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We consider a finite-element model for the fragmentation of a coating covering a bulk material. The coating
breaks under a quasistatical, slowly increasing strain~induced, e.g., by temperature changes, by desiccation, or
by mechanical deformations!. We model the coating through an array of springs and account for its statistical
inhomogeneities by assigning each spring a breakdown threshold taken from a given probability distribution
~PD!. The adhesion to the bulk is modeled through other springs, which connect the coating to the substratum.
We consider the dependence on the strain of the mean fragment size and also the ensuing pattern of cracks. We
find that the mean fragment size obeys a power-law dependence on the strain; the exponent of the power law
is related to the strength of disorder~i.e., the behavior of the assumed PD for breakdown thresholds in the
vicinity of zero!. Moreover, the mode of fragmentation also depends on the disorder’s strengths: for small
disorder~narrow PDs! the system fragments through crack propagation, for strong disorder~wide PD, starting
from zero! the cracks are formed by the coalescence of initially independent point defects.
@S1063-651X~96!09509-8#

PACS number~s!: 46.10.1z, 05.40.1j, 62.20.Mk

I. INTRODUCTION

The statistical description of failure phenomena in disor-
dered, complex systems has drawn much attention in the past
decade; since then the understanding for the basic mecha-
nisms leading to failure has grown and the important role
played by the local inhomogeneities on the global fracture
patterns was clearly stressed@1–4#. Apart from the techno-
logically motivated interest in the mechanics of coatings,
failure phenomena are part of the large framework of irre-
versible pattern formation. The mechanical description of
fracture often starts from a mesoscopic picture based on fi-
nite elements; their mechanical properties vary through the
sample, but are, once assigned, fixed~quenched! for a given
realization. Some recent works in the field are Refs.@5–9#.
Now the failure pattern depends strongly on the geometry of
the system and on the particular features of the disorder. The
analytical models considered so far tend to oversimplify the
topology of the system by taking as building blocks bundles
of fibers or some other hierarchically arranged subsystems.
We note that failure phenomena depend very strongly on the
properties of the disorder and thus cannot be treated in the
framework of a perturbation theory; see Ref.@8#.

Here we consider a coating that breaks under a quasistati-
cal, slowly increasing strain~induced, e.g., by temperature
changes, by desiccation, or by mechanical deformations!;
this situation is of common occurrence~see Ref.@9# for a
general survey!. The coating is represented by an array of
springs; we account for its local randomness by assigning to
each spring a breakdown threshold taken from a given prob-
ability distribution. The adhesion to the bulk is modeled
through other springs, which connect the coating to a sub-

stratum. The stretching or bending of the substratum corre-
sponds then to a gradual, homogeneous change of coordi-
nates. Of interest are the ensuing pattern of cracks and the
dependence of the fragment-size distribution on the strain.

The problem of surface fragmentation is in general differ-
ent from such fractal growth phenomena as diffusion-limited
aggregation or Laplacian growth. From everyday life one
knows that in not too disordered systems fragmentation pro-
duces ~roughly! hexagonal or tetragonal patterns. On the
other hand, fractal crack patterns can emerge if the degree of
disorder is very high. Reviews of surface fragmentation stud-
ies, both experimentally and numerically, are given in Refs.
@2,3#. The investigations reported there show the basic simi-
larity between the observed and the numerically obtained
crack patterns.

A scalar model for surface fragmentation~i.e., the electri-
cal analog of the mechanical failure problem considered! was
numerically investigated in Ref.@10#. In Refs. @11–13# the
same model was treated analytically in one dimension. The
main result of these works is that the breaking process dis-
plays different regimes, depending on the local distribution
of breakdown thresholds; this shows up, for instance, in the
dependence of the mean fragment size on the sublayer’s
elongation. A two-dimensional model for a thin film is more
realistic and much more rich, since many of its geometrical
aspects~patterns! do not exist in one dimension. In the
present work we will investigate the dependence of the frag-
ments’ sizes and patterns on the applied strains and on the
probability distribution~PD! of local breakdown thresholds.
We find that the mean fragment size obeys a power-law de-
pendence on the strain, where the exponent of the power law
is related to the assumed PD. Furthermore, both the fragment
size distribution and the crack patterns depend strongly on
this PD. On the other hand, although the patterns of cracks
that appear during fragmentation can be very complex, elon-
gated strips in two dimensions show an overall scaling be-

*Also at P. N. Lebedev Physical Institute of the Academy of
Sciences of Russia, Leninsky Prospekt 53, Moscow 117924, Russia.

