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Techniques for examining the existence and stability of localized modes are presented. The methods are
demonstrated in detail for a discrete nonlinear Schro¨dinger ~DNS! equation, but also apply to other systems,
e.g., the discrete nonlinear Klein-Gordon~DNKG! equation. Stationary states may be found via variational
principles or through generating functions. The latter technique makes use of solutions of a continuous
difference-equation and allows for localized modes with different symmetry properties. It is shown that several
families of stationary solutions exist, and a constructive procedure to calculate the latter is presented. In the
case of the DNS equation, an analytical stability criterion for symmetric solitons (N-theorem! proves that the
discrete equation exhibits localization in regimes where blow-up cannot occur in the continuum analog. Stable
nonlinear solutions are found for the DNKG equation. The analytical calculations are supplemented by nu-
merical simulations.@S1063-651X~96!11309-X#

PACS number~s!: 03.40.Kf, 42.65.Tg, 42.81.Dp, 52.35.Sb

I. INTRODUCTION

In continuous systems it is well-known@1–5# that as a
result of balance between nonlinear and dispersive effects
specific nonlinear objects, namely solitary waves, may ap-
pear. The one-dimensional cubic nonlinear~continuous!
Schrödinger equation is a paradigm for soliton bearing equa-
tions and one of the most useful physical models of nonlin-
ear science. Since it can be solved by the inverse scattering
transform, in principle all of its rich dynamical behavior is
known. The situation is different for discrete systems. Here,
not so many results are known analytically, except for the
integrable form invented by Ablowitz and Ladik@6#. How-
ever, the integrable discrete cubic nonlinear Schro¨dinger
equation does not appear in physically motivated models
@7–11#, such as coupled nonlinear atomic strings, arrays of
coupled optical wave guides, proton dynamics in hydrogen-
bonded chains, the Davydov and Holstein models for trans-
port of excitation energy in biophysical systems, Scheibe ag-
gregates, the Hubbard model, electrical lattices, DNA
dynamics, molecular crystals, and so on.

Nonlinear localized modes in discrete systems have been
a subject of intense but mainly numerical investigations dur-
ing recent years@12–21#. Different types of localized states
were found, and very elegant and efficient schemes have
been developed for calculating solitary wave solutions. The
broad and discrete solutions may be approximated by the
corresponding continuum solutions, but there exist other
types of discrete modes that definitely will not obey the con-
tinuum limit. Some of the latter show stable behavior in nu-
merical experiments. However, from the principle point of
view, numerical simulations cannot prove stability in the
strict sense. Thus, analytical or at least semianalytical criteria
are strongly needed, and it is the primary motivation of this
paper to develop systematic analytical methods for examin-
ing the existence and stability of solitary wave solutions in
discrete nonlinear systems.

When studying existence and stability@22–24# of discrete
solitary waves one immediately recognizes that the underly-
ing spectral problems are strongly related. The latter depend

on the boundary conditions, parity requirements, nonlinear
potentials, and last but not least, the structure of the system
under consideration. Although it is possible to propose some
general strategy being independent of the actual system@25#,
its evaluation always requires some modifications when a
specific problem is investigated. Thus, when we present
some additional methods for existence of discrete solitary
waves, we shall demonstrate them on a specific example, i.e.,
the discrete nonlinear Schro¨dinger ~DNS! equation, but one
should have in mind that they should be applicable also to
other systems, e.g., the discrete nonlinear Klein-Gordon
~DNKG! equation. After the detailed description and exem-
plification for one equation~DNS!, one should be able to
apply the procedure immediately to other systems being of
interest. Our brief consideration of the DNGK equation
should be interpreted as a first step in this direction.

We choose a DNS equation with arbitrary power nonlin-
earity because of the following reason@26–29#. The continu-
ous one-dimensional nonlinear Schro¨dinger equation also
possesses solitary wave solutions when its power nonlinear-
ity is changed from cubic to other algebraic forms. Such
different types of nonlinearities might appear for at least two
reasons.~i! The physical model may require a strong anhar-
monic coupling which does not result in a cubic nonlinearity.
The latter is a characteristic of the integrable Schro¨dinger
equation.~ii ! From the mathematical point of view, it may be
advisable to raise the exponent of the~cubic! power nonlin-
earity in order to mimic the multidimensional behavior of the
Schrödinger model. Solitary wave solutions of a one-
dimensional continuous nonlinear Schro¨dinger equation with
arbitrary power nonlinearity can be stable~corresponding,
e.g., to the stable solitons! or unstable. The latter means that
dispersion balances nonlinear steepening only in the station-
ary case. Small perturbations around the solitary wave may
break this balance leading to instability and perhaps collapse.
Because of that rich dynamical behavior, our DNS model
will be the exact discrete analog of the general continuous
nonlinear Schro¨dinger equation.

The first area concerns theexistenceof discrete solitary
wave solutions. Let us, for a moment, consider the con-
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tinuum nonlinear Schro¨dinger equation

i ] tc1]x
2c1~s11!ucu2sc50. ~1!

This equation reduces fors51 to the famous cubic nonlin-
ear Schro¨dinger equation. At this stage we would like to
mention that in the following we shall always consider the
focusing case@with a plus sign in front of the nonlinearity of
Eq. ~1!#, but all the considerations will also work in the
defocusing case. The~continuous! Schrödinger equation~1!
posseses, for arbitrary power nonlinearities, stationary soli-
tary wave solutions. If we introduce

c~x,t ![G~x!exp~ ih2t !, ~2!

with the stationary envelopeG(x) and a nonlinear frequency
shift h2, stationary localized solutions of Eq.~1! can be pre-
sented explicitly, i.e.,

G~x!5h1/s sech~1/s!@sh~x2x0!#, ~3!

wherex0 is a free parameter. When we now turn to a discrete
version of Eq.~1! ~which will be the main object of demon-
stration in this paper!,

i ] tc j1c j1122c j1c j211~s11!uc j u2sc j50 ~4!

for j50,61,62, . . . and with boundary conditions
uc j u→0 for u j u→` the situation has completely changed.
We do not know analytically any nontrivial~localized! soli-
tary wave solution. Of course, numerically solutions have
been found~also for finite systems with Dirichlet or periodic
boundary conditions!. We shall discuss some strategy to con-
struct stationary solutions of Eq.~4! in the form

c j5Gjexp~ ilt ! ~5!

in the next section.
Let us emphasize another qualitative difference between

Eqs. ~1! and ~4!. Even in the nonintegrable casesÞ1, Eq.
~1! possesses three constants of motion,

N0
2~c!:5E

2`

1`

dxucu2, ~6!

