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Tracking algorithm for the stable spin polarization field in storage rings
using stroboscopic averaging
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Polarized protons have never been accelerated to more than about 25 GeV. To achieve polarized proton
beams in the Relativistic Heavy lon ColliddRHIC, 250 GeV, the Hadron Electron Ring AccelerattiERA,
820 GeV}, and Fermilab’'s TeV acceleratgTEVATRON, 900 GeV, ideas and techniques applicable to
accelerator physics are needed. In this publication we will stress an important aspect of very high energy
polarized proton beams, namely, the fact that the equilibrium polarization direction can vary substantially
across the beam in the interaction region of a high energy experiment when no countermeasure is taken. Such
a divergence of the polarization direction would not only diminish the average polarization available to the
particle physics experiment, but it would also make the polarization involved in each collision analyzed in a
detector strongly dependent on the phase space position of the interacting particle. In order to analyze and
compensate for this effect, methods for computing the equilibrium polarization direction are needed. In this
paper we introduce the method of stroboscopic averaging, which computes this direction in a very efficient
way. Since only tracking data are needed, our method can be implemented easily in existing spin tracking
programs. Several examples demonstrate the importance of the spin divergence and the applicability of stro-
boscopic averagindS1063-651X%96)12510-1

PACS numbgs): 29.20—c, 02.60.Cb, 02.76-c, 29.27.Hj

INTRODUCTION clear that if an equilibrium spin distribution exists, i.e., if the
polarization vector at every phase space point is periodic in
In order to maximize the number of collisions of storedthe machine azimuth, it will vary across the orbital phase
particles in a storage ring system, one tries to maximize thepace. This field of equilibrium spin directions in phase
total number of particles in the bunches, and tries to minispace does not change from turn to turn when particles
mize the emittances so that the particle distribution acrosBropagate through the accelerator, although after each turn
phase space is narrow and the phase space density is h|ght}31€ partiCleS find themselves at different pOSitionS in phase
equilibrium the phase space distribution does not change ifiPace. These directions, which we denote by the unit vector
time, and is therefore periodic in the machine azimuth. n(z,6), wherez denotes the position in the six dimensional
If, in addition, the beam is spin polarized, one requiresphase space of the beam afds the generalized azimuth,
that the polarization is high. As first emphasized by Barbeiwvere first introduced by Derbenev and Kondratefigpin
and Co_Workeril’Z]' for energies of the order of 1 TeV’ a the theory of radiative electron polarization. Note that
fundamental limitation to the polarization of particle beamsﬁ(f, 0) is usually not an eigenvector of the spin transfer ma-
becomes important. To put our work in context, we repeatrix at some phase space point, since the spin of a particle
the arguments here. changes after one turn around the ring, but the eigenvector
Spins traveling with particles in electromagnetic fieldswould not change. Thus, once we know this direction
precess according to the Thomas—Bargmann-MicheI-TeIegd?(f, 0), the phase space dependent polarizatixﬁﬁ, 0) in
equation(TBMT) to be discussed below. The guide fields in this direction, and the phase space density funqj(ﬁ] 6),
storage rings are produced by dipole and quadrupole magve have a complete specification of the polarization state of
nets. The dipole fields constrain the particles to almost cira beam of spir particles.
cular orbits and the quadrupole fields focus the beam, thus The maximizing of the polarization of the ensemble im-
ensuring that the particles do not drift too far away from theplies two conditions: the polarizatiqn(f, 6) at each point in
central orbit. . . ‘phase space should be high, and the polarization vector
In horizontal dipoles, spins precess only around the vertiy 7 g) at each point should be almost parallel to the average
cal fleld_ direction. Thg quadrupoles have' vertical and ho”'polarization vector of the beam. According to the TBMT
zontal fields and additionally cause the spins to precess awayyation, the rate of spin precession is roughly proportional
fr_om the vertical dlre_ctlon. _Th_e strength of the spin precesy, ay, wherea=(g—2)/2 is the anomalous part of the spin
sion and the precession axis in machlne magnet; depends Bq‘actor andy is the Lorentz factor. At very high energy, as
the trajectory and energy of the particle. Thus in one turrg,, example in the HERA proton rinfg, 1], it could happen

around the ring the effective precession axis can deviatﬁ1 t 5(5.6) deviates by t fd f th
from the vertical, and will depend on the initial position of at on average(z, ¢) deviates by tens of degrees from the

the particle in six-dimensional phase space. From this it iPhase space average mf Thus even if each point in phase
space were 100% polarized the average polarization could be

much smaller than 100%. Clearly it is very important to have
*Electronic address: heineman@mintl.desy.de, hoff@desy.de accurate and efficient methods for calculatim(g, 6), and
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for ensuring that the spread ofz, 6) is as small as possible. where the three components of the solutfodepend orz

_ However, although it has been straightforward to defineand 9. In our applicationd will describe the propagation of
n(z,#), this vector is not easy to calculate in general, anda spin distribution associated with a particle beam, and this
much effort has been expended on this topic, but mainly fophysical interpretation can be adopted because of the follow-
eIectror]s at ener_gies. up to 46 GeV. Except for the Fouriefng. A solutionf(z, 6) to Eq.(3) can be found by specifying
expansion formalism mt_ro_duced i8], al! other me;hods de- an arbitraryf(i, 0p) at initial azimuthé, and propagating it
veloped so far are explicitly perturbative, and either do not, 6 by integrating equationél) and (2). In fact
go to high enough ord€i6—8] or have problems with con- ' '
vergence at high order and high enef§y10]. (=Fz(0) 0 4
In this paper we describe an alternative method for ob- (6)=1(2(6),9) @

tainingn(z, ). It is based on multiturn tracking and the av- solves Eq(2) if f solves Eq(3). We say thaf is normalized
eraging of the spin viewed stroboscopically from turn toif
turn. Since this innovative approach only requires tracking
data, it is fast and very easy to implement in existing track- |F|= fo+f5+f5=1. (5)
ing codes. We will show that the convergence speed prom-
ises rather quick execution when simulating realistic accelWe call every normalized solution of E¢3) a spin field.
erators. However, probably the main advantage over other Then-axis introduced in the Introduction is a special spin
methods is the fact that stroboscopic averaging does not hayg|d which is periodic iné with period 27 [3]:
an inherent problem with either orbit or spin-orbit reso-
nances due to its nonperturbative nature. This allows the be- n(z,0+2m)=n(z,90). (6)
havior of the periodic spin solution close to resonances to be
analyzed. Since Eq.(2) represents a pure rotation, the propagation of
the spin vector can be described by & 3 orthogonal ma-
| THE SPIN-ORBIT SYSTEM trix. We denote this rotation matrix which propagates initial

