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We reveal the origin of the persistent oscillations of solitary waves in a quadratically nonlinear medium. It
is found that the oscillations are closely correlated to a nontrivial discrete eigenmode of the corresponding
linear eigenvalue problem. In addition to this discrete eigenmode a quasibound mode, weakly coupled to the
continuous spectrum, is identified. This gives rise to a long-living beating of the solitary wave amplitude.
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PACS number~s!: 42.65.Tg, 42.65.Sf, 42.65.Ky

Recently, solitary waves characterized by a mutual lock-
ing of the fundamental and second harmonics in quadrati-
cally nonlinear media attracted a lot of attention@1–10#. The
study of these localized waves is strongly complicated by the
fact that the evolution equations of the system are not inte-
grable and even stationary solitary waves have to be deter-
mined numerically@5#. The exception is a single element of
the one-parameter family, which is known analytically
@1,3,4#. An important issue of these solutions is their stabil-
ity. By means of both numerical and analytical methods a
narrow instability region was identified@8#.

In the case of spatial solitary waves in quadratically non-
linear media the Galilean invariance of the governing equa-
tions allows us to generate moving solitary waves, necessary
for the analysis of collisions between them@9#. Such numeri-
cal collision experiments with appropriate velocities, as well
as the excitation of a single solitary wave@7# or the evolution
of an unstable one@8#, reveal another prominent feature of
the solutions under consideration. It turns out that persistent
oscillations appear in many cases. They are practically un-
damped and may exhibit fairly large amplitudes. The ex-
treme stability of the excited solitary waves is really aston-
ishing for nonintegrable systems. This also is of great
importance for future applications. Given a realistic experi-
mental situation the second harmonic is excited via the fun-
damental wave only and strong oscillations cannot be
avoided. Thus a stationary solitary wave with no oscillations
seems to be more or less an exception.

So far the nature of the oscillations has not been clearly
identified. However, we would like to mention that the as-
ymptotic analysis near the instability threshold@8# suggests
that these oscillations should be connected to a localized
eigenstate of the corresponding linearized problem, being
somehow an analytical continuation of the unstable mode
into the stability region. Similar oscillating states were also
observed for some types of nonintegrable nonlinear Schro¨-
dinger equations@11–13#.

The main objective of the present paper is the first sys-
tematic analysis of the oscillations of solitary waves in a
quadratically nonlinear medium and a discussion of their ori-
gin. Here we concentrate on the spatial case which can be
encountered in planar waveguides~see, e.g.,@10#!. First we
study the mode structure of the linearized evolution equa-
tions corresponding to a solitary wave solution. We find non-
trivial eigenstates which are related to the oscillations of the
solitary waves. The linear analysis is followed by systematic
simulations aimed to examine the nonlinear properties of the
oscillations. To find the origin of their extreme stability we
investigate the response of the solitary waves to different
amplitudes of excitation.

For the propagation of the fundamental and second har-
monics in a planar waveguide geometry with a quadratic
nonlinearity, in the presence of diffraction the properly
scaled evolution equations for the slowly varying amplitudes
a1 anda2 of the two fields are@5,7,9#
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wherea describes the phase mismatch between the funda-
mental and second harmonics ands is the ratio of their wave
numbers. The asterisk denotes the complex conjugate.
Throughout this work we consider the cases51/2, appropri-
ate for the spatial case. In this notation the stationary solitary
wave solutions are obtained equating thez derivatives in
Eqs.~1! to zero and applying the appropriate boundary con-
ditions. Thus these solutions depend on the single parameter
a. As mentioned above, they have to be found numerically
with the exception of the analytical solution ata5s51/2
@1,3,4#.

To launch the oscillations, a solitary wave is perturbed
and propagated over a certain distance. A particular shape of
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the initial perturbation will be chosen, such that the energy of
the initial wave is not changed
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Herean0, n51,2, denotes a stationary solitary wave solution
of Eqs. ~1! and j stands for the perturbation amplitude. A
similar type of energy-preserving perturbation was used in
@13# recently. A typical example of the persistent oscillations
of a perturbed solitary wave is displayed in Fig. 1. The os-
cillations seem to be quite regular. This is compared with the
solutions of the linearized Eqs.~1!. Linearizing Eqs.~1!
around a stationary solution,an5an01dan exp(ilz), an*
5an01dan exp(ilz), we arrive at the following eigenvalue
problem for the propagation constant of the perturbationl:
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Note thatan0 is real and thatan andan* have to be varied
independently. Introducing the variablesa5da11da1, b
5da21da2, c5da12da1, andd5da22da2, Eqs.~3! can
be reduced to an eigenvalue problem forl2
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The linear problem always has two zero eigenvalues, corre-
sponding to translational invariance and the invariance due
to an arbitrary phase of the two fields. The corresponding
eigenvectors are
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FIG. 1. Typical example of persistent internal oscillations of a
solitary wave solution excited withj50.4 fora50.5. Displayed are
the intensities of the fundamental and second harmonics.

FIG. 2. ~a! Solitary wave solution,~b! discrete eigenstate, and
~c! quasibound eigenstate of the corresponding linearized problem
for a50.15. Solid and dashed lines refer to the fundamental and
second harmonics, respectively.
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These solutions are bound or discrete eigenstates of the lin-
ear system. Solving Eqs.~3! or Eqs. ~4! numerically, we
were always able to find one additional discrete eigenstate
with real l d

2Þ0. The existence of this single nontrivial dis-
crete eigenstate is a first essential result of the present work.
An example is displayed in Fig. 2~b!, together with the un-
derlying solitary wave solution in Fig. 2~a!. As can be seen,
e.g., from Eq.~5!, this discrete eigenvalue must obey the
inequalityl d

2,min$1,a2%, which marks the boundary of the
continuous spectrum. The behavior ofld as a function ofa
is displayed in Fig. 3~a!. It is noteworthy that the eigenvalue
almost touches the continuum ata.0.4. Fora→` it is ap-
proaching the continuum. In this limit Eqs.~1! reduce to an
effective nonlinear Schro¨dinger equation where this kind of
localized mode is absent. We checked that exactly at the
instability border,a5ac.0.106 as found in@8#, l d

2 changes
its sign, which causes the onset of the instability@Fig. 3~b!#.

