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Traveling-wave solutions of the cubic-quintic nonlinear Schralinger equation
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A subset of the exact analytical traveling-wave solutions of the equiiion ¥ ,,=a, V| ¥ |2+ a,¥|¥|*is
presented in compact form. The solutions are expressed in terms of Weierstrass'’s elliptic fynetizh
include periodic and solitary-wave-like solutions. The algebraic conditions for both cases are given. Examples
are presented for simple casgS1063-651X96)00810-(

PACS numbds): 03.40.Kf, 03.65.Ge

I. INTRODUCTION marizes the results in comparison with those of Gagnon and
Winternitz[3(c)] and Gagnon3(a)].
Apart from their applications in various fields of physics
[1,2] the traveling-wave solutions of the nonlinear Schro Il. EXACT SOLUTIONS
dinger equatior(NLSE) ) .
A Galilean transformation

iV VY, =a,V|V|2+a, V|4, W=V¥(zt)eC, Z'=z40t, t'=t,
aieR, {a;,a;#{0,0 1) V(2 1) =W (z,t)e Pzt w2t —const (2

are interesting in and of themselvesalf+0 Eq.(1) is not  €aves Eq() invariant, meaning that ¥ (z,t) is a solution
integrable: it has no Lax pair and no analytical solution tech-S0 is ¥'(z',t"). A stationary wave is transformed into a
niques are available. Thus methods that are not based on &&veling one by Eq(2). A large set of traveling-wave solu-
inverse scattering transformation may be suitable for finding‘Ions of Eq.(1) can be found by using the local point trans-
solutions of Eq.(1). In particular, the symmetry reduction formation _
method[3,4] and the Akhmediev approadb,6] do not de- V(z,t)=p(z)e N, (3)
pend on the equation under study being integrable.
The technique presented here is based on the symmetiyhere\ is a real constant ang(z) a complex function.
reduction method. The essence of this method is to rewrit&quation(3) reduces Eq(1) to
Eqg. (1) in terms of the invariants of a particular symmetry _ 2 4
group of local point transformations in order to reduce the ezt Np=arel¢| "+ azel¢]*. )
numb_er of the inde_pender_lt varia_bles in Eb) The reducec_j The solution to Eq(4) can in general be written as
equations are ordinary differential equations that are inte-
grated by means of a Painlea@alysis[7,8]. In some cases o(2)=1(2)€'9?, (5)
(depending on the values @af;,a,) they can be solved in
terms of elementary functions, Jacobi elliptic functions, orwheref(z)=|¢(z)| andg(z) are real functions. The substi-
Painlavetranscendents. tution of this expression into E¢4) and the separation of the
The following analysis proceeds along the line just de-real and imaginary parts lead to
scribed but usegonly) translational invariancécf. Eq. (3)]
to reduce Eq(1). The general exact solution to the reduced f—gof+ N f—a,f3—a,f°=0, (6)
ordinary differential equatioficf. Eq. (4)] is given in terms 2f,g,+fg,,=0 @
of Weierstrass’s elliptic functiow(z;9,,93) [9]. The ana- oz S
lytical properties ofy are well known[9].  is meromorphic  Equation(7) can be integrated twice to give
with respect taz and holomorphic with respect to the invari-
antsg,,gs. Thus a singularity analysis is straightforward and g(z)= Cf dz'f~4(z')+go, (8)
rather simple.
The results obtained in this way are partly contained in

. . hereC andg, are real constants. By suitably adjusting the
the profound analysis by Gagnon and WinteriiBgc)| and w 0 2
: . : . . _ phase of¥", g, can be made equal to zero so that substitution
in an article by Gagnoh3(a)]. Details will be discussed be of Eq. (8) into Eq. (6) yields

low.
_ Section Il presents the exa(¢tanslational inva_riqr)tsolu—. o C—2+)\f—a £3_a.f5=0 9
tions of the NLSE in terms of Weierstrass's elliptic function 2z 3 1 2