spins s(6,) along a given orbit trajectoryz(6) by

The motion of the spin of particles traveling in electro- B(Z( 8o),6,0,), S0 that

magnetic fields is governed by the equations of motion

e S(6)=R(Z(60), 6, 60)-S( o). (7)
z - s
ﬁ(e)zv(z( 0).6), (1) Because for a spin fielfl the spin trajectory4) solves Eq.
(2), we obtain
g(g):mz( 0),0)%3(6). @) f(2(6),0)=R((6o),0.6)- f(z(6o), 0). ®)

If f(z,6) is a spin field, therf(z,6+27m) is a spin field

Here # is an independent variable pafametrizing the(m is an integex. This follows from Eq.(3) because and
d-dimensional particle phase space trajects(y) and the ¢ are periodic ind. Thus Eq.(8) generalizes to
spin trajectorys(#). In circular acceleratorsd is the azi- R . R
muth. The rest frame spin vectsrhas three components,  f(2(8),0+27m)=R(z(6y), 0, 60)- f(2(6o), 0o+ 27m)
and we normally deal with orbital phase space v_ecﬁ)rs (m intege) 9
which have six components. In accelerator physics these
components are usually the positions and momenta of a pagince am axis is a periodic spin field, we observe (8 and

ticle combined with its energy and the time of flight. (9) that
We neglect the Stern-Gerlach forces since they are very
small in comparison with the Lorentz force. Equati@ is NZ(6+27),0)=R(Z(0),0+27,0)-n(Z(6),6). (10)

the TBMT equation along an orbit parametrized EM)

[11,12. Because we deal with a circular accelerator at fixedalternatively this equation can be used for defining the
energy,v(z,6) and Q(z,6), which depend on the guide axis [13]. The matrix R(z(6),6+2,6) is called the one
fields, are periodic ir¢ with period 2 corresponding to the i spin transfer matrix for the trajectozy6).

circumference of the ring. Due to the precession, (B§.the In the special case where the orbital motion is determined
length of the spin vectos, does not change along the azi- by a Hamiltonian, we have

muth.

The dynamical systerfl) and(2) allows us to formulate v(2,0)={z,Hon(Z,6)}, (1D
the following partial differential equation for the evolution of
afield 7(z, 6): whereH ,,, denotes the orbital Hamiltonian. Furthermore in

this case one can define for the whole spin-orbit system a
Hamiltonian given by 14]

— = —=0xf, 3 .- - -
da 86 121 vl&zl‘ ( ) H(Zasvg):HOrb(Zve)_l—HSpin(ZvSaa)! (12)
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where
Hepir(Z,S,0) =5 0(2,6). (13

The Poisson brackets of this Hamiltonian lead to Edjsand
(2) if the Stern-Gerlach forces are neglec{ad].

I. CONSTRUCTION OF PERIODIC SPIN FIELDS BY
STROBOSCOPIC AVERAGING

To find solutions of Eq(3) which are periodic ir9 by our
method, one first constructs an arbitrary spin fi€ldOne
then constructs the following stroboscopic averagé:of

n

. , 1 ..
<f>(z,a)=n|Ln10 mmE:Of(z,szm) . (19
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6. Hence we come to the following second conclusion of this
section: iff is a spin field with the property th&f) vanishes
nowhere in thed + 1-dimensional space, théf)nom has all
the properties of am axis. This result shows that anaxis

can be obtained from a spin fiefdfor which (f) vanishes
nowhere. In Sec. lll we will derive a tracking algorithm
based on this.

One practical choice of is characterized for at by
F( 2, 00) = ﬁo( 00), (16)

where ﬁo(a) denotes the so called closed orbit spin axis
defined by

No(8) =R(Z¢0(0), 6+ 2,6)-ng(6), (17)

Since the convergence and differentiability of the sequenci&hereze(6) is the closed orbit.
in Eq. (14) can in general not be guaranteed, the limit is only

taken formally. The problem of the convergence will be ana-

lyzed in more detail in Sec. IV B. From E@14) it follows
that(f) is formally periodic in6. Moreover, because E¢)
is a linear equation and becausend () are periodic in6,

we observe for any spin fiel@l that (f) is formally also a

lll. TRACKING ALGORITHM FOR THE i AXIS
USING STROBOSCOPIC AVERAGING

In this section we develop a tracking algorithm which
provides an efficient way to evaluate an axis at
Z=2,,0=6,. Choosing a spin field and replacingd, by

solution of Eq.(3). Hence we come to a first conclusion that fo—27m in Eq. (9) for every integem we obtain

if f is a spin field, theqf) is a solution of Eq(3) which is

periodic in 6. If for f the stroboscopic averadé) vanishes

nowhere in thed+ 1 dimensional space, then we define
<F>norm:<F>/|<F>|- (15

In general(f) is not normalized, but the modulus 6f) is

f(z(0),0+2mm)

=R(zZ(6p—2mm), 0, 0,— 27rm)- f(z( 65— 277m), 6;).
(18

If we choose an orbit witlz( 6,) = zo, then inserting this into

conserved, andf),om is a spin field which is periodic in Eq. (14) results in

n

o - 1 - .
(f)(20,60)= lim _2 R(z(6p—2mm), 6y, 00— 27m)- f(2(6p—27m), 6p) |- 19
n—o n+1m=0

Normalization of(f) yields ann axis at &, 6,).

