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Biaxial nonlinear surface waves
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In this paper we present calculations describing nonlinear surface waves at the interface between an isotropic
nonlinear self-focusing medium and a linear biaxial dielectric. These solutions exhibit self-walk-off in the
Poynting vector and elliptical polarization, both of which vary as a function of the distance from the interface.

If the dielectric tensor element in the direction perpendicular to the interface has a value that is between the
tensor elements in the other two principal directions, then there exists a stop band in the power dispersion
curves. This phenomenon is not present when the linear crystal is unisl&l63-651X96)12910-X]

PACS numbd(s): 42.65.Wi

There is a rich literature concerning nonlinear surfacespace described by=0, and a semi-infinite nonlinear iso-
waves (NSW), beginning with the original investigation of tropic crystal exists in the regiop<0. The crystal principal
such waves existing in a structure comprised of a homogeaxes are denoted by the directionsy, andz so that the
neous linear dielectric bounded by a homogeneous nonlineanisotropic crystal is characterized by the dielectric tensor
self-focusing dielectri¢1—4]. These investigations were mo-

tivated by experimental evidence suggesting the existence of & 0 0
such a bound state excited by light obliquely incident on the e=|0 € O] 1.9
dielectric boundary. Following the initial development vari- 0 0 g

ous cases have been examined, including multiple dielectric
boundaried5,6], TE- and TM-type wave$7—12], nonlocal  For y<0, the nonlinear polarization is described by the fol-
[13] and self-defocusing nonlineariti¢44,15. For a good lowing expression:

summary of this field, see, e.d16]. However, a unifying
simplification inherent in all of these investigations has been
the assumption that the media exhibit an isotropic dielectric
tensor. In such a case the resulting NSW can be divided into
TE and TM modes. In this paper, field profiles and disperwhereA=6x3,,andB=6x\3,, are the nonlinear susceptibil-
sion relations are computed for the fundamental and higheiity parameterg17]. In this paper, we will consider the case
order NSW that exist in anisotropic dielectric media in whichwhere A=B, corresponding to a nonresonant bound elec-
the full vector nature of the nonlinear susceptibility must be
considered. The resulting NSW are generally elliptically po-
larized and exhibit a self-walk-off phenomenon.

The anisotropic dielectric NSW problem is an important
one, motivated by the fact that strain is present to some de-
gree in all coherently grown crystal systems. The strain,
whether tensile or compressive, induces an anisotropy in the &
dielectric tensor through a modification of the crystal band | _ FX gyg } . Y _Oo‘*
structure near the boundary. Because all nonlinear integrated | oo Y \l/Z 6&‘ &

\)

optical waveguides involve dielectric boundaries, and many

B
P= A|E|2E+§(E-E)E* , (1.2

) ~ Soliton Axis W
proposed waveguide schemes use coherently grown crystals

(e.g., nonlinear waveguides fabricated from the GaAs/ Crystal Axis <
AlGaAs semiconductor systent is very important to under-

stand the impact that this underlying anisotropy has on the E
Z

characteristics of the NSW.

l. PROBLEM FORMULATION pog+ ki’ + 4@ B E"

The geometry for the NSW problem is shown in Fig. 1. A
semi-infinite linear anisotropic crystal occupies the half FIG. 1. Anisotropic nonlinear surface-wave problem geometry.
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tronic nonlinearity, although the technique described in this V X(VXE)=eg,E, (1.9
paper may be applied for arbitray and B. . . . ]

It is useful to use a coordinate system defined so that on8!l dielectric constants have been normalized by the linear
of the axes coincides with the phase propagation directiorflielectric constant in the nonlinear materiak., € in the
The surface-wave directions are denoted with italicized dinormalized equations may be less thansa that the wave
rection variables where the propagation direckamakes an ~ €quations are uncluttered by physical constants.

