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Existence of solitary solutions in nonlinear chains
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Techniques for examining the existence and stability of localized modes are presented. The methods are
demonstrated in detail for a discrete nonlinear Sdimger (DNS) equation, but also apply to other systems,
e.g., the discrete nonlinear Klein-GordddNKG) equation. Stationary states may be found via variational
principles or through generating functions. The latter technique makes use of solutions of a continuous
difference-equation and allows for localized modes with different symmetry properties. It is shown that several
families of stationary solutions exist, and a constructive procedure to calculate the latter is presented. In the
case of the DNS equation, an analytical stability criterion for symmetric solitNrthéorem proves that the
discrete equation exhibits localization in regimes where blow-up cannot occur in the continuum analog. Stable
nonlinear solutions are found for the DNKG equation. The analytical calculations are supplemented by nu-
merical simulations[S1063-651X96)11309-X]

PACS numbeps): 03.40.Kf, 42.65.Tg, 42.81.Dp, 52.35.Sb

I. INTRODUCTION on the boundary conditions, parity requirements, nonlinear
potentials, and last but not least, the structure of the system
In continuous systems it is well-knowfri—5] that as a under consideration. Although it is possible to propose some
result of balance between nonlinear and dispersive effectgeneral strategy being independent of the actual syg2&in
specific nonlinear objects, namely solitary waves, may apits evaluation always requires some modifications when a
pear. The one-dimensional cubic nonline@ontinuou$  specific problem is investigated. Thus, when we present
Schralinger equation is a paradigm for soliton bearing equasome additional methods for existence of discrete solitary
tions and one of the most useful physical models of nonlinwaves, we shall demonstrate them on a specific example, i.e.,
ear science. Since it can be solved by the inverse scatterirthe discrete nonlinear Schitimger (DNS) equation, but one
transform, in principle all of its rich dynamical behavior is should have in mind that they should be applicable also to
known. The situation is different for discrete systems. Herepther systems, e.g., the discrete nonlinear Klein-Gordon
not so many results are known analytically, except for th DNKG) equation. After the detailed description and exem-
integrable form invented by Ablowitz and Ladj]. How-  plification for one equatiorfDNS), one should be able to
ever, the integrable discrete cubic nonlinear Sdimger apply the procedure immediately to other systems being of
equation does not appear in physically motivated modelinterest. Our brief consideration of the DNGK equation
[7-11], such as coupled nonlinear atomic strings, arrays ohould be interpreted as a first step in this direction.
coupled optical wave guides, proton dynamics in hydrogen- We choose a DNS equation with arbitrary power nonlin-
bonded chains, the Davydov and Holstein models for transearity because of the following reas@6-29. The continu-
port of excitation energy in biophysical systems, Scheibe ageus one-dimensional nonlinear Sctimger equation also
gregates, the Hubbard model, electrical lattices, DNApossesses solitary wave solutions when its power nonlinear-
dynamics, molecular crystals, and so on. ity is changed from cubic to other algebraic forms. Such
Nonlinear localized modes in discrete systems have beedifferent types of nonlinearities might appear for at least two
a subject of intense but mainly numerical investigations durreasons(i) The physical model may require a strong anhar-
ing recent year$12—21]. Different types of localized states monic coupling which does not result in a cubic nonlinearity.
were found, and very elegant and efficient schemes hav&he latter is a characteristic of the integrable Sdiiger
been developed for calculating solitary wave solutions. Theequation (ii) From the mathematical point of view, it may be
broad and discrete solutions may be approximated by thadvisable to raise the exponent of tfoeibic) power nonlin-
corresponding continuum solutions, but there exist otheearity in order to mimic the multidimensional behavior of the
types of discrete modes that definitely will not obey the con-Schralinger model. Solitary wave solutions of a one-
tinuum limit. Some of the latter show stable behavior in nu-dimensional continuous nonlinear Sctimger equation with
merical experiments. However, from the principle point of arbitrary power nonlinearity can be stakleorresponding,
view, numerical simulations cannot prove stability in thee.g., to the stable solitopsr unstable. The latter means that
strict sense. Thus, analytical or at least semianalytical criteridispersion balances nonlinear steepening only in the station-
are strongly needed, and it is the primary motivation of thisary case. Small perturbations around the solitary wave may
paper to develop systematic analytical methods for examinbreak this balance leading to instability and perhaps collapse.
ing the existence and stability of solitary wave solutions inBecause of that rich dynamical behavior, our DNS model
discrete nonlinear systems. will be the exact discrete analog of the general continuous
When studying existence and stabili82—24 of discrete  nonlinear Schirdinger equation.
solitary waves one immediately recognizes that the underly- The first area concerns trexistenceof discrete solitary
ing spectral problems are strongly related. The latter dependiave solutions. Let us, for a moment, consider the con-
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tinuum nonlinear Schidinger equation *
_ Hi= 2 [ o=yl 2. (10
g+ a5+ (o+ 1)]Yf>7y=0. (D) ==

This equation reduces far=1 to the famous cubic nonlin- Note that Eq(4) can be written in Hamiltonian form

ear Schrdinger equation. At this stage we would like to . JH
mention that in the following we shall always consider the i¢n=a—*, (17
focusing caséwith a plus sign in front of the nonlinearity of ¥