To apply the tracking algorithm, the infinite sum involved in the stroboscopic avéi®yés replaced by a finite sum of

N+ 1 terms, so that we approximate

N

N+1m=0

which yields the following approximation of the axis:

(Fyn(Zo,60)

n(z )~ ———.
"(Z0:00) [(F)n(Zo.60)

(21)

N
5 o - 1 N 1 - g
(1) (20,00 ~(Pn(20,00) = g7 2 F(20,00+27mm) = 5= 3 R(@(69=27m), 0, 6~ 27rm)- F(2(6p— 2rm), o),

(20

tance. If a particle beam is approximated by a phase space
density, disregarding its discrete structure we can associate a

spin fieldf(z, 6,) with the particle beam at the azimugk. If
one installs a pointlike gedanken polarimeter at a phase

space pointy,=2z(6,) and azimuthd,, then this polarimeter
initially measuresf(fo,ao). When the particle beam passes

The stroboscopic averagﬁ)N in Eq. (20) has a very simple the azimuthd, after one turn around the ring, the polarimeter
physical interpretation which illustrates its practical impor- measures
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B(E( o—27), 80, 0p— 277)- f(z( fo— 277, 6,) knowledge about one turn spin transfer matrices is requirgd.
One can therefore reformulate the algorithm of Sec. Il in
= F(£0,90+ 27). terms of one turn maps which are to be taken at a fixed but

arbitrary azimuth valu#,, and thereby obtain a more prac-
After the beam has traveled around the storage Nrignes tical algorithm. Thus we introduce the one turn orbit transfer

and the polarization has beqn measured whenever the be%pm which maps initial coordinateﬁi into final coordi-
passed the gedanken polarimeter, one only has to averag

over the different measurements in order to obtdjy, . If Z( 6o+ 27) =M (z(6o)). To describe the transport of particles
the particles of a beam are polarized parallehfa, 6,) at : L ; L .

. T with spinss, we write for simplification the one turn spin
every phase space point, then the spin field of the beam is . -
invariant from turn to turn due to the periodicity property in transfer matrixR(z, 6o+ 2, 6o) as R(z), so that we have

-

Eg. (6). But, in addition, even for beams which are not po- s;=R(z)-s;. All other quantities which depend o are

larized parallel ta1, we see that the polarization observed atf@ken at the specified azimuth,. For simplification, this

. > . . , azimuth is not indicated in the following. As already men-
a phase space poit and azimuthé, is still parallel to ) 3 .
tioned, Eq.(10) can be used to define theaxes atf,. This

5(2,60), if one averages over many measurements taken .’ . N o
when the beam has passed the azimtigh condition, will be called the periodicity condition and now

Gtes £f=|\7l(fi). Then in our notation we have

. Ll N o reads
For the special choic&(z, 6y) =ng(6y), we can simplify
fyy to .
(O R(2)-1(2)=n(M(2)). (23
<f>N(201 00)
N A. Recipe
TN+ 1mE:o R(2(6o=2mm), B, 6= 2M)- No( o) To illustrate the process of evaluating aaxis atz, and
22 0, in the case of linear orbit motion, we establish a recipe.

(1) Compute the linearized one turn phase space transfer
Equationg20) and(21) define an algorithm for obtaining an mapzf=&zi . .

n axis. We see that the only information needed from track- (2) Define the set oN+1 phase space points

ing is the set of the N+1 phase space points L gr a1 3

2(60),2(6—27), ... Z(6p—2mN) and the N matrices C={e;=(M""2lj {0, .. N}}- 24)
8(2(60_2’7),90,60_2’”),8(2(00_47T),00,00_477), ey . i N i .
R(Z(6,— 27N), 6y, 0,— 2wN). Each matrix is a product of (3) Compute the rotation matriR(z ) Whl(ih describes
o the spin motion for particles on the closed orhit (6), and

extract the corresponding rotation vecﬁg This is the pe-
riodic spin solution for particles on the closed orbit.

(4) Starting with a spin parallel t60 at every phase space
point in C, track until the phase space poEbt is reached.

For a givenj this requires tracking turns starting an .
(5) Define the set of spin tracking results as

one turn spin transfer matricge(i, 0o+ 27,0p). This means

that one tracks along the ortiiw) to obtain the spin transfer
matrix B(Z( 0),6y,6) and stores it at th&\ instants, where
0=0p—27N, ...,0=04—4m,6=0,—27. The function
F(f, o) is chosen independently of the tracking resfts

example, one can take the choiE@f, 00):60(00) of Eqs.
(16) and (22)].
The following two kinds of pathologies can occur:

(i) The n axis is not unique: if the proposed algorithm B={bo(Zo)="N0.bj(z0) =R(Cy)- - - - - R(Cj) - Nolj
?E)P\;e;ges, then the result could depend on the choice of e{l,... NI} 25)
Z,00).

(ii) The stroboscopic averagé) vanishes foN— + or . .
the sequence in E¢l4) does r?ot>converge. R @ Define — the Nsuin »Of the elemfznts "B Ias
Both pathologies can be studied with the algorithm. TheSn(Zo)=(1)/(N+1)2Zobj(z0), and for |sy[#0 define
first situation occurs for systems on spin-orbit resonanceBy=Sy/|Sn|-
[16]. In all examples studied so far, the stroboscopic average The vectorsy(z,) is equivalent tq F)n (2o, 0o) in Sec. Il

seems to converge, implying the existence OfﬁaLBXiS- Inif the initial distribution of spins is given by, as in Eq.
the second situation, the pointlike polarimeterzgtmen-  (22).
tioned above monitors an averaged polarization which either

vanishes or fluctuates indefinitely. B. Convergence speed

IV. EFFICIENT IMPLEMENTATION ONLY USING It will now be shown that if the angle betweery and
ONE TURN INFORMATION 5,-(20) is smaller than some positive numh&x 77/2 for all
In the previously outlined formalism for evaluating an i €{1. ... N+1}, thenny satisfies the periodicity condition

axis by stroboscopic averaging, it became apparent that onk23) for the n axis up to an error which is smaller than or
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equal to 2 secf/2)tan(¢)/(N+1). Since evaluatin® by the N . R

recipe of Sec. IV A requires trackin§= (N+ 1)N/2 turns, Sn(M - Zo)_ ZO k[[l R(ck-1)-ng

the accuracy is bounded by2/Tsec/2)tan(¢). This slow 1=0 ks

convergence with the square rootfs a very serious limi- 1 i -

tation, and in Sec. IV C we will demonstrate how the con- TN+1 o+ = kﬂo (©)no |, (27)

vergence can be considerably improved.
The proof of this convergence property goes along the