angle @ with the principal directiorx. In this rotated frame In order to solve the anisotropic NSW problem, the fol-
of the surface wave, the dielectric tensor must be written aloWing ans& is made:
e, 0 €p E=E&(y)expinz). (1.9
€n=| 0 € 0], (1.3y  This form of the solution is assumed in both mediums. Cut-
€x 0 €, off conditions are found by insisting on exponential extinc-
_ _ tion of the surface modes far from the interface. These sur-
where the matrix elements are defined as follows: face modes are used to construct complete solutions by
€= eycos’-(a)Jr e, sirf(a), (1.4 imposing matching boundary conditions at the interface.
. II. NONLINEAR ISOTROPIC SURFACE MODES
€= eyS|n2( a)+ €,c08(a), (1.5
In the nonlinear medium, the mode profiles may be writ-
(ex—€y) . ten in terms of its three components as
€=——=— Sin(2a). (1.6
2 U
Beginning with Maxwell’s equations a wave equation can E=|IV|. (2.9
be derived for the NSW field in each of the two dielectrics. W

The wave equation in the nonlinear medium may be writte

in normalized form as r‘Because the NSW must remain bound to the interface, the

real part of they component of the Poynting vector must be
VX (VXE)=E+|E|?E+ y(E-E)E*, (1.7)  zero. This constraint forces thecomponent of€ to be in
guadrature with the other two field components. As a result
wherey is the fractionB/A. The corresponding wave equa- the nonlinear Helmholtz wave equation reduces to a set of
tion in the linear anisotropic medium is written in normalized real equations of motion for the field componebksV, and

form as W:
J U= 2.2
2 9 2 d
5 1 ﬁ(l—y)UV@U+H(1—7)WV@W+W+(1+y)(W2+U2)W+(1—7)V2W
—V=—c , 2.3
ay n

1+ % (— B2+ (1—y)(W?+U?)+3(1—y)V3)

J 1 2 2 2 3

7y W= [ BV A=W+ URV+ (15 V7], 2.4
J 1 2 2 2 2
7y Q= 7 [TAUH L+ (WU U+ (1= 9V, (2.5

where 8= \n?’—1 is the linear extinction coefficient in the dard numerical techniques. The initial condition required for
nonlinear medium far from the interface. In order for thethe integration consists of the field amplitude at a distance
nonlinear solutions to decay to zeB3 must be greater than far from the interface on the nonlinear side. This field am-

zero. This cut-off condition must be considered in addition toplitude must be sufficiently small that the nonlinearity is not

linear anisotropic surface-mode cut-off conditions. The set ofmanifest. In this limit, the initial condition can be character-

first-order Eqs(2.4)—(2.5) can then be integrated using stan- ized by two parametersp, shown in Fig. 1, is the polariza-
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tion angle of the field with respect to tiiex plane, andS  For each integration the functiosD, (y) and AB,(y) can
parameterizes the field amplitude. Using these two parambe computed so that by varying the assumed mode imdex
eters, the initial condition is writteWV= 26 cog ¢)exp(By), and angle parametef the zeros of these two functions can

U= sin(¢p)exp(By), V=(n/B)W andQ=(B/n)U. be made to cross. An interface located at yhposition of
this crossing point then satisfies boundary conditions for the
Ill. BOUNDARY CONDITIONS numerically calculated nonlinear surface mode and a linear

) ) ] anisotropic field mode computed from Ed8.2) and(3.1).
~ Now that a technique for computing the fields on the non-This process of selecting parameters so that the zero cross-
linear sides of the dielectric mterfaqe has bg_en establlshed,i,l,gs of AD,(y) andAB,(y) coincide can be performed either
present the method used for matching conditions at the inteksisually or automated with an algorithm that follows the gra-

face. In an anisotropic crystal the field can be written as thejient of ¢ with respect to the distance between zeros of both
sum of two surface modes: functions.