Eqg. (1)], but all the considerations will also work in the
defocusing case. Th@ontinuou$ Schralinger equatior(1)
posseses, for arbitrary power nonlinearities, stationary soli
tary wave solutions. If we introduce

showing that it is still conservative. However, the lack of
conservation of momentum has severe consequences for the
existence of localized solutions. For example, we do not ex-
pect a continuous free parameter likg Moreover, in the
continuum case(1l), Galilei invariance[ X=x—Vt,T=t]

= i 2
P(x,H=Gx)explin), 2 produces from Eq(2) the whole set of solutions
with the stationary envelop8(x) and a nonlinear frequency 1\ V2o 1 \12
shift »?, stationary localized solutions of E€L) can be pre- (X, T)=| °+ ZV2> sech¥®)| o| 7%+ ZV2> X}
sented explicitly, i.e.,
X exp(i p?T+iVX/2). (12)

G(x)=n"" sech[an(x—xo)], 3
We do not have an equivalent class of solutions in the dis-
wherexg is a free parameter. When we now turn to a discretecrete case.

version of Eq.(1) (which will be the main object of demon- We can also view this problem from another viewpoint.
stration in this paper When introducing into the stationary form of E@), i.e.,

[0+ 1= 20+ 1+ (o + D) g |*79;=0 (4 Gj+1—2G;+G;_1=\G;—(c+1)|Gj|*’G;, (13
for j=0,+1+2 ... and with boundary conditons the  abbreviation — ©,:=G, and  defining
|| —0 for |j|— the situation has completely changed.Jn+1:=®n.1~ 0y, we can rewrite E¢(13) in the form of a
We do not know analytically any nontriviglocalized soli- ~ 9eneralized standard mapping

tary wave solution. Of course, numerically solutions have

— *
been foundalso for finite systems with Dirichlet or periodic 1= It 17(On), (14
boundary conditions We shall discuss some strategy to con- 0 .. —0.+] (15)
struct stationary solutions of E¢4) in the form n+1mHn T ¥ntl
) with
j=Gjexplikt) (5)
*(0,):=A0,—(c+1)|0,%70,. (16)

in the next section.

Let us emphasize another qualitative difference betweeimaginating the rich and complicated “dynamics” inherent
Egs. (1) and (4). Even in the nonintegrable caser 1, Eq. in such types of mappings, we get a feeling for the problems
(1) possesses three constants of motion, encountered when trying to find analytical solutions. Thus,

any progress in this respect will be very helpful.

2 toe 5 Besides existencstability problems are next urgent to be
No(#):= f_w dx|y[%, ©) solved. Again let us motivate the idea by comparing with the
continuum casel). For the latter, a virial theorem can be
oo derived,
P(z/;):zif dxya,* + c.c., (7)

aff dxx2¢¢*:8H+4(2—a)f dx|¢?7*2. (17

+o
H(l//)i=f dx[| dyepl® =[] 27 2], (8)  There is no hope to derive a similar virial theorem in the
o discrete cas¢4). In the continuous case it has been shown
hat for c=2 (stationary solitary wave solutions become
nstable under small perturbations. The question, however,
arises whethelr=2 is also a “critical” exponent in the
discrete situation. We shall comment on that in the second
part of the paper.
The whole manuscript is organized as follows. In the next
section we comment on variational principles for the exist-
o ence of solutions. We shall favor one principle which will
Ng( W)= z lez’ (9) work sy:_stema;ically for symr_‘r)etric sollution_s and which has a
== form being suitable for stability considerations. As has been

reflecting conservation of particle number, momentum, an
energy, respectivelyIn the integrable case=1 we have an
infinite number of independent conserved quantitidow,

in the discrete situatiofd) translation symmetry is broken,
and no conserved analog Bexists. Instead, we only have
two constants of motion:
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indicated already, we shall obtain only some ground states - - - -

by that procedure. In Sec. Ill we show, by introducing gen- > (Giz1—G)?+\2X Gi=p(o+1)> G¥7*2.

erating functions, that several families of stationary solutions ! '

do exist. A constructive procedure for calculating the various

members of different families is presented. Section IV is S . .

devoted to stability considerations. For tlieymmetrig Thu-s,.u >0 for )EZQ.(Wh'Ch is the casg we ar-e mterested n

ground states, a so-callétitheorem is derived which allows Defining Gi=u"""G; we get for the first variation

us to determine stability with respect to a certain class of

symmetric perturbations. In addition to the analytical tools,

in the general case we also have to rely on numerical simu- &N:iZ_N oYi(H.G);=0, (23)

lations. The latter are especially useful for following the non- -

linear developments of linearly unstable modes. After havin

demonstrated the methods for a DNS equation, with result

for the latter, we briefly turn to a second example in order to

show that the procedure is general enough to be useful for(H®)i:=— i 1+2¢i— di_1+ N pi— (o +1)|Gi|* ¢, .

several discrete systems. In Sec. V, results for a DNKG (24)

equation are presented. The paper is concluded by a short

summary and outlook. Note that the Lagrangian multiplier has been scaled out, and
solutions exist for continous values hf= 7. Furthermore,

Il. GROUND STATES FROM VARIATIONAL PRINCIPLES for a finite chain the existence of the minimum follows from
the fact thatw is bounded from below for fixet. For com-

