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Polarized protons have never been accelerated to more than about 25 GeV. To achieve polarized proton
beams in the Relativistic Heavy Ion Collider~RHIC, 250 GeV!, the Hadron Electron Ring Accelerator~HERA,
820 GeV!, and Fermilab’s TeV accelerator~TEVATRON, 900 GeV!, ideas and techniques applicable to
accelerator physics are needed. In this publication we will stress an important aspect of very high energy
polarized proton beams, namely, the fact that the equilibrium polarization direction can vary substantially
across the beam in the interaction region of a high energy experiment when no countermeasure is taken. Such
a divergence of the polarization direction would not only diminish the average polarization available to the
particle physics experiment, but it would also make the polarization involved in each collision analyzed in a
detector strongly dependent on the phase space position of the interacting particle. In order to analyze and
compensate for this effect, methods for computing the equilibrium polarization direction are needed. In this
paper we introduce the method of stroboscopic averaging, which computes this direction in a very efficient
way. Since only tracking data are needed, our method can be implemented easily in existing spin tracking
programs. Several examples demonstrate the importance of the spin divergence and the applicability of stro-
boscopic averaging.@S1063-651X~96!12510-1#

PACS number~s!: 29.20.2c, 02.60.Cb, 02.70.2c, 29.27.Hj

INTRODUCTION

In order to maximize the number of collisions of stored
particles in a storage ring system, one tries to maximize the
total number of particles in the bunches, and tries to mini-
mize the emittances so that the particle distribution across
phase space is narrow and the phase space density is high. At
equilibrium the phase space distribution does not change in
time, and is therefore periodic in the machine azimuth.

If, in addition, the beam is spin polarized, one requires
that the polarization is high. As first emphasized by Barber
and co-workers@1,2#, for energies of the order of 1 TeV, a
fundamental limitation to the polarization of particle beams
becomes important. To put our work in context, we repeat
the arguments here.

Spins traveling with particles in electromagnetic fields
precess according to the Thomas-Bargmann-Michel-Telegdi
equation~TBMT! to be discussed below. The guide fields in
storage rings are produced by dipole and quadrupole mag-
nets. The dipole fields constrain the particles to almost cir-
cular orbits and the quadrupole fields focus the beam, thus
ensuring that the particles do not drift too far away from the
central orbit.

In horizontal dipoles, spins precess only around the verti-
cal field direction. The quadrupoles have vertical and hori-
zontal fields and additionally cause the spins to precess away
from the vertical direction. The strength of the spin preces-
sion and the precession axis in machine magnets depends on
the trajectory and energy of the particle. Thus in one turn
around the ring the effective precession axis can deviate
from the vertical, and will depend on the initial position of
the particle in six-dimensional phase space. From this it is

clear that if an equilibrium spin distribution exists, i.e., if the
polarization vector at every phase space point is periodic in
the machine azimuth, it will vary across the orbital phase
space. This field of equilibrium spin directions in phase
space does not change from turn to turn when particles
propagate through the accelerator, although after each turn
the particles find themselves at different positions in phase
space. These directions, which we denote by the unit vector
nW (zW,u), wherezW denotes the position in the six dimensional
phase space of the beam andu is the generalized azimuth,
were first introduced by Derbenev and Kondratenko@3# in
the theory of radiative electron polarization. Note that
nW (zW,u) is usually not an eigenvector of the spin transfer ma-
trix at some phase space point, since the spin of a particle
changes after one turn around the ring, but the eigenvector
would not change. Thus, once we know this direction
nW (zW,u), the phase space dependent polarizationp(zW,u) in
this direction, and the phase space density functionr(zW,u),
we have a complete specification of the polarization state of
a beam of spin-12 particles.

The maximizing of the polarization of the ensemble im-
plies two conditions: the polarizationp(zW,u) at each point in
phase space should be high, and the polarization vector
nW (zW,u) at each point should be almost parallel to the average
polarization vector of the beam. According to the TBMT
equation, the rate of spin precession is roughly proportional
to ag, wherea5(g22)/2 is the anomalous part of the spin
g factor andg is the Lorentz factor. At very high energy, as
for example in the HERA proton ring@4,1#, it could happen
that on averagenW (zW,u) deviates by tens of degrees from the
phase space average ofnW . Thus even if each point in phase
space were 100% polarized the average polarization could be
much smaller than 100%. Clearly it is very important to have
accurate and efficient methods for calculatingnW (zW,u), and*Electronic address: heineman@mint1.desy.de, hoff@desy.de
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for ensuring that the spread ofnW (zW,u) is as small as possible.
However, although it has been straightforward to define

nW (zW,u), this vector is not easy to calculate in general, and
much effort has been expended on this topic, but mainly for
electrons at energies up to 46 GeV. Except for the Fourier
expansion formalism introduced in@5#, all other methods de-
veloped so far are explicitly perturbative, and either do not
go to high enough order@6–8# or have problems with con-
vergence at high order and high energy@9,10#.

