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Institut für Physik und Technische Informatik, Universita¨t Hildesheim, Marienburger Platz 22, D-31141 Hildesheim, Germany

~Received 29 March 1996!

A subset of the exact analytical traveling-wave solutions of the equationiC t1Czz5a1CuCu21a2CuCu4 is
presented in compact form. The solutions are expressed in terms of Weierstrass’s elliptic function` and
include periodic and solitary-wave-like solutions. The algebraic conditions for both cases are given. Examples
are presented for simple cases.@S1063-651X~96!00810-0#

PACS number~s!: 03.40.Kf, 03.65.Ge

I. INTRODUCTION

Apart from their applications in various fields of physics
@1,2# the traveling-wave solutions of the nonlinear Schro¨-
dinger equation~NLSE!

iC t1Czz5a1CuCu21a2CuCu4, C5C~z,t !PC,

aiPR, $a1 ,a2%Þ$0,0% ~1!

are interesting in and of themselves. Ifa2Þ0 Eq. ~1! is not
integrable: it has no Lax pair and no analytical solution tech-
niques are available. Thus methods that are not based on an
inverse scattering transformation may be suitable for finding
solutions of Eq.~1!. In particular, the symmetry reduction
method@3,4# and the Akhmediev approach@5,6# do not de-
pend on the equation under study being integrable.

The technique presented here is based on the symmetry
reduction method. The essence of this method is to rewrite
Eq. ~1! in terms of the invariants of a particular symmetry
group of local point transformations in order to reduce the
number of the independent variables in Eq.~1!. The reduced
equations are ordinary differential equations that are inte-
grated by means of a Painleve´ analysis@7,8#. In some cases
~depending on the values ofa1 ,a2! they can be solved in
terms of elementary functions, Jacobi elliptic functions, or
Painlavétranscendents.

The following analysis proceeds along the line just de-
scribed but uses~only! translational invariance@cf. Eq. ~3!#
to reduce Eq.~1!. The general exact solution to the reduced
ordinary differential equation@cf. Eq. ~4!# is given in terms
of Weierstrass’s elliptic functioǹ (z;g2 ,g3) @9#. The ana-
lytical properties of̀ are well known@9#. ` is meromorphic
with respect toz and holomorphic with respect to the invari-
antsg2 ,g3 . Thus a singularity analysis is straightforward and
rather simple.

The results obtained in this way are partly contained in
the profound analysis by Gagnon and Winternitz@3~c!# and
in an article by Gagnon@3~a!#. Details will be discussed be-
low.

Section II presents the exact~translational invariant! solu-
tions of the NLSE in terms of Weierstrass’s elliptic function
`. The cubic and the cubic-quintic NLSE are investigated in
some detail in Secs. III and IV, respectively. Section V sum-

marizes the results in comparison with those of Gagnon and
Winternitz @3~c!# and Gagnon@3~a!#.

II. EXACT SOLUTIONS

A Galilean transformation

z85z1vt, t85t,
~2!C8~z8,t8!5C~z,t !ei ~v/2!@z1~v/2!t#, v5const

leaves Eq.~1! invariant, meaning that ifC(z,t) is a solution
so is C8(z8,t8). A stationary wave is transformed into a
traveling one by Eq.~2!. A large set of traveling-wave solu-
tions of Eq.~1! can be found by using the local point trans-
formation

C~z,t !5w~z!e2 ilt, ~3!

where l is a real constant andw(z) a complex function.
Equation~3! reduces Eq.~1! to

wzz1lw5a1wuwu21a2wuwu4. ~4!

The solution to Eq.~4! can in general be written as

w~z!5 f ~z!eig~z!, ~5!

where f (z)5uw(z)u andg(z) are real functions. The substi-
tution of this expression into Eq.~4! and the separation of the
real and imaginary parts lead to

f zz2gz
2f1l f2a1f

32a2f
550, ~6!

2 f zgz1 f gzz50. ~7!

Equation~7! can be integrated twice to give

g~z!5CE dz8 f22~z8!1g0 , ~8!

whereC andg0 are real constants. By suitably adjusting the
phase ofC, g0 can be made equal to zero so that substitution
of Eq. ~8! into Eq. ~6! yields

f zz2
C2

f 3
1l f2a1f

32a2f
550 ~9!

and, upon multiplying Eq.~9! by f z and integrating,
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~ I z!
254S a23 I 41

a1
2
I 32lI 21kI2C2D[R~ I !, ~10!

whereI (z)[ f 2(z) andk is another real constant of integra-
tion.

