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Kink internal modes in discrete nonlinear chains
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We study localized modes around a kink in generalized Frenkel-Kontorova modelanti#inmonic inter-
particle interactions We show numerically that such anharmonicity can give ris¢ypes of kink internal
modes which oscillate with frequencies lying in the gaps either above or below the phonon frequency band.
We analyze the kink internal modes with collective-coordinate approaches, and show that the low-frequency
internal modes describe the kink shapkpe fluctuations, whereas the highest-frequency internal modes are
characterized by the out-of-phase oscillations of a few particles near the kink center.
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PACS numbes): 03.40.Kf, 63.20.Ry, 63.20.Pw

In recent years, the dynamics kinks (topological soli-  x= ¢, . ;— ¢, being the relative displacement. In this model,
tons has attracted considerable attentidr12). One impor- o and 8 are two parameters that control the strength of the
tant issue is to study the kinks’ internal modes dynamicsanharmonicity; the parameter determines the ratio of the
Such internal modes include the kink translational mode andpstrate potential energy to the interparticle coupling energy
the kink internal Shape modes. The former exists in all kink-and thu@ is called thediscreteness parametar\/e note that
bearing systems, while the latter exist Only in some partiCUlafnany physica| processes, inc|uding the Spin dynamics in fer-
nonlinear Klein-Gordon models, including ti¢ model and  romagnetic systen{$], proton transport in hydrogen-bonded
the double-sine-Gordon equati¢h—4]. In particular, it has  chains[7,8], planar rotations of the base pairs in DNA mac-
been found that the kink internal shape modes can contribut®moleculeg9], and polymer chain twisting€.0,11], can be
to the thermodynamic properties of the collective kink-described by the FK-type models with strongly anharmonic
phonon ga$1], and that they can cause unusual phenomenofhterparticle interactions whose truncated Taylor series ex-
(such as the resonancix-4]) in the kink dynamics. pansions are given by HE).

The previous studiefl-5] on the kink internal modes ~ The equations of motion for the discrete chain can be
have been limited to cases where the interparticle interaGyritten in the standard form

tions are harmonic. The main objective of the present paper

is to investigate the kink internal modes in discrete chains - , , -

with anharmonicnearest-neighbor interparticle interactions. ?n—[W (én+1=&n) =W (¢n— ¢n-1)]+97sin(¢n) =0.
Using the generalized Frenkel-KontorovBK) models as (3
particular, but rather fundamental examples, we demonstrate

that the kink can support not only a low-frequen&y) in-  This system can support a kink solution which connects two
ternal shape mode but also one or sevdrigh-frequency equivalent ground state®.g., 0 and ) of the substrate
(HF) internal modes due to the interplay between the dispotential, provided that the parametersind 8 are positive,
creteness and the anharmonicity in the interparticle interaosr greater than certain negative valy&s

tions. In particular, we show that the LF kink internal shape In order to obtain the full spectrum of the linear excita-
mode (which oscillates with a frequency lying in the gap tions around the kink in the generalized FK model, we first
belowthe phonon frequency bahdan exist for “soft” an-  use a direct numerical method. We look for a solution of Eq.
harmonicity, whereas the HF kink internal modeshich os-  (3) in the form
cillate with frequencies lying in the gagbovethe phonon

frequency bandcan exist for “hard” anharmonicity. These

results can be understood with collective-coordinate ap-

proaches. We verify that similar results hold for many other

kink-bearing systems with anharmonic interparticle interacwhere|,|<1, and¢" represents the exact static kink solu-

bn(t) = dh + pexpliot), (4)

tions. . . o . _ tion of the systems. The kink is determined numerically by
We begin our investigation with the generalized FK mod-the following method: Starting with an approximate kink
els that are defined by tHaormalized Lagrangian configuration given by the corresponding kink solution in the