@. The cubic and the cubic-quintic NLSE are investigated in
some detail in Secs. Ill and IV, respectively. Section V sum-and, upon multiplying Eq(9) by f, and integrating,
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54 TRAVELING-WAVE SOLUTIONS OF THE CUBIG. .. 4313

a a The constant solution$=1,, given by the real posi-
2 214, %1 3 2 2 . 0 .
(I)°=4 3 "5 P +kI=C%|=R(l), (100 tive roots I, of Eq. (10, lead to the solutions
W(z,t)=\l, exdi(CZ12—\t)] and will be disregarded
wherel (z)=f?(z) andk is another real constant of integra- in the following. In general, Eq(10) can be solved by
tion. [10,11

dp (29,
VR(1) %+ sR'(N[9(2:92,93) — %R (N]+ %R(HR"(1)

2[0(2,92,95) — %R"(N]°— HRHR™(1)

[(z)=1o+ , (11

where the primes denote differentiation with respedt&md  below by e; [15], real non-negative and bounded solutions
I, is a real constariinot necessarily a real zero B{1)]. The  according to Eq(11) require that, satisfies
invariantsg,,g; of Weierstrass’s functiop(z;g9,,93) are

independent of, and are given by 1(0)=1¢=0,
gz=—%a2C2—2a1k+§7\2, (12) R(IO)BO'
=C2%(g%2+ 32 _2 + + 833 (19
g3=C%(al+ 5a\)—sk(2ak+a\)+ 5\ (13 o R'(1) Z_R(I)R””(I) .
If 15 is a simple zero oR(l) [12], Eq. (11) reads €1 24 48 '

I=1g

R'(1) |

[(2)=1o+ : (14 R'(H\2 RDOR™()) R'(1) R"(1)
4[p(z;95,93) — %R(l - _ _
[9(7:02,05 - HR'V1,_, I|2(e1 24) ~ ]+ ! (el 24)
Inserting this solution into Eq8), integration13] yields the R(DR"(I)
phase function t—s | =0
I=1g
9(2)

wheree; is the real(non-negativeroot of s(u) (if A>0, e;

, o(z+v) is the largest root It only depends on the coefficients of
R'(D{In o(z=v) 2z{(v) R(1). Thus Eqgs(11), (14), (15), and(19) represent the com-
=C| -+ plete solution to Eq(4). Obviously the condition$19) can

I 412J403(v;92,95) — 920 (v:92,93) — 93 =1, be simplified if a simple rool ;=0 of R(l) exists. They
show that it is not necessary to know the rootsRgf) in
+const, (15  order to formulate conditions for different non-negative and
bounded solutionfcf. [3(a)], [3(c)] and Sec. V. In particu-

with lar, all non-negative and singular solutions are determined by
- conditions(19) if the third condition is replaced by
v= , (16) :
fuo Vs(u) o o R} ROR()
124 48 | _,
s(u)=4u’-g,u—gs, (17) ~lo
and u,=R"(1)/24—R’(1)/4l ||=|0- The functionsa(z) and As is ngl known[1], the qL_JaIitative beh_aviqr df(z) can
{(z) denote Weierstrass’s sigma and zeta functions, respeE’-e determined by a phase diagram conS|d(_er|ng the graph of
tively [14]. R(I): real non-negative and bounded solutidiig) require

thatl is in the closed interval between two positive zeros of
R, with R(1)=0 between the zeroshaded in Fig. 1 For
convenience this condition is referred to in the following as
the phase diagram conditigRDC).

A=g3-2792 (18) Obviously[see Fig. 1, the equatiorR(1)=0 has at least

one simple real root iIC#0 and if the PDC is satisfied.

is negative, there are one real non-negative root and a pair dthus, in this case, Eq14) can be used instead of E(L1)
complex conjugate roots. £=0, the roots are redlf A=0, resulting in Eq(15). The lengthy integration in E¢8) is not
at least two roots are equal, >0, the real roots are dis- necessary in this case.@=0 it is possible that there is no
tinct) [9]. Since(if z is rea) ¢(z,9,,95) is bounded from simple root ofR(1)=0, so that Eq(11) must be used with,

The roots ofe;,e,,e; of s(u)=0 are important for the
behavior ofl (z) according to Eq(11). If the discriminantA
of p
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R(I) [17)). If g,=g3=0 (e;=e,=e;=0), p degenerates toz >
dependencégl7]. Accordingly, there are nonalgebraic and
algebraic solitary-wave solutiofi$8]. Examples are given in

(b) Secs. IIl and IV.

