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Patterns and scaling in surface fragmentation processes

T. Hornig, I. M. Sokolov¥ and A. Blumen
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(Received 28 May 1996

We consider a finite-element model for the fragmentation of a coating covering a bulk material. The coating
breaks under a quasistatical, slowly increasing stfiaituced, e.g., by temperature changes, by desiccation, or
by mechanical deformationsWe model the coating through an array of springs and account for its statistical
inhomogeneities by assigning each spring a breakdown threshold taken from a given probability distribution
(PD). The adhesion to the bulk is modeled through other springs, which connect the coating to the substratum.
We consider the dependence on the strain of the mean fragment size and also the ensuing pattern of cracks. We
find that the mean fragment size obeys a power-law dependence on the strain; the exponent of the power law
is related to the strength of disordére., the behavior of the assumed PD for breakdown thresholds in the
vicinity of zero. Moreover, the mode of fragmentation also depends on the disorder’s strengths: for small
disorder(narrow PD$ the system fragments through crack propagation, for strong distxite PD, starting
from zerg the cracks are formed by the coalescence of initially independent point defects.
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PACS numbds): 46.10+z, 05.40+j, 62.20.Mk

[. INTRODUCTION stratum. The stretching or bending of the substratum corre-
sponds then to a gradual, homogeneous change of coordi-
The statistical description of failure phenomena in disor-nates. Of interest are the ensuing pattern of cracks and the
dered, complex systems has drawn much attention in the padependence of the fragment-size distribution on the strain.
decade; since then the understanding for the basic mecha- The problem of surface fragmentation is in general differ-
nisms leading to failure has grown and the important roleent from such fractal growth phenomena as diffusion-limited
played by the local inhomogeneities on the global fractureaggregation or Laplacian growth. From everyday life one
patterns was clearly stressgt-4]. Apart from the techno- knows that in not too disordered systems fragmentation pro-
logically motivated interest in the mechanics of coatings,duces (roughly) hexagonal or tetragonal patterns. On the
failure phenomena are part of the large framework of irre-other hand, fractal crack patterns can emerge if the degree of
versible pattern formation. The mechanical description ofdisorder is very high. Reviews of surface fragmentation stud-
fracture often starts from a mesoscopic picture based on fies, both experimentally and numerically, are given in Refs.
nite elements; their mechanical properties vary through th€2,3]. The investigations reported there show the basic simi-
sample, but are, once assigned, fixgdenchegifor a given larity between the observed and the numerically obtained
realization. Some recent works in the field are RE#s:9|. crack patterns.
Now the failure pattern depends strongly on the geometry of A scalar model for surface fragmentatitre., the electri-
the system and on the particular features of the disorder. Theal analog of the mechanical failure problem consideveas
analytical models considered so far tend to oversimplify thenumerically investigated in Ref10]. In Refs.[11-13 the
topology of the system by taking as building blocks bundlessame model was treated analytically in one dimension. The
of fibers or some other hierarchically arranged subsystemsnain result of these works is that the breaking process dis-
We note that failure phenomena depend very strongly on thplays different regimes, depending on the local distribution
properties of the disorder and thus cannot be treated in thef breakdown thresholds; this shows up, for instance, in the
framework of a perturbation theory; see R]. dependence of the mean fragment size on the sublayer’s
Here we consider a coating that breaks under a quasistailongation. A two-dimensional model for a thin film is more
cal, slowly increasing straifinduced, e.g., by temperature realistic and much more rich, since many of its geometrical
changes, by desiccation, or by mechanical deformationsaspects(pattern$ do not exist in one dimension. In the
this situation is of common occurren¢see Ref[9] for a  present work we will investigate the dependence of the frag-
general survey The coating is represented by an array ofments’ sizes and patterns on the applied strains and on the
springs; we account for its local randomness by assigning tprobability distribution(PD) of local breakdown thresholds.
each spring a breakdown threshold taken from a given probwe find that the mean fragment size obeys a power-law de-
ability distribution. The adhesion to the bulk is modeled pendence on the strain, where the exponent of the power law
through other springs, which connect the coating to a subis related to the assumed PD. Furthermore, both the fragment
size distribution and the crack patterns depend strongly on
this PD. On the other hand, although the patterns of cracks
*Also at P. N. Lebedev Physical Institute of the Academy of that appear during fragmentation can be very complex, elon-
Sciences of Russia, Leninsky Prospekt 53, Moscow 117924, Russigated strips in two dimensions show an overall scaling be-
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where the sum runs over the nearest neighbors ofitthe
node,r; is the position of thgth node,R; that of the corre-
sponding substratum site, anglis the equilibrium length of