P~c!:5 i E
2`

1`

dxc]xc*1 c.c., ~7!

H~c!:5E
2`

1`

dx@ u]xcu22ucu2s12#, ~8!

reflecting conservation of particle number, momentum, and
energy, respectively.~In the integrable cases51 we have an
infinite number of independent conserved quantities.! Now,
in the discrete situation~4! translation symmetry is broken,
and no conserved analog toP exists. Instead, we only have
two constants of motion:

N0
2~c!:5 (

j52`

`

uc j u2, ~9!

H~c!:5 (
j52`

`

@ uc j112c j u22uc j u2s12#. ~10!

Note that Eq.~4! can be written in Hamiltonian form

i ċn5
]H

]cn*
, ~11!

showing that it is still conservative. However, the lack of
conservation of momentum has severe consequences for the
existence of localized solutions. For example, we do not ex-
pect a continuous free parameter likex0. Moreover, in the
continuum case~1!, Galilei invariance @X5x2Vt,T5t#
produces from Eq.~2! the whole set of solutions

cV~X,T!5S h21
1

4
V2D 1/2s sech~1/s!FsS h21

1

4
V2D 1/2XG

3exp~ ih2T1 iVX/2!. ~12!

We do not have an equivalent class of solutions in the dis-
crete case.

We can also view this problem from another viewpoint.
When introducing into the stationary form of Eq.~4!, i.e.,

Gj1122Gj1Gj215lGj2~s11!uGj u2sGj , ~13!

the abbreviation Qn :5Gn , and defining
Jn11 :5Qn112Qn , we can rewrite Eq.~13! in the form of a
generalized standard mapping

Jn115Jn1 f * ~Qn!, ~14!

Qn115Qn1Jn11 , ~15!

with

f * ~Qn!:5lQn2~s11!uQnu2sQn . ~16!

Imaginating the rich and complicated ‘‘dynamics’’ inherent
in such types of mappings, we get a feeling for the problems
encountered when trying to find analytical solutions. Thus,
any progress in this respect will be very helpful.

Besides existence,stabilityproblems are next urgent to be
solved. Again let us motivate the idea by comparing with the
continuum case~1!. For the latter, a virial theorem can be
derived,

] t
2E dxx2cc*58H14~22s!E dxucu2s12. ~17!

There is no hope to derive a similar virial theorem in the
discrete case~4!. In the continuous case it has been shown
that for s>2 ~stationary! solitary wave solutions become
unstable under small perturbations. The question, however,
arises whethers52 is also a ‘‘critical’’ exponent in the
discrete situation. We shall comment on that in the second
part of the paper.

The whole manuscript is organized as follows. In the next
section we comment on variational principles for the exist-
ence of solutions. We shall favor one principle which will
work systematically for symmetric solutions and which has a
form being suitable for stability considerations. As has been
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indicated already, we shall obtain only some ground states
by that procedure. In Sec. III we show, by introducing gen-
erating functions, that several families of stationary solutions
do exist. A constructive procedure for calculating the various
members of different families is presented. Section IV is
devoted to stability considerations. For the~symmetric!
ground states, a so-calledN-theorem is derived which allows
us to determine stability with respect to a certain class of
symmetric perturbations. In addition to the analytical tools,
in the general case we also have to rely on numerical simu-
lations. The latter are especially useful for following the non-
linear developments of linearly unstable modes. After having
demonstrated the methods for a DNS equation, with results
for the latter, we briefly turn to a second example in order to
show that the procedure is general enough to be useful for
several discrete systems. In Sec. V, results for a DNKG
equation are presented. The paper is concluded by a short
summary and outlook.

II. GROUND STATES FROM VARIATIONAL PRINCIPLES

The aim of this section is to obtain solutions of Eq.~13!
by a variational approach. First we comment on the simple
case of a finite chain with 2N11 oscillators and periodic
boundary conditions. One may be tempted to believe that the
following procedure is the most promising one: Minimizing
H(c) under the constraint of fixedN0

2(c). An obvious ad-
vantage of this approach would be a simultaneous proof of
stability. Note that for fixedN0

2 , H is bounded from below:

H>2maxucnu2sN0
2>2N0

s12 . ~18!

In case of finiteN0
2 the minimum will be attained on some

state being evidently stable with respect to perturbations
yielding the same value ofN0

2. When accepting this proce-
dure,l plays the role of a Lagrange multiplier which has to
be determined from the constraintN0

25 const. But in this
way one has problems to show that the Lagrange parameter
l can attain arbitrary continuous valuesl5h2. This diffi-
culty is a consequence of the absence of scaling invariance in
the discrete situation.

An alternative is to minimize

W~c!5 (
n52N

N

@ ucn112cnu21lucnu2# ~19!

under the constraint

I ~c!5 (
n52N

N

ucnu2s125 const. ~20!

We assume in the following that — besides a frequency shift
factor exp(ilt) — the stationary states (Gn) are real valued.

The first variation ofW leads to

2G̃i1112G̃i2G̃i211lG̃i2m~s11!G̃i
2s1150,

~21!

wherem is the Lagrangian multiplier. Multiplying byG̃i and
summing up overi results in

(
i

~G̃i112G̃i !
21l(

i
G̃i
25m~s11!(

i
G̃i
2s12 .

~22!

