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We study localized modes around a kink in generalized Frenkel-Kontorova models withanharmonic inter-
particle interactions. We show numerically that such anharmonicity can give rise totypes of kink internal
modes, which oscillate with frequencies lying in the gaps either above or below the phonon frequency band.
We analyze the kink internal modes with collective-coordinate approaches, and show that the low-frequency
internal modes describe the kink shape~slope! fluctuations, whereas the highest-frequency internal modes are
characterized by the out-of-phase oscillations of a few particles near the kink center.
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PACS number~s!: 03.40.Kf, 63.20.Ry, 63.20.Pw

In recent years, the dynamics ofkinks ~topological soli-
tons! has attracted considerable attention@1–12#. One impor-
tant issue is to study the kinks’ internal modes dynamics.
Such internal modes include the kink translational mode and
the kink internal shape modes. The former exists in all kink-
bearing systems, while the latter exist only in some particular
nonlinear Klein-Gordon models, including thef4 model and
the double-sine-Gordon equation@1–4#. In particular, it has
been found that the kink internal shape modes can contribute
to the thermodynamic properties of the collective kink-
phonon gas@1#, and that they can cause unusual phenomenon
~such as the resonances@2–4#! in the kink dynamics.

The previous studies@1–5# on the kink internal modes
have been limited to cases where the interparticle interac-
tions are harmonic. The main objective of the present paper
is to investigate the kink internal modes in discrete chains
with anharmonicnearest-neighbor interparticle interactions.
Using the generalized Frenkel-Kontorova~FK! models as
particular, but rather fundamental examples, we demonstrate
that the kink can support not only a low-frequency~LF! in-
ternal shape mode but also one or severalhigh-frequency
~HF! internal modes due to the interplay between the dis-
creteness and the anharmonicity in the interparticle interac-
tions. In particular, we show that the LF kink internal shape
mode ~which oscillates with a frequency lying in the gap
below the phonon frequency band! can exist for ‘‘soft’’ an-
harmonicity, whereas the HF kink internal modes~which os-
cillate with frequencies lying in the gapabovethe phonon
frequency band! can exist for ‘‘hard’’ anharmonicity. These
results can be understood with collective-coordinate ap-
proaches. We verify that similar results hold for many other
kink-bearing systems with anharmonic interparticle interac-
tions.

We begin our investigation with the generalized FK mod-
els that are defined by the~normalized! Lagrangian

L5(
n

$ 1
2 ḟn

22W~fn112fn!2g2@12cos~fn!#%, ~1!

whereW(.) is the nearest-neighbor interparticle interaction
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4
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x5fn112fn being the relative displacement. In this model,
a andb are two parameters that control the strength of the
anharmonicity; the parameterg determines the ratio of the
substrate potential energy to the interparticle coupling energy
and thusg is called thediscreteness parameter. We note that
many physical processes, including the spin dynamics in fer-
romagnetic systems@6#, proton transport in hydrogen-bonded
chains@7,8#, planar rotations of the base pairs in DNA mac-
romolecules@9#, and polymer chain twistings@10,11#, can be
described by the FK-type models with strongly anharmonic
interparticle interactions whose truncated Taylor series ex-
pansions are given by Eq.~2!.

The equations of motion for the discrete chain can be
written in the standard form

f̈n2@W8~fn112fn!2W8~fn2fn21!#1g2sin~fn!50.
~3!

This system can support a kink solution which connects two
equivalent ground states~e.g., 0 and 2p) of the substrate
potential, provided that the parametersa andb are positive,
or greater than certain negative values@7#.