() If there is a simple root, (as is the case for bright and
dark solitong, Eq. (22) gives the amplitude of the solitary
wave. If there is no simple rody, it is necessary to use Eq.
(11). In this caseC?=k=0 must hold, so that the PDC
yields a,>0, a;<0, and\=—3a?/16a,. Thus the ampli-
tude of the kink solitary wave is

P—— 23
-~ da, (23

Equations(20)—(22) can be used to investigate the depen-
(c) dence of the half period and of the amplitudéA on the
parameters,,a; ,\ ,k,C2.
Summarizing this section, the periodic and solitary-wave-
like solutions of Eq.(1) that obey Eq(3) all have the form

FIG. 1. Sketches of the graphs &{(1). The phase diagram V(z,t)=(z)e'l9@ ], (24)
condition(PDC) for real positive and bounded solutions is satisfied
only if 1, is in the shaded regionsa) represents a periodic and) ~ With 1(2),9(z) determined by Eq(11) [or Eq.(14)] and Eq.
a (gray solitary-wave-like solution; €) represents a solution for (15), respectively. The constantg anda, ,a,,\,k,C* must
which the PDC is not fulfilled. satisfy the PDC or Eq(19).

The period of the periodic solutions can be evaluated as a
subject to the PDC. But in this caggz)=0, which means complete elliptic integral of the first kinfiL6] according to
that Eq.(15) is sufficiently generalcf. Ref.[12]). Eq. (20) or (21). Solitary-wave-like solutions are determined

The solutiond (z) =0 [according to Eq(11) or (14)] that by the PDC andA=0, g,=0, andg;=<0, where the upper
fulfill the PDC are, in general, periodic or solitary-wave-like. and the lower signs correspond to nonalgebraic and algebraic
In order to give conditions for both cases, it is useful, forsolutions, respectively. The amplitude of 1(z) is deter-
obvious reasons, to consider the expressions for the real peiined by Egs(22) and(23), respectively. The transforma-
riod of p(z;9,,93) [16]: if A#0, the real periodv of p is  tion of ¥(z,t) according to Eq(2) yields the traveling-wave
finite (not zerg. If A=0, g,>0, andgs>0, the real period is solutions to Eq(1)
also finite (not zerg. If A=0, g,=0, andg;<0, the real o ) .,
period isw=%. Thus the solution$(z)=0 that satisfy the W (Z',t")=\1(z' —vt)el9F ~vt)+ 22 = FoTat]

PDC andA+0 or the PDC and\=0, g,>0, andg;>0 are (25
periodic. The period of (z) is determined by the elliptic
integrals Ill. SOLUTIONS OF THE CUBIC NONLINEAR
. SCHRODINGER EQUATION
ZL du )% A>0 We now consider Eqg(1) and the corresponding reduced
2= ' (200  equation (10) with a,=0, a;#0, and C*#0. For
Zdeu su) Y2 A<0 al,)\,k,Cz,I0 to be consistent with the PDC the zeros of
e ' ' R(1) must fall under one of the three categories depicted in
Fig. 2.
The period is given by Obviously, the PDC cannot be fulfilled R(1)=0 has a
1 triple root. Thus no algebraic solitary waves existif=0.
2w=4m(6e,) (2)  There are one real and two complex rootsRfif A<O.

Hence the PDC is not satisfied A/<0.

If a;<<0, A>0, and there are two changes of sign in the
sequence,,—\,k, — C?, two positive zero$, |, [Fig. 2a)]
of R(I) exist (according to the Cartesian sign rdE9]), so
that periodic solutionsl(z) according to Eq.(14) with

if A=0,g,>0, andg;>0. In this case the zeros efu)=0
aree,=e;= —e;/2 ande;>0. The amplitudéA of the peri-
odic solution can be determined by means of 8d):

A= R—("I) , (22) loe[l4,],] are possible. Since a double root cannot occur in
4(e;—R"(1)/24) =1, this case(see Fig. 2, there are no solitary-wave-like solu-
tions fora; <0 andC?=0.
wherel is a simple root oR(1) =0 (at z=0). To find the periodic solutions in this case it is necessary to

Solutionsl (z)=0 that satisfy the PDC anfi=0, g,=0, determine the ranges of the parameters\ ,k,C? consistent
and g;<0 are solitary-wave-like. Ifg,>0 and g3<0  with A>0. This is done by solvind =0 for those parameters
(e;=e,>0 ande;=—2e,), the solutionsl(z) can be ex- that are appropriate for the problem in question. An example
pressed by hyperbolic function®s degenerate cases @f is shown in Fig. 3. Ifa;<0 andC? are given, the solution
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R(I)

FIG. 2. Graphs oR(l) if a,=0 andC2+0: (a) periodic solu-
tion, if a;<0; (b) periodic solution, ifa;>0; (c) solitary-wave-
like solution, ifa;>0. Shading is as in Fig. 1.

k(\) of A=0 can be evaluatefturve (@) in Fig. 3]. Pairs
{\,k} in the shaded region4) (excluding the boundajyare
associated with periodic solutions of EJ.0) given by Eq.