The aim of this section is to obtain solutions of Ef3) pleteness and later use we also present the second variation.
by a variational approach. First we comment on the simpleJsing the abbreviationSy,,=a,+ib,, a short calculation
case of a finite chain with 12+ 1 oscillators and periodic leads to
boundary conditions. One may be tempted to believe that the
following procedure is the most promising one: Minimizing N N
H(¢) under the constraint of fixeulé(z//). An obvious ad- 52W=' 2 a(H_a);+ 2 bi(H,b);=0, (25
vantage of this approach would be a simultaneous proof of i=-N I=-N
stability. Note that for fixedN2, H is bounded from below:

(22

N

e., (H.G);=0 with

where
H=—max ,|2’N3= —Ng*2. (18)
o o _ _ (Hoo)ii=— i1t 2di— di_1 T\
In case of finiteNy the minimum will be attained on some 20
state being evidently stable with respect to perturbations —(20+1)(a+1)|Gi|*" ¢
yielding the same value dﬂé. When accepting this proce- =(H, ¢);—20(o+1)|G;|27¢; . (26)

dure,\ plays the role of a Lagrange multiplier which has to
be determined from the constraifZ= const. But in this
way one has problems to show that the Lagrange paramet
\ can attain arbitrary continuous valugs= #°. This diffi-
culty is a consequence of the absence of scaling invariance
the discrete situation.

An alternative is to minimize

For a finite system, the fact that the minimumWf (under
fe constraint = consi is attained for somé&s={G;} is
obvious. The situation is completely different for an infinite
Q/stem. Then we need a compactness lemma which ensures
the survival of the constrairit = const for the minimizing
sequence. Since this is an interesting point with important
N physical implications, we present in the following those steps
_ 2 2 which show which solitons are selected in an infinite chain
W) n;N (11 =l " N Yal"] (19 by this minimization procedure. In Fig. 1 we have character-
ized the typical modes we have in mind: they may have even
under the constraint or odd parities, and their centers may be on-site or intersite,
respectively. Note also that only those with a low number of

N nodes(0 and 2 are shown.

I(¢):n2_N | |27 2= const. (20)

A. Even parity ground state solutions

;Ne assume in thehfollowi'ng that—besidesafrethuelrcydshift First we should note thatV is bounded from below,
actor exp(\t) — the stationary statesy(,) are real valued. W=0. Then, a minimizing sequen@é™, n=0,1,2 ... ex-

The first variation ofW leads to ists. We use the notatiog™={y™, i=0+1+2,...}

for eachn, and we can choose a weakly convergent subse-

—Gi+1+2G—G_1+AG;— u(a+1)G¥" =0, quence

(21)
- JV—y and WM=W(y™)—infW(p) for n—oo.
whereu is the Lagrangian multiplier. Multiplying bg; and ©
summing up over results in (27)
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I We have thus proven that a minimizing sequence with
strictly positive elementﬂ/i(”)—> ; exists. Now let us have a

° ° look at the constraint = const. The latter is an absolute
) L L ! : . L4 convergent series for each elemeff). Thus we can rear-

range the summations in E0) without changing the value
of I. Let us do this such that

- PV=<y( for |j|=i. (32)
b ® From here it will follow ;<4 for |j|=i. In other words,

L ° we consider distributions with a single maximum. The latter
can appear either far=0, when the symmetric solutions are
centered on-site, or a&=0 andi=1, for intersite centered
solutions. The question is what happens to the valugof
during such a rearrangement of the elemepi3 of y(".

I’ One can prove thatV attains a lower value after rearrange-
ment. In other words, single maximum solutions correspond

° to the minimal value ofV.

Having in mind this property of the minimizing sequence

b we can show the survival of the constralnin the limiting

processy(™ — . Normalization

[ =

©

I NG= 2 l"P= 2l P=m)? (@3

® =—

g
>

leads to the estimate

[ ] 2

N
. (¢$))2g|—0 for |m|>l (34

m|
FIG. 1. Sketches of even pariy, maximum on-site; Il, maxi-  Thus we find for the “rest” defined by

mum intersite¢ and odd parity(l’, zero on-site; Il, zero intersitg

. m
solutions.

|<n)=_ z |¢i(n)|2(r+2+ R(n)(m) (35)
Note that we have not yet provéti()=infW, i.e., that the o
minimum of W will be attained byy. The purpose of the the estimate
next steps is to show under which conditions the infimum
will be attained. 1
(n) 20+2 -
We can assume that the weakly convergent subsequence R™(m)<2Ng |k§m‘ |k|20+2_f(m), (36)
consists of non-negative elementg{"=0, i=0,+1,
+2,... forn=0,1,2 ... . Thereason is i.e., an upper bound independentronn addition, the upper
bound tends to zero for large,
W(|p|)=<W(op). (28
4l ¢ f(m)—0 for m—oo, (37)
Moreover, we can even work with only positive elements
) . o . Therefore,
$">0 since it is straightforward to show that to each
4" with zero elemers) a corresponding one with only m m
positive elements and a lower valWé(4(") can be con- D MR D |27 2 for n—o (39
structed. The idea is the following: Let us assume t=—m t=—m