The constant solutionsI5I 0 , given by the real posi-
tive roots I 0 of Eq. ~10!, lead to the solutions
C(z,t)5AI 0 exp@i(Cz/I0

22lt)# and will be disregarded
in the following. In general, Eq.~10! can be solved by
@10,11#

I ~z!5I 01

AR~ I !
d`~z;g2 ,g3!

dz
1 1

2R8~ I !@`~z;g2 ,g3!2 1
24R9~ I !#1 1

24R~ I !R-~ I !

2@`~z;g2 ,g3!2 1
24R9~ I !#22 1

48R~ I !R99~ I !
U
I5I0

, ~11!

where the primes denote differentiation with respect toI and
I 0 is a real constant@not necessarily a real zero ofR(I )#. The
invariantsg2 ,g3 of Weierstrass’s functioǹ (z;g2 ,g3) are
independent ofI 0 and are given by

g252 16
3 a2C

222a1k1 4
3l2, ~12!

g35C2~a1
21 32

9 a2l!2 2
3k~2a2k1a1l!1 8

27l3. ~13!

If I 0 is a simple zero ofR(I ) @12#, Eq. ~11! reads

I ~z!5I 01
R8~ I !

4@`~z;g2 ,g3!2 1
24R9~ I !#

U
I5I0

. ~14!

Inserting this solution into Eq.~8!, integration@13# yields the
phase function

g~z!

5CS z
I

1

R8~ I !S ln s~z1v !

s~z2v !
22zz~v ! D

4I 2A4`3~v;g2 ,g3!2g2`~v;g2 ,g3!2g3
D

I5I0

1const, ~15!

with

v5E
u0

` du

As~u!
, ~16!

s~u!54u32g2u2g3 , ~17!

and u05R9(I )/242R8(I )/4I u I5I0
. The functionss(z) and

z(z) denote Weierstrass’s sigma and zeta functions, respec-
tively @14#.

The roots ofe1 ,e2 ,e3 of s(u)50 are important for the
behavior ofI (z) according to Eq.~11!. If the discriminantD
of `

D5g2
3227g3

2 ~18!

is negative, there are one real non-negative root and a pair of
complex conjugate roots. IfD>0, the roots are real~if D50,
at least two roots are equal, ifD.0, the real roots are dis-
tinct! @9#. Since ~if z is real! `(z,g2 ,g3) is bounded from

below bye1 @15#, real non-negative and bounded solutions
according to Eq.~11! require thatI 0 satisfies

I ~0!5I 0>0,

R~ I 0!>0,
~19!

2S e12 R9~ I !

24 D 22R~ I !R99~ I !

48 U
I5I0

.0,

I H 2S e12 R9~ I !

24 D 22 R~ I !R99~ I !

48 J 1
R8~ I !

2 S e12 R9~ I !

24 D
1
R~ I !R-~ I !

48 U
I5I0

>0,

wheree1 is the real~non-negative! root of s(u) ~if D.0, e1
is the largest root!. It only depends on the coefficients of
R(I ). Thus Eqs.~11!, ~14!, ~15!, and~19! represent the com-
plete solution to Eq.~4!. Obviously the conditions~19! can
be simplified if a simple rootI 0>0 of R(I ) exists. They
show that it is not necessary to know the roots ofR(I ) in
order to formulate conditions for different non-negative and
bounded solutions@cf. @3~a!#, @3~c!# and Sec. V#. In particu-
lar, all non-negative and singular solutions are determined by
conditions~19! if the third condition is replaced by

2S e12 R9~ I !

24 D 22R~ I !R99~ I !

48 U
I5I0

<0.

As is well known@1#, the qualitative behavior ofI (z) can
be determined by a phase diagram considering the graph of
R(I ): real non-negative and bounded solutionsI (z) require
that I 0 is in the closed interval between two positive zeros of
R, with R(I )>0 between the zeros~shaded in Fig. 1!. For
convenience this condition is referred to in the following as
the phase diagram condition~PDC!.

Obviously @see Fig. 1#, the equationR(I )50 has at least
one simple real root ifCÞ0 and if the PDC is satisfied.
Thus, in this case, Eq.~14! can be used instead of Eq.~11!
resulting in Eq.~15!. The lengthy integration in Eq.~8! is not
necessary in this case. IfC50 it is possible that there is no
simple root ofR(I )50, so that Eq.~11! must be used withI 0
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subject to the PDC. But in this caseg(z)[0, which means
that Eq.~15! is sufficiently general~cf. Ref. @12#!.