4315

{b)\

(A)
(a)

FIG. 4. Pairs{\ ,k} associated with different solution§z) for
a,=0 and C?=0: region (@), solution according to Eq(27)
(a1<0); region B), solution according to Ed26) (a;<0); region
(C), solution according to Eq(26) (a;>0). Solutions on the
boundaries: 4) singular (a;<0, A=0), (b) solitary-wave-like
(a,<0, A=0), (c) periodic (a;<0, A=—8a3k?), (d) solitary-
wave-like (a;>0, A=0), and ) singular(a;>0, A=0).

(14), wherel, can be taken as one of the simple roots oflge[ls,l¢] in the second case. Assuming, as in the former

R(1)=0.

example, thai,>0 and C? are fixed, evaluation oA=0

If a,>0, A=0, and(according to the Cartesian sign rule yields results shown in Fig. 3. Paif,k} in region B) are

there are three changes of sign in
a;,—\,k,—C?, leading ton>0 andk>0, periodic solutions

the sequencassociated with periodic solutioid>0) and pairs{\,k} of

curve () represent all(gray) solitary-wave-like solutions

[A>0; Fig. 2, curve b)] or gray solitary-wave-like solutions [points on curve ¢) have to be excluded since the associated

[A=0; Fig. 2, curve ¢)] according to Eq(14) are possible,

where lge[l3,l1,] must be chosen in the first case and

FIG. 3. Pairg\,k} associated with solutiori§z) for a,=0 and
given a; and C?2: region (A) (boundary excluded periodic solu-
tions fora;=—1 and C2=1; region B), periodic solutions for
a;=1 andC?=1; curve p), solitary-wave-like solutions; curve
(c¢), singular solutions.

solutions are singulgr

It is instructive to illustrate the previous analysis by as-
suming C2=0 [20]. An evaluation ofA=0 determines the
permitted pairs{A,k} shown in Fig. 4. The roots oR=0
are {0,(\+A?—2a;k)/a;} and the roots ofs=0 are
{—N/3,\/6+ 3\?—2a,k}. The invariants of are given by
g,=2#\?—2a,k andgs= 23— 2a,k\ in this case.

If A>0, a;>0, \>0, andk>0 (see Fig. 4 or A>0,
a,<0, A<0, andk>0, 1,=0 is a simple root oR=0. In-
sertion in Eq.(14) yields the solutions

k
1(2)=+ (26)

§+JO(Z§92193)

If A>0, a;<0, A<0, and k<0 (see Fig. 4 lo=(\
+\%2=2a,k)/a, is a simple root olR=0. Hence Eq(14)
yields the solutions

A+ N2—2a.k
@)=
1
\)\ —Zalk
x| 1+

X 1
9(2:02.95) — 5= 5 VA~ 2ark

(27)
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The period ofl (z) is determined by
2K(m)

Vemax™ €min

with  m=(e,— emin)/(énax—emin) and K denoting the

(28)

2=

(1

= (A= \2=2a,k),

1

1

o (A - YN2—2a,k),
1

)\2_ 2a1k,
\ a

in agreement with Eq22).

Evaluation of the conditionA=0, g,>0, andgy<<0 for
solitary waves yields;>0, \>0, andk=X\?/2a, or a,<0,
A<0, andk=0 (see Fig. 4. In the first case the simple root
of R=0isl3=0. In the second case the simple rooRst 0
is 1,=2\/ay. Using p(z)=e;[ 1+ 3/sint(y3e;2)] [17] (e,
is equal tog\ in the first case and equal te3\ in the second
casg and insertind , and g into Eq. (14) yields
2

