PHYSICAL REVIEW E VOLUME 54, NUMBER 4 OCTOBER 1996

Origin of the persistent oscillations of solitary waves in nonlinear quadratic media
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We reveal the origin of the persistent oscillations of solitary waves in a quadratically nonlinear medium. It
is found that the oscillations are closely correlated to a nontrivial discrete eigenmode of the corresponding
linear eigenvalue problem. In addition to this discrete eigenmode a quasibound mode, weakly coupled to the
continuous spectrum, is identified. This gives rise to a long-living beating of the solitary wave amplitude.
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Recently, solitary waves characterized by a mutual lock- The main objective of the present paper is the first sys-
ing of the fundamental and second harmonics in quadratitematic analysis of the oscillations of solitary waves in a
cally nonlinear media attracted a lot of attent{dn-10]. The  quadratically nonlinear medium and a discussion of their ori-
study of these localized waves is strongly complicated by th@in. Here we concentrate on the spatial case which can be
fact that the evolution equations of the system are not inteencountered in planar waveguidese, e.g.[10]). First we
grable and even stationary solitary waves have to be detefiudy the mode structure of the linearized evolution equa-
mined numerically5]. The exception is a single element of tions corresponding to a solitary wave solution. We find non-
the one-parameter family, which is known analytically tr|v_|al eigenstates whlch are reIat_ed_ to the oscillations of the
[1,3,4. An important issue of these solutions is their stabil-SOlitary waves. The linear analysis is followed by systematic
ity. By means of both numerical and analytical methods aS|m'uIat.|ons alme'd to examine the noinllnear propertlgs of the
narrow instability region was identifiei]. _oscnla_tlons. To find the origin of the!r extreme stablht_y we

In the case of spatial solitary waves in quadratically non_mves_tlgate the response of the solitary waves to different

amplitudes of excitation.

linear media the Galilean invariance of the governing equa- For the propagation of the fundamental and second har-

tions allows us to gengrate moving solitary waves, NecesSa¥onics in a planar waveguide geometry with a quadratic
for the analysis of collisions between th¢]. Such numeri- |\, pjinearity. in the presence of diffraction the properly
cal collision experiments with appropriate velocities, as Wellg-51ed evolution equations for the slowly varying amplitudes
as the excitation of a single solitary wal@ or the evolution a, anda, of the two fields ard5,7,9]

of an unstable ong8], reveal another prominent feature of

the solutions under consideration. It turns out that persistent Cday 1 d%ay N

oscillations appear in many cases. They are practically un- =713 v a,ta;a,=0,

damped and may exhibit fairly large amplitudes. The ex- )
treme stability of the excited solitary waves is really aston- _da, o da, )

ishing for nonintegrable systems. This also is of great ! EJF 2 a_yz_ adx+a;=0,

importance for future applications. Given a realistic experi-

mental situation the second harmonic is excited via the funghere o describes the phase mismatch between the funda-
damental wave only and strong oscillations cannot benental and second harmonics anés the ratio of their wave
avoided. Thus a stationary solitary wave with no oscillationshumbers. The asterisk denotes the complex conjugate.
seems to be more or less an exception. Throughout this work we consider the case 1/2, appropri-

So far the nature of the oscillations has not been clearlyte for the spatial case. In this notation the stationary solitary
identified. However, we would like to mention that the as-wave solutions are obtained equating thalerivatives in
ymptotic analysis near the instability threshd&] suggests Egs.(1) to zero and applying the appropriate boundary con-
that these oscillations should be connected to a localizeditions. Thus these solutions depend on the single parameter
eigenstate of the corresponding linearized problem, being. As mentioned above, they have to be found numerically
somehow an analytical continuation of the unstable modeavith the exception of the analytical solution at=o=1/2
into the stability region. Similar oscillating states were also[1,3,4].
observed for some types of nonintegrable nonlinear Schro To launch the oscillations, a solitary wave is perturbed
dinger equation$11-13. and propagated over a certain distance. A particular shape of
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FIG. 2. (a) Solitary wave solution(b) discrete eigenstate, and
(c) quasibound eigenstate of the corresponding linearized problem
y for @=0.15. Solid and dashed lines refer to the fundamental and
second harmonics, respectively.
FIG. 1. Typical example of persistent internal oscillations of a
solitary wave solution excited witt=0.4 for «=0.5. Displayed are  Note thata, is real and that, anda} have to be varied
the intensities of the fundamental and second harmonics. independently. Introducing the variables= 5a;+ da,, b