The solutionsI (z)>0 @according to Eq.~11! or ~14!# that
fulfill the PDC are, in general, periodic or solitary-wave-like.
In order to give conditions for both cases, it is useful, for
obvious reasons, to consider the expressions for the real pe-
riod of `(z;g2 ,g3) @16#: if DÞ0, the real periodv of ` is
finite ~not zero!. If D50, g2.0, andg3.0, the real period is
also finite ~not zero!. If D50, g2>0, andg3<0, the real
period isv5`. Thus the solutionsI (z)>0 that satisfy the
PDC andDÞ0 or the PDC andD50, g2.0, andg3.0 are
periodic. The period ofI (z) is determined by the elliptic
integrals

2v55 2Ee1
`

du s~u!21/2, D.0

2E
e2

`

du s~u!21/2, D,0.

~20!

The period is given by

2v54p~6e1!
21/2 ~21!

if D50, g2.0, andg3.0. In this case the zeros ofs(u)50
aree25e352e1/2 ande1.0. The amplitudeA of the peri-
odic solution can be determined by means of Eq.~14!:

A5U R8~ I !

4~e12R9~ I !/24!
U
I5I0

, ~22!

whereI 0 is a simple root ofR(I )50 ~at z50!.
SolutionsI (z)>0 that satisfy the PDC andD50, g2>0,

and g3<0 are solitary-wave-like. Ifg2.0 and g3,0
~e15e2.0 ande3522e1!, the solutionsI (z) can be ex-
pressed by hyperbolic functions~as degenerate cases of`

@17#!. If g25g350 (e15e25e350),` degenerates to az22

dependence@17#. Accordingly, there are nonalgebraic and
algebraic solitary-wave solutions@18#. Examples are given in
Secs. III and IV.

If there is a simple rootI 0 ~as is the case for bright and
dark solitons!, Eq. ~22! gives the amplitude of the solitary
wave. If there is no simple rootI 0 , it is necessary to use Eq.
~11!. In this caseC25k50 must hold, so that the PDC
yields a2.0, a1,0, andl523a 1

2/16a2 . Thus the ampli-
tude of the kink solitary wave is

A5
23a1
4a2

. ~23!

Equations~20!–~22! can be used to investigate the depen-
dence of the half periodv and of the amplitudeA on the
parametersa2 ,a1 ,l,k,C

2.
Summarizing this section, the periodic and solitary-wave-

like solutions of Eq.~1! that obey Eq.~3! all have the form

C~z,t !5AI ~z!ei @g~z!2lt#, ~24!

with I (z),g(z) determined by Eq.~11! @or Eq. ~14!# and Eq.
~15!, respectively. The constantsI 0 anda1 ,a2 ,l,k,C

2 must
satisfy the PDC or Eq.~19!.

The period of the periodic solutions can be evaluated as a
complete elliptic integral of the first kind@16# according to
Eq. ~20! or ~21!. Solitary-wave-like solutions are determined
by the PDC andD50, g2>0, andg3<0, where the upper
and the lower signs correspond to nonalgebraic and algebraic
solutions, respectively. The amplitudeA of I (z) is deter-
mined by Eqs.~22! and ~23!, respectively. The transforma-
tion of C(z,t) according to Eq.~2! yields the traveling-wave
solutions to Eq.~1!

C8~z8,t8!5AI ~z82vt8!ei @g~z82vt8!1~v/2!z82~l1v2/4!t8#.
~25!

III. SOLUTIONS OF THE CUBIC NONLINEAR
SCHRÖDINGER EQUATION

We now consider Eq.~1! and the corresponding reduced
equation ~10! with a250, a1Þ0, and C2Þ0. For
a1 ,l,k,C

2,I 0 to be consistent with the PDC the zeros of
R(I ) must fall under one of the three categories depicted in
Fig. 2.

Obviously, the PDC cannot be fulfilled ifR(I )50 has a
triple root. Thus no algebraic solitary waves exist ifa250.
There are one real and two complex roots ofR if D,0.
Hence the PDC is not satisfied ifD,0.

If a1,0, D.0, and there are two changes of sign in the
sequencea1 ,2l,k,2C2, two positive zerosI 1 ,I 2 @Fig. 2~a!#
of R(I ) exist ~according to the Cartesian sign rule@19#!, so
that periodic solutionsI (z) according to Eq.~14! with
I 0P[ I 1 ,I 2] are possible. Since a double root cannot occur in
this case~see Fig. 2!, there are no solitary-wave-like solu-
tions fora1,0 andC2>0.