A A A

— tant? \ﬁz , a;>0, \>0, k==— (30)
| a 2 2a;
(2)= N

a—secﬁ(\/—)\z), a;<0, A<0, k=0. (31
1

Equations(30) and (31) describe dark and bright solitary

H. W. SCHUIRMANN
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complete elliptic integral of the first kinf@]. The roots of
s(u)=0 are ordered according 8,;,<e,=<ena (for m and
€minEm,Cmax associated with the various parameters

a,\,k see the Appendjx The amplitude ofl(z) is
determined by the zeros ofl(/d2)2=R(l):

A>0, a;>0, A>0, k>0

A>0, a;<0, A<0, k>0 (29
A>0, a;<0, A<O0, k<0,

andp?—4r>0, the number of positive roots &=0 deter-
mines whether or not the PDC can be fulfilled. According to
the Cartesian sign rule the number of positive roots is equal
to the number of changes of sign in the sequence
a,,a;,—\,k,—C? since all roots are real in this case.

If A<O, there is a pair of real roots and a pair of complex
conjugate root§23]. If a,>0, one root must be negative
according to the Vi relations, with the result that the PDC
cannot be satisfied in this case.af<0, two positive(and
simple roots that satisfy the PDC can exist. In this case there
must be at least two changes of sign in the sequence
az,al,_)\,k,_cz.

If A=0, there are multiple real roots leading to solitary-
wave-like or periodic solutions, if the PDC is fulfilled. Ex-
amples of phase diagrams are shown in Fig. 5. Sike®,

waves, respectively. The amplitudes are consistent with Ecpll zeros of the cubic resolvent Res are real. If these zeros are

(22).

IV. SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR
SCHRODINGER EQUATION

If a,#0 and C2#0, the solution of Eq(10) proceeds

all positive(if p<0 andp?— 4r>0), there are four real roots
of R=0; otherwise(one zero of Res positive, two zeros
negative there are two pairs of complex conjugate roots of
R=0. Hencep<0 andp?—4r >0 are necessary for physical
solutions of Eq.(10). In particular, ifa,>0 [see Fig. %a)]
there must bdonly) one negative roototherwise the PDC

along the lines described in Sec. lll. It is useful to consider

the cubic resolvenf21] of R

Res=z3+2pZ°+(p2—4r)z— >, (32
where
3 (9a§ )\)
= — | ——+ ,
P=" %, |32,
3 [ 8la] , 3ajk  9aix
d=—— | 7ram3 TC°F +=—=
a, | 40963 8a,  64al
3 - 9a} +3a1)\
T\ w2 aa, |

The discriminant ofR [22] is equal toA. Thus the roots of
R=0 can be discriminated b.
If A>0, all roots ofR=0 are real provided thgga<0 and

p2—4r>0; otherwise there are two pairs of complex conju-

gate roots, for which the PDC cannot be satisfiedp4f0

R(I)

\
W

Rl

AVE

(a)

1
(b) \

N
A

FIG. 5. Phase diagrams of the cubic-quintic casa#0 and
C%+0. Associated solutionsa) gray solitary-wave-like(b) two
(gray and bright solitary-wave-like,(c) gray and bright solitary-
wave-like, and(d) periodic.

R

~L)
/N

R
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cannot be fulfilled and three positive roots. Thus three inserting Egs(34) and(35) into Eq. (10), and solving forl

changes of sign in the coefficients Bf are necessary, and yields the simple roots

the PDC is satisfied, if the simplg@ositive) root is smaller

than the double rodFig. 5a)]. The associated solution is 3

(gray) solitary-wave-like. Further possibilities of fulfilling - 922+ 32N

the PDC do not exist if=0 anda,>0. Iob,d 8a (a;= 9a1+32a2 )- (36)
If a,<0, two negative roots and one positive root of

R=0 are possible; however, the PDC is not satisfied in this

case. Possibilities consistent with the PDC are illustrated irsince p<0 holds, %3+32a,,>0 is necessary for

Figs. §b)—5(d). A double root between the simple roots C? ( k, 4, lo, , to be real. The sign rulgfor four positive

leads to a dark and a bright solitary walf€ig. 5b)]. A roots ylelds a2<0 a,>0, \>0, k>0, andC2>0 as nec-

bright (gray) solitary wave is possible if the triple root is to essary conditions for physical SO|UtI0r]32 4r>0 is al-

the left (right) of the simple ondFig. 5(c)] and a periodic ways satisfied bye? andk according to Eqs(34) and (35).

