In order to remove local flow velocity, the local kinetic pressure tensor, and the
this inconsistency in the special case of hard spheres, Ale)0c@! kinetic heat flux are, respectively,

anderet al. [10] have recently modified the DSMC method

where g;=v;—v;. In the SET, x(r;,ri+oa\)=x(n),

in two aspects. First, the two particles of an accepted colli- ulziE Vi, (3.2
sion pair are displaced a certain vector distatiae after the Nifel

collision step. Second, the collision rate at a given ¢ell

density n) is enhanced by a factox(n). This modified k_ Y . .

method, the so-called consistent Boltzmann algorithm Pi V, m% (V=) (vi= ), @3

(CBA), leads to the correct equilibrium equation of state, Eq.

(2.14), but yields transport coefficients that differ from those 2 5

of the Enskog theory, except in the low-density limit. In fact, q =V§m2| (Vvi—up)=(vi—uy). (3.4

no claim is made in Ref.10] of the CBA being a numerical bote

solution of the Enskog equation. The local collisional pressure tensor and heat flux[a68
Our objective is to extend the DSMC method to represent

a numerical solution to the Enskog equation. Mebe the . LYo , .

volume of the system, which is split into cells of typical size Pr=—2yt mEl (Vi —vi)oy, (3.9

AL<\,/,. Notice that at finite densitAL could be com- ! '

parable to or even smaller than while in the low-density vo

Iimit. it is fuIIy. consistent to takeAL>a. A numpng of qf= _P'C'u'_‘l‘v_AtmE (Uilz_viz)&i_ (3.6

particles are introduced at=0 with random positions and ! rel

velocities sampled from the initial distribution function. In L .

order to improve the statistics| should be as large as pos- In the low-density limit @/X—0), the size of the C?”S

sible, as happens with the DSMC methdd. ThusN/V is AL can be taken much larger than Consequ?ntly, particle

not necessarily equal to the average densiof the physical J (ljr:j_?tep I blelongs;r:o thebsat:pl_etz ceII_ aséparélrcllelb=l). In

system we want to simulate. In fact, the raiesn/(N/V) is ~ addition.x—1 and the probabilityn;; n g.(3.2) becomes

a constant that has a technical character and can be chosen

independently of the physical parameter The coarse- wij=470 (5 G)) (- G;))

grained local density of cell is nj=(N,/V,)y, whereN,

N, /V, At

AN
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where use has been made of E2j22). Thus in that limit our 10
method is equivalent to Nanbu's scheme of the DSMC
method[16].

9
8

IV. APPLICATION TO UNIFORM SHEAR FLOW !

6

In order to assess the validity of the ESMC method de- PSl/pe |
5

scribed in the preceding section, we have applied it to the
uniform shear flon(USF. This nonequilibrium state is char-
acterized 21] by a constant density, a linear velocity profile
u(ry=a-r, a,g=ady,dys (a being the constant shear rate

4

uniform temperature and pressure tensor, and zero kinetic 2 1
heat flux. The appropriate boundary condition leading to this b ]
state is that of Lees and Edwar@®2], which for one-particle Lo
distribution function readf23] % "1 2z 8 4 5 6 7 8 98 10 11
f(?1v1t)|’}7:*L/2:f(?vv!t)ly:JrL/Zi (41)
_ FIG. 1. Plot of P,/p°=Py,/p® (—), P;/p° (- — -, and
wheretT=r—a-rt, v=v—a-r, and f(r,\v,t)=f(r,v,t). In  —P{/p° (- - -) as functions ofa* from Eg. (4.6). The circles