In this paper we describe an alternative method for ob-
tainingnW (zW,u). It is based on multiturn tracking and the av-
eraging of the spin viewed stroboscopically from turn to
turn. Since this innovative approach only requires tracking
data, it is fast and very easy to implement in existing track-
ing codes. We will show that the convergence speed prom-
ises rather quick execution when simulating realistic accel-
erators. However, probably the main advantage over other
methods is the fact that stroboscopic averaging does not have
an inherent problem with either orbit or spin-orbit reso-
nances due to its nonperturbative nature. This allows the be-
havior of the periodic spin solution close to resonances to be
analyzed.

I. THE SPIN-ORBIT SYSTEM

The motion of the spin of particles traveling in electro-
magnetic fields is governed by the equations of motion

dzW

du
~u!5vW „zW~u!,u…, ~1!

dsW

du
~u!5VW „zW~u!,u…3sW~u!. ~2!

Here u is an independent variable parametrizing the
d-dimensional particle phase space trajectoryzW(u) and the
spin trajectorysW(u). In circular accelerators,u is the azi-
muth. The rest frame spin vectorsW has three components,
and we normally deal with orbital phase space vectorszW
which have six components. In accelerator physics these
components are usually the positions and momenta of a par-
ticle combined with its energy and the time of flight.

We neglect the Stern-Gerlach forces since they are very
small in comparison with the Lorentz force. Equation~2! is
the TBMT equation along an orbit parametrized byzW(u)
@11,12#. Because we deal with a circular accelerator at fixed
energy, vW (zW,u) and VW (zW,u), which depend on the guide
fields, are periodic inu with period 2p corresponding to the
circumference of the ring. Due to the precession, Eq.~2!, the
length of the spin vectorsW, does not change along the azi-
muth.

The dynamical system~1! and ~2! allows us to formulate
the following partial differential equation for the evolution of
a field fW(zW,u):

d fW

du
5

] fW

]u
1(

j51

d

v j
] fW

]zj
5VW 3 fW , ~3!

where the three components of the solutionfW depend onzW

andu. In our applicationsfW will describe the propagation of
a spin distribution associated with a particle beam, and this
physical interpretation can be adopted because of the follow-
ing. A solution fW(zW,u) to Eq. ~3! can be found by specifying
an arbitraryfW(zW,u0) at initial azimuthu0 and propagating it
to u by integrating equations~1! and ~2!. In fact,

sW~u!5 fW„zW~u!,u… ~4!

solves Eq.~2! if fW solves Eq.~3!. We say thatfW is normalized
if

u fW u5Af 121 f 2
21 f 3

251. ~5!

We call every normalized solution of Eq.~3! a spin field.
ThenW -axis introduced in the Introduction is a special spin

field which is periodic inu with period 2p @3#:

nW ~zW,u12p!5nW ~zW,u!. ~6!

Since Eq.~2! represents a pure rotation, the propagation of
the spin vector can be described by a 333 orthogonal ma-
trix. We denote this rotation matrix which propagates initial
spins sW(u0) along a given orbit trajectoryzW(u) by
R„zW(u0),u,u0…, so that

sW~u!5R„zW~u0!,u,u0…•sW~u0!. ~7!

Because for a spin fieldfW the spin trajectory~4! solves Eq.
~2!, we obtain

fW„zW~u!,u…5R„zW~u0!,u,u0…• fW„zW~u0!,u0…. ~8!

If fW(zW,u) is a spin field, thenfW(zW,u12pm) is a spin field
(m is an integer!. This follows from Eq.~3! becausevW and
VW are periodic inu. Thus Eq.~8! generalizes to

fW„zW~u!,u12pm…5R„zW~u0!,u,u0…• fW„zW~u0!,u012pm…

~m integer! ~9!

Since annW axis is a periodic spin field, we observe by~6! and
~9! that

nW „zW~u12p!,u…5R„zW~u!,u12p,u…•nW „zW~u!,u…. ~10!

Alternatively this equation can be used for defining thenW

axis @13#. The matrixR„zW(u),u12p,u… is called the one
turn spin transfer matrix for the trajectoryzW(u).