the initial perturbation will be chosen, such that the energy of= 982+ 6@, C=da; — da,, andd= da,— da, Egs.(3) can

the initial wave is not changed be reduced to an eigenvalue problem X3r
a%(0) &P v
an(z=0)= aﬁo()’)‘kgﬁﬂ_yzaﬁo(y) . L_L, Z =\2 2 , L+L(§)=)\2(;), (4)
(9_)/2 ano(y)
y=0
(2 with

Herea,q, n=1,2, denotes a stationary solitary wave solution
of Egs. (1) and ¢ stands for the perturbation amplitude. A 1 9
similar type of energy-preserving perturbation was used in ET)ﬂ_liaZO a10
[13] recently. A typical example of the persistent oscillations L.= 5 . 5)
of a perturbed solitary wave is displayed in Fig. 1. The os- 2ay g a__a
cillations seem to be quite regular. This is compared with the 2 gy*

solutions of the linearized Eqgl). Linearizing Egs.(1)
around a stationary solutiora,=an+ éa, exp(Az), a;  The linear problem always has two zero eigenvalues, corre-

=anot da, exp(hz), we arrive at the following eigenvalue sponding to translational invariance and the invariance due
problem for the propagation constant of the perturbalion to an arbitrary phase of the two fields. The corresponding

1 (925a1 - elgenvectors are
5 a2 5a1 + a10532+ a20531= A 5a1 y
2 9y
dagg
o ¥*da, al® ay c®
E &yz —ada,+2ap6a;=A\da,, b(0) = day | d© =0
- 3 J
14%8a, _ . @ y
a3 a2 5al+ a1053.2+ a20531= -\ 53.1 y (6)
2 9y (0) (0)
o a -0 C _ aqo
g 1”72 5a2 b<0) T d(O) - 2a20 ’

5 5—)/2_ a%z—l— 2a10%1= - 7\%2.



54 ORIGIN OF THE PERSISTENT OSCILLATIONS PB. .. 4323

0.2

(a)

(b)

Al
e
I

FIG. 3. (a) Eigenvalues\4 of the discrete eigenstatsolid) and
\; of the quasibound eigenstdtdashed and(b) squared eigenvalue
)\5 of the discrete eigenstate versus control parameteiThe 0.7 .
straight dashed lines ife) mark the limit of the continuous spec- 0.0 0.2 0.4 0.6
trum. 3

These solutions are bound or discrete eigenstates of the lin- FIG- 4. (& Oscillation amplitude of the intensitfundamental
ear system. Solving Eq€3) or Egs. (4) numerically, we Al and (b) frequencyw of the internal oscillations vs initial exci-
were always able to find one additional discrete eigenstatrgzts'ozgdf;r C;Tst.r;ke]ee?aes:sigtlemgf Ezrlﬁiet;]f frrt(a)%tlJ:r:cy of the cor-
with real A\3#0. The existence of this single nontrivial dis- P 9 9 P '

crete eigenstate is a first essential result of the present work. . . .
An example is displayed in Fig.(8), together with the un- practically lineay. On the other side, a natural feature of the