solution exists if the double root is to the left of the simple Selectinga, <0, a,>0, and\>0, the upper or lower sign or

ones[Fig. 3d)]. In all casegFig. 5c) agd 3d)] four changes o signs in Eqs(34) and (35) can result inC2>0 and

of sign in the sequenca,,a;,—\,k,C* are necessary. k>0. Accordingly, the upper sign in Eqé34)—(36) repre-

To elucidate the preceding procedure the case illustratedy s 5 bright solitary wave while the lower sign is related to
in Fig. 5(c) will be considered in some detail. Since there iS5 dark (gray) solitary wave (if k>0 and C2>0). Since

a triple root ofR=0, e,=e,=0, Weierstrass’s functiop has to be replaced by
z 2 so that Eq(14) reads

9.=03=0 (33
. R'(1)2?
must hold. Solving Eq(33) for C? andk, I(2)=1 +T(|) (37)
4(1— 2 22)

=1
Op 4

, 27aj+144afa ) +1285\*F a;\(9a] +32a,))°

bd™ 512a5 ’

(34)  This equation describes the intensity of the algebraic solitary
waves withC2 andk determined by Eq¥34) and(35) and

9723 _ 4 \/ﬁ subject to the conditions listed above. The numerical evalu-
bd= 278~ 1443;3,M , (923 +323,)) . (35) ation of Eq.(37) is straightforward. The phagg(z) can be
' 192a; obtained by inserting Eq$37), (34), and(35) into Eq. (8):

z\J6R' () —1IR"(I)

R 12/6R (I)arctar( "l

— /2
gb,d(z)_ Cb,d IR//(I)_6R1(|)+ \/l[GRH(l)—lR”(l)]s ~ . (38)

|
Op,d

It is remarkable that a bright and a dddeay) solitary wave R RO
can exist for the same values @f,a; ,\ if these are chosen

according to Eqs(34) and (35) with C3 4>0 andk, 4>0

(e.g.,a,=—1,a,=1.9, and\=1). /\

It is intriguing to illustrate some further features of the - ”1 / X1 !
procedure for the cagg?=0. The cases considered are rep- A\/ \\‘&/ \ A \
resented by the phase diagrams illustrated in Fig. 6. If the ) 2
PDC is satisfied and\>0, p<0, and p>—4r>0, and if
there are three changes of sign in the sequenca,, — \ K,
Figure Ga) is the associated phase diagramajt0, two /

1

R(l) R(l)

periodic solutions, determined by Eql4), are possible,
where |y must be chosen according tbye[0,l5] or

loe[ls,l¢], respectively. Ifa,>0, only one periodic solu- /A \\ ' \

tion is possible withl,e[1,,l,] and the above conditions fe) @

being fulfilled. The PDCA=0, p<0, p>—4r>0, g,>0,

and g;<0, and three changes of sign in the sequeage FIG. 6. Phase diagrams of the cubic-quintic caseCf=0.

(<O),§11,—)\,k yield a phase diagram as ;hown in Fig)6  Associated solutionsfa) periodic a,<0, (b) dark and bright
The sign rule yieldsa;>0 and A>0. Since p<O and solitary-wave-like,(c) algebraic bright and dark solitary-wave-like,
a2+4a,\>0, there are two possible solutiokso A=0, and (d) kink solitary-wave-like.
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—ad-6aja,\F \(a+4a,)n)®

(39
12a5

k1,2:

The simple nonvanishing rootg (#0) and the double roots
I4 of R=0 are, accordingly,

H. W. SCHUIRMANN
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For a double solitary-wave solution according to Figh)6
| 4<Is must hold. Henc&=k; must be excluded ;<I,4 and

k=k; leads to a periodic solutignFork=k, Eq.(14) can be
evaluated with ;=0 andls,. Thus[24]