_ (+)any (=)@, Y] ainz
E=[A. &7V +A_E ey ]e™. 3.1) IV. LINEAR ANISOTROPIC SURFACE MODES

These surface modes will be discussed in later sections for The field in the anisotropic medium is assumed to have
both uniaxial and biaxial crystals. In either case, the twothe form of a linear surface wave

modes generally have different elliptical polarizations and _

each mode has its own distinct real evanescent extinction E=E&e"?t Ny, 4.1
coefficient given byn; andny . A linear combination of the

two, specified by the coefficients, andA_, will be neces- wheren is the mode index of the wave amg is an evanes-
sary to match boundary conditions at the interface. Thesgent extinction coefficient. Using this assumed form of the
two mode amplitudes can be related to thandz compo-  field each component of the anisotropic Helmholtz equation
nents of the nonlinear field at the interface through the cont1.8) can be written

tinuity of the tangential electric field:

E€=Ex(— exxnz_ nyz)a 4.2

AL (y) 1 & —&7[wy)
A_(Y)|TETETETET [~ &Y [[uy) | gfinny) =&/(—n?+e), (4.3
32 Ef €2+ n2) + Een=E,(INNy). (4.9

This expression determines the linear-field-mode combi-
nation necessary to match the nonlinear field. However, beBy combining Egs(4.2) and(4.3) an expression for the an-
cause only the tangential field is considered, it is not suffiisotropic surface mode can be derived,
cient to show that the nonlinear field components match the
linear field. In an effort to further simplify the boundary ex(N—ey) i
conditions, the following observations are made. ¥lm-  £=| —inny(n*-n2—e,) s
ponent of the magnetic field will be matched if thecom- (n%=€,)(N*—ny%~ €4)
ponent of the electric displaceme(i,) is matched. They
component of the magnetic field is matched as a result of thelowever, using Eq94.4) and(4.2) a second expression for
assumption that the phase velocity for the entire wave is théhe surface mode can be found,
same, requiring excitations on both sides of the boundary to
propagate as exp{z). Thus, the problem of matching : NNy €z
boundary conditions between the biaxial linear medium and ! (n2—ny2— €x) (€55t ny2)+ €17
the nonlinear medium reduces to matching yneomponent £= 1 b (4.6)
of the electric displacemeiiD,) and thez component of the v '
magnetic field(3,). The mismatch in these two components i

(4.5

2 2
nny(N“—ny“— €,

2 2
nny(N“—ny“— €,)

can be expressed as (N*=ny*= ) (€5, 0y%) + €,
Apy(y):iV[1+(W2+ U2)(1—9)+VZ(1+y)] ~ Because E_q;(.4.5) and (4.6) must be equivalent, the ex-
tinction coefficient and the mode index can be related
—e(ALEDHAET), (3.3 through the equality o, :
AB(y)=nQ-(A.ny&"+An§7) (3.4 n°—e nny(n—ny’~ )

(4.7)

_ _ . o Ny, (N°=Ny%— € (Ny*+ €,5) + €7
The solution technigue becomes one of searching the ini-

tial condition parameter space for the nonlinear surface modghis extinction mode equation can be rearranged into a qua-
equationg2.4)—(2.5) to find field distributions for which the dratic polynomial,
mismatches irD, and B, are simultaneously zero at some
locationy. The nonlinear Helmholtz equations are integrated
numerically using a seventh-order Adams-Bashforth- Ny +
Moulton schemd18], and the initial condition amplitude as
well as the grid spacing are varied to assure correct results. =0. (4.8

€, €,— n2

ey-l— ezz)

2
n“—e
2 y 2
n,2+|—||N“€,,— €,€
éy y ( € )[ zz zx]

y
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The two resulting extinction coefficients are then given by
the following expressions:

ny?=3(-b=D),
4.9
ny?=3(~b+\D),
where several parameters are defined as follows:
D=Db%-4c, (4.10
e, T € E '
b=|e,+e—n? X—=|, (4.1 . E
Ey ’//i/ : n%
2_ ) :
C:<”_GV)[”26 — €,6,] (4.12 1 025 o5 075 1 125 15
€y zz X ' ’ Pfopag.;ltion Angle- (o) '