continuum limit, we use pseudomolecular dynamics with an
_ 152 N q2r1 artificial dissipation term to extract energy from the system
£ ; {260~ W(ni1= dn)—gl1-cosd)l} (1 until the chain is sufficiently relaxefdt]. The final kink pro-
file is found to be always centered midway between two
whereW(.) is the nearest-neighbor interparticle interaction adjacent lattice sites. Throughout the paper, we consider a
chain with a finite number of particles, i.e&\=400 or 600,
1 a B which is long enough to contain a kinkThe kink solution
_ T2, 23, P 4
WOO =X+ 53X+ 2 @ refers to the case whe =0 and¢pK=21.)
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FIG. 1. The linear spectra of
the generalized FK model in the
presence of a kink(a) g=0.5,
B=0; (b g=05, a=0; (¢
g=0.5,a2=0.2.
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Substituting the ansat@) into Eq(3) and linearizing it a#0 in which the kink-antikink symmetry is brokefsee
with respect taj,,, we obtain a linear eigenvalue problem asalso Refs[7,8]), the linear spectrum around an antikink is
follows: just the same as that around a kinlt at the value of- «

To explain why the kink can support a LF internal shape
MV = w2V, (5) mode, we use a simple collective-coordiné@C) approach
and we look for a solution of the form

whereV¥ = 2,3, ... ) is a column vector, anM is a
symmetric(tﬁaigéoﬁgl mazrix. Pr(h=ar[Y(D)]=4tan Hexd Y(n—no)]},  (6)
We have solved the eigenvalue probl€¢® numerically

for various sets of the model parametessB, and g
(0.2<g<1.0). The(many) eigenfrequencies are presented in
Fig. 1. The first feature to note is that there always exists an
eigenfrequencythe lowest ong which is associated with the
kink translational mode. This eigenfrequency is close to zer
for @>0 or >0 (the hard anharmonicigybut it is shifted
up for <0 or B8<0 (the soft anharmonicily In the latter
case, the kink becomes narrower and feels a stronger dis- a2 .
creteness effect. LE=WY2— u(y), (7
Most interestingly, it is found that besides the lowest
eigenfrequencies, there exist some otlsalated eigenfre-
guencies outside the phonon frequency bfirel, the inter-
val (g,\4+g?), as the many thick vertical lines in Fig. 1
have showhwhen the anharmonicity is strong enougte-
pending on the discreteness paramgdern particular, from
Fig. 1 we see that the soft anharmonicity can give rise to a
kink internal shape modgFig. 2(a)] which oscillates with a
frequency lying below the lower cutoff of the phonon fre-
guency. On the other hand, the hard anharmonicity can give
rise to one or severdligh-frequency (HF) modescalized
around the kink. In particular, the highest-frequency mode is
characterized by the out-of-phase oscillations of the neigh-

whereY(t) serves as a measure of the kink slope, apd
represents the center-of-mass position of the stationary kink.
We insert this ansatz into the system Lagrangian and
assume that the parameters so small that the PN potential
an be neglected and that the sum avexan be replaced by
he corresponding integral. After some computations we ob-
tain the following effective Lagrangian

where

LF internal mode

boring particledFig. 2(b)]. 8
In the case where botl and 38 are nonzero and of oppo- g
site sign, it is their relative strength that will determine g
whether the LF or the HF kink internal modes can exist. For g
example, ag=0.5 anda=0.2, we find that if3 is smaller w
than a critical value3.;~ —0.25 the LF mode will appear; * |
and if 8 is greater thanB,,~—0.19 the HF modes will =07 5 200 220
appear [see Fig. 1{c)]. For B in the interval Lattice sites
(—0.25,—0.19) the kink has no internal modes except for
the (trivial) translational mode, because thard cubic and FIG. 2. (@) The normalized LF kink shape mode from the CC
the soft quartic anharmonicity cancel out the effect of eachansatz[see Eq.(14)] (dotted ling, and from the direct numerical
other. methods(circles, whereg=0.42, «=0, and 8=—0.2. (b) The