—al—6aja\ + yai+4am\

1 (a; _
0 a2 ¥ al+4a,\ |, (40) 1(2) 422Gp(2.07.99) T V) (42
1
lg. . =—— (a;* Va+4a,\). 41
12 2a, (@ ! 2M) “1 represents a dark solitary wave, while
|
1/a, 18v/(a2+4a;\)%—9a3— 36a,a,\
I(z):——(—+\/ai+4a2)\ + 43
2|2 4a,[122,0(2;0,,03) — 783 — 283,\ — 22, ai + 4a;\ ]
represents a bright one. The invariantspoére
4 a,[ad+6aa,\ — (a+4a,\ )’
RN
9=z M 622 : (44
—a%—9afa,\ —24a2a2\2— 16a3\3+ (aS+3a,a,\ ) Va2 + da,\
gs= 3 : (49
54a3
|
Figure Gc) is the phase diagram of two solitary waves. The k\/322
conditions to be solved arg,=g;=0 subject toa,<0, (2)=—=571% a;=—2(—3ask)3,
a,;>0, p<0, p2—4r>0, and the PDC. Obviously there are V3— (ak?)
various possibilities to fulfilg,=g;=0. Solving for\ andk
yields A=k=0 with a simple rootl,=—3a;/2a,. This A=—(9a,k?)" (51)

leads to a bright solitary wael8]

2a;

I(z)= (46)

a,2°~3a

Another solution of g,=g;=0 is A=—a?%/4a, and
k=a3/24a3, with a simple rool ,=0, and is thus associated
with a dark solitary wave

a3z
5222 21 oAl
2afa,z°+24a;

I(2)= (47

Further solutions t@,=g;=0 are

kZ2 1 [ad\? 3a,k\| 2
(D)= —F=—, a=—5|z| » A=|—F]
a;k 2 \ 6k 2
1+\/ —2°
6
(48)
g1 kZ? RS _2\? 49
(Z)_1+)\ 21 aZ__Wa al_Wv ()
§Z
) 2\272 & k_2>\2 -
(Z)_ ’ aZ__K! _3_a11 ( )
331 l+§Zz

which are consistent with,<0, a;>0, A>0, andk>0. All

solutions are algebrai¢18]. Solution (46) is Lorentzian
shaped and solution$47)—(51) exhibit a non-Lorentzian
shape.

Considering Fig. @) and solvingA=0 for k,\, subject
to a,>0, a;<0, and the PDC, yieldsk=0 and
A=—3a?/16a,. There is no simple root oR(I)=0 in
this case, so that Eq.ll) must be used instead of Eq.
(14). Noting thate, =a4/16a, and choosind,= — 3a,/8a,,

—3a;

evaluation[17] of Eq. (11) gives
3 1/2 a; .
1+ ex;{ + ( —) —z ]
ao 2

Equation(52) represents a kink solitary wave.

. (2)= (52

4a,

V. CONCLUSION

There are some connections between the foregoing analy-
sis and the literaturgl,3]. In particular, the articles by Gag-
non and Winternit43(c)] and Gagnor3(a)] are of interest
here. Thus it is appropriate to compare the above results with
those of Refs[3(c)] and[3(a)].