To find the periodic solutions in this case it is necessary to
determine the ranges of the parametersa1 ,l,k,C

2 consistent
with D.0. This is done by solvingD50 for those parameters
that are appropriate for the problem in question. An example
is shown in Fig. 3. Ifa1,0 andC2 are given, the solution

FIG. 1. Sketches of the graphs ofR(I ). The phase diagram
condition~PDC! for real positive and bounded solutions is satisfied
only if I 0 is in the shaded regions. (a) represents a periodic and (b)
a ~gray! solitary-wave-like solution; (c) represents a solution for
which the PDC is not fulfilled.
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k(l) of D50 can be evaluated@curve (a) in Fig. 3#. Pairs
$l,k% in the shaded region (A) ~excluding the boundary! are
associated with periodic solutions of Eq.~10! given by Eq.
~14!, where I 0 can be taken as one of the simple roots of
R(I )50.

If a1.0, D>0, and~according to the Cartesian sign rule!
there are three changes of sign in the sequence
a1 ,2l,k,2C2, leading tol.0 andk.0, periodic solutions
@D.0; Fig. 2, curve (b)# or gray solitary-wave-like solutions
@D50; Fig. 2, curve (c)# according to Eq.~14! are possible,
where I 0P[ I 3 ,I 4] must be chosen in the first case and

I 0P[ I 5 ,I 6] in the second case. Assuming, as in the former
example, thata1.0 andC2 are fixed, evaluation ofD50
yields results shown in Fig. 3. Pairs$l,k% in region (B) are
associated with periodic solutions~D.0! and pairs$l,k% of
curve (b) represent all~gray! solitary-wave-like solutions
@points on curve (c) have to be excluded since the associated
solutions are singular#.

It is instructive to illustrate the previous analysis by as-
sumingC250 @20#. An evaluation ofD>0 determines the
permitted pairs$l,k% shown in Fig. 4. The roots ofR50
are $0,(l6Al222a1k)/a1% and the roots ofs50 are
$2l/3,l/66 1

2Al222a1k%. The invariants of̀ are given by
g25

4
3l222a1k andg35

8
27l32 2

3a1kl in this case.
If D.0, a1.0, l.0, and k.0 ~see Fig. 4! or D.0,

a1,0, l,0, andk.0, I 050 is a simple root ofR50. In-
sertion in Eq.~14! yields the solutions

I ~z!5
k

l

3
1`~z;g2 ,g3!

. ~26!

If D.0, a1,0, l,0, and k,0 ~see Fig. 4!, I 05(l
1Al222a1k)/a1 is a simple root ofR50. Hence Eq.~14!
yields the solutions

I ~z!5
l1Al222a1k

a1

3S 11
Al222a1k

`~z;g2 ,g3!2
l

6
2
1

2
Al222a1k

D .
~27!

FIG. 2. Graphs ofR(I ) if a250 andC2Þ0: (a) periodic solu-
tion, if a1,0; (b) periodic solution, ifa1.0; (c) solitary-wave-
like solution, if a1.0. Shading is as in Fig. 1.

FIG. 3. Pairs$l,k% associated with solutionsI (z) for a250 and
given a1 andC

2: region (A) ~boundary excluded!, periodic solu-
tions for a1521 andC251; region (B), periodic solutions for
a151 andC251; curve (b), solitary-wave-like solutions; curve
(c), singular solutions.

FIG. 4. Pairs$l,k% associated with different solutionsI (z) for
a250 and C250: region (A), solution according to Eq.~27!
(a1,0); region (B), solution according to Eq.~26! (a1,0); region
(C), solution according to Eq.~26! (a1.0). Solutions on the
boundaries: (a) singular ~a1,0, D50!, (b) solitary-wave-like
~a1,0, D50!, (c) periodic ~a1,0, D528a 1

3k3!, (d) solitary-
wave-like ~a1.0, D50!, and (e) singular~a1.0, D50!.
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The period ofI (z) is determined by

2v5
2K~m!

Aemax2emin
, ~28!

with m5(em2emin!/~emax2emin! and K denoting the

complete elliptic integral of the first kind@9#. The roots of
s(u)50 are ordered according toemin,em<emax ~for m and
emin ,em ,emax associated with the various parameters
a,l,k see the Appendix!. The amplitude of I (z) is
determined by the zeros of (dI/dz)25R(I ):

A55
1

a1
~l2Al222a1k!, D.0, a1.0, l.0, k.0

1

a1
~l2Al222a1k!, D.0, a1,0, l,0, k.0

22

a1
Al222a1k, D.0, a1,0, l,0, k,0,

~29!

in agreement with Eq.~22!.
Evaluation of the conditionsD50, g2.0, andg3,0 for

solitary waves yieldsa1.0, l.0, andk5l2/2a1 or a1,0,
l,0, andk50 ~see Fig. 4!. In the first case the simple root
of R50 is I 050. In the second case the simple root ofR50
is I 052l/a1 . Using`(z)5e1@113/sinh2(A3e1z)# @17# ~e1
is equal to16l in the first case and equal to2 1

3l in the second
case! and insertingI 0 and` into Eq. ~14! yields

I ~z!5H l

a1
tanh2SAl

2
zD , a1.0, l.0, k5

l2

2a1

2l

a1
sech2~A2lz!, a1,0, l,0, k50.