Eqg. (4., L is the size of the system along tlieaxis. Since represent the values obtained from the ESMC metltaith
there are no boundary layers in the USF, the value dbes N=10° particles and\V=500 realizations using the distribution
not play any relevant role. Conservation of energy yields thé4.5-

heating equation . ) ) .
tice that the time stept is not a constant, but it decreases as
de the system evolvel®6]. The initial distribution function has

ar- aPxy (4.2 peen that of local equilibrium,

312
where e is the internal energy density, which for hard _ _ _ 2

spheres i®=3nkgT. Equation(4.2) can be derived from the f(r,v,O)—n(zkaTC)) exi —m(v—a-1)*/2kgTol,
Liouville equation[21] and is therefore exact. It implies that (4.5

the USF is a time-dependent state. In order to compensate for

this viscous heating effect, a nonconservative drag force i¥ith two choices for the shear rate:=1.5y2kgTo/m/o and
usually introduced in molecular dynamics simulatig@d]. a=2kgTo/m/o. In the particular case of Ed4.5), the
Here, however, we prefer not to introduce such a thermostdEnskog expression for the collisional part of the pressure
since Eq.(4.2) provides us with an extra consistency test oftensor, Eq(2.8), becomeg13]

our method. The USRwithout thermostathas been ana-
lyzed via molecular dynamid5], the DSMC method26],
the Bhatnagar-Gross-Krook model kinetic equafi@], and
the Boltzmann equatiof28].

PS(t=0)= %pc(n)f do oo{(1+a*25757)

The identification of a hydrodynamic length and time is x[1-erf(a* 5,5, /12)]
straightforward in the case of the USF: ~ - * 222
g _ \/ga* Gyorye? 20505/2}, (4.6)
/n=+2kgT/ma 1, 4.3

wherep®(n) = 2mn?kgToox(n) anda* =ao/\2kgTo/m.
t,=a L. (4.4 Three different tests have been applied to the simulation
method:(i) consistency with Eq(4.6), (ii) consistency with
Since the temperature increases in time, so dggswhile  the exact equatiort4.2), and (iii) consistency in the limit
ty, remains constant. Alternatively, the hard-sphere mean free//,—0 with the Navier-Stokes pressure tensor obtained
path \ is stationary but the mean free timedecreases as from the Enskog theory. In connection with the first test, we
time elapses. As a consequence, the uniformity pararf@ter plot in Fig. 1|P¢4|/p® as a function of* from Eq.(4.6) and
N /= 7ty monotonically decreases and the system asympfrom the ESMC methodhere with A’=500) using the dis-
totically tends towards that dfocal) equilibrium. tribution (4.5. The agreement is excellent. The simulation
We have solved the Enskog equation for the USF by apmethod correctly takes into account that, except for small
plying the ESMC method. Since the densityis uniform  values ofa*, the relative velocity of two colliding particles
(except for the fluctuations inherent to a Monte Carloseparated by a vectar can be significantly different from
method, there is no difference between the SET and thezero. In the CBA, on the other hand, both particles of any
RET, so thaty(r;,r;+oo)n;= x(n)n in step(3). We have colliding pair belong to the same cell, so that their velocities
chosen the rather large density>=0.8, which corresponds are sampled from the same distribution; consequently,
to o=14.3\ [29]; in that caseyt/7g=0.1. The cells have P°(t=0)=p°(n)l.
been defined as layers of widil_ orthogonal to the axis. Next, we compare in Fig. 2 the temperatdrét) as ob-
The numerical values of the technical parameters ar¢ained directly from the mean kinetic energy, Eg.3), with
L=o, N=10°, N=5,AL=10 20, At=1.17x10?7. No- that obtained from Eq4.2),
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FIG. 2. Time _dep_endence of_ thg temperature as obtr;}me_d dlrectIyFlG' 4. The same as in Fig
from the mean kinetic enerdsgolid lineg and as obtained indirectly

from Eq. (4.7) (dashed lines They correspond tga) the ESMC R
method WithAL — 1020, (b) the ESMC method with\L = 0,50, Enskog theoryEgs.(2.15 and(2.17)], are plotted in Figs. 3