a spring in the absence of stress age= (r;—r;)/(|r;—r;|)

is a unit vector in the spring’s direction. The elastic constants
D; j areD; ;=D for intact andD; ;=0 for broken springs. At
the beginning of the process the surface layer is in equilib-
rium and no forces act on it.

The system of equationd) involves absolute values of
vectors and is therefore essentially nonlinear. We use a
simple relaxation algorithm to solve it; we obtain, namely,
ther; by numerical integration of the overdamped equations
of motion

H=-a EJ: Di(Jrj—ril—ro)gi+ori—Ri[|. (2

Here the constan#>0 is chosen in such a way as to guar-
antee the stability and fast convergence of the overall scheme
of computations.

The deformation of the substrate is modeled by gradual
changes in the coordinatd®; = (X;,Y;) of the substrate’s
sites: the corresponding coordinates grow with “timggro-
cedure stept as

FIG. 1. Model used in the simulationga) view of the surface Xi=(1+a,t)X; o
layer and(b) view from the sideg(vertical cross section ! I
and
havior closely related to fragmentation in one dimension;
y g Y,=(1+at)Y;, 3)

thus, in this case no new length scales enter into the problem.
We consider here both isotropic and anisotropic homoge-
Il THE THIN-FILM MODEL neous changes; for theag=a, anda,#a,, respectively. If
: i the elastic force acting on a spring=D; ;(|r;—ri|—r) at-

In our study of thin films we start from a model put forth tains its prescribed breakdown valti;, the spring breaks
in Ref. [3]. The coating is viewed as being an array ofirreversibly, and its elastic constant is set to zero. This is
springs with elastic constanB, forming a triangular lattice; followed by additional relaxation steps, in which the new
see Fig. 1. The lattice constafside length of each triangle ~equilibrium positions are calculated; these steps may lead
is taken to be unity. The film is attached to the substratdfor a brittle regime of fracture propagatipto the breaking
elastically, so that the surface layer can move relatively tf additional springs. If at a given strain no further springs
the bulk; this motional freedom is accounted for by connectbreak, the whole procedure is iterated by increasing the time
ing the nodes of the coating and the corresponding sites dfom t to t+At. By this, through Eq(3), a new strain in-
the substrate through leaf springs of elastic constarsee ~ Crease is generated.
Fig. 1. The surface layer is brittle, so that each spring can We consider systems of elements whose breakdown
break under stress. The value at which a particular sprinngeShmdS are homogeneously distributed in the interval
breaks is random, but fixed at the start of the fragmentatioff min.fmin+W]; for these the PD is
process(i.e., the disorder is quenchedlhe PD of break-
down thresholds is a material property and is known from p(fb):[ (4)
the start. As systems we considér a plate under homoge-
neous stress ar(d) an elongated strip undergoing stretching. o5 we shall see in Sec. Ill, the strength of the disorder is

We describe first our _num_erical approach to the_ problemeparacterized by the paramet&/f . . Systems with
One step of the calculation involves the computation of thefmm=0, i.e., with a rectangular distribution of the form

forces acting on the springs and the removal of those springs

that break because their breakdown threshold is smaller than b 1W for 0<fP<W
the acting forcg Iterating the procedure leads to crack P ~]10 otherwise,
propagation. Under a quasistatically increasing stress the

forces acting on the Springs are given by the solution of thé:ontain elements with breakdown thresholds in the VICInlty
equations for mechanical equilibrium at each nadas a  Of zero and belong to the strong disorder case; see[R@.

projection on theX,y) plane parallel to the substrate one hasand also Sec. Il herein. _ _
A measure for breakage is the mean size of the obtained

fragments. In the case of complicated two-dimensiga8i)
> D (|ri—ri|—-ro)e;+ dri—R|=0 (1)  9geometries, when the cracks are not continuous and do not
o 2 b ’ lead to well-separated fragments, the determination of frag-

IW  for fon<fP<fint+W
0 otherwise.