N
R(Z0) - Sn(Z0)= 2 Il Rc-ne, (29

following lines. The averagéN has been defined by 110 k=o
T A N PN
Sn(Z) = mjgo kHl R(cy)-Nng. (26) R(2o)-sn(20) —SN(M - 20) = N+1(R(Zo) b (Zo) — o)

= m<6N+1(M' Zo) - ﬁo)-

- 29
Here we adopt the convention TIY_,R(Cy) A o @9
=T%_,R(Cc_1)=1, andTT}_,R(¢,) is taken to mean the The length|by, 1(M - Zg) —ng| is smaller than 2 sig(2),

following order of multiplication: R(C,)- - - - - R(C,). To @sshowninFig. 1. The length sfy is at least cog), and
wing - ) u 'pical ,*(_ _1) ﬁ( i) here it becomes essential that there is a limitmd® on the
check how wellsy satisfies the periodicity condition3) of  5gje¢. This information is sufficient to establish the follow-

the n axis, we calculate ing inequality:

sn(Zo)  Sn(M-Zg)

R(Zo) - Nn(Zo) —Ny(M - Z0)|= | R(Zp) - ——=— — — -
IRCz0) 2o n(M-20)|=| Rz Isn(zo)|  [sn(M - 20)|

S oo [su(M-Zg)| = |sn(Zo)] -
- (z -5 (Zg) —sn(M - zg) + = (M-z )
|SN Zo)|‘ o e M |SN(M'ZO)| o

= ﬁ(@(zo) -Sn(Zo) — Sn(M - 20)| + I|B(£O)§N(£O)| - |§N(M' Eo)“)
n(Zo

<———|R(2)-Sn(Z0) —SN(M - Z0)|

Isn(Zo)|
4 sin(¢/2
(N+1)cog¢)
|
The error by which the vectary(z,) violates the periodicity (1) If an n axis n(z) exists, then the sequency, con-
condition (23) of the n axis is therefore smaller than verges toﬁ(f) linearly in 1N.
2 secg/2)tan(¢)/(N+1), and converges to O for larde. (2) If an n axis exists and the spin rotation angle in one

If one can prove the existence of a suitable numbekurn is not a linear combination of orbit phase advances
&E<mr/2 for some spin transport system, one has proven thﬁwodulo 27, then then axis is unique up to a sign.
existence of functlonm,\, for this system which satisfy the The proof is adapted frofi5,16,17. The first step will be
defining equation for the axis to arbitrary precision. Since, to show how to define a spin rotation angle which depends
however, these functionsy do not necessarily converge, only on orbital action variables. We assume thatraaxis
this does not prove the existence of araxis for such a exists and introduce two unit vectors(z) and U,(z) to

system. create a right handed coordinate systemug ,u,). The vec-
If the orbit motion can be described in terms of action—t

X . ; X rs Jl andu, are therefore defined up to a rotation around
angle variables, as is always the case for linear motion, an

the orbital angle advances for one turnm(2imes the orbit the n axis by an arbitrary phase space dependent angle
tunes are not in resonance, then two important conclusions?(2). We express the spin vectcxssn terms of this coordi-
about this tracking algorithm wit§<7/2 can be drawn. nate system by sln+32u1+ s3u2 The coefficients; does
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with some vectorjﬁ that has integer components. The phase
space dependent spin rotatieri® is also a periodic func-
tion of phase space. But since on the closed owbit Q) the
spin motion does not depend dn thereforevj(CIS) only has
a periodic component, and no component lineadin

If the orbital angle advanced are not in resonance, then

¢j(<f>) can be chosen to eliminate the phase dependence of
the exponent in Eq(34) completely. This can be seen by

Fourier transformation of the periodic functiom§(<13) and
dkj((f)), leading to the requirement

vi(K)=¢.i(K)(1—e* Q) (36)
FIG. 1. Estimation of the convergence speed. To guarantee con-
vergence of the stroboscopic average, the aggbetween the di-

_ - _ for the Fourier coefficients’;(k) and ¢.5(k). Therefore,
rection ofny and the transported spins has to stay bete/®.

;ﬁoj(IZ) can be chosen to eliminate all Fourier coefficients
not change during the particle motion around the ring sincé&xcept fork=0. With this choice the exponent reduces to

the particle transfer matriR(Z) is orthogonal, and ensures »3i(0)+]-Q. The vectorj can in general not be used to
that (s n) is invariant. The spin motion described by the S|mpI|fy this expressmn and we therefore usually choose

R(z) matrix is therefore simply a rotation around the 1 =0. With »(J)=;(0), thespin rotation of Eq(34) then

n-axi - lfi
n-axis by a phase space dependent angi: simplifies to
St1 1 0 ) 0 ) Si1 éf:e_iv(‘j)éi. 37)
Sip | =| 0 codw(z)) sin(w(2) || si
St3 0 —sin(v(z)) codr(z))/ \ Sis We have now achieved the goal of constructing a spin rota-

BD  tion depending only on orbital actions. It is interesting to

If we now introduce the complex quantitys note that if for amplitudeéthe integer coefficients q?can

—e ¥ (s,+is,), where ¢(2) is the arbitrary angle, then be chosen so that

the spin transport is described by

. . . J)+j-Q=0 mod2m, 38
Statisz=e "A(sp+is;3), (32 vI*-Q moaar (39

e M) = gl 2T d(2)g, (33)  one can eliminate the spin rotation completely. Here we only
) R analyze the case where this resonance condition is not satis-
Now we introduce orbital action-angle variablégand® as fied.

well as the angle advancésfor one turn around the accel-  The stroboscopic average is now performed by the recipe

erator. Note that the syme is 27r times the orbital tunes. of Sec. VA, but this fime in the coordinate system
In these variables the one turn transport is characterized b()ﬂ Ul!uz) just constructed by the described choice of

Jf_J and q)f_q) +Q. Slnce the actions remain |nvar|ant o] (¢) We first establish the trackmg p0|m§and note that

#3(®) to indicate the spin rotat|on angle and the free phaséyStem 0,U1,Uy), the vector components of the periodic
of the coordinate system for fixed actiods spin ng on the closed orbit are not constant, but depend on
the phase space posmod,(b). This vector is transported
from the phase space poirtsto z,=(®,J) by the rotation

. matrix

We now show howg;i(®P) can be chosen so that the spin

motion characterized by the exponent becomes simplified.