PHYSICAL REVIEW E OCTOBER 1996VOLUME 54, NUMBER 4

541063-651X/96/54~4!/4293~6!/$10.00 4293 © 1996 The American Physical Society



havior closely related to fragmentation in one dimension;
thus, in this case no new length scales enter into the problem.

II. THE THIN-FILM MODEL

In our study of thin films we start from a model put forth
in Ref. @3#. The coating is viewed as being an array of
springs with elastic constantsD, forming a triangular lattice;
see Fig. 1. The lattice constant~side length of each triangle!
is taken to be unity. The film is attached to the substrate
elastically, so that the surface layer can move relatively to
the bulk; this motional freedom is accounted for by connect-
ing the nodes of the coating and the corresponding sites of
the substrate through leaf springs of elastic constantd; see
Fig. 1. The surface layer is brittle, so that each spring can
break under stress. The value at which a particular spring
breaks is random, but fixed at the start of the fragmentation
process~i.e., the disorder is quenched!. The PD of break-
down thresholds is a material property and is known from
the start. As systems we consider~i! a plate under homoge-
neous stress and~ii ! an elongated strip undergoing stretching.

We describe first our numerical approach to the problem.
One step of the calculation involves the computation of the
forces acting on the springs and the removal of those springs
that break~because their breakdown threshold is smaller than
the acting force!. Iterating the procedure leads to crack
propagation. Under a quasistatically increasing stress the
forces acting on the springs are given by the solution of the
equations for mechanical equilibrium at each nodei ; as a
projection on the (x,y) plane parallel to the substrate one has

(
j
Di , j~ ur j2r i u2r 0!ej i1dur i2Ri u50, ~1!

where the sum runs over the nearest neighbors of thei th
node,r j is the position of thej th node,Rj that of the corre-
sponding substratum site, andr 0 is the equilibrium length of
a spring in the absence of stress andei j5(r i2r j )/(ur i2r j u)
is a unit vector in the spring’s direction. The elastic constants
Di , j areDi , j5D for intact andDi , j50 for broken springs. At
the beginning of the process the surface layer is in equilib-
rium and no forces act on it.

The system of equations~1! involves absolute values of
vectors and is therefore essentially nonlinear. We use a
simple relaxation algorithm to solve it; we obtain, namely,
the r j by numerical integration of the overdamped equations
of motion

ṙ i52aF(
j
Di , j~ ur j2r i u2r 0!ej i1dur i2Ri uG . ~2!

Here the constanta.0 is chosen in such a way as to guar-
antee the stability and fast convergence of the overall scheme
of computations.

The deformation of the substrate is modeled by gradual
changes in the coordinatesRj5(Xj ,Yj ) of the substrate’s
sites: the corresponding coordinates grow with ‘‘time’’~pro-
cedure step! t as

Xj5~11axt !Xj ,0

and

Yj5~11ayt !Yj ,0 ~3!

We consider here both isotropic and anisotropic homoge-
neous changes; for theseax5ay andaxÞay , respectively. If
the elastic force acting on a spring,f5Di , j ~ur j2r i u2r 0! at-
tains its prescribed breakdown valuef i , j

b , the spring breaks
irreversibly, and its elastic constant is set to zero. This is
followed by additional relaxation steps, in which the new
equilibrium positions are calculated; these steps may lead
~for a brittle regime of fracture propagation! to the breaking
of additional springs. If at a given strain no further springs
break, the whole procedure is iterated by increasing the time
from t to t1Dt. By this, through Eq.~3!, a new strain in-
crease is generated.

We consider systems of elements whose breakdown
thresholds are homogeneously distributed in the interval
@fmin ,fmin1W#; for these the PD is

p~ f b!5 H1/W for fmin, f b, fmin1W
0 otherwise. ~4!

As we shall see in Sec. III, the strength of the disorder is
characterized by the parameterW/ fmin . Systems with
fmin50, i.e., with a rectangular distribution of the form

p~ f b!5 H1/W for 0, f b,W
0 otherwise, ~5!

contain elements with breakdown thresholds in the vicinity
of zero and belong to the strong disorder case; see Ref.@10#
and also Sec. III herein.