Thusm.0 for l.0 ~which is the case we are interested in!.
DefiningGi5m1/2sG̃i we get for the first variation

dW5 (
i52N

N

dc i~H1G! i50, ~23!

i.e., (H1G) i50 with

~H1f! i :52f i1112f i2f i211lf i2~s11!uGi u2sf i .
~24!

Note that the Lagrangian multiplier has been scaled out, and
solutions exist for continous values ofl5h2. Furthermore,
for a finite chain the existence of the minimum follows from
the fact thatW is bounded from below for fixedI . For com-
pleteness and later use we also present the second variation.
Using the abbreviationdcn5an1 ibn , a short calculation
leads to

d2W5 (
i52N

N

ai~H2a! i1 (
i52N

N

bi~H1b! i>0, ~25!

where

~H2f! i :52f i1112f i2f i211lf i

2~2s11!~s11!uGi u2sf i

5~H1f! i22s~s11!uGi u2sf i . ~26!

For a finite system, the fact that the minimum ofW ~under
the constraintI 5 const! is attained for someG[$Gi% is
obvious. The situation is completely different for an infinite
system. Then we need a compactness lemma which ensures
the survival of the constraintI 5 const for the minimizing
sequence. Since this is an interesting point with important
physical implications, we present in the following those steps
which show which solitons are selected in an infinite chain
by this minimization procedure. In Fig. 1 we have character-
ized the typical modes we have in mind: they may have even
or odd parities, and their centers may be on-site or intersite,
respectively. Note also that only those with a low number of
nodes~0 and 1! are shown.

A. Even parity ground state solutions

First we should note thatW is bounded from below,
W>0. Then, a minimizing sequencec (n), n50,1,2, . . . ex-
ists. We use the notationc (n)[$c i

(n) , i50,61,62, . . .%
for eachn, and we can choose a weakly convergent subse-
quence

c~n!⇀c and W~n![W~c~n!!→ inf
w

W~w! for n→`.

~27!
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Note that we have not yet provenW(c)5 infW, i.e., that the
minimum ofW will be attained byc. The purpose of the
next steps is to show under which conditions the infimum
will be attained.

We can assume that the weakly convergent subsequence
consists of non-negative elementsc i

(n)>0, i50,61,
62, . . . forn50,1,2, . . . . Thereason is

W~ ufu!<W~f!. ~28!

Moreover, we can even work with only positive elements
c i
(n).0 since it is straightforward to show that to each

c (n) with zero element~s! a corresponding one with only
positive elements and a lower valueW(c (n)) can be con-
structed. The idea is the following: Let us assume
c i21
(n) .0, c i

(n)50, andc i11
(n) >0 for some indexi and fixed

n. Then define

c̃m
~n! :5cm

~n!/~11e2s12!1/2s12 for mÞ i , ~29!

c̃ i
~n!5I 1/2s12e/~11e2s12!1/2s12.0. ~30!

Obviously,Ĩ (n)5I (n), where the superscript indicates that we
evaluate Eq.~20! for c (n) ~and c̃ (n), respectively!, and

W̃~n!,W~n! for e.0 and e→10. ~31!

We have thus proven that a minimizing sequence with
strictly positive elementsc i

(n)→c i exists. Now let us have a
look at the constraintI 5 const. The latter is an absolute
convergent series for each elementc (n). Thus we can rear-
range the summations in Eq.~20! without changing the value
of I . Let us do this such that

c j
~n!<c i

~n! for u j u> i . ~32!

From here it will follow c j<c i for u j u> i . In other words,
we consider distributions with a single maximum. The latter
can appear either fori50, when the symmetric solutions are
centered on-site, or ati50 and i51, for intersite centered
solutions. The question is what happens to the value ofW
during such a rearrangement of the elementsc j

(n) of c (n).
One can prove thatW attains a lower value after rearrange-
ment. In other words, single maximum solutions correspond
to the minimal value ofW.

Having in mind this property of the minimizing sequence
we can show the survival of the constraintI in the limiting
processc (n)→c. Normalization

N0
25 (

j52`

`

uc j
~n!u2>(

j51

m

uc j
~n!u2>m~cm

~n!!2 ~33!

leads to the estimate

~cm
~n!!2<

N0
2

umu
for umu>1. ~34!

Thus we find for the ‘‘rest’’ defined by

I ~n!5 (
i52m

m

uc i
~n!u2s121R~n!~m! ~35!

the estimate

R~n!~m!<2N0
2s12 (

uku.umu

1

uku2s12[ f ~m!, ~36!

i.e., an upper bound independent onn. In addition, the upper
bound tends to zero for largem,

f ~m!→0 for m→`. ~37!

Therefore,

(
i52m

m

uc i
~n!u2s12→ (

i52m

m

uc i u2s12 for n→` ~38!

and any fixedm. In conclusion, the constraint survives~be-
ing equivalent to the existence of a compactness lemma! and
the minimum of the variational principle will be attained by
some distributionc[G. Thus, we can find the even parity
ground states by the variational principle which has been
formulated above.

B. Odd parity solutions

One might be tempted to proceed for odd parity ground
states~with only one zero either on-site or intersite! by using
the same variational principle in the subspace of odd func-

FIG. 1. Sketches of even parity~I, maximum on-site; II, maxi-
mum intersite! and odd parity~I 8, zero on-site; II8, zero intersite!
solutions.
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tions ~applying an additional boundary condition, e.g.,
G0[c050). Odd parity means for on-site centered solu-
tions ~which are considered in the following!

Gi52G2 i for i>0, ~39!

when G050; the condition can be easily modified for an
intersite node withG052G1. In the following we show that
the minimum ofW, with the constraintI 5 const, will not be
attained by some functionw, i.e., in the notation of Sec. II A
no functionw exists such thatW(w)5 infW for odd parity
solutions~39!.