§ =gl Vi @)+ @5 ®)- 5P +QNg (34)

As with any function of phase space, the rotat@fi®) is 1 0 0
27 periodic in all components; . Therefore, the rotation 0 cogjv) sin(jv) |, (39
angle;(P) has a periodic contributios.;(®) and a linear 0 —sinjr) cogjv)

contribution in the phases

65(D)=p.5(D)+] D, (35 leading to the stroboscopic average in the coordinate system
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LW 1 0 0
M@= g2 | 0 codiv)  sin(jv)
=%\ 0 —sinj») cogjv)

no,ﬂ(cf)_j(j)
X no,zj(qg_jd)
Nox(®—jQ)

(40)

The first component cdy is ZJ-N=0n0,15((I3—j(5)/(N+ 1); the
second and third components in complex notation are

N

éN:SNz‘HSNe.:,\I_HLJ=0 e MR 3(D-jQ), (4D

wherefg 3(®) =ng 5i(P) +ing 55(P). In terms of the Fourier
components, j(k) of Ny ;(®), one obtains the inequality

N

8= —— e—ij(v+|2-é)2 F‘Oj(ﬁ)eilz-q;
k

N+1i=o
1 1—e iN*DO+kQ)
= NT1|> —————ng (k)
N+1 " 1— e i(r+k-Q) :
1 2 «
g 3 .
NT 1 l_e_i(wg,@'lno,ﬂkn (42)
Similarly, for the first component (ﬁN one obtains
5 1 1—e IN+1Kk-Q_ o
Sn1=No1i(0) + 5w ———gj(k)e?,
N+1Z, 1-eikQ
(43

Since|sy|>cosg) andé< /2, it is guaranteed thai, does

not converge to 0. For large, |sy| is given byng 15, which
therefore does not vanish. Since the resonance cond8B)n

is not satisfied for any vector of integefs none of the de-
nominators is zero, ansk ; and sy converge linearly with

1/N. At this point we impose the condition anthat the sum
on the right hand side of E¢42) converges. From the con-

vergence ofy, the convergence afy to n follows from

- 2 2 A )2
.. . S S S
In—ny|?=|n— — :(1—#) +(t—N|)
BN |snl BN
- - A 2
_ |SN|_SN,1 |SN|_SN,1 EN (44)
EN ISl Isnal )

There is a numbeN* such that the absolute value of the
N dependent part ofsy; in Eqg. (43) is smaller than

ﬁoyﬁ(O)lz. If the number of turndN is larger thanN*, we
conclude that

EN

Iny—n|<2y2 : (45)
Ino,13(0)]
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which, together with Eq(42), establishes thaty conver-
gences linearly with M.
The second conclusion to be proven is the uniqueness of

then axis. In the coordinate systerﬁ,(ﬁl,ﬁz), the periodic-
ity condition (23) reads

1 0 0
0 cogv) sin(v) |.n(z)=n(M(2)), (46)
0 —sin(v) cogv)

with the obvious solutiom(z) = (1,0,0)" for all z. If another

n axis n,(z) exists, them,—n(n-n,) is nonzero at least at
one phase space point and on all iterates of this point which
can be reached during particle motion. We normalize this
difference vector at these phase space points and write it as

coga(2))u; +sin(a(z))u,. In orbital action-angle variables,
the functiona5(<13) again has a periodic contribution and a
linear contribution; - ®.

In complex notation, the periodicity conditidd6) reads

el (- () +aj(®) = giaj(®+Q) (47)

Sincer(J) does not depend o, the periodic part ofr has
to vanish. The resulting;;= |- ® can only solve the period-
icity condition if there is a vectof with integer coefficients
fulfilling the resonance equatiof88), and then a second
axis exists. For linear orbit motion with phase advances
which are not on resonances of ty(&8), Eq. (47) does not
have a solution, and the axis is unique. There is so far no
proof for nonlinear orbits, but nevertheless the method of

stroboscopic averaging can also be used for exploring non-
linear orbit motion.

C. Improved recipe with faster convergence

In Sec. IV A an algorithm was introduced which con-
verged with the square root of the numBeof turns tracked.
However, it is possible to obtain convergence linearTin
when one takes advantage of the orthogonality of the spin
transfer matrix. To illustrate this, we again establish a recipe.

(1) Define, as before,

C={c;=(M Yl zgje{0,... N}}. (48)

(2) Define three orthogonal unit vectofe®),e®,e(®).

(3) Obtain the sets; of the three vectors(”, s, and
s{*) by tracking thee® for N—j turns,

(49

(4) From the set of vector§; and the setS;, one can
obtain the spin transfer matrix from the phase space point

¢; to z, denoted byR(c;). This becomes clear when one
realizes thats§?=R(c;)-s{* for all k. Obtaining these
N+1 transport matrices requires the propagation of three
spins around the circular accelerator forturns.
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(5) Now we can compute the seB={R(C)-no/j  s{°=e®. Asin the fourth step of the recipe in Sec. IV C one
E{O, . ,N}} This is 0bV|OUS|y identical to the set denoted can then obtain the Spin transfer maﬂﬂ((é)]) from the phase

by B in Sec. IV B'_ . space poinﬁo to Ej. The inverse of this transfer matrix is
(6) The normalized average d, denoted byny, can  simply obtained by transposition leading to the vectors
now again be computed as mentioned above, and solves t@ezg(ej)p ﬁo- The normalized average of the vectdfrjsis

defmn:njg equ_atloln for am axis up to the small error dis- then the stroboscopic averaég\,l,\, of the inverse motion.
CUSSEd previously. For this average the error of the periodicity condition for the

In Fh's approach one °’?'y has to track three _|n|t|al SPINnverse motion converges linearly to zero. Fortunately, an
directions oveN turns, leading t@ =3N. The error is there- - . N >
n axis of the inverse motion;,,(z) is also ann axis of the

fore bounded by 6 seé(2)tan(¢)/T. This implies conver- ; i WAS . .

gence linear in the numbdr of turns tracked. The following forward motion, since the periodicity condition of the inverse
example illustrates the speed of this method: when the angl'g‘Otlon reads as
¢ happens to be 45°, and we require an accuracy at the
10 2 level, this linear convergence approach only requires

6500 tracking turns; when the angdeis small, fewer itera- o - - o
tions are needed. and from this it follows that;,,(z) also obeys the periodic-

ity condition (23) of the forward motion.