A measure for breakage is the mean size of the obtained
fragments. In the case of complicated two-dimensional~2D!
geometries, when the cracks are not continuous and do not
lead to well-separated fragments, the determination of frag-

FIG. 1. Model used in the simulations:~a! view of the surface
layer and~b! view from the side~vertical cross section!.
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ment sizes is ambiguous. Hence in two dimensions we focus
on the distances of subsequent broken bonds measured along
~arbitrarily drawn! straight lines and take as the characteristic
length the average of such distances over the orientations of
the lines and over the realizations of the system.

During our simulations we have found that although the
visible crack pattern is rather insensitive to the quality of the
relaxation@i.e., to the relative error« in the numerical solu-
tion of Eq. ~2!#, the fragment size distribution depends
strongly on «. We determined the necessary accuracy«
through test runs in which we noted the sequence of breaking
bonds for the same initial conditions under changes of«. We
found that taking« as low as«51029 is sufficient in order to
obtain unique sequences; higher« values lead to«-dependent
sequences, evidently an artifact.

Before reporting the results of our simulations in two di-
mensions we focus in more detail on the parameters that
govern the model’s behavior. To do this we first turn to the
consideration of a scalar 1D model. This will shed light on
the interplay between the model’s parameters and allow us to
introduce as important notions the correlation length and the
strength of the disorder.

III. ONE-DIMENSIONAL SYSTEMS

A 1D electrical analog for surface fragmentation was in-
vestigated by us both analytically and numerically in Refs.
@11,12#. In one dimension the mechanical situation differs
from an electrical scalar analog only in notation. Here we
restrict ourselves to a summary of the findings, now adapted
to the mechanical model, which is presented in Fig. 1~b!.
Moreover, we consider only the scaling aspects of the model,
which can be generalized to two-dimensional coatings.

Starting from a single large fragment, one increases
gradually the elongationDR of the substrate and reaches
eventually a value at which the first spring fails. This spring
is then removed from the system, by which~in general! two
new fragments are created. A further increase inDR results
in the splitting of these new segments, etc.

We focus onhk , the elongation of thekth spring within
an intact fragment of lengthN under the elongation of the
substrate byDR. Now hk depends onj, the correlation
length in the problem,

j5
2

arccosh@11D/2d#
; ~6!

see Refs.@11,12#. Forj!N the elongationh attains the value
DR almost everywhere inside the fragment, except near its
ends. In the two end regions, of width aroundj, the stress
follows an exponential law. In the opposite caseN!j ~which
always arises in the late stages of the fragmentation process!,
this distribution attains a universal parabolic form

hk5
N2

2j2
~124u2!DR, ~7!

with u5~k/N!2 1
2.

At the beginning of the process, as long asj!N, the
stress is almost homogeneously distributed inside each seg-
ment and the weakest bond is the one that breaks, which
gives rise to an approximately Poissonian distribution of

fragment lengths. When the process goes on, the fragments’
sizes get to be smaller than the correlation lengthj and the
situation gets complex; it leads to nontrivial fragment size
distributions and to power-law dependences of the mean
fragment sizes.

For a PD with a nonzero lower boundaryfminÞ0, Eq.~4!,
the distributions of the position of failureQN~u! and of the
breakdown thresholdRN(s) are given by the expressions
@11,12#

QN~u!5 1
2 v21G„ 23 ,~ uuu/v!3… ~8!

and

RN~s!5
N

W
As2 fmin

fmin
expF2

2N~s2 fmin!
2/3

3WAfmin
G , ~9!

where s5D(N2/2j2)DR corresponds to the local strain in
the middle of a fragment. In Eq.~8! G(x,y) is the incomplete
gamma function andv5@3W/~16fminN!#1/3 is the width of
the distribution. Equation~8! leads to a bell-shaped function
concentrated near the middle of the fragment. Forfmin.0
andN large the failures tend to occur near the middle of the
fragment, which can be understood by realizing that a new
failure occurs soon after the maximum of the strain distribu-
tion ~basically a parabola! reaches the minimum of the PD of
the breakdown thresholds.