The proof is indirect~by conductio ad absurdum!. Let us
assume that forc (n)→c

W~c~n!!→ inf
w

W~w!5W~c! ~40!

is true. Without loss of generality we can assume
c1[G1.0 ~andc050 for an on-site node!. Now compare
with the valueW̃ which is obtained by using instead ofc the
elements

c̃05c0 , ~41!

c̃152c̃21[ f e, ~42!

c̃ i5 fc i21 for i.1, ~43!

c̃ i5 fc i21 for i,21. ~44!

They yield Ĩ5I if

f 2s12@2e2s121I #5I , ~45!

i.e., for e.0 we have to choosef,1 accordingly. Now it is
straightforward to calculate

W̃,W for e!1. ~46!

It is clear that the procedure~41!–~44! leads to a lower value
of W which contradicts our assumption~40!. Thus, for odd
parity modes the infimum of the variational principle cannot
be attained by some distributionc. This implies that, if at all,
the existence of the odd parity solutions has to be proven by
some other means. In the next section we present a simple
method to calculate stationary solutions of even or odd par-
ity, also with various numbers of nodes.

III. GENERATING FUNCTIONS FOR FAMILIES
OF STATIONARY SOLUTIONS

We now outline a general procedure to construct station-
ary solutions. Consider the difference equation

2F~x11!12F~x!2F~x21!1lF~x!

5~s11!@F~x!#2s11, 2`,x,1`, ~47!

with the boundary condition

F~x!→0 for x→`, ~48!

wherex is a continuous variable. If this difference equation
has a solutionF(x) for all x, then

Gi5F~j1 i ! 2`, i,`, i integer, ~49!

is obviously a solution of Eq.~13! for arbitrary realj. Note
that even ifF(x) is not localized forx→2` one can con-
structGi with Gi→0 for i→2` by using the symmetries of
the discrete equation~13!. This will be done choosing appro-
priate values forj.

A. Existence of solutions

First, the existence of solutions to Eq.~47! will be proven
by making use of the formula

F~x!5e2dx2
s11

sinh~d!(j51

`

@F~x1 j !#2s11sinh~d j !,

~50!

whered is determined via the ansatzF(x);e2dx in the lin-
ear regimex→`, i.e., withh5Al:

sinh
d

2
5

h

2
. ~51!

Two facts are important:~i! The solution of Eq.~50! obeys
Eq. ~47!. ~ii ! It is sufficient to prove the existence of a solu-
tion to Eq. ~50! for @x0 ,`), where x0 is some large
x-value. Then rewriting Eq.~47! as

F~x!52F~x12!1F~x11!$l122~s11!@F~x11!#2s%,
~52!

we can extend the existence region to any finitex,x0, which
will be needed for the construction of solutions to Eq.~13!
by symmetry arguments in the following subsection.

We shall show now that the Volterra type equation~50!
can be solved by iteration,

Fn11~x!5e2dx2
s11

sinh~d!(j51

`

@Fn~x1 j !#2s11sinh~d j !,

~53!

with F0[e2dx.
It is straightforward to show that

F1~x!.0 for x.x0 , ~54!

wherex0 is a ~large! x-value to be determined appropriately.
We have

F1~x!5F0~x!2
~s11!e2~2s11!dx

sinh~sd!

1

4sinh@~s11!d#
.

~55!

From here also follows

F1,F0 . ~56!

For largex.x0, we can write

uF1~x!2F0~x!u,e1F0~x!. ~57!
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Let us consider~54!, ~56!, and~57! as the first step within a
proof by complete induction. It is straightforward to show
that from

Fn.0, ~58!

Fn11<Fn , ~59!

and

uFn112Fnu<en11F0<en11e2dx0 ~60!

follows the next step

Fn11.0, ~61!

Fn12>Fn11 , ~62!

uFn122Fn11u<en12F0<en12e2dx0, ~63!

providedx is large enough. Note that in~62! the inequality
sign has reversed its direction. But this is exactly what we
expected. For the general proof it does not cause any diffi-
culties. We only have to make the distinction whethern is
even or odd.

Having outlined the steps necessary to prove the alternat-
ing and converging behavior for largex, we can use Eq.~47!
itself to uniquely find the values at lowerx.

Now we briefly comment on the limiting functionF(x),

Fn~x!⇀F~x! for n→`, ~64!

which should satisfy Eq.~50!. It is quite straightforward to
show thatFn(x)5F(x)1wn(x) leads via~53! to Eq. ~50!
where on the right-hand side appears an additional ‘‘rest’’
Rn . However, the latter will vanish in the limitn→` by the
estimates presented above. Due to~60! and~63! the conver-
gence ofFn is uniform in @x0 ,`), and thus in Eq.~53! the
summation commutes with the limitn→` for x>x0.

Moreover, it is quite trivial to show that~50! satifies~47!.
For the demonstration we only have to insert~50! into ~47!.

B. Construction of families of symmetric solutions

We have solved Eq.~47! with vanishing boundary condi-
tions forx→1`. Typical results are shown in Fig. 2. Start-
ing from the asymptotic solution~in the linear regime! the
numerical evaluation is quite simple, and one is not faced
with any numerical problems. Of course, the numerics will
fail for x→2`, but, as we shall show below, that behavior
is not needed for the determination of most members of the
families of solutions.

The general form of the generating function is quite sur-
prising at first glance. It has an oscillatory behavior, which
allows us to construct several types of solutions to Eq.~13!
in the formGj5F( j1j) @see~49!#, with properly chosen
j values. The oscillatory behavior, which is essential for the
following conclusions, has its origin in the nonintegrability
of Eq. ~4!. As has been mentioned already, the stationary
solutions of Eq.~4! @see Eq.~13!# are related to the general-
ized standard mapping~14!, ~15!, and Eq.~47! is the con-
tinuous analog of Eq.~13!. The hyperbolic fixed point~0,0!
of the mapping~14!,~15! has a stable (Ws) and an unstable

(Wu) manifold. Homoclinic points are the intersections of
Wu andWs , and it is known that in general the curvesWu
andWs form an extremly complex network. The generating
function, being nonoscillatory and well-behaved on one side
~e.g., forx→1` in Fig. 2! reveals this behavior. We have
tested this interpretation by comparing with the integrable
Ablowitz-Ladik equation, and, indeed, in that integrable case
the generating function is nonoscillatory in the whole area.
More on this interesting aspect will be published elsewhere.