R (M %(2))- niny(2) =Nin,(M ~%(2)), (51)

D. Backward tracking . i .
] F. Tracking rotation angles and rotation vectors
In the two recipes of Secs. IV A and IV B, we needed to

find the setC of N+1 backwards tracked phase space One can represent a rotation matrix by its rotation vector
points, and then launch spins at these points and track fo and its rotation angleb [ 0,7]. The simplest representa-
ward so as to compute sBt In the case of linear motion, it tion is in terms of the vectory=sin(¢/2) and
is trivial to obtain these backward tracked phase space=cos($/2). The rotation matrix is then given by
points. One simply transformz% into the action-angle vari- i 2
ables of the linear motion, and determines the phase advance Rij=2(x"6ij+ 77— K&ijk Vi) ~ Gij -
per turn of the linear motion. Counting back these phase . ) )
advances and transforming the action-angle variables backliS répresentation can be easily transported through an ac-
. -~ . celerator by means of the equations
into phase space leads to the poiats In the nonlinear case
this would actually require us to track fad more turns ~ > = ~
around the ring. K=K1Kp= Y1 Y2, K=]k|, (53

In the case of the linearly convergent method of Sec.
IV C, this extra effort becomes unnecessary. One can start
with the phase space poiiﬁ and launch three particles with
spins alonge®, @, and e®). Tracking backward in the
azimuth defines thdl+1 setsP; of the spinsp{™, p{®, and
pt with

(52

. - - . K
7:(71K2+7’2K1+7’2X7’1);- (54)

It is therefore even more appropriate and faster by about a
factor of 3 to track rotation matrices represented ;bymd
« directly, than to track three spin vectors.

p/=R7Y(E) - R7H(Cy) €, (50
V. APPROXIMATION OF LINEAR SPIN-ORBIT MOTION

From the sets; and P, one can again compute the spin | this section we consider the special case of linear spin-
transfer matrixR(c;), and with these matrices one obtains orbit motion as a way to illustrate and confirm the chief
the setB with the element5j=3(5j)-ﬁo, which again leads features of our algotithrrﬁlti]. For this purpose we define
to ﬁN by averaging. two periodic vectoram and | orthogonal ton, in order to
obtain an orthonormal right-handed dreibein at the previ-

ously specified azimutld,. We then write a spin vectarin

i ) the form
There is an even more fundamental problem in the case of

nonlinear motion than the computation time. When the lat- i e R e P
tice or the effect of separate nonlinear elements are com- $=V1=a™=fno+ am+ Bl

puted by nonlinear transfer maps, the inverses of these maps h here boih and h ller th .
might not be known. In this case the required phase spacé N case where boim ands are much smaller than unity,

o= e may treat the spin in a first order approximatiorviand
pointsc; cannot be computed at all. Nevertheless our metho% Y b bp

) 2 so that the spin vectqb5) can be written as
can be used to obtain the vectog as follows. The argu-
ments of Sec. IV D can simply be repeated for tracking for-

ward. One establishes the phase space p@intM (c;-;)

with co=2, for je{1,... N}, and simultaneously the sets and is normalized in linear approximation. We combine the
S; by tracking the three unit vectosé"_)1 for one turn with  two-component vector

E. Forward tracking

(59

S=ny+am+gI, (56)
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S=

o | From Eq.(58), it follows that
(ﬁ) 57

m—1
R = MM K.>.p—(k+2)
and the orbit vector into a single vector of d+2 compo- CmM go b*-6-M | (62)

nents By linearizing the equations of motion with respect to

Z, an initial spin-orbit coordinafe; at azimuthé, is mapped We expand the phase space coordiraidn eigenvectors
into a final coordinatg; after one turn around the rif@] by y, of the one turn transfer matrid ,
the (d+2)Xx(d+2) spin-orbit transfer matrnM o

d

= ~ = =~ M Q > ._),
zt=M -z, ,M=( G D), (58 Zo—JZl a;Y; (62)

whereM again denotes théxd dimensional orbit transfer with expansion constants and eigenvalues ;- 1
matrix. The matrice§& andD are 2<d and 2<2 matrices,

respectively, with M.-y;= )\j—lyj . (63)
=G-z+D'§. (59) .
Thus we obtain
In order to simplify the following formulas, we introduce the
2Xd-dimensional componenG,, of the transfer matrix _om! N
M™ for m turns around the ring. We note that the two- Qm'Mfm'yJ:kZO NTIDRGHy;. (64)

component vector corresponding tg, is Mg=0 so that

propagating this initial spin vector at a phasi space EIP"’“ We do not consider the case of spin-orbit resonances, so
once around the ring leads to the final s@Ep=G,,-z . that the matriced —\;D are nonsingular. Thus E(64) sim-
Therefore, we define the two-component veSiganalogous ~ Plifies to
to Eq.(26) by
N m Gm-M ™™ y;=)\;(1-AD™)-(1-\D) 1 G-y;.
- - - o~ (MT 0 (65)
Sn(Zo)= 2, Gm'M M2z5, M"= :

(60) From this follows

N
mZO Gm'M ™™y =N[(N+1)1—(1-A)" DN (1-\D) - (1-AD) LG yj, (66)

so that stable if the eigenvalues hayg;|<1. To analyze the con-
vergence speed, one has to realize thag a rotation matrix,
and therefore that

N
- I
J,'Tm N+ E: TYi | =A(A=AD) Gy [(A-AMIDNTYE < (14N NTY[S|<2[§] for all §,
(67) (69)
I 2 3 N
Combining this with Eqs(60) and (62), we obtain |nN(zo)_n(zo)|ngZl lay|[(L-\;D)"2-Gyj|.
d (70
N(zp) = 21 aj\;(1-\D) 1 G-y, (68)  This inequality also shows that for linear spin-orbit motion
=

one finds convergence linear inNL/and it can also be seen
that the convergence speed decreases with the orbital ampli-
tudesa; and becomes very slow close to first order spin-orbit

wheren is the two-component vector correspondingﬁo
resonances.

Ford=6 this yields the well known expression of theaxis
for the case of linear spin-orbit motig®,15]. This confirms
the method of stroboscopic averaging for the linear case.