®
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ment sizes is ambiguous. Hence in two dimensions we focugagment lengths. When the process goes on, the fragments’
on the distances of subsequent broken bonds measured alosiges get to be smaller than the correlation lengjnd the
(arbitrarily drawn straight lines and take as the characteristicsituation gets complex; it leads to nontrivial fragment size
length the average of such distances over the orientations diistributions and to power-law dependences of the mean
the lines and over the realizations of the system. fragment sizes.

During our simulations we have found that although the For a PD with a nonzero lower boundahry;,#0, Eq.(4),
visible crack pattern is rather insensitive to the quality of thethe distributions of the position of failur@y(6) and of the
relaxation[i.e., to the relative errog in the numerical solu- breakdown threshol®Ry(s) are given by the expressions
tion of Eq. (2)], the fragment size distribution depends[11,12
strongly one. We determined the necessary accuracy
through test runs in which we noted the sequence of breaking Q) =3 0 T E,(]6/w)3 (8)
bonds for the same initial conditions under changes. &f/e
found that taking as low ass=10"? is sufficient in orderto and
obtain unique sequences; higheralues lead t@-dependent

sequences, evidently an artifact. N [s—f 2N(s— f i)
Before reporting the results of our simulations in two di- Ru(s)= w f min N WV | ©
min

mensions we focus in more detail on the parameters that
govern the model’s behavior. To do this we first turn to thewhere sS= D(N2/2§2)AR Corresponds to the local strain in
consideration of a scalar 1D model. This will shed light onthe middle of a fragment. In Eg8) I'(x,y) is the incomplete
the interplay between the model’s parameters and allow us tgamma function andv=[3W/(16f ., N)]'*® is the width of
introduce as important notions the correlation length and theénhe distribution. Equatiori8) leads to a bell-shaped function

strength of the disorder. concentrated near the middle of the fragment. Fgf>0
andN large the failures tend to occur near the middle of the
Ill. ONE-DIMENSIONAL SYSTEMS fragment, which can be understood by realizing that a new

failure occurs soon after the maximum of the strain distribu-
tion (basically a parabojaeaches the minimum of the PD of
‘the breakdown thresholds.

Equations(8) and(9) are valid if the width of the distri-
ution is smaller than the segments’ length, i.en<1. This

the case whehV/f ;;<<N, whereN is a typical size of a
Lragment. From Eq(8) it follows then that failures occur

ear the middle of existing fragments, so that the overall
fragmentation process follows a hierarchical pattern. The av-

Starting from a single large fragment, one increaseser : : -
: aged pattern is then weakly disordered. In the limiting case
gradually the elongatlon!&R of the sub_strate_ and _reach_es in which f ,;,;=0 the distribution€(6) andRy(s) are given
eventually a value at which the first spring fails. This sprmgby (11,17

is then removed from the system, by whigh general two
new fragments are created. A further increasé R results Qn(0)=3(1—-46%) (10)
in the splitting of these new segments, etc.
We focus onz,, the elongation of th&th spring within  and
an intact fragment of lengthN under the elongation of the

A 1D electrical analog for surface fragmentation was in-
vestigated by us both analytically and numerically in Refs
[11,12. In one dimension the mechanical situation differs
from an electrical scalar analog only in notation. Here we
restrict ourselves to a summary of the findings, now adapte
to the mechanical model, which is presented in Fig).1
Moreover, we consider only the scaling aspects of the mode
which can be generalized to two-dimensional coatings.

substrate byAR. Now 7, depends on& the correlation _ 2N _ 2N
length in the problem, Rn(S)= 3w €XF ~ 3w S| (1)
_ 2 ) ©) In this case a fragment of lengtiN breaks when
&= arccosi{ 1+ D/26]’ AR,=3D 'W&?/N3 and the point of failure can be situated