By construction,Gi defined by Eq.~49! is a solution of
Eq. ~13! for any j. Since G(x) is not vanishing for
x→2`, Gi will not fulfill the boundary conditions for arbi-
trary j. The way we suggest to construct localized solutions
for i→2` is to use the following symmetry properties of
the basic Eq.~13!:

G215G1→G2 i5Gi for all i , ~65!

G215G0→G2 i5Gi21 for all i , ~66!

G2152G1→G2 i52Gi for all i , ~67!

G2152G0→G2 i52Gi21 for all i , respectively.
~68!

First let us look for symmetric solutions being centered
on-site, as depicted schematically on top of Fig. 1. We define
the auxiliary function

Fso~x!:5F~x11!2F~x21!. ~69!

This function is plotted in Fig. 3, and its zero pointsj i
so are

easy to determine,

Fso~jk
so!50. ~70!

Specifying the indexk ~out of the family of zeros for
k50,1,2, . . . ) wedefine

Gj
~k!5F~jk

so1 j ! for j>0, ~71!

Gj
~k!5G2 j

~k! for j<0. ~72!

FIG. 2. Generating functions~DNS equation! for s51, h equal
to 0.4 ~dotted line!, 0.5 ~broken line!, and 0.6~solid line!, respec-
tively.
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Gj
(k) defined by Eq.~71! is a solution of Eq.~13! since

F(x) fulfills Eq. ~47!. Due to~70! one hasG1
(k)5G21

(k) , and
therefore Eq.~72! follows by using Eq.~65!.

Now it is clear that due to the existence of a whole set of
zerosjk

so of Fso , a whole family of on-site symmetric dis-
crete localized solutions exists. Typical examples are shown
in Fig. 4.

Next, symmetric solutions with intersite centers are calcu-
lated. We define

Fsi~x!:5F~x!2F~x21! ~73!

and solve for

Fsi~jk
si!50, for k50,1,2, . . . . ~74!

The solutionsGj are obtained from

Gj
~k!5F~jk

si1 j ! for j>0, ~75!

Gj
~k!5G2 j21

~k! for j<21. ~76!

Typical examples are shown in Fig. 5.
The third type of solutions, being antisymmetric and cen-

tered on-site, follows by

Fao~x!:5F~x!, ~77!

Fao~jk
ao!50, k50,1,2, . . . , ~78!

Gj
~k!5F~jk

ao1 j ! for j>0, ~79!

Gj
~k!52G2 j

~k! for j<0. ~80!

These solutions are shown in Fig. 6. Finally, we determine
the family of antisymmetric and intersite centered solutions.
They follow from

Fai~x!:5F~x!1F~x21!, ~81!

Fai~jk
ai!50, k50,1,2, . . . . ~82!

It is straightforward to construct

Gj
~k!5F~jk

ai1 j ! for j>0, ~83!

FIG. 3. Auxiliary functionFso ~DNS equation for symmetric
solutions centered on-site! for s51, h5Al equal to 0.6. The first
three zeros ofFso are marked.

FIG. 4. Symmetric on-site centered DNS solutions fors51,
h52, andk equal to 0(s),1(L), and 2(v), respectively.

FIG. 5. Symmetric intersite centered DNS solutions fors51,
h50.6, andk equal to 0(s),1(h), and 2(n), respectively.

FIG. 6. Antisymmetric on-site centered DNS solutions for
s51, h50.6, andk equal to 0(s),1(h), and 2(n), respectively.
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Gj
~k!52G2 j21

~k! for j<0. ~84!

Typical members of the family of solutions are depicted in
Fig. 7.

This completes the discussion on stationary localized so-
lutions of the discrete nonlinear Schro¨dinger equation. The
stability of these solutions is considered next.

IV. STABILITY CONSIDERATIONS

We now go back to the time-dependent Eq.~4! in order to
discuss the dynamical behavior of the just found stationary
solutions in the presence of perturbations. Introducing

c j5~Gj1aj1 ib j !e
ilt, ~85!

and using the operatorsH1 andH2 defined in Eqs.~24! and
~26!, respectively, we find in the linear limit

] t
2aj52~H1H2a! j . ~86!

A. Definiteness properties of the operators

In Sec. II A we have shown thatsymmetricground states
realize the minimum ofW under the constraintI 5 const. A
similar calculation as that leading to Eq.~25! ~for the finite-
dimensional case! gives in the infinite-dimensional case
d2W>0, i.e.,

(
j
sj~H2s! j>0 ~87!

for

(
j
sjGj

2s1150. ~88!

It is important to note that these relations are only true pro-
vided the disturbances have the same symmetry property as
the evenground state~centered either on-site or intersite!.

For odd disturbances~87! was not proved in Sec. II A. Note
also that from the definitions of the operatorsH1 andH2 we
have

(
j
sj~H2s! j<(

j
sj~H1s! j . ~89!

From here it follows thatH1 is positive semidefinite for the
symmetric ground state (k50) solutions~being either cen-
tered on-site or intersite!. The argument is the following.
Assume thatH1 has a negative eigenvalue. If the corre-
sponding eigensolutionej is orthogonal toGj

2s11 the con-
tradiction to

d2W5(
j
aj~H2a! j1(

j
bj~H1b! j>0 ~90!

is obvious@let aj5bj5ej in Eq. ~90! and make use of in-
equality ~89!#. If the eigensolutionej is not orthogonal to
Gj
2s11 we construct

f j :5Gj2
( iGi

2s12

( ieiGi
2s11ei , ~91!

which is orthogonal toGj
2s11 . Since (H1G) j50, we can

use similar arguments as above to find a contradiction.
Now let us discuss the spectral properties ofH2 . H2 has

at least one negative eigenvalue since

(
j
Gj~H2G! j,0 ~92!

holds. For~on-site as well as intersite centered! symmetric
ground states, however,H2 has only one negative eigen-
value. Let us assume that two negative eigenvaluesm1 and
m2 exist; we denote the corresponding~orthogonal! eigenso-
lutions byej and f j , respectively, and define

r j :5d1ej1d2f j . ~93!