In order to obtain the full spectrum of the linear excita-
tions around the kink in the generalized FK model, we first
use a direct numerical method. We look for a solution of Eq.
~3! in the form

fn~ t !5fn
K1cnexp~ ivt !, ~4!

whereucnu!1, andfn
K represents the exact static kink solu-

tion of the systems. The kink is determined numerically by
the following method: Starting with an approximate kink
configuration given by the corresponding kink solution in the
continuum limit, we use pseudomolecular dynamics with an
artificial dissipation term to extract energy from the system
until the chain is sufficiently relaxed@4#. The final kink pro-
file is found to be always centered midway between two
adjacent lattice sites. Throughout the paper, we consider a
chain with a finite number of particles, i.e.,N5400 or 600,
which is long enough to contain a kink.~The kink solution
refers to the case wheref1

K50 andfN
K52p.!
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Substituting the ansatz~4! into Eq.~3! and linearizing it
with respect tocn , we obtain a linear eigenvalue problem as
follows:

MC5v2C, ~5!

whereC5(c1 ,c2 ,c3 , . . . )
T is a column vector, andM is a

symmetric tridiagonal matrix.
We have solved the eigenvalue problem~5! numerically

for various sets of the model parametersa,b, and g
(0.2,g,1.0). The~many! eigenfrequencies are presented in
Fig. 1. The first feature to note is that there always exists an
eigenfrequency~the lowest one!, which is associated with the
kink translational mode. This eigenfrequency is close to zero
for a.0 or b.0 ~the hard anharmonicity!, but it is shifted
up for a,0 or b,0 ~the soft anharmonicity!. In the latter
case, the kink becomes narrower and feels a stronger dis-
creteness effect.

Most interestingly, it is found that besides the lowest
eigenfrequencies, there exist some otherisolated eigenfre-
quencies outside the phonon frequency band@i.e., the inter-
val (g,A41g2), as the many thick vertical lines in Fig. 1
have shown# when the anharmonicity is strong enough~de-
pending on the discreteness parameterg). In particular, from
Fig. 1 we see that the soft anharmonicity can give rise to a
kink internal shape mode@Fig. 2~a!# which oscillates with a
frequency lying below the lower cutoff of the phonon fre-
quency. On the other hand, the hard anharmonicity can give
rise to one or severalhigh-frequency (HF) modeslocalized
around the kink. In particular, the highest-frequency mode is
characterized by the out-of-phase oscillations of the neigh-
boring particles@Fig. 2~b!#.

In the case where botha andb are nonzero and of oppo-
site sign, it is their relative strength that will determine
whether the LF or the HF kink internal modes can exist. For
example, atg50.5 anda50.2, we find that ifb is smaller
than a critical valuebc1'20.25 the LF mode will appear;
and if b is greater thanbc2'20.19 the HF modes will
appear @see Fig. 1~c!#. For b in the interval
(20.25,20.19) the kink has no internal modes except for
the ~trivial! translational mode, because thehard cubic and
the soft quartic anharmonicity cancel out the effect of each
other.

Given the results of the linear spectrum around a kink, the
linear spectrum around an antikink can be easily obtained by
using the symmetry of the model. For example, in the case

aÞ0 in which the kink-antikink symmetry is broken~see
also Refs.@7,8#!, the linear spectrum around an antikink is
just the same as that around a kinkbut at the value of2a.

To explain why the kink can support a LF internal shape
mode, we use a simple collective-coordinate~CC! approach
and we look for a solution of the form

fn
L~ t ![fn

L@Y~ t !#54tan21$exp@Y~n2n0!#%, ~6!

whereY(t) serves as a measure of the kink slope, andn0
represents the center-of-mass position of the stationary kink.
We insert this ansatz into the system Lagrangian~1!, and
assume that the parameterg is so small that the PN potential
can be neglected and that the sum overn can be replaced by
the corresponding integral. After some computations we ob-
tain the following effective Lagrangian

Le5
p2

3Y3 Ẏ
22U~Y!, ~7!

where

FIG. 1. The linear spectra of
the generalized FK model in the
presence of a kink.~a! g50.5,
b50; ~b! g50.5, a50; ~c!
g50.5,a50.2.