~30!

~31!

Equations~30! and ~31! describe dark and bright solitary
waves, respectively. The amplitudes are consistent with Eq.
~22!.

IV. SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR
SCHRÖDINGER EQUATION

If a2Þ0 andC2Þ0, the solution of Eq.~10! proceeds
along the lines described in Sec. III. It is useful to consider
the cubic resolvent@21# of R

Res5z312pz21~p224r !z2q2, ~32!

where

p52
3

a2
S 9a1232a2

1l D ,
q52

3

a2
S 81a1

4

4096a2
3 1C21

3a1k

8a2
1
9a1

2l

64a2
2 D ,

r5
3

a2
S k1

9a1
3

64a2
2 1

3a1l

4a2
D .

The discriminant ofR @22# is equal toD. Thus the roots of
R50 can be discriminated byD.

If D.0, all roots ofR50 are real provided thatp,0 and
p224r.0; otherwise there are two pairs of complex conju-
gate roots, for which the PDC cannot be satisfied. Ifp,0

andp224r.0, the number of positive roots ofR50 deter-
mines whether or not the PDC can be fulfilled. According to
the Cartesian sign rule the number of positive roots is equal
to the number of changes of sign in the sequence
a2 ,a1 ,2l,k,2C2 since all roots are real in this case.

If D,0, there is a pair of real roots and a pair of complex
conjugate roots@23#. If a2.0, one root must be negative
according to the Vie`te relations, with the result that the PDC
cannot be satisfied in this case. Ifa2,0, two positive~and
simple! roots that satisfy the PDC can exist. In this case there
must be at least two changes of sign in the sequence
a2 ,a1 ,2l,k,2C2.

If D50, there are multiple real roots leading to solitary-
wave-like or periodic solutions, if the PDC is fulfilled. Ex-
amples of phase diagrams are shown in Fig. 5. SinceD50,
all zeros of the cubic resolvent Res are real. If these zeros are
all positive~if p,0 andp224r.0!, there are four real roots
of R50; otherwise~one zero of Res positive, two zeros
negative! there are two pairs of complex conjugate roots of
R50. Hencep,0 andp224r.0 are necessary for physical
solutions of Eq.~10!. In particular, ifa2.0 @see Fig. 5~a!#
there must be~only! one negative root~otherwise the PDC

FIG. 5. Phase diagrams of the cubic-quintic case ifD50 and
C2Þ0. Associated solutions:~a! gray solitary-wave-like,~b! two
~gray and bright! solitary-wave-like,~c! gray and bright solitary-
wave-like, and~d! periodic.
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cannot be fulfilled! and three positive roots. Thus three
changes of sign in the coefficients ofR are necessary, and
the PDC is satisfied, if the simple~positive! root is smaller
than the double root@Fig. 5~a!#. The associated solution is
~gray! solitary-wave-like. Further possibilities of fulfilling
the PDC do not exist ifD50 anda2.0.

If a2,0, two negative roots and one positive root of
R50 are possible; however, the PDC is not satisfied in this
case. Possibilities consistent with the PDC are illustrated in
Figs. 5~b!–5~d!. A double root between the simple roots
leads to a dark and a bright solitary wave@Fig. 5~b!#. A
bright ~gray! solitary wave is possible if the triple root is to
the left ~right! of the simple one@Fig. 5~c!# and a periodic
solution exists if the double root is to the left of the simple
ones@Fig. 5~d!#. In all cases@Fig. 5~c! and 5~d!# four changes
of sign in the sequencea2 ,a1 ,2l,k,C2 are necessary.

To elucidate the preceding procedure the case illustrated
in Fig. 5~c! will be considered in some detail. Since there is
a triple root ofR50,

g25g350 ~33!

must hold. Solving Eq.~33! for C2 andk,

Cb,d
2 5

27a1
41144a1

2a2l1128a2
2l27a1A~9a1

2132a2l!3

512a2
3 ,

~34!

kb,d5
227a1

32144a1a2l6A~9a1
2132a2l!3

192a2
2 , ~35!

inserting Eqs.~34! and ~35! into Eq. ~10!, and solving forI
yields the simple roots

I 0b,d5
23

8a2
~a16A9a12132a2l!. ~36!