FIG. 2. Biaxial surface-wave cut-off and stop band for the case
where ,=0.88, ,=1.1, ande,=1.43. The grey region shows an

A” the general features Of unlax|a| nonllnear Surfacea”OWed band of values f0n2 as a function of the direction of
waves discussed ii19,20, such as self-walk-off, elliptical popropagation(a). Surface waves in this band are not allowed to
larization, and angle-tuned cut-off still arise. In addition to ProPagate between the angleg and azs.
these effects, interesting features resulting from the behavior —_—. = 5
of the discriminanD willgbe discussed. ’ D=an"+bn’+, 54

In order to have a surface wave, the extinction coefficientynere the coefficients of the quadratic may be expressed as
are required to be real and less than zero. Though it might|iows:
seem that a surface wave could have complex extinction co-
efficients, this is not the case. It can be shown that complex
extinction coefficients lead to a real component of the Poyn-
ting vector perpendicular to the interface. Since power can-
not flow away from the interface in a stable surface wave, the
extinction coefficients cannot have a complex component.

The requirement that the squared extinction constants are
both real and greater than zero lead to three conditions. The T=(e,— ). (5.7
first condition,b<<0, is a cut-off corresponding to the occur- . .
rence where both modes become plane waves. The secoff’en this quadratic has real rogt$ , thenD <0 between
conditionc>0 is a cut-off corresponding to the case wherel em. Hence, the band af” values between the roots are
only one mode becomes a plane wave. The third conditioforPidden. D has only complex roots then no such band
D>0 describes a forbidden band of parameters where th#ill 0Ccur. The roots oD can be written as follows:

V. BIAXIAL NONLINEAR SURFACE WAVES

_ 2
a=| =Y (55

€y

~ 2
b= = [(2ey— €,— €) €, 2€,6,— (€, €4) €y], (5.0
y

extinction coefficients become complex. This stop band does T \/’5’
not occur in the analogous uniaxial surface wave problem. P (5.9
The cut-off conditions thab<0 and c>0 define three - 2a

critical curves:

2
D= (%) (6, €)%(€,— €y)(€,— €,)si(2a). (5.9

=, (5.1)
The form of D shows that the roots d can only be real if
= 6::’ 52 IS between the values ef ande,.
A. Case 1! €<e€<e,
2 €21 & There are three cases corresponding to the ordering of the
KE €t €y & 5.3 principal dielectric tensor constants. In the first case the di-

electric constant perpendicular to the surface is between the

These curves describe a general cut-off conditiorprincipal dielectric constants in the other two directions.
n?>max 73,73,73], which can depend on the launch angle Without loss of generality, the ordering can then be assumed
throughe;,, in 7, and »;. Though it may seem that the cut-off to be as follows: €,<e¢,<e¢,. Figure 2 illustrates the angle
requirements could also be satisfied;<n®<min[#?,73],a  dependence of the cut-off relations and stop band in the fol-
consideration of each ensuing special case shows that thelaving discussion for a specific example whe#g=0.88,
inequalities do not have solutions. e,=1.1, ande,=1.43.

Analysis of the stop band is aided by writifig as a If ais O or #/2 the surface wave is propagating along a
quadratic inn?, principal axis and botl€. converge to the same value. In
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particular these values are given by the following expresAt this angle the forbidden band extends frgfn to .