Equations~8! and ~9! are valid if the width of the distri-
bution is smaller than the segments’ length, i.e., ifv!1. This
is the case whenW/ fmin!N, whereN is a typical size of a
fragment. From Eq.~8! it follows then that failures occur
near the middle of existing fragments, so that the overall
fragmentation process follows a hierarchical pattern. The av-
eraged pattern is then weakly disordered. In the limiting case
in which fmin50 the distributionsQN~u! andRN(s) are given
by @11,12#

QN~u!5 3
2 ~124u2! ~10!

and

RN~s!5
2N

3W
expF2

2N

3W
sG . ~11!

In this case a fragment of lengthN breaks when
DRc53D21Wj2/N3 and the point of failure can be situated
anywhere inside the fragment. In general, forW/ fmin@N,
failures are no longer concentrated near the fragments’ cen-
ters. We denote this situation as leading to strong disorder in
the distribution of patterns.

Inverting the relations betweenDR and the survival prob-
ability of a fragment of lengthN, one infers that for each
value of DRc there exists a characteristic fragment length
Nc , such that fragments larger thanNc hardly survive and
fragments smaller thanNc stay almost certainly intact; hence
the mean fragment size is of the order ofNc . These consid-
erations lead to the following dependences ofL5^N& on
DR:

L>A2D21fminj~DR!21/2 ~12!

for W/ fmin!N and
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L>~3D21Wj2!1/3~DR!21/3 ~13!

for fmin50.
Note that systems withW, fmin always belong to the

class of weak disorder, while those withfmin50 are always
strongly disordered. The dimensionless parameter
z5W/ fminL}v3, with L being the characteristic fragment
size, typifies the situation. Forz!1 failures occur at the
points of highest stress, while forz@1 failures are associated
with weakest bonds. The intermediatez domain leads to
complex patterns of behavior, which depend on the correla-
tion length, onN, and onW/ fmin . As we will show in Sec.
IV, in two dimensions weak disorder leads to a brittle growth
of straight cracks while stronger disorder lets the cracks get
wavy. Summarizing, in one dimension we have found thatL
goes asL;(DR)21/2 for weak andL;(DR)21/3 for strong
disorder.

IV. SCALING AND PATTERNS IN TWO-DIMENSIONAL
SURFACE LAYERS

The findings for the scalar one-dimensional model are re-
produced in simulations of a quasi-one-dimensional system
~elongated strip!; see Fig. 2. The dependence ofL on the
elongation is given in Fig. 3 in double-logarithmic scales and
shows the cases of weak and strong disorder. We note that

square plates under uniaxial stress behave similarly; in this
case the majority of cracks are nearly perpendicular to the
direction of the stress.

The situation for two-dimensional layers under isotropic
stress is considerably more complex than in elongated strips
or in layers under uniaxial stress. Here a different, very im-
portant feature appears, namely, the propagation of cracks. In
Fig. 4 we display a mosaic of patterns that emerge when the
breaking systems have different PDs, here obtained for sev-
eral values ofW in Eq. ~4!. ForW/ fmin!1 @Fig. 4~a!# the
cracks are mostly straight lines, which follow the lattice
structure closely. For stronger disorder the cracks become
wavy, but fragmentation still proceeds through crack growth.
The overall picture@Fig. 4~b!# is very reminiscent of the
desiccation in thick layers of coffee-water mixtures; see Ref.
@14#. ForW/ fmin@1 @Fig. 4~c!# the parquet pattern of Figs.
4~a! and 4~b! is no longer visible. Cracks develop now
through the coalescence of pointlike defects, which at first
arise independently of each other. We remark that such a
scenario of crack growth through the coalescence of defects
was observed in random networks of fibers@15#. Further-
more, the lack of a parquet pattern and a finding similar to
Fig. 4~c! were observed in the desiccation of very thin~and
probably more inhomogeneous! coffee layers; see Ref.@14#.
In Fig. 5 we show the time evolution of crack patterns for
weak (W! fmin) disorder.

We analyze now the dependence ofL, the average frag-
ment cross section, onDR; see Fig. 6. For weak disorder we
find, paralleling the 1D and quasi-1D results, that the power
law L;(DR)21/2 holds. The fact that the exponent retains its
value is rather unexpected; it means that surface fragmenta-
tion is mainly due to the formation of new defects rather than
to crack propagation.