Obviously, Eq.(1.1) of Ref.[3(c)] is more general than
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Eqg. (1). In Sec. 2 of Ref[3(c)] Eq. (1.1) is reduced to 14 (42), (43), and(48)—(51)], a necessary condition for solitary-
different partial differential equations, one of whi¢kg.  wave-like solution§A=0, g,=0, andg;=<0), the nonexist-
(2.13] is equivalent to Eq(1). Section 3 of Ref[3(c)] pre-  ence of algebraic solitary-wave-like solutionsaif=0 or if
sents several reductions to ordinary differential equationsa; <0 andC?# 0, and the nonexistence of physical solutions
There are 15 inequivalent ones, three of wHiElgs. (3.12), if a,>0 andA>0.
(3.13, and(3.22] provide solutions of Eq(1). A further result of the above approach is an algebraic
In Sec. 4 of Ref[3(c)] two of these solutions are inves- version of the phase diagram conditiqid®). As outlined in
tigated further: Eq(4.4) is equivalent to Eq(9). Sections 4.3  Sec. Il, all singular solutiongot listed in Ref[3(a)]] can be
and 4.4 of Ref[3(c)] show that Eq(4.4) passes the Painleve excluded by the third conditiofil9), so that a singularity
test for all values of the parameters. Integration of @)  analysis based on Eql1) is simplified considerably. Fur-
[3(c)] and of Eq.(9) yields equivalent resulteEgs. (4.628  thermore, Eq(11) yields general expressions for periods and
and (10), respectively. Sections 4.3. and 4.4. of R¢B(c)]  amplitudeq Egs.(20), (22), and(23)].
provide various solutions of E¢4.4) depending on the roots Solutions to Eq(16) in Ref.[3(a)] and to Eq.(4.623 in
of the polynomialP(W) in Ref.[3(c)]. In the present article Ref. [3(c)] are given in terms of Jacobi elliptic functions.
the solution of Eq(10) [and thus of Eq(4)] is given by Egs.  Certainly, these are completely equivalent to Weierstrass’s
(11) and(15) depending compactly on the coefficients of theelliptic functionp used above. But the use gfis not only a
polynomialR(1). The various solutions to E¢4.4) are dis- matter of taste. As is obvious from Table 1 in Re¥a)], the
cussed with the roots dP(W) yielding a list of solutions. solutions strongly depend on the degeneracy of the Mbts
The above treatmenfSecs. Ill and IV shows that some Thus it is rather inconvenient to regaWl; as the ultimate
statements about the solutions are possible without explicitiyjnput parameters of the probldrmf. Ref.[3(a)]]. It may hap-
knowing the roots oR(l). pen in practicd 20] thatl(z) [or W in Ref.[3(a)]] has to be
In Ref. [3(a)] the translationally invariant solutions of evaluated numerically for different values of the original pa-
Sec. 4.4 in Ref[3(c)] are treated in detail. In this respect rameters\,a;,a,,k,C? (e.g., in a parametric plptConve-
Refs.[3(a)] and[3(c)] and the present article deal with the niently, in this case Eq(ll) subject to the constrain{d9)
same problenfcf. Eq. (3)]. In Ref.[3(a)] the reduced equa- can be used instead of the various solutions of Table 1 in
tion (17) [which is equivalent to Eq(10)] is solved for dif- Ref.[3(a)].
ferent ordered quadrupld®V;} (for the cubic-quintic cage Finally, it should be noted that solutions 1, 2, &i@) in
which are obtained by a phase diagram analffisremark  Ref. [3(a)] are special cases of Eg&30), (52), and (31),
(d), p. 1479 in Ref[3(a)]]. The result is a lisfTable 1 in  respectively. Thus it seems that the solutions of Table 1 in
Ref. [3(a)]] of solutions and of conditions on the parameterRef. [3(a)] are consistent with Eq$11) and (15).
values for each solution with a specification of its general To sum up, the analysis of Rdf3(c)] has more content
behavior(column 2 of Table L than the above analysis. This is natural because a much more
Within the frame of the symmetry reduction method thegeneral problem is treated in Rdf3(c)]. As pointed out,
mathematical approach in the present paper is different fromome results of Ref$3(c)] and[3(a)] are equivalent or con-
the approach in Ref3(a)]. Since the general solution of Eq. sistent with results of the present article; some of the previ-
(4) is given by Eqgs(11) and(15), there is, in principle, no ous results are not contained in Ref3(c)] and[3(a)]. As
need for a list. All functiondV andN in Ref.[3(a)] [W and indicated in Secs. Ill and IV, it seems that the closed-form
x in Ref. [3(c)]] can be expressed by Egdl) and (15), solution [Egs. (11), (14), and (15)] in connection with the
respectively. constraintg19) simplifies the phase diagram analysis as well
As shown in Secs. Ill and IV, a combination of the gen-as the classification of solutions. Furthermore, Eddl),
eral solution Eq(11) with a phase diagram analysis based on(14), (15), and(19) suitably can be used in a stability analy-
Eq. (10) leads to a different and simpler classification of thesis based on the standard Floquet thd@%.
solutions since the rootand their degeneratyf R=0 can
be described by the discriminaatof Weierstrass’s function
and thus, according to E¢L1), leading to general conditions
for periodic and solitary-wave-like solutior(Sec. I). This The period of the solution&6) and(27) is given by Eq.
kind of classification yields several simple results: for in-(28), wheree,,;,<en<e€naxandm are related t@; ,\ ,k (see
stance, different families of solutiof&gs. (26), (27), (37), Fig. 4 according to

APPENDIX: m AND ROOTS OF s=0 IF a,=0 AND A>0

a; A k €max €m Cmin m
—\2=—
+ o+ A1 W23k y—1 W2-2a.k -3 A= VAT 23k

N +\%=2ak

— 2_
- -+ b+1 W2-2agk -} L-1 W2-2ak A VAT 280k
24 \?—2a,k

2_
- - = _% %‘l’% )\2_2a1k %_% \)\Z_Zalk 2VA 2a1k

— N+ VAZ—2a;k
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