With this ordering of the dielectric constants, the correct
cut-off relations are found by determining the angles at
which the critical curves coincide. Given this information
and the maximum critical curve at the angless0 and
a=/2 the cut-off relations in three resulting rangesacdire
determined. The following expressions define the ang|gs
where the curves)? and n cross:

sions:
2 _ ey(€,~ €)
gi(o)_ (EZ_ fy) ’
2 _ €y &x— €;)
gi(ﬂ-/z)_ (Ex_ ey)

(5.10

. (5.12)

2 iafii =_ ; _ . €x— €
The upper curve? becomes infinite whea=0, which oc SiM(argq) = y (5.13
curs at an angler=6 such that €x— €
. €, €y . €€~ 6y)
Sirf(9)= . (5.12 SiRt(ag)=——-, (5.14)
€, € Ey(ex_ €,)
1 T T T T T T T T 1 T T T T T T T T
= ---- E,(x25) - ---- E (2
Y oo5- — Ey . W o5r — E .
.%’ [ Ey .g) ,,,,,,, Ey
c c
2 0 2 0
o &
T kel
2-05r ! . o . 205+ Y - .
n Isotropic Nonlinear Biaxial Linear L Isotropic Nonlinear \ '~/ Biaxial Linear
. /
N\
_1 Il 1 1 ] 1 I i 1 _1 1 1 1 I 1 1 1 Il
25 -20 -15 -10 -5 0 5 10 15 2 25 -25 =20 -15 -10 -5 0 5 10 15 2 25
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2 T T T T T T T T 2 T T T T T T T T
TAY
& | ---- S & ~ ---- 8
[ t4 [ N\ (4
Ml ) — x4 . L J Y —— 5(5) .
,s / \ Sy=0 5 // (N4 \\ Sy=0
> AN >y <
D o]
~
t €
g-1t+ 4 31t J
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S
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FIG. 3. Biaxial nonlinear surface-wave profiles and power dispersion curves .88, ¢,=1.1, ¢,=1.43, ande=1.4; (a) [001d

mode forn®=1.68, (b) [012b] mode forn®=1.5, (c) power dispersion curves for tf68014 and[0125 modes.
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2
€5(€ex— Ey)

Since sif(a) is an increasing function in the considered
range of angles, it can be shown tlhgt<a;,<a,3. By com-
paring each of the curves at=0 anda=/2 it can be con-
cluded that at angles between 0 and the cut-off relation is
n>>ni=¢,. This cut-off condition has no angle dependence
just as in isotropic surface modes. Between the angtes,s
and o= /2 the maximal critical curve isj2 so that the cut-

off is given as follows:

€2€x

[Ey( €, €) —€6](6x—€)

(5.19

54

This expression is exactly the cut-off that occurs for uniaxial
surface waves wheg,= e .

Between the angles,; and a,5 the maximal critical curve
is 73. However, recalling that the curve®= 73 corresponds
to the case wheb=0 and the other two critical curves rep-
resent the case wheee=0, it is apparent that the intersection
of these two curves must also intersect one of the stop band
edgest, . Since bothe2(0) and €2 (#/2) can be shown to be
'greater thany? or 73 at the angles 0 and/2, it follows that
the lower edge of the stop bandescribed by the curve
n’=¢%) dips below cut-off betweenr=a,; and a=as;.
Hence, solutions can exist onlyif>£2 in this angle range.

In Figs. 3a) and 3b), the electric field and Poynting vec-
tor profiles for the[0014 and[012b] modes are illustrated.

2 2
n<>n5= - . 51 e o
27 ¢ cod(a) + e,siM () (5.16 These modes exhibit self-walk-off ayddependent elliptical
1 T T T T T T T T 0.6 T T T Ll T T T T
---- E (x4
_ 7 (x4) _oal |
u ost — K 1 W
R P2 U B E £ 02f ]
=) Y 5)
[« =4
g s 9 0
] o
T o-02F .
2 05t 1 2
1N o
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_1 1 1 1 1 1 1 1 ] i 1 1 1 1 1 1 1
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1r A o __ 1 o
@ /\ \ \\ 22 4 @0'4_ N -~ [ SZ i
8 05 I ‘\ Al X(_XO) _ 5 ol /N )\ 8x (x5)
3 / \ Sy_ g ; ~== N Sy:O E
> 0 / S % 0 . o
)] < = o -
c c
£ v £ 0.2F \/
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[P 10
=3
o
~
75 [112], oo =14
5 L/
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© Effective Index (n)
FIG. 4. Biaxial nonlinear surface-wave profiles and power dispersion curves+@.88,¢,=1.1,¢,=1.43: (a) [112] mode fora=1.4