Since p,0 holds, 9a 1
2132a2l.0 is necessary for

Cb,d
2 ,kb,d ,I 0b,d to be real. The sign rule~for four positive

roots! yields a2,0, a1.0, l.0, k.0, andC2.0 as nec-
essary conditions for physical solutions.p224r.0 is al-
ways satisfied byC2 andk according to Eqs.~34! and ~35!.
Selectinga2,0, a1.0, andl.0, the upper or lower sign or
both signs in Eqs.~34! and ~35! can result inC2.0 and
k.0. Accordingly, the upper sign in Eqs.~34!–~36! repre-
sents a bright solitary wave while the lower sign is related to
a dark ~gray! solitary wave ~if k.0 and C2.0!. Since
e15e250, Weierstrass’s functioǹ has to be replaced by
z22 so that Eq.~14! reads

I ~z!5I1
R8~ I !z2

4S 12
R9~ I !

24
z2DU

I5I0b,d

. ~37!

This equation describes the intensity of the algebraic solitary
waves withC2 andk determined by Eqs.~34! and ~35! and
subject to the conditions listed above. The numerical evalu-
ation of Eq.~37! is straightforward. The phaseg(z) can be
obtained by inserting Eqs.~37!, ~34!, and~35! into Eq. ~8!:

gb,d~z!5ACb,d
2 S zR9~ I !

IR9~ I !26R8~ I !
1

12A6R8~ I !arctanS zA6R8~ I !2IR9~ I !

2A6I D
AI @6R9~ I !2IR9~ I !#3

D U
I5I0b,d

. ~38!

It is remarkable that a bright and a dark~gray! solitary wave
can exist for the same values ofa2 ,a1 ,l if these are chosen
according to Eqs.~34! and ~35! with Cb,d

2 .0 andkb,d.0
~e.g.,a2521, a151.9, andl51!.

It is intriguing to illustrate some further features of the
procedure for the caseC250. The cases considered are rep-
resented by the phase diagrams illustrated in Fig. 6. If the
PDC is satisfied andD.0, p,0, and p224r.0, and if
there are three changes of sign in the sequencea2 ,a1 ,2l,k,
Figure 6~a! is the associated phase diagram. Ifa2,0, two
periodic solutions, determined by Eq.~14!, are possible,
where I 0 must be chosen according toI 0P[0,I 3] or
I 0P[ I 5 ,I 6], respectively. Ifa2.0, only one periodic solu-
tion is possible withI 0P[ I 1 ,I 2] and the above conditions
being fulfilled. The PDC,D50, p,0, p224r.0, g2.0,
and g3,0, and three changes of sign in the sequencea2
(,0),a1 ,2l,k yield a phase diagram as shown in Fig. 6~b!.
The sign rule yieldsa1.0 and l.0. Since p,0 and
a 1
214a2l.0, there are two possible solutionsk to D50,

FIG. 6. Phase diagrams of the cubic-quintic case ifC250.
Associated solutions:~a! periodic a2,0, ~b! dark and bright
solitary-wave-like,~c! algebraic bright and dark solitary-wave-like,
and ~d! kink solitary-wave-like.
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k1,25
2a1

326a1a2l7A~a1
214a2l!3

12a2
2

. ~39!

The simple nonvanishing rootsI s ~Þ0! and the double roots
I d of R50 are, accordingly,

I s1,252
1

a2
S a12 7Aa1214a2l D , ~40!

I d1,252
1

2a2
~a16Aa1214a2l!. ~41!

For a double solitary-wave solution according to Fig. 6~b!
I d,I s must hold. Hencek5k1 must be excluded~I s,I d and
k5k1 leads to a periodic solution!. Fork5k2 Eq. ~14! can be
evaluated withI s50 andI s2. Thus@24#

I ~z!5
2a1

326a1a2l1Aa1214a2l

4a2
2
„3`~z;g2 ,g3!1l…

~42!

represents a dark solitary wave, while

I ~z!52
1

a2
S a1
2

1Aa1214a2l D 1
18A~a1

214a1l!329a1
2236a1a2l

4a2@12a2`~z;g2 ,g3!27a1
2228a2l22a1Aa1214a1l#

~43!

represents a bright one. The invariants of` are

g25
4

3
l21

a1@a1
316a1a2l2A~a1

214a2l!3#

6a2
2 , ~44!

g35
2a1

629a1
4a2l224a1

2a2
2l2216a2

3l31~a1
313a1a2l!Aa1214a2l

54a2
3 . ~45!