Also, our predictions about convergence speed are confirmed In order to illustrate which quantities can be computed
as follows. In storage rings the particle motion can only beand how effective stroboscopic averaging can be in numeri-

VI. NUMERICAL EXAMPLES
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cal computations, we apply it to a model accelerator with a 1 N R R R
known h axis. Since this model is somewhat artificial, we ~=~7> L] T(€1,—®) (N, A) - T(€1,®) Ng
i ! N+1{=0 k=1

also apply our method to the vertical motion of the HERA (77)
proton ring. For simplicity, the vertical bends at the interac-
tion regions have been ignored. N

o _ =R (e ) 2 TajA)- €. (78)

A. Comparison with an analytically solvable model

In this Qsecuon we conS|de_r a speC|a_I mocﬂéB]. with If A/27 is not an integer, after some tedious manipulations
d=2 andz=(®,J). The equations of motion are given by gne obtains

do dJ > >

(0=, (=0, A (®,9) = R(®,9) =21 7y, (79
d3 B w?J 1-cog(N+1)A)) 2
5 (0)=0(@(9),9)x5(0), 7 VTR 07 T 1ocodh)

(80)
with ..
One sees thdhy—n| is an oscillating function ofl whose
local maxima increase witli, reflecting the fact that large
orbital amplitudes reduce the convergence speed. This be-
havior is plotted in Fig. 2. In this and the other figures con-
wherey is a real parameter. Hence initial coordinatesre ~ cerned with the solvable model we used the parameters
taken into final coordinatesz; by z=M(z) with  *o=0.6m, Q=0.46m, u=0.2m, andP=0.32. For largeN,
®;=0,+Q and J;=J,. In the following we assumer, Egs. (?9) and (30) predict that the convergence is indeed
#Q and thatvy/27 is not integer. This model corresponds to IN€ar in 1N, as illustrated by the slope f1 in Fig. 3. Also
the rotating field approximation often used to discuss spirPne sees thdtiy—n| vanishes wher /27 is not an integer,
resonance in solid state physi@0]. We now introduce the and if (N+1)A/2m is an integer. Whem\ /27 is an integer

orthogonal matrixT (€, ) describing a rotation around a unit W& have
vectore by an anglep. Transforming the spin components

" 1. . N
Q(d),J):ﬂ(v0e1+u\/3(e3sind>+e2cosb)), (72)

2 —-1/2
- - N - J
of s into a rotating frame by introducing,,;=T(e;,®) s, ™w=|1+ 'u_—)z (81
one obtains the simplified equation of the spin motion, (7= Q
vo—Q Therefore, in this casey does not converge to. This is no
dSrot(e) G (I)X5(0), Go(d)= 1 N surprise, since the condition wher&/27 is an integer
rot rot rot 72 ' amounts to the resonance conditi@®8) which leads to this
73 nonuniqueness of the axis. It is interesting that the local
maxima of|ny—n| do not occur at these resonance points.
If in this frame a spin field is oriented parallel £, this Figure 4 shows the variation of the opening angle of the
field does not change from turn to turn. Thereforepolanzatmn field as a function of orbital amplitude. Since
Nrot= O ot/ | Qrof IS ann axis. In the original frame this axis n=|vo— Q/A, as  well as No- Ny =(1)/(N
is + 1)Ej:0T11(n,0t,JA), do not depend on the angle variable
o1 @, the depicted angles are equivalent to the phase averaged
> Vo~ - > opening angle. The good agreement with the analyticall
n(®,J)= A (vo— Q)€1+ u\I(egsind pening angte. g greem yhically
| -Q| computed opening angle of the axis shows that accurate
- values for the field can be obtained with a very limited num-
+e,c08P)), (74 per of turns.

— This analytically solvable model can also be used to illus-
A=(ro— Q)"+ u4J, (79 trate the construction of a phase independent spin rotation

where the sign factori,— Q)/|vo— Q| has been chosen so anglev(J). Having obEained an axis, one can transform the
that on the closed orbit)=0) then axis n(®,0) coincides SPIN components 0?’ into a .rotated coordinate system
with ng=6,. As with any function of phase space thisaxis ~ (M+U1,Uz). With the simple choice
is a periodic function inb.

We now perform the stroboscoplc average by the reC|pe - 1 > >

Up(P,J)= == (X &)=

(e23|n<b egcosb)
of Sec. IV A to compute am axis atzo—(CID,J) and 6, |n><e1| | Q|

(82

N
712, 1L R@—kQ.9)-ng (76) Un(®,d) =11 Uy, (83

=)
z
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0.0003 amplitudeJ in phase space.
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both of which are clearly periodic i®, one can show that RTINA] . 1o—Q  15-0Q
the spin rotation angle is independent®f that is, u1(<1>,J)=e1Tsinfb+ezcosI> Sincb('V A )
0
vo—Q - [ 10— Q vo—Q
v(J)=r——c7A. (84) —-e coSd + sirfd 85
[vo—Q S ipre] A Sne ), (@9

However, v(J) is free up to multiples of the orbit tune as R - .

outlined in Sec. IV B. We can use this freedom to obtain a up(P,J)=nx uy. (86)
v(J) which reduces tayg on the closed orbitJ=0). The

only choice which satisfies this condition is obtained by anBoth are again periodic i, and again we obtain a spin
additional rotation ofi; andu, aroundn by —®, rotation angle independent df, viz.
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FIG. 3. Referring to the analytically solvable model: Convergence of the stroboscopic aﬁgr‘agkhe analytically calculated with the
numberN of turns tracked fod=14.
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vo—Q applicability of stroboscopic averaging. We transported spins
v(J)= WA+Q- (87) by means of this rotation vector, and approximated the orbit
motion by the linear transport matrix.
Correspondingly, on the closed orhit; and U, reduce to In a realistic accelerator, the existence of thexis can-

not be guaranteed, but an approximately invariant spin field
can be found if the serieEN converges. To indicate the