_ . anywhere inside the fragment. In general, ¥ f >N,
see Refs[11,12. For é&<N the elongatior, attains the value failures are no longer concentrated near the fragments’ cen-

AR almost everywhere inside the fragment, except near itgers. We denote this situation as leading to strong disorder in
ends. In the two end regions, of width arouéidthe stress the distribution of patterns.

follows an exponential law. In the opposite caée¢ (which Inverting the relations betweeXR and the survival prob-
always arises in the late stages of the fragmentation prpcessbility of a fragment of lengtiN, one infers that for each
this distribution attains a universal parabolic form value of AR, there exists a characteristic fragment length
N2 N, such that fragments larger tha, hardly survive and
M=~ (1—46%)AR 7) fragments smaller thaN stay almost certainly intact; hence
2¢ ’ the mean fragment size is of the orderMyf. These consid-

. L erations lead to the following dependencesLof(N) on
with 8=(k/N)—3.

At the beginning of the process, as long &sN, the
stress is almost homogeneously distributed inside each seg- L=2D . &(AR) Y2 (12
ment and the weakest bond is the one that breaks, which
gives rise to an approximately Poissonian distribution offor W/f .,;,;<N and
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FIG. 2. Series of fragmentation stages of an
elongated strip under uniaxial stress.

L=(3D W)V AR) 13 (13)  square plates under uniaxial stress behave similarly; in this
case the majority of cracks are nearly perpendicular to the
for f,in=0. direction of the stress.

Note that systems withW<f ., always belong to the The situation for two-dimensional layers under isotropic
class of weak disorder, while those with,;,=0 are always stress is considerably more complex than in elongated strips
strongly  disordered. The dimensionless parametepr in layers under uniaxial stress. Here a different, very im-
{=WI/f.Lxw’, with L being the characteristic fragment portant feature appears, namely, the propagation of cracks. In
size, typifies the situation. Fof<1 failures occur at the Fig. 4 we display a mosaic of patterns that emerge when the
points of highest stress, while fge1 failures are associated breaking systems have different PDs, here obtained for sev-
with weakest bonds. The intermediatedomain leads to eral values ofW in Eq. (4). For W/f,,;,<1 [Fig. 4@)] the
complex patterns of behavior, which depend on the correlacracks are mostly straight lines, which follow the lattice
tion length, onN, and onW/f ;. As we will show in Sec. structure closely. For stronger disorder the cracks become
IV, in two dimensions weak disorder leads to a brittle growthwavy, but fragmentation still proceeds through crack growth.
of straight cracks while stronger disorder lets the cracks gethe overall picture[Fig. 4b)] is very reminiscent of the
wavy. Summarizing, in one dimension we have found that desiccation in thick layers of coffee-water mixtures; see Ref.
goes ad ~(AR) * for weak andL~(AR) 3 for strong  [14]. For W/f ,;,>1 [Fig. 4(c)] the parquet pattern of Figs.

disorder. 4(a) and 4b) is no longer visible. Cracks develop now
through the coalescence of pointlike defects, which at first
IV. SCALING AND PATTERNS IN TWO-DIMENSIONAL arise independently of each other. We remark that such a
SURFACE LAYERS scenario of crack growth through the coalescence of defects

o . ) was observed in random networks of fibg¢ds]. Further-

The findings for the scalar one-dimensional model are remgre, the lack of a parquet pattern and a finding similar to
produced in simulations of a quasi-one-dimensional systengig. 4(c) were observed in the desiccation of very tiémd
(elongated strip see Fig. 2. The dependence lofon the robably more inhomogenedusoffee layers; see Refl4].

elongation is given in Fig. 3 in double-logarithmic scales and Fig. 5 we show the time evolution of crack patterns for
shows the cases of weak and strong disorder. We note th@feak W<f,,;) disorder.

We analyze now the dependencelgfthe average frag-
ment cross section, ofiR; see Fig. 6. For weak disorder we
find, paralleling the 1D and quasi-1D results, that the power
law L~ (AR) “*2 holds. The fact that the exponent retains its
value is rather unexpected; it means that surface fragmenta-
tion is mainly due to the formation of new defects rather than
to crack propagation.