Figure 6~c! is the phase diagram of two solitary waves. The
conditions to be solved areg25g350 subject toa2,0,
a1.0, p,0, p224r.0, and the PDC. Obviously there are
various possibilities to fulfillg25g350. Solving forl andk
yields l5k50 with a simple rootI 0523a1/2a2 . This
leads to a bright solitary wave@18#

I ~z!5
2a1

a1z
22 4

3a2
. ~46!

Another solution of g25g350 is l52a 1
2/4a2 and

k5a 1
3/24a 2

2, with a simple rootI 050, and is thus associated
with a dark solitary wave

I ~z!5
a1
3z2

2a1
2a2z

2124a2
2 . ~47!

Further solutions tog25g350 are

I ~z!5
kz2

11Aa1k

6
z2

, a252
1

2
S a13
6k

D 1/2, l5S 3a1k
2

D 1/2,
~48!

I ~z!5
kz2

11
l

3
z2
, a252

l3

9k2
, a15

2l2

3k
, ~49!

I ~z!5
2l2z2

3a1S 11
l

3
z2D , a252

a1
2

4l
, k5

2l2

3a1
, ~50!

I ~z!5
kA3z2

A32~a2k
2!1/3

, a1522~23a2
2k!1/3,

l52~9a2k
2!1/3, ~51!

which are consistent witha2,0, a1.0, l.0, andk.0. All
solutions are algebraic@18#. Solution ~46! is Lorentzian
shaped and solutions~47!–~51! exhibit a non-Lorentzian
shape.

Considering Fig. 6~d! and solvingD50 for k,l, subject
to a2.0, a1,0, and the PDC, yieldsk50 and
l523a 1

2/16a2 . There is no simple root ofR(I )50 in
this case, so that Eq.~11! must be used instead of Eq.
~14!. Noting thate15a 1

2/16a2 and choosingI 0523a1/8a2 ,
evaluation@17# of Eq. ~11! gives

I6~z!5
23a1

4a2H 11expF6S 3
a2

D 1/2 a1
2
zG J . ~52!

Equation~52! represents a kink solitary wave.

V. CONCLUSION

There are some connections between the foregoing analy-
sis and the literature@1,3#. In particular, the articles by Gag-
non and Winternitz@3~c!# and Gagnon@3~a!# are of interest
here. Thus it is appropriate to compare the above results with
those of Refs.@3~c!# and @3~a!#.

Obviously, Eq.~1.1! of Ref. @3~c!# is more general than

4318 54H. W. SCHÜRMANN



Eq. ~1!. In Sec. 2 of Ref.@3~c!# Eq. ~1.1! is reduced to 14
different partial differential equations, one of which@Eq.
~2.13!# is equivalent to Eq.~1!. Section 3 of Ref.@3~c!# pre-
sents several reductions to ordinary differential equations.
There are 15 inequivalent ones, three of which@Eqs.~3.12!,
~3.13!, and~3.22!# provide solutions of Eq.~1!.

In Sec. 4 of Ref.@3~c!# two of these solutions are inves-
tigated further: Eq.~4.4! is equivalent to Eq.~9!. Sections 4.3
and 4.4 of Ref.@3~c!# show that Eq.~4.4! passes the Painleve´
test for all values of the parameters. Integration of Eq.~4.4!
@3~c!# and of Eq.~9! yields equivalent results@Eqs. ~4.62a!
and ~10!, respectively#. Sections 4.3. and 4.4. of Ref.@3~c!#
provide various solutions of Eq.~4.4! depending on the roots
of the polynomialP(W) in Ref. @3~c!#. In the present article
the solution of Eq.~10! @and thus of Eq.~4!# is given by Eqs.
~11! and~15! depending compactly on the coefficients of the
polynomialR(I ). The various solutions to Eq.~4.4! are dis-
cussed with the roots ofP(W) yielding a list of solutions.
The above treatment~Secs. III and IV! shows that some
statements about the solutions are possible without explicitly
knowing the roots ofR(I ).

In Ref. @3~a!# the translationally invariant solutions of
Sec. 4.4 in Ref.@3~c!# are treated in detail. In this respect
Refs. @3~a!# and @3~c!# and the present article deal with the
same problem@cf. Eq. ~3!#. In Ref. @3~a!# the reduced equa-
tion ~17! @which is equivalent to Eq.~10!# is solved for dif-
ferent ordered quadruples$Wi% ~for the cubic-quintic case!,
which are obtained by a phase diagram analysis@cf. remark
~d!, p. 1479 in Ref.@3~a!##. The result is a list@Table 1 in
Ref. @3~a!## of solutions and of conditions on the parameter
values for each solution with a specification of its general
behavior~column 2 of Table 1!.