Given the results of the linear spectrum around a kink, thenormalized highest-frequency kink internal mode from the CC an-
linear spectrum around an antikink can be easily obtained byatz[see Eq.16)] (dotted ling, and from the direct numerical meth-
using the symmetry of the model. For example, in the caseds(circles, whereg=0.8, «=0.0, 3=0.4.
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' (3) can be well approximated by the sine-Gord&®) equa-
tion in which the kink has no internal shape modes. How-
ever, in the weak discrete regimes wherés not so small,
we observe tha), actually lies in the gap below the phonon

asieene.,

1.0 ROk KOk LK 4O
f} ¥
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= A\ " frequency band, displaying qualitative agreement with the
G 08 | v i direct numerical results. Noting that the kink in the standard
i * FK model has no true internal shape modes for a wide range
I | ; of discreteness parametétig. 3), we conclude that the ex-
%650 ofsi - 1.0 istence of the kink internal shape mode in the generalized FK
’ g models is due to the interplay between the anharmonicity and

the discreteness effect.

FIG. 3. The normalized frequenc@, /g of the kink shape Sl?ig)t?e cc approai{lcflhamkqulrgts ctiO_tUSI%g a one-garameter
mode, as a function of the discreteness parameter. The @otid ansatz 0 approximate the Kinkand IS shape mogeo-

a=—0.2,3=0) and the dottedd=0,8= —0.2) curves are the CC 1Ution (4), which has many degrees of freedom, it might not
results Eq. (12. The stars &=-0.2,8=0), the triangles be quantitatively accurate, as indicated in Fig. 3. On the

(a=0,8=—0.2), and the circlesd=0,8=0, for the standard FK other hand, the fluctuating kink obtained through the CC

mode), are from the direct numerical calculations. approact{cf. Egs.(6), (11) ]is
L_ =1 S L
=4tan {exg (Yo+y(t))(n—n ~ ¢ +y(t ,
U(Y)=4Y+2amY2+ 2 8Y3+4g2/Y. ®) b texd (Yo+y(t)( o 1}~ dnty( )%(13)
The equation of motion for the collective variable is where ¢5=4 tarm H{exf Yo(n—ny)T}, and
2w .. U
_ay2 77 2(n—ng)
3v3 (Y=-3Y /Y)+a 0, 9 ‘ﬂh (14)

- coshYo(n—ng)]"

which is useful for analyzing the kink slope fluctuation. First,
we note that the equilibrium kink slope should satisfy
(oUlaY)=0, or

Therefore, the functiord/h can be considered as an approxi-
mation to the kink shape mode. We find that in the weak
discrete regimey’; can describe the kink internal shape
20 mode reasonably wefFig. 2(a)].
Y2+ —aY3+4B8Y4=¢? (10) In order to understand why the HF kink internal modes
3 can appear, we notice that the mode associated with the high-
est eigenfrequency is characterized by the out-of-phase os-
cillations of neighboring particles, and that the amplitude of
the mode decays rapidly away from the kink cert€ig.
2(b)]. This prompts us to use the ansatz,

from which the equilibrium kink slopér=Y, can be ob-
tained as a function of the discreteness parangetand the
anharmonic parameters and 8 .

The small-amplitude fluctuations of the kink slope around
its equilibrium Y, can be analyzed by substituting Het)— -1 _ H
Y(t)=Yo+y(t), where Yo=Yq(e,3,g) is the solution of dn(h)=4tan {exdYo(n—no) i +AM Y, (19
Y from Eq.(10) and|y(t)|<1, into Eq.(9). We linearize the whereY,, is the kink's equilibrium slope determined from

equation with respect tg(t) to obtain Eq. (10), |A(t)|<1, and
2w [ -y
v vz (Yol |y=0. (11 H= (ZDYo , (16)
0 V2cosliYo(n—ng)]

Therefore, the kink slope fluctuates with the frequency s ysed to approximate the highest-frequency kink internal
mode.