FIG. 2. ~a! The normalized LF kink shape mode from the CC
ansatz@see Eq.~14!# ~dotted line!, and from the direct numerical
methods~circles!, whereg50.42, a50, andb520.2. ~b! The
normalized highest-frequency kink internal mode from the CC an-
satz@see Eq.~16!# ~dotted line!, and from the direct numerical meth-
ods ~circles!, whereg50.8,a50.0,b50.4.
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U~Y!54Y1 4
3apY21 16

3 bY314g2/Y. ~8!

The equation of motion for the collective variable is

2p2

3Y3 ~Ÿ23Ẏ2/Y!1
]U

]Y
50, ~9!

which is useful for analyzing the kink slope fluctuation. First,
we note that the equilibrium kink slope should satisfy
(]U/]Y)50, or

Y21
2p

3
aY314bY45g2, ~10!

from which the equilibrium kink slopeY5Y0 can be ob-
tained as a function of the discreteness parameterg and the
anharmonic parametersa andb .

The small-amplitude fluctuations of the kink slope around
its equilibrium Y0 can be analyzed by substituting
Y(t)5Y01y(t), whereY05Y0(a,b,g) is the solution of
Y from Eq.~10! anduy(t)u!1, into Eq.~9!. We linearize the
equation with respect toy(t) to obtain

2p2

3Y0
3 ÿ1F]2U]Y2 ~Y0!Gy50. ~11!

Therefore, the kink slope fluctuates with the frequency

VL5F3Y0
3

2p2

]2U

]Y2 ~Y0!G1/2[ 2A3
p

gS 11
apY0

3

3g2
1
4bY0

4

g2 D 1/2,
~12!

which depends strongly on the three parametersa, b, and
g. In particular, we have checked that for a given value of
g, VL can become smaller than the lower cutoff of the pho-
non frequencyg, if a or b takes a suitably largenegative
value. This agrees well qualitatively with the numerical re-
sults shown in Fig. 1

In Fig. 3 we plot the normalized frequencyVL /g against
g ~for the given sets ofa andb) and compare it with the
direct numerical results. It is seen that in the continuum re-
gime whereg!1, the kink has no low-frequency shape
modes. This is consistent with the fact that, wheng!1, Eq.

~3! can be well approximated by the sine-Gordon~SG! equa-
tion in which the kink has no internal shape modes. How-
ever, in the weak discrete regimes whereg is not so small,
we observe thatVL actually lies in the gap below the phonon
frequency band, displaying qualitative agreement with the
direct numerical results. Noting that the kink in the standard
FK model has no true internal shape modes for a wide range
of discreteness parameter~Fig. 3!, we conclude that the ex-
istence of the kink internal shape mode in the generalized FK
models is due to the interplay between the anharmonicity and
the discreteness effect.

Since the CC approach amounts to using a one-parameter
ansatz~6! to approximate the kink~and its shape mode! so-
lution ~4!, which has many degrees of freedom, it might not
be quantitatively accurate, as indicated in Fig. 3. On the
other hand, the fluctuating kink obtained through the CC
approach@cf. Eqs.~6!, ~11! # is

fn
L54tan21$exp@„Y01y~ t !…~n2n0!#%'fn

s1y~ t !cn
L ,
~13!

wherefn
s54 tan21$exp@Y0(n2n0)#%, and

cn
L5

2~n2n0!

cosh@Y0~n2n0!#
. ~14!

Therefore, the functioncn
L can be considered as an approxi-

mation to the kink shape mode. We find that in the weak
discrete regime,cn

L can describe the kink internal shape
mode reasonably well@Fig. 2~a!#.