For weak disorder fragmentation proceeds through defect
formation (a seed “microcrack; this is followed almost
immediately by fast crack propagation and by the mechani-
cal relaxation of the film near the “banks” of the newly
formed crack. Seed formation is thus the rate limiting pro-
cess for fragmentation. These facts may be inferred readily
from Fig. 4a): in the late fragmentation stages only very few
cracks with free ends are present in the system.

In our quasistatic model the only relevant parameter de-
scribing the relaxation of stress is the correlation length
which determines the distancgmeasured from the free

FIG. 3. Mean fragment size as a function ofAR (the elonga- Poundary at which the local strain becomes almost constant.
tion of the substratein a quasi-1D geometrya 50<25000 strip ~ Note that¢ is also an estimate for the distance at which two
plotted in double-logarithmic scales. The upper curve correspondgeparately growing cracks start to “feel” each other’s pres-
to the PD Eq(4), with f ;;=100 andW=10, the lower curve to the €nce. Within fragments whose sizes are larger thahe
PD Eq.(5) with W=100. The numerical results were obtained usinglocal strain attains a plateau, while for the fragments whose
an average over ten realizations each. The slope of the dashed lisézes are much smaller th@rhe strain shows a paraboloidal
is —3 and that of the dotted line is 3. form. For two fragments similar in form, the maximal value

log AR
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FIG. 4. Fragmentation patterns on a ¥6I50 lattice withg=20 FIG. 5. Fragmentation patterns on a 20 lattice with
after 4000 bonds have failed; the PD is H¢), with f,,;=100.  £=150 after 1000, 5000, and 10 000 bonds have failed. The PD is
FurthermoreW is 15 in(a), 100 in(b), and 400 in(c). Eq. (4) with f;;=200 andw=10.

of the local forced is proportional to the elongatichR and  tween defects also follows the trend found in one dimension.
to the squared cross sectibni.e., f<|?AR. A new defect From Fig. 6 we infer readily that in this cage~(AR) "3
forms inside an initially intact fragment as soonfagets to  holds. As in one dimension, fof,;,=0 the probability of
be larger tharf.;,. This gives an estimate fdr., the char- forming a new defect follows the stress pattern in the system,
acteristic size of fragments that break under the elongatiogo that this probability is proportional to the maximal stress
AR: L.=VfminAR. Supposing thatapart from their char- inside the fragment and obeys essentially the same laws as in
acteristic lengththe geometrical properties of the crack pat- one dimension. The defect coalescence, which leads to the
terns do not change, one obtains (AR) Y2 in full agree- mesoscopic pattern, is a spectacular but rather subordinated
ment with the findings of Fig. 6. process: most of the defects belong to small clusters, not
Even more astonishing is the fact that for very strongforming any medium-scaled connected structure, but being
disorder(f ,;;=0), in two dimensions the mean distance be-sufficient for the local relaxation of the stress.
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FIG. 6. Same as in Fig. 3, but now for a square 2200 plate
with the PD Eq.(4) with f,,;,=100 andW=10 (upper curve¢ and
with the PD Eq.(5) with W=100 (lower curve. Note the double-
logarithmic scales. Again, the dashed line has a slogethe dot-
ted line a slope-3.

Our simulations show both foW<f ., (weak disorder
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tween defect formation and crack propagatidhis is no
longer the case.

V. CONCLUSION

In this work we studied a model for the fragmentation of
surface layers under quasistatical, slowly increasing strains.
We analyzed the pattern of cracks and the dependence of the
fragment sizes on the strain. We find that the mean fragment
size obeys power laws whose exponents are related to the
strength of the disorder, i.e., to the relative width of the as-
sumed PD for the breakdown thresholds. Both in quasi-one-
dimensional(narrow strip$ and in two-dimensionalsquare
plateg geometries the mean fragment’s cross sectigfthe
distance between two successive defects along a straight
line) follows L~ (AR) Y2 for weak andL~(AR)** for
strong disorder. Moreover, the mode of fragmentation de-
pends on the disorder’s strengths: for weak disorder the sys-
tem breaks through crack propagation, whereas for strong
disorder the cracks form through the coalescence of initially
independent point defects.
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