3 2 12 3 4\ 112
_ %E(Y _ 2\/§g 14 amYo 4BY0) Again we substitute the ansatz5) into the system La-
Lol2m2 g2t 0 ™ 3g° g? ’ grangian and compute the effective Lagrangian to oliin
(12)  the constant terms are dropped
which depends strongly on the three parameterg, and Le= %AZ—%(4+4Q7TY0+ 32BY%—§92)A2. 17

g. In particular, we have checked that for a given value of
g, 0 can become smaller than the lower cutoff of the pho-Therefore, the frequency of the dynamical variaBlg) is
non frequencyy, if a or B takes a suitably largeegative
value. This agrees well qualitatively with the numerical re- Q= 4+4amYy+328Y5—(2/3) g2, (18)
sults shown in Fig. 1

In Fig. 3 we plot the normalized frequené€y, /g against  which, like Eq.(12), depends strongly on the model param-
g (for the given sets ofr and 8) and compare it with the eters. In particular, for a fixed discreteness paramgter
direct numerical results. It is seen that in the continuum re{} can become greater than the highest phonon frequency
gime whereg<1, the kink has no low-frequency shape wma=4+g? if « or B takes a largeositivevalue.
modes. This is consistent with the fact that, wiggr1, Eq. In Fig. 4 we plot the normalized frequen€y / wmax as a
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' In order to check the generality of the present results, we
: have carried out numerical calculations for several other dis-

crete kink-bearing systems with anharmonic interparticle in-
teractions, inlcuding the FK-type models with the sinusoidal
interparticle interactionW(x)=[1—cos)] [9], or the Toda
interaction, W(x)=(1/A%)[exp(—-AX)—1+Ax]. We have
found that for certain ranges of the model parameters the
kink can support a LF internal shape mode. This is because
0.8 . the Taylor series of each of the two functio{x) has a

0.0 05 10 soft anharmonic term. In addition, we have also examined a
generalizedp* model with the anharmonic interparticle cou-
plings (2). In this case, the oscillation frequency of the kink

FIG. 4. The normalized frequenc,/Qmay Of the highest- internal shape mode, which already exists in the standard
frequency kink internal mode, as a function of the discreteness pa¢4 model[2], can be shifted due to the effects of the anhar-
rameter. The solidfor «=0.4,8=0), the dotted ¢=0,6=0.4),  monicity. Moreover, the hard anharmonicity can give rise to
and the long-dashedx(=—0.1,5=0.3) curves are the CC results HF kink internal modes, just as what is shown in the gener-
[Eg. (18)] which are in good agreement with the correspondinggjized FK model.
numerical result§symbolg. The circles are the numerical results In conclusion, we have demonstrated that the anharmonic-
for the standard FK model. ity in the interparticle interactions together with the weak

function ofg for various sets of the anharmonic parametersdiscreteness effect can allow the kink to support either low-
It turns out that the analytical results are in very good agreel’€duency or high-frequency internal modes, depending on
ment with the exact numerical ones. This is a consequence étFe nafure O_f the anharmonicity. We haye described the IO.W'
the fact that the functiord/ﬂ is a good approximation to the frequency Kink shape mode anq the h|ghest-frequency kink
true highest-frequency kink internal modgig. 2(b)]. We internal mode with the collective-coordinate methods. It
also note that the kink in the standard EK modelshould be remarked that, while the LF kink internal modes

(a=0,8=0) cannot support high-frequency internal modestan also exisit in continuum models, the HF kink internal

due to the absence of anharmonicity in the interparticle in—mOOIeS can only exist in discrete systems, whose phonon fre-

: quency has an upper bound. It remains to be investigated
teractions. . s . ; .

For certain ranges of the model parameters the kink ma; ow the kink dynamics in the discrete nonlm_ear chains can
have more than one HF internal mode. However, it seem € mfluenqed by both the LF and the HF internal modes
difficult to describe the other HF modes by simple CC meth- iscussed in the present paper.
ods, because their patterns are much more complex than that This work is supported by the Academic Research Grant
of the highest-frequency mode. (No. RP950601 at the National University of Singapore.
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