In order to understand why the HF kink internal modes
can appear, we notice that the mode associated with the high-
est eigenfrequency is characterized by the out-of-phase os-
cillations of neighboring particles, and that the amplitude of
the mode decays rapidly away from the kink center@Fig.
2~b!#. This prompts us to use the ansatz,

fn
H~ t !54tan21$exp@Y0~n2n0!#%1A~ t !cn

H , ~15!

whereY0 is the kink’s equilibrium slope determined from
Eq. ~10!, uA(t)u!1, and

cn
H5

~21!nAY0

A2cosh@Y0~n2n0!#
, ~16!

is used to approximate the highest-frequency kink internal
mode.

Again we substitute the ansatz~15! into the system La-
grangian and compute the effective Lagrangian to obtain~all
the constant terms are dropped!

Le5
1
2 Ȧ

22 1
2 ~414apY0132bY0

22 2
3g

2!A2. ~17!

Therefore, the frequency of the dynamical variableA(t) is

VH5A414apY0132bY0
22~2/3!g2, ~18!

which, like Eq.~12!, depends strongly on the model param-
eters. In particular, for a fixed discreteness parameterg,
VH can become greater than the highest phonon frequency
vmax5A41g2 if a or b takes a largepositivevalue.

In Fig. 4 we plot the normalized frequencyVH /vmax as a

FIG. 3. The normalized frequencyVL /g of the kink shape
mode, as a function of the discreteness parameter. The solid~for
a520.2,b50) and the dotted (a50,b520.2) curves are the CC
results Eq. ~12!. The stars (a520.2,b50), the triangles
(a50,b520.2), and the circles (a50,b50, for the standard FK
model!, are from the direct numerical calculations.
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function ofg for various sets of the anharmonic parameters.
It turns out that the analytical results are in very good agree-
ment with the exact numerical ones. This is a consequence of
the fact that the functioncn

H is a good approximation to the
true highest-frequency kink internal mode@Fig. 2~b!#. We
also note that the kink in the standard FK model
(a50,b50) cannot support high-frequency internal modes
due to the absence of anharmonicity in the interparticle in-
teractions.

For certain ranges of the model parameters the kink may
have more than one HF internal mode. However, it seems
difficult to describe the other HF modes by simple CC meth-
ods, because their patterns are much more complex than that
of the highest-frequency mode.

In order to check the generality of the present results, we
have carried out numerical calculations for several other dis-
crete kink-bearing systems with anharmonic interparticle in-
teractions, inlcuding the FK-type models with the sinusoidal
interparticle interaction,W(x)5@12cos(x)# @9#, or the Toda
interaction, W(x)5(1/A2)@exp(2Ax)211Ax#. We have
found that for certain ranges of the model parameters the
kink can support a LF internal shape mode. This is because
the Taylor series of each of the two functionsW(x) has a
soft anharmonic term. In addition, we have also examined a
generalizedf4 model with the anharmonic interparticle cou-
plings ~2!. In this case, the oscillation frequency of the kink
internal shape mode, which already exists in the standard
f4 model@2#, can be shifted due to the effects of the anhar-
monicity. Moreover, the hard anharmonicity can give rise to
HF kink internal modes, just as what is shown in the gener-
alized FK model.

In conclusion, we have demonstrated that the anharmonic-
ity in the interparticle interactions together with the weak
discreteness effect can allow the kink to support either low-
frequency or high-frequency internal modes, depending on
the nature of the anharmonicity. We have described the low-
frequency kink shape mode and the highest-frequency kink
internal mode with the collective-coordinate methods. It
should be remarked that, while the LF kink internal modes
can also exisit in continuum models, the HF kink internal
modes can only exist in discrete systems, whose phonon fre-
quency has an upper bound. It remains to be investigated
how the kink dynamics in the discrete nonlinear chains can
be influenced by both the LF and the HF internal modes
discussed in the present paper.
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rameter. The solid~for a50.4,b50), the dotted (a50,b50.4),
and the long-dashed (a520.1,b50.3) curves are the CC results
@Eq. ~18!# which are in good agreement with the corresponding
numerical results~symbols!. The circles are the numerical results
for the standard FK model.
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