>0, ¢MW=0, andy(M,=0 for some index and fixed

. and any fixedm. In conclusion, the constraint survivéise-
n. Then define y dse

ing equivalent to the existence of a compactness lenamd
- the minimum of the variational principle will be attained by

P =g DI(L+ 7)Y for p#i, (29 some distributiony=G. Thus, we can find the even parity
_ ground states by the variational principle which has been
Obviously, 1M =M where the superscript indicates that we B. Odd parity solutions
evaluate Eq(20) for ¢ (and 4", respectively, and One might be tempted to proceed for odd parity ground

_ stateqwith only one zero either on-site or intergitey using
WW<WM™ for e>0 and e— +0. (31) the same variational principle in the subspace of odd func-
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tions (applying an additional boundary condition, e.g., wherex is a continuous variable. If this difference equation
Go=#p=0). Odd parity means for on-site centered solu-has a solutior(x) for all x, then
tions (which are considered in the following
G=F(&+i) —o<i<oo, iinteger, (49
G;=—-G_;for i=0, (39
is obviously a solution of Eq(13) for arbitrary real¢é. Note
when Gy=0; the condition can be easily modified for an that even ifF(x) is not localized forx— —« one can con-
intersite node wittGy= — G;. In the following we show that structG; with G;— 0 for i — — % by using the symmetries of
the minimum ofW, with the constraint = const, will not be  the discrete equatiofl3). This will be done choosing appro-
attained by some functiogq, i.e., in the notation of Sec. Il A priate values fok.
no function ¢ exists such thaW(¢)=infW for odd parity
solutions(39). A. Existence of solutions
The proof is indirec{by conductio ad absurdumLet us

assume that fop™ — i First, the existence of solutions to Hg.7) will be proven

by making use of the formula

W(™) = infW( ) = W(y) (40) i
(4 —a— OX_ V120 +1g; H
FO)=e" "~ gy [FOcH DI sini()),
is true. Without loss of generality we can assume (50)

#1=G;>0 (and #,,=0 for an on-site node Now compare
with the valueW which is obtained by using instead gfthe ~ Where s is determined via the ansaAx) ~e~ > in the lin-
elements ear regimex—, i.e., with 7= y\:

Yo= o, (41) sinhg = g (51

=—-1=fe (42) . , .
Two facts are importanti) The solution of Eq(50) obeys
e ; Eq. (47). (ii) It is sufficient to prove the existence of a solu-
vi=Tiiyfor i>1, “3) tion to Eq. (50) for [xq,%), where x, is some large
Zi:f‘ﬂi—l for i<—1. (44) x-value. Then rewriting Eq47) as
o~ F(x)=—F(x+2)+F(x+1){\+2—(o+1)[F(x+1)]?7,
They yieldl =1 if (52)

f20t2[2€20% 24 ]=1, (45)  we can extend the existence region to any firiex,, which
will be needed for the construction of solutions to E43)
i.e., fore>0 we have to choosk<1 accordingly. Now itis by symmetry arguments in the following subsection.
straightforward to calculate We shall show now that the Volterra type equati&if)
can be solved by iteration,

W<W for e<1. (46)
o+l & ) ) )
Itis clear that the procedufé1)—(44) leads to a lower value ~ Fnr1(X)=€" %~ Wzl [Fa(x+])1?7" tsink( 8}),
of W which contradicts our assumpti¢d0). Thus, for odd = (53)

parity modes the infimum of the variational principle cannot
be attained by some distributiah This implies that, if at all,  with Fy=e™ .
the existence of the odd parity solutions has to be proven by |t is straightforward to show that
some other means. In the next section we present a simple
method to calculate stationary solutions of even or odd par- F1(x)>0 for x>xg, (54
ity, also with various numbers of nodes.
wherex, is a(large x-value to be determined appropriately.

IIl. GENERATING FUNCTIONS FOR FAMILIES We have
OF STATIONARY SOLUTIONS

(0_+1)ef(20+1)é3( 1
We now outline a general procedure to construct station- Fa(X)=Fo(X)— sinh( o 6) 4sinj (o+1)8]"
ary solutions. Consider the difference equation (55)
—F(x+1)+2F(x)—F(x—=1)+\F(x) From here also follows
=(o+1[F(X)]?7*L, —co<x<+», (47 F,<Fo. (56)
with the boundary condition For largex>Xx,, we can write

F(x)—0 for x—oo, (48) [F1(X) = Fo(X)| < €eFo(x). (57)
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Let us consider54), (56), and(57) as the first step within a 0.8
proof by complete induction. It is straightforward to show s
that from 0.6 ﬂ
F,>0, (58) 04
0.2
Fn+l$an (59) '|
F 00N
and ozl
[Fri1i—Fol<e"Fo=<e""te™ %0 (60) —0.41‘
follows the next step -0.6 u
Fn+1>0, (61) 08Tz s 4 0 4 8 1z 16
X
Fn+22Fn+lu (62)
_ FIG. 2. Generating function®NS equationfor c=1,  equal
[Fns2—Fnedl <€ 2Fo=e""2e™ o, (63)  t0 0.4 (dotted ling, 0.5 (broken ling, and 0.6(solid line), respec-

vely.
providedx is large enough. Note that if62) the inequality Y

sign has reversed its direction. But this is exactly what W&y ) manifold. Homoclinic points are the intersections of
expected. For the general proof it does not cause any dlfflwu andW;, and it is known that in general the curvi,

culties. We only have to make the distinction whetheis
even or odd.