andn®=1.5, (b) [112] mode fora=0.5 andn®=1.2, (c) power dispersion curves for tf&12] mode the anglee=0.5 anda=1.4.
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€€,
€,+ (ex— eZ)Sinz( a)’

polarization[20]. In Fig. 3(c), power dispersion curves and a
stop band are shown for these two modes. n?>

(5.19

B. Case 2! €<€<e,

When the dielectric tensors are ordered so #)ate,<e,  This cut-off relation also occurs in a uniaxial surface wave
the curvez3 curve is never any smaller thag. It folows ~ when =€
that %2 cannot be the maximal cut-off curve. By showing that ~ Figures 4a) and 4b) illustrate the electric field and Poyn-
72 and 7% cannot coincide for any value ef and then con- ting vector profiles of th¢112] mode ate=0.5 withn?=1.2
sidering their relative values at=0 and @=/2 it can be  and the same mode far=1.4 withn®=1.5. The correspond-
shown thatz3>73. It follows that the cut-off relation with ing power dispersion curves are shown in Fi¢g)4lt can be
this dielectric constant ordering is alwayg>73, which  seen from this illustration how by increasing the angle-tuned

may also be written as follows: cut-off the power threshold can also be increased.
1 T T T T T T T T 1 T T T ¥ T T T T
_ —--- E,k28) _ S T L
W st A — E {  Wosr /A NN —— By 1
£ N oo E £ /0 / oSS~ - E
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FIG. 5. Biaxial nonlinear surface-wave profiles and power dispersion curveg=dr43,6,=0.88,6,=1.1: (@) [001] mode forn?=1.5,
(b) [112H mode forn?=1.5, (c) power dispersion curves for tH&12h and[001] mode and the angles=0.5 anda=1.4.
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C. Case 3. e>€>¢,

If instead the dielectric constants are ordered so ¢gha £,=0.88 g,
greater than the dielectric constants in the other directions, 1.5 €x=1.43¢
then the curven®=? will always be greater than the other Ex =0.88 Elfl
two critical cut-off curves. In this case the cut-off is given y : 1' lin
simply byn2>ey. As in an isotropic medium this cut-off has 2 o =1.178

no angle dependence. The Poynting vector and electric—fieldny 1
profile are illustrated for thE001] and[112b] modes in Figs.

5(a) and gb), respectively. Power dispersions for these two

modes at both anglea=0.5 anda=1.4 are illustrated in 0.5
5(c). This demonstrates the angle independence of the cut-off

for this configuration. Though the cut-off for these solutions

is angle independent, the surface waves still have a small

/|
dependence on the propagation direction. This angle depen- 0 / 4

Extraordinary

dence of the modes in this configuration is most apparent at
the power threshold where a difference in the power disper-

sion curves at the two angles can be detected. -0.5
VI. COMPARISON TO UNIAXIAL s T G 5 =
NONLINEAR SURFACE WAVES Il2
a

In Ref. [20] we presented the case corresponding to a( )
uniaxial crystal. In this section we show how those solutions
exist as a limiting case of the solutions presented in the cur- g,=143 gy,
rent paper. 3 €,=0.88¢y,

There are two distinct possible crystal orientations for a e.=1.10 e+
uniaxial crystal with one of its principal axes perpendicular y lin
to the interface. In the first case, df=¢, the problem loses 2 o =
all dependence on the direction of propagation because any y 2
components of the electric field parallel to the interface in-
duce the same relative polarization. Therefore, this case is
essentially the same as the isotropic surface-wave problem. 1
Consequently, we concentrate on the crystal orientation
wheree,=¢, .