- - 1= Q convergence of this series, we p'b’iN—ﬁzoood for the
u2(®,0)—e2|VO_Q|. phase space point withy=0.4 mm andy; =0 in the East
(88) interaction region. This corresponds to an emittance of 69
mm mrad, and is therefore a particle at approximatetyof
the beam distribution. The slope efl in the double loga-
) ) rithmic scale of Fig. 5 illustrates clearly that the convergence
The HERA proton ring stores protons with an energy ofis |inear in 1N as derived in Sec. IV B.
820 GeV. At this energy, the proton spin rotates about | that section, convergence could only be guaranteed if

1566.85 times around the vertical direction in a flat ring dur-the angle between the vectdsg andn, stayed smaller than

i i i _ 0

Ing one turn. The HERA ring is not compk_ately ﬂa’F' Nev_er /2 during tracking. As an example we checked this require-
theless this number llusirates the cqmplexny of spin r.n(.)t.'on'ment fory;=0.4 mm and found that this condition is violated
Ifa Ch‘f"”ge of the phase space posm_on of a particle 'mt'ateas iIIustraIted in Fig. 6, and convergence cannot be guaran-
a refative change of the one turn spin rotation by only ONSeedad hoc Nevertheless, an approximately periodic spin

part in 1¢f, the angle of precession has changed by 56 def'ield is obtained.

grees. This simple observation already hints at the strong One can easily check this by tracking a spin which is
dependence of the equilibrium spin direction on the phase _ | y S y 9 pin |
space coordinates pointed out in the Introduction. To illusiNitidlly parallel to ny for many tumns. In order fony to

trate this fact, we restricted ourselves to vertical motion withapproximate am axis, the tracked spins have to lie approxi-
a tune of 0.29, ignored the vertical bends to obtain a flat ringmately on a closed curve on the unit sphere. Four such
and computed the third order expansion of the spin transfeglosed curves were created by CompU“ﬁlgoooat the phase
matrix with respect to the vertical phase space coordinatespace pointsy;=0.1 mm, y;=0.2 mm, y;=0.3 mm, and
using the differential algebra cod®osy INFINITY [21]. Fi-  y,=0.4 mm withy/ =0, and tracking for a further 600 turns.
nally we stored the third order phase space expansion of thg Fig. 7 we display the projections of these curves on the
corresponding rotation vectoyr. This power expansion was horizontal plane.

then used by the prograsPRINTto obtain then axis. Due to Optimization of the average polarization of a particle
the strong phase space dependence of the spin motion, tHi§am requires that the equilibrium polarization direction for
expansion does not represent the real spin motion in HER&Very particle is almost parallel to the average polarization
very well, but it is nevertheless useful to demonstrate thalirection. We therefore averaged the angle betwegmand

- - vo—Q
U1(¢,0)=—93F

Ql’

B. Application to the HERA proton ring
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FIG. 5. Indication of convergence for a realistic accelerator: The slope Dfin the double logarithmic scale illustrates that the
convergence is linear in M/

n, over the orbital phases and displayed this divergence fosults were presented [i22]. Since this polarization distribu-
different phase space amplitudes in Fig. 8. tion is not the equilibrium distribution, the averaged polar-

Yet another way of illustrating the importance of the Iization exhibits a strong beat. This figure also shows that
axis is illustrated in Fig. 9. Particles at 100 different phaseswhen spins at phase space coordiratee initially parallel
at a normalized emittance of aboutr4mm mrad, corre- to n(z), the averaged polarization stays constant. Therefore,
sponding toy;=0.1 mm andy; =0, have been tracked py starting simulations with spins parallel to theaxis, one
through HERA for 500 turns while the beam was initially can perform a much cleaner analysis of beam polarization in
polarized 100% parallel tao Similar kinds of tracking re- accelerators.

w
o

!
15708 ©

FIG. 6. Angle between the
tracked spins andh, for y,=0.4
mm. To guarantee convergence,
this angle has to stay between 0
and /2. For many spins this
angle is substantially larger; nev-
ertheless we do obtain a good con-
vergence speed.
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FIG. 7. Referring to the flat HERA model: The stroboscopic averﬁgénr N=12 000 tracked for a further 600 turns fpr=0.1, 0.2,
0.3, and 0.4 mm.
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FIG. 8. Referring to the flat HERA model: Phase averaged opening angle of the stroboscopic ﬁMefmge= 200 as a function of the
vertical phase space amplitude
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that is initially completely polar-

06 ized parallel ton, leads to a fluc-

another beam that is initially po-
larized parallel to the periodic
spin solutionn, the average polar-
ization stays constant, in this case
equal to 0.765.
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In this paper we do not want to discuss in detail the pos- CONCLUSION
Slble_countermeasures Wh'Ch. can be_ ta_ken_ to r?duce the We introduced an algorithm for computing the Derbenev-
opening angle of the polarization distribution in a given ac-

celerator. Nevertheless, with one example we want to de Kondratenko spin axisi( axis) from straightforward spin

o . phase space tracking data with the following features:
onstrate the possibility of such counter measures. The pic- (i) It can be implemented in any existing spin tracking

tures in Fig. 10 were calculated for the actual nonflat HERAprogram.

lattice, and compare the axis before and after the introduc- (ii) For an accuracy on the 18 level typically less than
tion of four Siberian snakeg!] into the accelerator. 3000 turns have to be tracked.

Sz1 Sz 1

0.5 0.5

FIG. 10. Referring to the actual HERA lattice as of 19886t) and after incorporation of a suitable choice of four Siberian snakgs):
Variation ofn(z) over a 2r vertical phase space ellipse.
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(iii) No artificial damping is needed. resonances, and the effect of nonlinear orbit motion should
(iv) Since our method is nonperturbative, no resonancée made.
factors appear in the algorithm and it is applicable even near It is the opinion of the authors that now, after the intro-
spin—orbit resonances. duction of stroboscopic averaging, spin tracking in storage
With the method of stroboscopic averaging, importantings should always be initialized with spins parallel to the
features of accelerators can now be analyzed. One very sigauilibrium distribution, since much clearer analysis be-
nificant field of study will be the computation of spin tune COmes possible.
spreads, which previously could hardly be analyzed and are
now easily accessible. Diffusion and damping terms could be
added to the analysis, amd?ﬁ/ay [5] can be computed for We wish to thank Desmond P. Barber for careful reading

the simulation of electron polarization in storage rings. Inof, and valuable remarks on, the manuscript, and Gerhard
addition, numerical checks of uniqueness, convergence ne&ipken for useful discussions.
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