andW; form an extremly complex network. The generating
function, being nonoscillatory and well-behaved on one side

Having outlined the steps necessary to prove the aIternaE—e_g” forx— +o0 in Fig. 2) reveals this behavior. We have

ing and converging behavior for large we can use Eq47)
itself to uniquely find the values at lower
Now we briefly comment on the limiting functioR(x),
Fr(xX)—F(x) for n—oo, (64)
which should satisfy Eq(50). It is quite straightforward to
show thatF,(x)=F(x)+ ¢,(x) leads via(53) to Eq. (50)

where on the right-hand side appears an additional “rest

R, . However, the latter will vanish in the limii—oc by the
estimates presented above. Dud@6) and(63) the conver-
gence off,, is uniform in[Xq,%), and thus in Eq(53) the
summation commutes with the limit—oo for x=x,.
Moreover, it is quite trivial to show thdb0) satifies(47).
For the demonstration we only have to ins@f) into (47).

B. Construction of families of symmetric solutions

We have solved Eq47) with vanishing boundary condi-

tions forx— +o0. Typical results are shown in Fig. 2. Start-

ing from the asymptotic solutiofin the linear regimgthe

tested this interpretation by comparing with the integrable
Ablowitz-Ladik equation, and, indeed, in that integrable case
the generating function is nonoscillatory in the whole area.
More on this interesting aspect will be published elsewhere.

By construction,G; defined by Eq(49) is a solution of
Eq. (13) for any &. Since G(x) is not vanishing for
x— —oo, G; will not fulfill the boundary conditions for arbi-
»frary £&. The way we suggest to construct localized solutions
or i— —o is to use the following symmetry properties of
the basic Eq(13):

G_1=G;—G_;=G;forall i, (65
G_1=Gyg—G_i=G;_, forall i, (66)
G_1=—G;—G_j=—G;forall i, (67)

G_1=—Gy—G_;j=—G;_, forall i, respectively.
(68)

First let us look for symmetric solutions being centered

numerical evaluation is quite simple, and one is not facegyn_site, as depicted schematically on top of Fig. 1. We define
with any numerical problems. Of course, the numerics Willthe auxiliary function

fail for x— —oo, but, as we shall show below, that behavior
is not needed for the determination of most members of the
families of solutions.

The general form of the generating function is quite sur-This function is plotted in Fig. 3, and its zero poir¥’ are
prising at first glance. It has an oscillatory behavior, whicheasy to determine,
allows us to construct several types of solutions to @)
in the form Gj=F(j+¢) [see(49)], with properly chosen
& values. The oscillatory behavior, which is essential for the o ) _
following conclusions, has its origin in the nonintegrability SPecifying the indexk (out of the family of zeros for
of Eq. (4). As has been mentioned already, the stationank=0.1,2...) wedefine
solutions of Eq(4) [see Eq(13)] are related to the general-

Feo(X):=F(x+1)—F(x—1). (69

Fso(gﬁo)zo- (70)

(k) — ; ;
ized standard mappin(l4), (15), and Eq.(47) is the con- Gj=F(&"+]) for j=0, (71)
tinuous analog of Eg(13). The hyperbolic fixed poin(0,0 0 (k) _
of the mapping(14),(15) has a stableW,) and an unstable G;"=GX] for j<O0. (72
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0.4 0.7
0.2
c®
Fso 0.0}
-0.2} u
—_ . | " 1 L 1 L 1 1 1 " 1 L 1
046 —1z2 8 -4 o0 4 8 12 16
b:d ]
FIG. 3. Auxiliary function F5, (DNS equation for symmetric FIG. 5. Symmetric intersite centered DNS solutions dor 1,

solutions centered on-sjtéor =1, 5=\ equal to 0.6. The first #=0.6, andk equal to 00),1(0), and 2()\), respectively.
three zeros of ¢, are marked.
Typical examples are shown in Fig. 5.

Gj(k) defined by Eq.(71) is a solution of Eq.(13) since The thirq type of solutions, being antisymmetric and cen-

F(x) fulfills Eq. (47). Due to(70) one hasG{)=G®,, and  tered on-site, follows by

therefore Eq(72) follows by using Eq.(65). Foao(X): =F(x) (77)
Now it is clear that due to the existence of a whole set of ao ’

zeros&y° of Fg,, a whole family of on-site symmetric dis- Fool £29=0, k=0,12..., (79)

crete localized solutions exists. Typical examples are shown

In Fig. 4. G=F(£°+]) for j=0, (79

Next, symmetric solutions with intersite centers are calcu-

lated. We define G}")= —G<_kj? for j=<0. (80)
Fsi(X):=F(x)—F(x—1) (73 These solutions are shown in Fig. 6. Finally, we determine
d solve the family of antisymmetric and intersite centered solutions.
and solve for They follow from
Fei(£)=0, for k=0,1,2... . (74) F.(X):=F(x)+F(x—1), 81)
The solutionsG; are obtained from Fai(éak”)=0 k=012 ... . 82
GJ“=F(&'+]) for =0, (79 1t is straightforward to construct
GM=6Y_, for j<-1. (76) GM=F(&g'+]) for j=0, (83)
2.0 0.8
0.6
1.5f 0.4
0.2
c9 1o} c® o0 canast  Pmg
-0.2
0.5} -0.4
-0.6
005 6 BT R T T — 5 1015 20
i i
FIG. 4. Symmetric on-site centered DNS solutions éor 1, FIG. 6. Antisymmetric on-site centered DNS solutions for

n=2, andk equal to 00),1(¢ ), and 2K), respectively. o=1, »=0.6, andk equal to 00),1(), and 2(\), respectively.
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L5 For odd disturbance@7) was not proved in Sec. Il A. Note
i also that from the definitions of the operatéts andH _ we