derlying solitary wave solution in Fig.(2). As can be seen, response is that it strongly diverges near the instability
e.g., from Eq.(5), this discrete eigenvalue must obey thethreShOId' : . . . .
inequality A 2<min{1,a%, which marks the boundary of the Another _mterestlng fapt revealeo_l by the simulations is a
continuous spectrum. The behavior)qf as a function ofx _stable beating ady<0.2_(F|g. 6. In this case maost energy 1s -
is displayed in Fig. @). It is noteworthy that the eigenvalue in the second harmonic. The existence of the beating state is
almost touches the continuum @t=0.4. For a—s it is ap- noteworthy, since to produce such an effect there are two
proaching the continuum. In this limit Eg€l) reduce to an frequencies necessary and thgre is_ only. one discrete gigen-
effective nonlinear Schobinger equation where this kind of frelquenq{. 'I:[rrl]e freqL:_ency, which tglve§<”)?26<ti tth! bg_atmgs,
localized mode is absent. We checked that exactly at th elongs 1o the continuous Spec rum Ap=4, Cl Fg.
instability border,a=a,=0.106 as found i8], A3 changes (8)]. Such resonance{quasmound m_odesn the continuum
its sign, which causes the onset of the instabilfig. 3(b)]. are well 1TOW_th quantltj)m meghan:j(sg-c?rllled Fanlq resc;-
Comparing the numerically evaluated frequencies of th anczs[t 3)' ¢ ey canb etpTO uced by thefcméplng 0 Ia
internal oscillations of the perturbed solitary wave with the Of:hn S afe 0 onef su ‘;’KS e(mbourtcase tﬁ un amdeﬂla
above-mentioned discrete eigenvalue we find a good agreéQ € continuum of another Subsys ¢nere the second har-
ment even for stronger perturbatioh§=0.15 in Eq.(2)]. _monlc). Th'.s leads t(.) the appearance .Of. a qua5|boupd mode
Thus the assumption that the oscillations are adequately ad? the continuum with a finitgbut sufficiently largg: life-
scribed by the linearized system seems to be correct.

However, an important open question remains: How large 0.2
can the amplitude of the stable oscillations be, and why are W ok (@<, 1-% @>D
the oscillations so persistent. If the amplitude of the inital | - Oscillation amplitude

perturbations is increased, we observed always a saturation
of the established amplitud€ig. 4a)]. The actual frequency

of the oscillations at the saturation level may be conspicu-

ously smaller than the one predicted by the linear analysis

[Fig. 4(b)]. Obviously this implies a strong softening anhar- 0.1+
monism of the nonlinear oscillations, which pushes the fre-
quency farther from thédower) limit of the continuous spec- :
trum. The limitation of the achievable amplitude of the {1t
persistent internal oscillations is due to emission of radiation

in the transient period of evolution, i.e., coupling of higher

harmonics of the oscillations to the continuous spectrum of 0.0
the linear problem. Thus one should expect that the satura-

tion mechanism is extremely nonlinear and the saturation

amplitude is strongly dependend on the separation of the

discrete state from the continuum. This is indeed the case FiG. 5. Gap between the continuous spectrum and the discrete
(Fig. 9. If the discrete eigenvalue is very close to the con-gigenvalue, (solid) and final oscillation amplitude of the intensity

tinuum (a=0.4 anda>2) the response of the solitary wave (fundamental, dashgaf the internal oscillations versus control pa-
to an initial perturbation of fixed size is rather we@nd  rametera for £¢=0.15.
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atic analysis of internal oscillations of spatial solitary waves