() the CBA with AL =10"2c, and(d) the CBA with AL =0.50. and 4. Rather t_han plotting them as func_tions_ of time, we
The density iso®=0.8 and the shear rate i = 1. have taken thétime-dependentsquared uniformity param-
eter \//},)? as the physically relevant variables//,)? is a
a [t decreasing function dfsince/,, increasesgroughly linearly
T(t)=T,— %_f At/ Py (1), (4.7  Wwith t. The abscissa is\(/',)? instead of\//, because in
nkgJo the USF the first correction of the shear viscosity to its
Navier-Stokes value is expected to be of second order in the
The results of Fig. 2 have been obtained from the CBA and!niformity parametetsuper-Burnett order After a transient
the ESMC methods withAL/o=10"2 and AL/c=05. regime of a few mean free times, the curves corresponding to
While a strong inconsistency exists in the case of the cpahe two different initial conditions practically coincide. This
with both values ofAL/c, in the ESMC method the two Means that a hydrodynamic regime, independent of the initial
criteria to measure the temperature are practically indistinPréparation of the system, has been reached. In this hydro-
guishable if AL is sufficienty small AL=10"2s  dynamic regime, the ratiog"/ »¢ and 7/ 7 are, for a given
=0.143\). For long timesP,,= T2, so thatTV becomes a density no>, material functions of X//})2. Since in this
linear function of time. section we are more interested in validating our simulation
Finally, we perform the testiii). The kinetic and colli- Method than in analyzing rheological effedtsr instance,
sional parts of the pressure tensor have been computed aghear thinning the values of X//})? considered in the -
function of time. From the elemeiR,,— plx<y+ PS,. atime- S|mulat|ons h_ave been very smgll. Frpm FI%](S. 3and 4itis
dependent shear viscosity is definedsgs — P,,/a; its ki- ~ €vident that in the hydrodynamic regimg/ n¢ and 7/ 7g
netic partz¥ is defined in a similar way. These shear viscosi-fluctuate around 1. The limit//,— 0 is strictly unattainable

ties, relative to their Navier-Stokes values given by thein the USF because it requires an infinite amount of time.
Also, the signal-to-noise ratio decreases in that limit so that

the fluctuations increase.

The diagonal elements of the pressure tensors, relative to
their equilibrium values, are plotted in Figs. 5 and 6. Some
] of the comments about Figs. 3 and 4 also apply here. Ex-
1 trapolation of the curves ta//,—0 shows an excellent
} agreement with the predictions of the Enskog theory. More-
i over, viscometric effects of Burnett order are clearly appar-
ent. If we introduce thgdimensionlessviscometric func-

. 3, but for the total shear viscosity.

08

06

*/ns 1 . ;
T tions Wy=(P,y/p—Py/p)/(\ /)% and W,=(P,,/p
04 1 —Py,/p)/(N//})?, our simulation data yielt’; = — 4.6 and
V,=-22.8 for no®=0.8, whie ¥,=-2569 and
02 b . ¥,=0.218 in the limitno®—0 [1,26]. It is worthwhile to
L remark that¥’, is small and positive at zero density, while it
0.0 T R | is large and negative at high density.
0.000 0.002 0.004 0.006 0.008 0.010 0.012
A,
o V. DISCUSSION
FIG. 3. Kinetic shear viscosity, relative to its Navier-Stokes ] . .
value, as a function of the squared uniformity parametée’(,)?. In this paper we have proposed a Monte Carlo simulation

The density imo®=0.8 and the shear rates ax&=1 (solid ling) method that qualifies as a numerical solution of the Enskog
anda* = 1.5 (dashed ling equation. This Enskog simulation Monte Carlo method is
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1.10 - low-density limit, we have carried out a stringent test by
] choosing a very high densityn¢>=0.8), even though the

1.08 7

Enskog theory is not expected to be adequate in that case.
106 I - ] We have checked that the meth@dl reproduces the exact
104 L ] pressure tensor obtained from the Enskog equation at local