1.0 have

05 EJ) sj(H,s)jsg si(H,s);. (89)

k)
Gi oo From here it follows thaH , is positive semidefinite for the
symmetric ground statek& 0) solutions(being either cen-
tered on-site or intersite The argument is the following.
Assume thatH, has a negative eigenvalue. If the corre-
sponding eigensolutios; is orthogonal tosz”” the con-

tradiction to

-0.5

-1.0

-1.5

J FW= aj(H_a);+> bi(H,b);=0  (90)
] ]

FIG. 7. Antisymmetric intersite centered DNS solutions for
o=1, n=1.145, andk equal to 00),1(0), and 2(7), respec- is obvious[let a;=b;=e¢; in Eqg. (90) and make use of in-
tively. equality (89)]. If the eigensolutione; is not orthogonal to
G?7"* we construct

k= _gk j<
GJ ij—lfor ]<O (84) - EiGiZ(T-FZ
Typical members of the family of solutions are depicted in f:=6— EieiG?‘”lei’ o1

Fig. 7.
g_]This completes the discussion on stationary localized soyhjch is orthogonal td;f"“. Since H.G);=0, we can
lutions of the discrete nonlinear Sckifnger equation. The yse similar arguments as above to find a contradiction.
stability of these solutions is considered next. Now let us discuss the spectral propertiesdaf. H_ has
at least one negative eigenvalue since
IV. STABILITY CONSIDERATIONS

We now go back to the time-dependent E&).in order to 2 Gj(H_G);<0 (92
discuss the dynamical behavior of the just found stationary J

solutions in the presence of perturbations. Introducing holds. For(on-site as well as intersite centeyesymmetric

ground states, howeveH _ has only one negative eigen-
value. Let us assume that two negative eigenvapuesnd
Mo exist; we denote the correspondif@thogonal eigenso-
lutions bye; andf;, respectively, and define

lﬂj:(Gj"‘aj‘f'ibj)eiM, (85)

and using the operatok$, andH _ defined in Eqs(24) and
(26), respectively, we find in the linear limit
r.=o6.6+6,f . (93
gtaj=—(H.H_a);. (86) AR

The coefficientss; # 0 andd,# 0 are determined by the con-
A. Definiteness properties of the operators dition

In Sec. Il A we have shown thatymmetricground states
realize the minimum oW under the constrairit = const. A E erjz"“:O. (94
similar calculation as that leading to E@5) (for the finite- !
dimensional cagegives in the infinite-dimensional case

SW=0 i This is possible sincg;e;G7"*#0 andz;f;G7""'#0 can
T be assumed; otherwise Eq87) and (88) iead to an imme-
diate contradiction. But now also
; s{(H_s);=0 (87)
> ri(H_r);<0 (95)
for i
will follow which, on the other hand, is forbidden via Eq.
> 5G27=0. (88  (94).
]

It is important to note that these relations are only true pro- B. Stability criterion

vided the disturbances have the same symmetry property as Coming back to the dynamical equation, we know that for
the evenground state(centered either on-site or intergite symmetric ground state solutio@ of types | or Il (see Fig.
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1), (i) H, is positive semidefinite with H,G);=0; (ii)
H_ has only one negative eigenvalue, and 2 ¢j(H_g);<0 (102
3,Gj(H_G);<0. :

Under these conditions it is well-known that instability 5nq
occurs provided

I =su —>ieif9),

; ¢;G;=0, (103
clor Ziei(HT 0]

>0, (96)

i.e.,I'>>0 according to the criteriof96).
where the supremum is determined for all possibjeinder On the contrary, if

the condition

> Gj(HZ'G);<0 (104
C0):2 ¢,6,=0. 97 ]
no test distributione; exists which maked'?>0 (i.e., we

Of course, the occurrence of instability depends on the furhave a stable situatipnLet us prove this. We define
ther properties oH _ . If, and only if, under the condition

(97) the expressioiX;¢;(H;¢); can become negative, insta- Fi:=(HZ'G), (109
bility will occur. Easier to calculate for the latter behavior is . o o .
the condition and split any test distribution in a part with indelk) (being

parallel toe; and a part with index () being perpendicular

to e;. Then we have
> Gj(H_'G);>0. (98)
J

_ L _ > ei(H_@)j=—|ul> <PHj<P|\j+Z e i(H-¢);.
The existence o _~G will become obvious later. We shalll ! J !