The coefficientsd1Þ0 andd2Þ0 are determined by the con-
dition

(
j
r jGj

2s1150. ~94!

This is possible since( jejGj
2s11Þ0 and( j f jGj

2s11Þ0 can
be assumed; otherwise Eqs.~87! and ~88! lead to an imme-
diate contradiction. But now also

(
j
r j~H2r ! j,0 ~95!

will follow which, on the other hand, is forbidden via Eq.
~94!.

B. Stability criterion

Coming back to the dynamical equation, we know that for
symmetric ground state solutionsGj of types I or II ~see Fig.

FIG. 7. Antisymmetric intersite centered DNS solutions for
s51, h51.145, andk equal to 0(s),1(h), and 2(n), respec-
tively.
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1!, ~i! H1 is positive semidefinite with (H1G) j50; ~ii !
H2 has only one negative eigenvalue, and
( jGj (H2G) j,0.

Under these conditions it is well-known that instability
occurs provided

G2:5 sup
C~w!

2( jw j~H2w! j

( jw j~H1
21w! j

.0, ~96!

where the supremum is determined for all possiblew j under
the condition

C~w!:(
j

w jGj50. ~97!

Of course, the occurrence of instability depends on the fur-
ther properties ofH2 . If, and only if, under the condition
~97! the expression( jw j (Hjw) j can become negative, insta-
bility will occur. Easier to calculate for the latter behavior is
the condition

(
j
Gj~H2

21G! j.0. ~98!

The existence ofH2
21G will become obvious later. We shall

comment on that as well as on the evaluation of the criterion
in Sec. IV C. Before doing so let us complete the general
stability criterion~96! by a complementary one which can be
derived in the case whenH2 has only one negative eigen-
value. It reads

g2:5 inf
w

( jw j~H2H1H2w! j
(w j~H2w! j

.0 ~99!

for instability.

C. The N-theorem

The variational principles~96! and ~99! can be evaluated
numerically by adopting a Galerkin approximation and de-
termining the expansion coefficients by an appropriate mini-
mization scheme. More basic evaluations go back to Eq.~86!
and determine the spectral properties ofH1 andH2 numeri-
cally. But a criterion like~98! is much simpler since it allows
us to determine the stability properties by a straightforward
summation. So let us prove~98! for instability first. We have

~H2e! j52umuej , ~100!

whenej is the eigensolution corresponding to the~only! one
negative eigenvaluem of H2 , and( jGj (H2G) j,0. Next
we construct

w j :5
2( iGi~H2

21G! i

( ieiGi
ej1~H2

21G! j . ~101!

SinceG ande are ground states of the Schro¨dinger operators
H1 andH2 , respectively, the signs ofGi andei are inde-
pendent ofi . Thus the denominator in~101! cannot vanish.

Under the assumption~98! it is straightforward to prove
that

(
j

w j~H2w! j,0 ~102!

and

(
j

w jGj50, ~103!

i.e., G2.0 according to the criterion~96!.
On the contrary, if

(
j
Gj~H2

21G! j,0 ~104!

no test distributionw j exists which makesG2.0 ~i.e., we
have a stable situation!. Let us prove this. We define

F j :5~H2
21G! j ~105!

and split any test distribution in a part with index (i) being
parallel toej and a part with index (') being perpendicular
to ej . Then we have

(
j

w j~H2w! j52umu(
j

w i jw i j1(
j

w' j~H2w'! j .

~106!

In addition, from condition~97! we obtain

umu(
j

w i jF i j5(
j

w' j~H2F'! j , ~107!

whereas condition~104! implies

(
j
F' j~H2F'! j,umu(

j
F i jF i j . ~108!

Finally we use the Schwarz inequality

F(
j

w' j~H2w'! j GF(
j
F' j~H2F'! j G

>F(
j

w' j~H2F'! j G2. ~109!

With these ingredients we can estimate~from below! the
second term on the right-hand side of Eq.~106!. The results
can be easily combined with the first term on the right-hand
side of Eq.~106! when

F(
j

w i jF i j G25F(
j

w i jw i j GF(
j
F i jF i j G ~110!

is used. Then finally we arrive at

(
j

w j~H2w! j>0. ~111!

Thus, for~104! we have no instability. It should be noted that
under condition~104!

L5W2~s11!I2Ws1~s11!I s , ~112!
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where the subscripts denotes values being calculated for the
stationary solutions, can be used as a Liapunov functional for
stability. The main steps of that proof are those presented
above.

Our final point is to rewrite~98! so that it can easily be
evaluated.

Since

SH2

]

]l
GD

j

52Gj ~113!

we can reformulate~98! as

]

]l(
j
Gj
2,0⇒ instability for even perturbations.

~114!

Let us comment once more on an additional restriction.
The definiteness properties being used here assume symmet-
ric ~even parity! ground states with centers either on-site or
intersite. Thus the criterion~114! gives an answer to the
question of the~initial time! dynamics of an even ground
state of type I or II~see Fig. 1! with respect to even pertur-
bations, i.e., perturbations of the same parity.

Now we briefly present the results of the evaluation of
~114!. Let us denote the excitation density in the chain by

Ps5(
j
Gj
2 . ~115!