For weak disorder fragmentation proceeds through defect
formation ~a seed ‘‘microcrack’’!; this is followed almost
immediately by fast crack propagation and by the mechani-
cal relaxation of the film near the ‘‘banks’’ of the newly
formed crack. Seed formation is thus the rate limiting pro-
cess for fragmentation. These facts may be inferred readily
from Fig. 4~a!: in the late fragmentation stages only very few
cracks with free ends are present in the system.

In our quasistatic model the only relevant parameter de-
scribing the relaxation of stress is the correlation lengthj,
which determines the distance~measured from the free
boundary! at which the local strain becomes almost constant.
Note thatj is also an estimate for the distance at which two
separately growing cracks start to ‘‘feel’’ each other’s pres-
ence. Within fragments whose sizes are larger thanj the
local strain attains a plateau, while for the fragments whose
sizes are much smaller thanj the strain shows a paraboloidal
form. For two fragments similar in form, the maximal value

FIG. 2. Series of fragmentation stages of an
elongated strip under uniaxial stress.

FIG. 3. Mean fragment sizeL as a function ofDR ~the elonga-
tion of the substrate! in a quasi-1D geometry~a 50325000 strip!
plotted in double-logarithmic scales. The upper curve corresponds
to the PD Eq.~4!, with fmin5100 andW510, the lower curve to the
PD Eq.~5! withW5100. The numerical results were obtained using
an average over ten realizations each. The slope of the dashed line
is 2

1
2 and that of the dotted line is21

3.
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of the local forcesf is proportional to the elongationDR and
to the squared cross sectionl , i.e., f} l 2DR. A new defect
forms inside an initially intact fragment as soon asf gets to
be larger thanfmin . This gives an estimate forLc , the char-
acteristic size of fragments that break under the elongation
DR: Lc>AfminDR. Supposing that~apart from their char-
acteristic length! the geometrical properties of the crack pat-
terns do not change, one obtainsL;(DR)21/2, in full agree-
ment with the findings of Fig. 6.

Even more astonishing is the fact that for very strong
disorder~fmin50!, in two dimensions the mean distance be-

tween defects also follows the trend found in one dimension.
From Fig. 6 we infer readily that in this caseL;(DR)21/3

holds. As in one dimension, forfmin50 the probability of
forming a new defect follows the stress pattern in the system,
so that this probability is proportional to the maximal stress
inside the fragment and obeys essentially the same laws as in
one dimension. The defect coalescence, which leads to the
mesoscopic pattern, is a spectacular but rather subordinated
process: most of the defects belong to small clusters, not
forming any medium-scaled connected structure, but being
sufficient for the local relaxation of the stress.

FIG. 5. Fragmentation patterns on a 2003200 lattice with
j5150 after 1000, 5000, and 10 000 bonds have failed. The PD is
Eq. ~4! with fmin5200 andW510.

FIG. 4. Fragmentation patterns on a 1503150 lattice withj520
after 4000 bonds have failed; the PD is Eq.~4!, with fmin5100.
Furthermore,W is 15 in ~a!, 100 in ~b!, and 400 in~c!.
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Our simulations show both forW! fmin ~weak disorder!
and for fmin50 ~very strong disorder! that surface fragmen-
tation in two dimensions is controlled by the formation of
local defects. Forfmin>W ~due to the complex interplay be-

tween defect formation and crack propagation! this is no
longer the case.

V. CONCLUSION

In this work we studied a model for the fragmentation of
surface layers under quasistatical, slowly increasing strains.
We analyzed the pattern of cracks and the dependence of the
fragment sizes on the strain. We find that the mean fragment
size obeys power laws whose exponents are related to the
strength of the disorder, i.e., to the relative width of the as-
sumed PD for the breakdown thresholds. Both in quasi-one-
dimensional~narrow strips! and in two-dimensional~square
plates! geometries the mean fragment’s cross sectionL ~the
distance between two successive defects along a straight
line! follows L;(DR)21/2 for weak andL;(DR)21/3 for
strong disorder. Moreover, the mode of fragmentation de-
pends on the disorder’s strengths: for weak disorder the sys-
tem breaks through crack propagation, whereas for strong
disorder the cracks form through the coalescence of initially
independent point defects.
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