comment on that as well as on the evaluation of the criterion (108
in Sec. IV C. Before doing so let us complete the generaj, addition, from condition97) we obtain
stability criterion(96) by a complementary one which can be
derived in the case wheH _ has only one negative eigen-
value. It reads |M|; (PHjFHj:; e j(H-F);, (107
yz:zinfzi‘Pi(H*H+H*‘P)J 0 (99) whereas conditiof104) implies
o 2¢i(H_o);
FLi(H_F,)< FiiFyi- 108
for instability. 2,: y(H-FL; |ILL|; I (108
C. The N-theorem Finally we use the Schwarz inequality
The variational principle$96) and (99) can be evaluated
numerically by adopting a Galerkin approximation and de- ; eri(H-¢1); ; Fij(H-FL)
termining the expansion coefficients by an appropriate mini-
mization scheme. More basic evaluations go back to(8&). 2
and determine the spectral propertiedof andH _ numeri- = ; eri(H-FL)j| - (109

cally. But a criterion like(98) is much simpler since it allows

us to determine the stability properties by a straightforwardyith these ingredients we can estimafeom below the

summation. So let us prow88) for instability first. We have  second term on the right-hand side of E406). The results
can be easily combined with the first term on the right-hand

(H_e)j=—|ule;, (100 sige of Eq.(106) when
whene; is the eigensolution corresponding to tfwaly) one 2
negative eigenvalug of H_, and3;G;(H_G);<0. Next [E eiFl =2 el = FJFJ} (110
we construct ! ) !
_ is used. Then finally we arrive at
-SGHIe), d
(pj.ZTEj-F(H, G)] (101
e 2 ¢j(H_¢);=0. (111

SinceG ande are ground states of the Schinger operators
H, andH_, respectively, the signs @; ande; are inde-  Thus, for(104) we have no instability. It should be noted that
pendent ofi. Thus the denominator ifl01) cannot vanish.  under condition(104)
Under the assumptio(®8) it is straightforward to prove
that L=W—-(c+1)I =W+ (ac+1)lg, (112
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FIG. 8. Excitation densityPs vs square root of frequency shift FIG. 9. Stability diagram of solutions of types | and Il with
\ of stationary solutions of type | fosr=1.6. The monotonically respect to parity-conservingever) perturbations. The solitary
growing parts of the curve belong to stable states. waves are unstable in the hatched regions to the right of the curves
labeled | and Il, respectively.
where the subscrip denotes values being calculated for the
stationary solutions, can be used as a Liapunov functional folp stable states. Repeating the calculations for other
stability. The main steps of that proof are those presentegyalues and also for type-Il solutions, we get the informa-

above. tion about the stability behavior in ther(\)-plane. The re-
Our final point is to rewrite(98) so that it can easily be syits are depicted in Fig. 9. We have stable and unstable
evaluated. regimes which are separated in Fig. 9 by the border lines
Since named I(for type-1 solution$ and Il (for type-Il solutions,
respectively. The localized ground states of types | or Il are
( H_ iG) =—G (113 unstable in the right neighborhoods of the curves marked | or
N ) : I, respectively, i.e., in the hatched areas. One can see that
the discreteness changes the critical valug,( of o that
we can reformulat€98) as separates stable and unstable solitons. In the continuum limit
o= 2. Here we findo,~1.4. Perturbations can have other
iE G2< 0= instability for even perturbations. symmetry properties, i.e., the stationary _S(_)Iutio_ns can _be
N g ! even more unstable, and then we need additional information

(114  which usually is only available through numerical calcula-

N ~ tions. To close this last gap is the purpose of the next sub-
Let us comment once more on an additional restrictiongection.

The definiteness properties being used here assume symmet-
ric (even parity ground states with centers either on-site or
intersite. Thus the criteriorf114) gives an answer to the
question of the(initial time) dynamics of an even ground In the case of ground states of types | or Il the stability
state of type | or li(see Fig. 1 with respect to even pertur- investigations with respect to arbitrary perturbations can be
bations, i.e., perturbations of the same parity. based on a discussion of the spectral propertids of Note

Now we briefly present the results of the evaluation ofthat in analogy to the continuum case, also for the discrete
(114). Let us denote the excitation density in the chain by case theorems are known which relate the forms of the eigen-
solutions to the hierarchy of eigenvalues. But for the more
general cases, i.e., all the solutions constructed by the gen-
erating functions, we have to rely gsimple numerical pro-
cedureq 30] to determine the spectral behaviorstdf and
As long asPg is increasing withy, the ground state is stable H_. We do not discuss more special cases separately but
with respect to even perturbations. A typical example for thesummarize the results.
evaluation of the criterion is shown in Fig. 8. This graph is For ground states of type (symmetric even parity, no
for a fixed o-value (c=1.6 in Fig. § and for type-l solu- nodes, centered on-siteo additional negative eigenvalue of
tions. The monotonically growing parts of the curve belongH _ enters the stability considerations, compared to the situ-

D. Arbitrary perturbations

Ps=> G’. (115
J
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FIG. 10. Antisymmetric on-site centered solutions of the DNKG  FIG. 11. Antisymmetric intersite centered solutions of the
equation forc=1, =0.8, andk equal to 00) and 1(d), respec- DNKG equation fore=1, »=0.8, andk equal to 0Q) and

tively. 1(), respectively.