. equilibrium for a wide range of shear ratés) is consistent
_ with the energy balance equation describing viscous heating,
2] and(iii) yields the correct Enskog values for the elements of
! the pressure tensor in the Navier-Stokes limit. In the special

case of the uniform shear flow, the factplis a constant, so

i that there is no distinction between the SET and the RET.
084 - 1 Thus in this case the ESMC method is as computationally
092 - T ] efficient as the DSMC method for comparable values of the
[ ] ratioN//,. In fact, we have found30] an excellent agree-
ment between the simulation and the theoretical values of the
shear viscosity over the whole range of densities. A similar
agreement has been found in the cases of the thermal con-
ductivity [31] and the self-diffusion coefficiefiB2] by using

the homogeneous hedB3] and color[34] states, respec-
tively.

It is known that the RET is asymptotically exact at short
o . : times, admits as stationary solutions the equilibrium distribu-
g]aestﬁg do?oG}Sr:)cfvgxfﬁgthsoﬁz'rri;n?"r:Ct stllmulastl'on I\/!ontthe %arllﬁion functions of both fluid and crystal, and predicts transport

. - quation. Since In the BOolte,ticiants in excellent agreement with computer simulation
zmann equation the collisions are local, the colliding partner§/alues even for densities such that o-. This means that the

n DSMC method are taken from the same c_eII. The EnSkog?%ET represents an adequate framework to investigate a wide
equation, on the other hand, correctly takes into account thQ}

the centers of two colliding hard spheres are separated by ariety of phenomena, including the kinetics of metastable

. : . &ates. From this point of view, it is obviously desirable to
distance equal 1o 'ghe sphere _dmmeierT_hus m_the ESMC ._have an efficient, flexible, and accurate method to solve the
method each particle of a given colliding pair belongs, in

. o - . Ensk tion. In our opinion ndidate for h
general, to a different cell. In addition, the collision rate is SK0g equatio our opinion, a good candidate for such a

o method is the one proposed in this paper.
fhnh?nC(etq by aff?)Ctt?{ thz#(;j_epend?_ oln th_e”:j_er}sn){ field arE)d Although our main motivation to develop the ESMC al-
the locations of both colliding particies. This factor can be i, \was to solve the Enskog equation rather than to be
implemented according to the standard Enskog theory or th

. ; : ore efficient than molecular dynamics simulations, it is
rfv:jse?hEnskc_)g tf;soiy).\Wh:jk;tr:)\DSl\f]C m;\et_ho;jhls useful Qyorthwhile to stress the computational advantage of the
study the reglme_ h ang’ n (W €reA IS thé mean ¢4 mer in the regime of low and moderate densities. At low
free path and/, is the hydrodynamic lenggh but is re-

icted X/ (low-density limi hod h densities, hard-sphere molecular dynamics is inefficient be-
stricted too <A,/ (low-density limif, our method has ac- 5,56 of the large number of possible collision partners
cess to the regimes~\ ando>\ as well.

within a neighborhood of a few mean free pafh6]. In fact,
As an illustration, we have applied the ESMC method to g Pa(be]

; ; statistical inefficiency(defined as the long-sample limiting
the (unthermostatteduniform shear flow. Since the ESMC ratio of the observed variance to that expected for uncorre-

method reduces, by construction, to the DSMC method in theyie Gaussian statisticis inversely proportional to density
[35]. From the analysis of Ref10], we can estimate that, on
1.20 — T a single processor computer, Monte Carlo algoritissch
e | ] as the DSMC, CBA, and ESM®ecome more efficient than
L6 b e ] hard-sphere molecular dynamicsrat®*<0.3. An extra ad-
- ] vantage appears in states with a certain symmety., spa-
o tial homogeneity, gradients along only one direction, )etc.
Potp L1z ] that can be exploited to choose simple geometries for the
Lio - ‘ a cells in the Monte Carlo methods.
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as functions of the squared uniformity parametet/},)?. The den-
sity is ne®=0.8 and the shear rates aa& =1 (solid line) and
a* =1.5(dashed ling
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