Comparing the numerically evaluated frequencies of the
internal oscillations of the perturbed solitary wave with the
above-mentioned discrete eigenvalue we find a good agree-
ment even for stronger perturbations@j.0.15 in Eq. ~2!#.
Thus the assumption that the oscillations are adequately de-
scribed by the linearized system seems to be correct.

However, an important open question remains: How large
can the amplitude of the stable oscillations be, and why are
the oscillations so persistent. If the amplitude of the initial
perturbations is increased, we observed always a saturation
of the established amplitude@Fig. 4~a!#. The actual frequency
of the oscillations at the saturation level may be conspicu-
ously smaller than the one predicted by the linear analysis
@Fig. 4~b!#. Obviously this implies a strong softening anhar-
monism of the nonlinear oscillations, which pushes the fre-
quency farther from the~lower! limit of the continuous spec-
trum. The limitation of the achievable amplitude of the
persistent internal oscillations is due to emission of radiation
in the transient period of evolution, i.e., coupling of higher
harmonics of the oscillations to the continuous spectrum of
the linear problem. Thus one should expect that the satura-
tion mechanism is extremely nonlinear and the saturation
amplitude is strongly dependend on the separation of the
discrete state from the continuum. This is indeed the case
~Fig. 5!. If the discrete eigenvalue is very close to the con-
tinuum ~a.0.4 anda.2! the response of the solitary wave
to an initial perturbation of fixed size is rather weak~and

practically linear!. On the other side, a natural feature of the
response is that it strongly diverges near the instability
threshold.

Another interesting fact revealed by the simulations is a
stable beating ata,0.2 ~Fig. 6!. In this case most energy is
in the second harmonic. The existence of the beating state is
noteworthy, since to produce such an effect there are two
frequencies necessary and there is only one discrete eigen-
frequency. The frequency, which gives rise to the beatings,
belongs to the continuous spectrum@a2,l f

2,1, cf. Fig.
3~a!#. Such resonances~quasibound modes! in the continuum
are well known in quantum mechanics~so-called Fano reso-
nances@14#!. They can be produced by the coupling of a
bound state of one subsystem~in our case the fundamental!
to the continuum of another subsystem~here the second har-
monic!. This leads to the appearance of a quasibound mode
in the continuum with a finite~but sufficiently large! life-

FIG. 3. ~a! Eigenvaluesld of the discrete eigenstate~solid! and
lf of the quasibound eigenstate~dashed! and~b! squared eigenvalue
ld
2 of the discrete eigenstate versus control parametera. The

straight dashed lines in~a! mark the limit of the continuous spec-
trum.

FIG. 4. ~a! Oscillation amplitude of the intensity~fundamental!
DI and ~b! frequencyv of the internal oscillations vs initial exci-
tation j for a51. The dashed line marks the frequency of the cor-
responding discrete eigenstate of the linear problem.

FIG. 5. Gap between the continuous spectrum and the discrete
eigenvalueld ~solid! and final oscillation amplitude of the intensity
~fundamental, dashed! of the internal oscillations versus control pa-
rametera for j50.15.
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time. In our system, the strong second harmonic ata,0.2
acts like an effective potential in the linearized equation cor-
responding to the fundamental@cf. Eqs. ~3!#. The second
harmonic is weakly coupled to the continuum through the
weak fundamental. As a result this quasibound mode can
really be observed@Fig. 2~c!#. The corresponding eigenfre-
quency is indeed in agreement with the frequency of the
beatings displayed in Fig. 5. The larger the separation of the
eigenvalue corresponding to the quasibound mode from the
continuum of the fundamental~l51!, the more easily it can
be excited~as we have observed in additional simulations not
shown here!. There is a fairly weak radiative damping of the
quasibound mode through the continuum of the second har-
monic ~l5a!, which was found numerically to be;exp~2z/
500!.

In conclusion, in this work we have presented a system-

atic analysis of internal oscillations of spatial solitary waves
supported by the coupling between the fundamental and sec-
ond harmonics in a quadratically nonlinear medium. These
oscillations seem to be undamped even if the propagation
distance exceedsz51000. Referring to realistic experimental
situations~LiNbO3 atl51.32mm @10#! this corresponds to a
propagation length of about half a meter. Thus from the ex-
perimental point of view these oscillations are completely
stable and have to be regarded as a fundamental feature of
the solitary waves. Linearizing the evolution equations
around the stationary solitary wave solutions, we obtained
exactly one nontrivial discrete eigenstate. The onset of the
instability of the solitary waves can be naturally explained as
the change of sign of the corresponding squared eigenvalue.
We simulated also strongly nonlinear oscillations of the soli-
tary wave. It was found that there is a certain maximum
~saturation! amplitude of the oscillations. When the ampli-
tude is close to the maximum, the oscillations become
strongly anharmonic. Then their frequency is significantly
smaller than predicted by the linear analysis. We identified
also an additional discrete quasibound mode, which overlaps
weakly with the continuum, but nevertheless is remarkably
persistent. The mutual excitation of both the discrete and the
quasibound mode leads to long-living beatings of the oscil-
lations of the initially perturbed solitary wave.
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FIG. 6. Intensity of the fundamental aty50 vs the propagation
distancez for a50.15 showing the beating of the oscillations.
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