Within the frame of the symmetry reduction method the
mathematical approach in the present paper is different from
the approach in Ref.@3~a!#. Since the general solution of Eq.
~4! is given by Eqs.~11! and ~15!, there is, in principle, no
need for a list. All functionsW andN in Ref. @3~a!# @W and
x in Ref. @3~c!## can be expressed by Eqs.~11! and ~15!,
respectively.

As shown in Secs. III and IV, a combination of the gen-
eral solution Eq.~11! with a phase diagram analysis based on
Eq. ~10! leads to a different and simpler classification of the
solutions since the roots~and their degeneracy! of R50 can
be described by the discriminantD of Weierstrass’s function
and thus, according to Eq.~11!, leading to general conditions
for periodic and solitary-wave-like solutions~Sec. II!. This
kind of classification yields several simple results: for in-
stance, different families of solutions@Eqs. ~26!, ~27!, ~37!,

~42!, ~43!, and~48!–~51!#, a necessary condition for solitary-
wave-like solutions~D50, g2>0, andg3<0!, the nonexist-
ence of algebraic solitary-wave-like solutions ifa250 or if
a1,0 andC2Þ0, and the nonexistence of physical solutions
if a2.0 andD.0.

A further result of the above approach is an algebraic
version of the phase diagram conditions~19!. As outlined in
Sec. II, all singular solutions@not listed in Ref.@3~a!## can be
excluded by the third condition~19!, so that a singularity
analysis based on Eq.~11! is simplified considerably. Fur-
thermore, Eq.~11! yields general expressions for periods and
amplitudes@Eqs.~20!, ~22!, and~23!#.

Solutions to Eq.~16! in Ref. @3~a!# and to Eq.~4.62a! in
Ref. @3~c!# are given in terms of Jacobi elliptic functions.
Certainly, these are completely equivalent to Weierstrass’s
elliptic function` used above. But the use of` is not only a
matter of taste. As is obvious from Table 1 in Ref.@3~a!#, the
solutions strongly depend on the degeneracy of the rootsWi .
Thus it is rather inconvenient to regardWi as the ultimate
input parameters of the problem@cf. Ref. @3~a!##. It may hap-
pen in practice@20# that I (z) @orW in Ref. @3~a!## has to be
evaluated numerically for different values of the original pa-
rametersl,a1 ,a2 ,k,C

2 ~e.g., in a parametric plot!. Conve-
niently, in this case Eq.~11! subject to the constraints~19!
can be used instead of the various solutions of Table 1 in
Ref. @3~a!#.

Finally, it should be noted that solutions 1, 2, and~18! in
Ref. @3~a!# are special cases of Eqs.~30!, ~52!, and ~31!,
respectively. Thus it seems that the solutions of Table 1 in
Ref. @3~a!# are consistent with Eqs.~11! and ~15!.

To sum up, the analysis of Ref.@3~c!# has more content
than the above analysis. This is natural because a much more
general problem is treated in Ref.@3~c!#. As pointed out,
some results of Refs.@3~c!# and@3~a!# are equivalent or con-
sistent with results of the present article; some of the previ-
ous results are not contained in Refs.@3~c!# and @3~a!#. As
indicated in Secs. III and IV, it seems that the closed-form
solution @Eqs. ~11!, ~14!, and ~15!# in connection with the
constraints~19! simplifies the phase diagram analysis as well
as the classification of solutions. Furthermore, Eqs.~11!,
~14!, ~15!, and~19! suitably can be used in a stability analy-
sis based on the standard Floquet theory@25#.

APPENDIX: m AND ROOTS OF s50 IF a250 AND D>0

The period of the solutions~26! and ~27! is given by Eq.
~28!, whereemin,em,emax andm are related toa1 ,l,k ~see
Fig. 4! according to

a1 l k emax em emin m

1 1 1 l
6 1 1

2 Al222a1k
l
6 2 1

2 Al222a1k 2 l
3

l2Al222a1k

l1Al222a1k

2 2 1 l
6 1 1

2 Al222a1k 2 l
3

l
6 2 1

2 Al222a1k
2l1Al222a1k

2Al222a1k

2 2 2 2 l
3

l
6 1 1

2 Al222a1k
l
6 2 1

2 Al222a1k
2Al222a1k

2l1Al222a1k
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Leipzig, 1952!, p. 101.

@14# See Ref.@9#, p. 629.
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