(117

ation discussed in Sec. IV C. Thus, curve | of Fig. 9 is the (H,G);=0

exact(and completely genenastability boundary.
in strict analogy to Eq.{24). In contrast to the previous

The situation is different for ground states of typédym- L
metric with even parity, no nodes, centered intejsitdthese  Schralinger case, we apply the boundary condition

solutions are always unstable with respect to odd perturba-
tions. . 7
Other members of the families starting from types | or Il, ) “T Gj=- E (118
respectively (i.e., those being constructed fromg, and =
Fsi, respectively are in general not stable, although for \yiih slight but obvious modifications we can prove the ex-
some of the solutions with even parity the possible Uppe{sience of a generating functidsee Eq(47)] and determine
I|m|t§ for the growth re}tes are so sma}ll that physically thosestationary solutions of Eq(116). Typical examples are
solutions can be considered as quasistable. To be more COLRown in Figs. 10—13. Let us start with odd symmetry solu-
crete, in Fig. 4, the ground state solutio® is stable  ions peing centered on-site. These belong to well-known
whereas all the other even symmetric solutions, centered Ol _tyne distributions. Intersite centered kink-type solutions
site (marked by(J and A in Fig. 4), are unstable. On the 5re shown in Fig. 11. Figures 12 and 13 belong to even
contrary, all the even symmetric solutions, centered intersitesy mmetric solutions being either centered on-site or intersite,
and shown in Fig. 5,0, A) are unstable. Note again that yegpectively. Note that in each of the figures only the first
some of the so-called unstable solutions have extremely,q types(out of a whole family of solutions are shown.
small growth rates so tha_t from the application point of view  Now we present stability results for discrete solitary
they may be called quasistable. _ waves of the DNKG equation. The ground staf)(solution
Next we turn to the odd symmetric solutions of the DNS, ghown in Fig. 10(odd symmetry, centered on-sités un-
shown in Fig. 6(centered on-siteand Fig. 7(centered inter-  giapie We can prove this by perturbing the stationary solu-
site). Our analysis has shown that all these solutions are UYion G. in the form
stable. The calculated growth rates are significant so that !

there are no quasistable solutions. U;=Gj+g;. (119

V. KLEIN-GORDON CHAINS After linearization we obtain fog;
In the preceding sections we have outlined the general ﬂfgj=—(H,g)J~, (120
methods for proving the existence and stability of discrete
solitary solutions in nonlinear chains. Specific results havavhereH _ is defined in Eq(26) (in the following we con-
been presented for the DNS equati@). Now we demon-  sider onlyo=1). Note that Eq(120) is much simpler than
strate the power of the proposed procedure by applying it tgq. (86). We can easily determine the eigenvaluesiof for
the discrete nonlinear Klein-GorddDNKG) equation each stationary solution. The resulisstability for negative
eigenvalues oH _) are as follows.
anj—(Uj+l—2Uj+Uj,l)i nZUjI((H— 1)UJ-S"+1=0, As has been mentioned already, the ground state solution
(116  (O) shown in Fig. 10(odd parity, centered on-sjtés un-
stable. The same holds for the next memha) (of the fam-
where in the following we shall discuss, in close similarity to ily. On the other hand, the ground staté) shown in Fig. 11

the previous considerations, only the lower sign. Stationaryodd parity, centered intersjtés stable, whereas the next
solutionsU; =G; obey the equation state (1) is again unstable. It is also straightforward to de-
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FIG. 12. Symmetric on-site centered solutions of the DNKG

equation fore=1, =2, andk equal to 0QO) and 1), respec-

FIG. 13. Symmetric intersite centered solutions of the DNKG
tively.

equation fore=1, =2, andk equal to 0Q) and 1), respec-
tively.

termine stationary even parity solutions of EiL6). Typical more, we have worked out variational principles for deter-
examples are shown in Fig. 182entered on-sijeand Fig. 13

mining the stability properties. Besides the development of

: . . noteworthy methods, two physical results are most impor-

e s st oy o un A () The crte DNS s  songr endency o for
stable, whereas the nextl) state is stable. On the other very Iocallzec_i_states t-h an |_ts continuum Vers (0_n_th col-

' . ; ' : lapse. The critical nonlinearity parameter is significantly re-
hand, Fhe gr_ound stat€) of the intersite centere_d solutions duced.(ii) Additional states have been found. Especially for
(see F'g'. 1Bis unstable whereas the ngxt stait&)(!‘s stable. ,the DNKG, there are numeroustable ones which are of
We remind the reader that the solutions are numbereq hysical relevance. It is quite obvious that the methods being
with _respe(:,‘t to the zero§ of the corresp(_)ndlng generatin eveloped here can also be applied to other discrete systems.
function; a “ground state” belongs to the first zero.

The analysis of the DNKG equation thus detects stabl

g Finally is should be noted that fully time-dependent simu-
localized modes which might be useful in nonlinear transpor ations of Eqs(4) and(116) have confirmed all the findings
mechanisms.

bresented in this paper. The simulations also allow us to

determine the nonlinear developments of the instabilities;

however, their presentation is beyond the scope of the
VI. SUMMARY AND OUTLOOK present paper.

In this paper we have discussed various possibilities to
determine solitary solutions in discrete systems. The method,
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