0.64 supported by the coupling between the fundamental and sec-
ond harmonics in a quadratically nonlinear medium. These
= oscillations seem to be undamped even if the propagation
€ 062 distance exceeds=1000. Referring to realistic experimental
= situations(LiNbO3 at A=1.32 um [10]) this corresponds to a
propagation length of about half a meter. Thus from the ex-
0.60 +——F———T—+—T——7— perimental point of view these oscillations are completely
0 70 140 810 880 950 stable and have to be regarded as a fundamental feature of
. the solitary waves. Linearizing the evolution equations

around the stationary solitary wave solutions, we obtained
FIG. 6. Intensity of the fundamental =0 vs the propagation €Xactly one nontrivial discrete eigenstate. The onset of the
distancez for «=0.15 showing the beating of the oscillations. instability of the solitary waves can be naturally explained as
the change of sign of the corresponding squared eigenvalue.
) ) We simulated also strongly nonlinear oscillations of the soli-
time. In our system, the strong second harmoniar@0.2 a1y wave. It was found that there is a certain maximum

acts like an effective potential in the linearized equation COlsaturatiop amplitude of the oscillations. When the ampli-
responding to the fundamentptf. Eqgs. (3)]. The second y4e js close to the maximum, the oscillations become

harmonic is weakly coupled to the continuum through thegyongly anharmonic. Then their frequency is significantly

weak fundamental. As a result this quasibound mode cagmger than predicted by the linear analysis. We identified
really be observedFig. 2c)]. The corresponding eigenfre- 554 an additional discrete quasibound mode, which overlaps
quency is indeed in agreement with the frequency of thgyeayiy with the continuum, but nevertheless is remarkably

beatings displayed in Fig. 5. The larger the separation of thgegjstent, The mutual excitation of both the discrete and the
eigenvalue corresponding to the quasibound mode from thg,asihound mode leads to long-living beatings of the oscil-

continuum of the fundamentak=1), the more easily it can |5tions of the initially perturbed solitary wave.
be excitedas we have observed in additional simulations not

shown herg There is a fairly weak radiative damping of the  The authors are indebted to L. Leine for valuable help

quasibound mode through the continuum of the second hawith the numerics. They acknowledge a grant from Deutsche

monic (A= a), which was found numerically to beexp(—z/ Forschungsgemeinschaft in the framework of Sonderfors-

500). chungsbereich 196. Y.K. acknowledges fruitful discussions
In conclusion, in this work we have presented a systemwith A. V. Buryak.

[1] Y. N. Karamzin and A. P. Sukhorukov, Pis’'ma zZh. Eksp. Teor. [8] D. E. Pelinovsky, A. V. Buryak, and Y. S. Kivshar, Phys. Rev.

Fiz. 20, 734 (1974 [JETP Lett.20, 339 (1974]. Lett. 75, 591 (1995.
[2] R. Schiek, J. Opt. Soc. Am. BO, 1848(1993. [9] C. Etrich, U. Peschel, F. Lederer, and B. Malomed, Phys. Rev.
[3] M. J. Werner and P. D. Drummond, J. Opt. Soc. Am1® A 52, 33444(1995-

2390(1993. [10] R. Schiek, Y. Baek, and G. |. Stegeman, Phys. Res3F1138

(1996.

[11] V. E. Zakharov, V. V. Sobolev, and V. S. Synakh, Zh. Eksp.
Teor. Fiz.60, 136 (1971 [Sov. Phys. JETR3, 77 (197D)].

[12] A. W. Snyder, S. Hewlett, and D. J. Mitchell, Phys. Re\6 &

[4] K. Hayata and M. Koshiba, Phys. Rev. Left, 3275(1993.
[5] A. V. Buryak and Yu. S. Kivshar, Opt. Letl9, 1612(1994);
Phys. Lett. A197, 407 (1995.

[6] V. Steblina, Yu. S. Kivshar, M. Lisak, and B. A. Malomed, 6297(1995.
Opt. Commun118, 345(1995. [13] D. E. Pelinovsky, V. V. Afanasjev, and Yu. S. Kivshar, Phys.
[7] L. Torner, C. R. Menyuk, and G. I. Stegeman, Opt. L&8, Rev. E53, 1940(1996.

1615(1994; J. Opt. Soc. Am. BL2, 889 (1995. [14] U. Fano, Phys. Rev124, 1866(1961).