As long asPs is increasing withl, the ground state is stable
with respect to even perturbations. A typical example for the
evaluation of the criterion is shown in Fig. 8. This graph is
for a fixeds-value (s51.6 in Fig. 8! and for type-I solu-
tions. The monotonically growing parts of the curve belong

to stable states. Repeating the calculations for other
s-values and also for type-II solutions, we get the informa-
tion about the stability behavior in the (s,l)-plane. The re-
sults are depicted in Fig. 9. We have stable and unstable
regimes which are separated in Fig. 9 by the border lines
named I~for type-I solutions! and II ~for type-II solutions!,
respectively. The localized ground states of types I or II are
unstable in the right neighborhoods of the curves marked I or
II, respectively, i.e., in the hatched areas. One can see that
the discreteness changes the critical value (scr) of s that
separates stable and unstable solitons. In the continuum limit
scr52. Here we findscr'1.4. Perturbations can have other
symmetry properties, i.e., the stationary solutions can be
even more unstable, and then we need additional information
which usually is only available through numerical calcula-
tions. To close this last gap is the purpose of the next sub-
section.

D. Arbitrary perturbations

In the case of ground states of types I or II the stability
investigations with respect to arbitrary perturbations can be
based on a discussion of the spectral properties ofH2 . Note
that in analogy to the continuum case, also for the discrete
case theorems are known which relate the forms of the eigen-
solutions to the hierarchy of eigenvalues. But for the more
general cases, i.e., all the solutions constructed by the gen-
erating functions, we have to rely on~simple! numerical pro-
cedures@30# to determine the spectral behaviors ofH1 and
H2 . We do not discuss more special cases separately but
summarize the results.

For ground states of type I~symmetric even parity, no
nodes, centered on-site! no additional negative eigenvalue of
H2 enters the stability considerations, compared to the situ-

FIG. 8. Excitation densityPs vs square root of frequency shift
l of stationary solutions of type I fors51.6. The monotonically
growing parts of the curve belong to stable states.

FIG. 9. Stability diagram of solutions of types I and II with
respect to parity-conserving~even! perturbations. The solitary
waves are unstable in the hatched regions to the right of the curves
labeled I and II, respectively.
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ation discussed in Sec. IV C. Thus, curve I of Fig. 9 is the
exact~and completely general! stability boundary.

The situation is different for ground states of type II~sym-
metric with even parity, no nodes, centered intersite!. These
solutions are always unstable with respect to odd perturba-
tions.

Other members of the families starting from types I or II,
respectively ~i.e., those being constructed fromFso and
Fsi , respectively! are in general not stable, although for
some of the solutions with even parity the possible upper
limits for the growth rates are so small that physically those
solutions can be considered as quasistable. To be more con-
crete, in Fig. 4, the ground state solution (s) is stable
whereas all the other even symmetric solutions, centered on-
site ~marked byh andn in Fig. 4!, are unstable. On the
contrary, all the even symmetric solutions, centered intersite,
and shown in Fig. 5 (s,h,n) are unstable. Note again that
some of the so-called unstable solutions have extremely
small growth rates so that from the application point of view
they may be called quasistable.

Next we turn to the odd symmetric solutions of the DNS,
shown in Fig. 6~centered on-site! and Fig. 7~centered inter-
site!. Our analysis has shown that all these solutions are un-
stable. The calculated growth rates are significant so that
there are no quasistable solutions.

V. KLEIN-GORDON CHAINS

In the preceding sections we have outlined the general
methods for proving the existence and stability of discrete
solitary solutions in nonlinear chains. Specific results have
been presented for the DNS equation~4!. Now we demon-
strate the power of the proposed procedure by applying it to
the discrete nonlinear Klein-Gordon~DNKG! equation

] t
2Uj2~Uj1122Uj1Uj21!6h2Uj7~s11!Uj

ss1150,
~116!

where in the following we shall discuss, in close similarity to
the previous considerations, only the lower sign. Stationary
solutionsUj5Gj obey the equation

~H1G! j50 ~117!

in strict analogy to Eq.~24!. In contrast to the previous
Schrödinger case, we apply the boundary condition

lim
j→2`

Gj52
h

A2
. ~118!

With slight but obvious modifications we can prove the ex-
istence of a generating function@see Eq.~47!# and determine
stationary solutions of Eq.~116!. Typical examples are
shown in Figs. 10–13. Let us start with odd symmetry solu-
tions being centered on-site. These belong to well-known
kink-type distributions. Intersite centered kink-type solutions
are shown in Fig. 11. Figures 12 and 13 belong to even
symmetric solutions being either centered on-site or intersite,
respectively. Note that in each of the figures only the first
two types~out of a whole family! of solutions are shown.

Now we present stability results for discrete solitary
waves of the DNKG equation. The ground state (s) solution
shown in Fig. 10~odd symmetry, centered on-site! is un-
stable. We can prove this by perturbing the stationary solu-
tion Gj in the form

Uj5Gj1gj . ~119!

After linearization we obtain forgj

] t
2gj52~H2g! j , ~120!

whereH2 is defined in Eq.~26! ~in the following we con-
sider onlys51). Note that Eq.~120! is much simpler than
Eq. ~86!. We can easily determine the eigenvalues ofH2 for
each stationary solution. The results~instability for negative
eigenvalues ofH2) are as follows.

As has been mentioned already, the ground state solution
(s) shown in Fig. 10~odd parity, centered on-site! is un-
stable. The same holds for the next member (h) of the fam-
ily. On the other hand, the ground state (s) shown in Fig. 11
~odd parity, centered intersite! is stable, whereas the next
state (h) is again unstable. It is also straightforward to de-

FIG. 10. Antisymmetric on-site centered solutions of the DNKG
equation fors51, h50.8, andk equal to 0(s) and 1(h), respec-
tively.

FIG. 11. Antisymmetric intersite centered solutions of the
DNKG equation fors51, h50.8, and k equal to 0(s) and
1(h), respectively.
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termine stationary even parity solutions of Eq.~116!. Typical
examples are shown in Fig. 12~centered on-site! and Fig. 13
~centered intersite!. In Fig. 12 the ground state (s) of the
even symmetric on-site centered solitary distribution is un-
stable, whereas the next (h) state is stable. On the other
hand, the ground state (s) of the intersite centered solutions
~see Fig. 13! is unstable whereas the next state (h) is stable.
We remind the reader that the solutions are ‘‘numbered’’
with respect to the zeros of the corresponding generating
function; a ‘‘ground state’’ belongs to the first zero.