The discriminanD in Eq. (4.10 can also be expressed as //
follows: ° y

D= nz( €227 €y e € 2+4I’]2 (€y—€)( €2~ €) . N

€y €y
(6.1
6] 1 2 3 4
For the uniaxial case, the square root of the discriminate is(b) n2
given by
FIG. 6. Plots of the squared extinction coefficients as a function
o €22 €y of the squared effective mode inde¢@ For the uniaxial crystal
n e—y +(€,— €) (6.2 parameterse,=1.43, ¢,=0.88, anda=1.178, (b) for the biaxial

crystal parameterg, =0.88, ¢,=1.1, ,=1.43, anda=0.2.

so that the expressions for the extinction coefficients in Egs.

(4.9 can be reduced to the much simpler uniaxial surfaceThe corresponding mode polarizatiof€” and £ can be

mode extinction coefficients. The solution that depends orfiound from Eq.(4.5) using ny=n§,°) for the ordinary mode

the propagation angle througl, is recognized as the ex- and usingny=n§,e) for the extraordinary mode.

traordinary mode extinction numbaer, , while the solution For both modes, the squared uniaxial extinction coeffi-

that is independent of the propa%;ation angle is recognized asgent, ng, is a linear function of the squared effective mode-

the ordinary extinction numbe’r§,° : index n<. This is illustrated in Fig. @&). Both linear modes
are required to have real extinction coefficients arfdis

(@2 €z required to be greater than 1. Because the zero of the extraor-

ny” =n° ——g, (6.3 dinary curve is larger than either 1 or the zero of the ordinary

curve, the extraordinary mode determines the cut-off for the

uniaxial solutions for the parameters used in Figr)6The

_ 2 2 2 .
Y =n’-e, (6.4 n{®" andn{”" lines generally cross and can be understood as
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a limiting case of hyperbola solutions to E¢.8). For biax-  the interface. This transverse component varies with the dis-
ial crystals the hyperbola curves consist of two disconnectetance from the interface. Each of the solutions were ellipti-
parts, giving rise to phenomena that differ from the uniaxialcally polarized and the polarization varied as a function of
case. In particular, for the crystal orientation given by thethe transverse coordinate normal to the interface plane. Ex-
dielectric element ordering,<e,<e¢,, the major axis direc- pressions for the angle-tuned cutoff of anisotropic NSW's
tion for the hyperbola in the®-n¢ plane explains the stop- have also been presented. The solution regimes for biaxial
gap phenomena discussed earlier. This is illustrated in Figgrface waves were classified and discussed in detail. The
6(b). For crystal orientations where the dielectric constant inggutions arising from a biaxial crystal differs from those of

the y direction is smaller or gre'ater. than both of the other hiaxial crystals presented [120,19 primarily because bi-
principal tensor elements, the direction of the hyperbola may iy crystals can lead to a stop-gap in the surface-wave-
jor axis is such that no stop band arises. mode index

One of the phenomena in the biaxial case that sets it apart
from the uniaxial case is the surface-wave stop band. This is

In this paper we have described analysis leading to calcud consequence of extinction coefficients becoming complex
lations of biaxial NSW Electric-field profiles and Poynting and differs from typical cut-offs where extinction coeffi-
vectors for the lowest-order modes were presented, andents become purely imaginary. This can also be understood
power-dispersion curves were illustrated. These surfaces a deformation of curves describing the uniaxial decay co-
waves exhibit the self-walk-off phenomena, where the Poynefficients for nearly degenerate polarization modes so that
ting vector direction is mostly in the direction of phase the decay coefficients are described by equations for hyper-
propagation, but has a small transverse component parallel tmlas rather than lines.

VIl. SUMMARY
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