The analysis of the DNKG equation thus detects stable
localized modes which might be useful in nonlinear transport
mechanisms.

VI. SUMMARY AND OUTLOOK

In this paper we have discussed various possibilities to
determine solitary solutions in discrete systems. The method,
making use of generating functions, turns out to be powerful
and constructive. We have applied it to two examples: the
discrete nonlinear Schro¨dinger ~DNS! equation and the dis-
crete nonlinear Klein-Gordon~DNKG! equation. Further-

more, we have worked out variational principles for deter-
mining the stability properties. Besides the development of
noteworthy methods, two physical results are most impor-
tant. ~i! The discrete DNS has a stronger tendency to form
very localized states than its continuum version~with col-
lapse!. The critical nonlinearity parameter is significantly re-
duced.~ii ! Additional states have been found. Especially for
the DNKG, there are numerousstable ones which are of
physical relevance. It is quite obvious that the methods being
developed here can also be applied to other discrete systems.

Finally is should be noted that fully time-dependent simu-
lations of Eqs.~4! and~116! have confirmed all the findings
presented in this paper. The simulations also allow us to
determine the nonlinear developments of the instabilities;
however, their presentation is beyond the scope of the
present paper.

ACKNOWLEDGMENTS

This work has been supported in part by the Deutsche
Forschungsgemeinschaft through SFB 191. Stimulating dis-
cussions with the members of the European project
SC* -CT91-0705 are also gratefully acknowledged.

@1# A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin, Proc. IEEE
61, 1443~1973!.

@2# V. I. Karpman,Nonlinear Waves in Dispersive Media~Perga-
mon, New York, 1974!.

@3# G. L. Lamb, Jr.,Elements of Soliton Theory~Wiley, New
York, 1980!.

@4# A. C. Newell, Solitons in Mathematics and Physics~SIAM,
Philadelphia, 1985!.

@5# M. J. Ablowitz and P. A. Clarkson,Solitons, Nonlinear Evo-
lution Equations and Inverse Scattering~Cambridge Univ.
Press, Cambridge, 1991!.

@6# M. J. Ablowitz and J. F. Ladik, Stud. Appl. Math55, 213
~1976!.

@7# A. C. Newell and J. V. Molney,Nonlinear Optics~Wesley,
Redwood, 1992!.

@8# A. S. Davydov,Solitons in Molecular Systems~Reidel, Dor-
drecht, 1985!.

@9# A. C. Scott, Phys. Rep.217, 1 ~1992!.
@10# L. Landau, Phys. Z. Sowjet.3, 664 ~1993!.
@11# M. Remoissenet,Waves Called Solitons: Concepts and Experi-

ments~Springer, Berlin, 1994!.
@12# A. C. Scott and L. Macneil, Phys. Lett. A98, 87 ~1983!.
@13# J. C. Eilbeck, P. S. Lomdahl, and A. C. Scott, Physica D16,

318 ~1985!.
@14# D. N. Christodoulides and R. I. Joseph, Opt. Lett.13, 794

~1988!.

FIG. 12. Symmetric on-site centered solutions of the DNKG
equation fors51, h52, andk equal to 0(s) and 1(h), respec-
tively.

FIG. 13. Symmetric intersite centered solutions of the DNKG
equation fors51, h52, andk equal to 0(s) and 1(h), respec-
tively.

4310 54E. W. LAEDKE, O. KLUTH, AND K. H. SPATSCHEK



@15# A. J. Sievers and S. Takeno, Phys. Rev. Lett.61, 970 ~1988!.
@16# Yu. S. Kivshar, Phys. Lett. A173, 172~1993!; Phys. Rev. Lett.

70, 3055~1993!.
@17# C. Schmidt-Hattenberger, U. Trutschel, R. Muschall, and F.

Lederer, Opt. Commun.89, 473 ~1992!.
@18# T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E47,

684 ~1993!.
@19# T. Dauxois and M. Peyrard, Phys. Rev. Lett.70, 3935~1993!.
@20# N. Flytzanis, B. A. Malomed, and J. A. D. Wattis, Phys. Lett.

A 180, 107 ~1993!.
@21# J. C. Eilbeck and R. Flesch, Phys. Lett. A149, 200 ~1990!.
@22# V. E. Zakharov, E. A. Kuznetsov, and A. M. Rubenchik, Phys.

Rep.15, 268 ~1986!.
@23# E. W. Laedke and K. H. Spatschek, inDifferential Geometry,

Calculus of Variations, and Their Applications, edited by G.
M. Rassias and T. M. Rassias~Dekker, New York, 1985!,

p. 335.
@24# D. Cai, A. R. Bishop, and N. Gro”nbech-Jensen, Phys. Rev.

Lett. 72, 591 ~1994!.
@25# E. W. Laedke, K. H. Spatschek, and S. K. Turitsyn, Phys. Rev.

Lett. 73, 1055~1994!.
@26# R. Blaha, E. W. Laedke, and K. H. Spatschek, Physica D40,

249 ~1989!.
@27# E. W. Laedke, R. Blaha, K. H. Spatschek, and E. A. Kuz-

netsov, J. Math. Phys.33, 967 ~1992!.
@28# O. Bang, J. J. Rasmussen, and P. L. Christiansen, Nonlinearity

7, 205 ~1994!; P. L. Christiansen, O. Bang, S. Pagano, and G.
Vitiello, Nanobiology1, 229 ~1992!.

@29# S. K. Turitsyn, Phys. Lett. A173, 267 ~1992!.
@30# W. H. Press, B. P. Flannery, S. A. Teukolsy, and W. T. Vet-

terling, Numerical Recipes~Cambridge Univ. Press, Cam-
bridge, 1986!.

54 4311EXISTENCE OF SOLITARY SOLUTIONS IN . . .