In the special case where the orbital motion is determined
by a Hamiltonian, we have

vW ~zW,u!5$zW,Horb~zW,u!%, ~11!

whereHorb denotes the orbital Hamiltonian. Furthermore in
this case one can define for the whole spin-orbit system a
Hamiltonian given by@14#

H~zW,sW,u!5Horb~zW,u!1Hspin~zW,sW,u!, ~12!
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where

Hspin~zW,sW,u!5sW•VW ~zW,u!. ~13!

The Poisson brackets of this Hamiltonian lead to Eqs.~1! and
~2! if the Stern-Gerlach forces are neglected@15#.

II. CONSTRUCTION OF PERIODIC SPIN FIELDS BY
STROBOSCOPIC AVERAGING

To find solutions of Eq.~3! which are periodic inu by our
method, one first constructs an arbitrary spin fieldfW . One
then constructs the following stroboscopic average offW :

^ fW&~zW,u!5 lim
n→`

F 1

n11(
m50

n

fW~zW,u12pm!G . ~14!

Since the convergence and differentiability of the sequence
in Eq. ~14! can in general not be guaranteed, the limit is only
taken formally. The problem of the convergence will be ana-
lyzed in more detail in Sec. IV B. From Eq.~14! it follows
that ^ fW& is formally periodic inu. Moreover, because Eq.~3!

is a linear equation and becausevW andVW are periodic inu,
we observe for any spin fieldfW that ^ fW& is formally also a
solution of Eq.~3!. Hence we come to a first conclusion that
if fW is a spin field, then̂ fW& is a solution of Eq.~3! which is
periodic inu. If for fW the stroboscopic average^ fW& vanishes
nowhere in thed11 dimensional space, then we define

^ fW&norm5^ fW&/u^ fW&u. ~15!

In general,̂ fW& is not normalized, but the modulus of^ fW& is
conserved, and̂ fW&norm is a spin field which is periodic in

u. Hence we come to the following second conclusion of this
section: if fW is a spin field with the property that^ fW& vanishes
nowhere in thed11-dimensional space, then^ fW&norm has all
the properties of annW axis. This result shows that annW axis
can be obtained from a spin fieldfW for which ^ fW& vanishes
nowhere. In Sec. III we will derive a tracking algorithm
based on this.

One practical choice offW is characterized for allzW by

fW~zW,u0!5nW 0~u0!, ~16!

where nW 0(u) denotes the so called closed orbit spin axis
defined by

nW 0~u!5R„zWc.o.~u!,u12p,u…•nW 0~u!, ~17!

wherezWc.o.(u) is the closed orbit.

III. TRACKING ALGORITHM FOR THE n¢ AXIS
USING STROBOSCOPIC AVERAGING

In this section we develop a tracking algorithm which
provides an efficient way to evaluate annW axis at
zW5zW0 ,u5u0. Choosing a spin fieldfW and replacingu0 by
u022pm in Eq. ~9! for every integerm we obtain

fW„zW~u!,u12pm…

5R„zW~u022pm!,u,u022pm…• fW„zW~u022pm!,u0….

~18!

If we choose an orbit withzW(u0)5zW0, then inserting this into
Eq. ~14! results in

^ fW&~zW0 ,u0!5 lim
n→`

F 1

n11(
m50

n

R„zW~u022pm!,u0 ,u022pm…• fW„zW~u022pm!,u0…G . ~19!

Normalization of^ fW& yields annW axis at (zW0 ,u0).
To apply the tracking algorithm, the infinite sum involved in the stroboscopic average~19! is replaced by a finite sum of

N11 terms, so that we approximate

^ fW&~zW0 ,u0!'^ fW&N~zW0 ,u0!5
1

N11(
m50

N

fW~zW0 ,u012pm!5
1

N11(
m50

N

R„zW~u022pm!,u0 ,u022pm…• fW„zW~u022pm!,u0…,

~20!

which yields the following approximation of thenW axis:

nW ~zW0 ,u0!'
^ fW&N~zW0 ,u0!

u^ fW&N~zW0 ,u0!u
. ~21!

The stroboscopic average^ fW&N in Eq. ~20! has a very simple
physical interpretation which illustrates its practical impor-

tance. If a particle beam is approximated by a phase space
density, disregarding its discrete structure we can associate a

spin field fW(zW,u0) with the particle beam at the azimuthu0. If
one installs a pointlike gedanken polarimeter at a phase

space pointzW05zW(u0) and azimuthu0, then this polarimeter

initially measuresfW(zW0 ,u0). When the particle beam passes
the azimuthu0 after one turn around the ring, the polarimeter
measures
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R„zW~u022p!,u0 ,u022p…• fW„zW~u022p!,u0…

5 fW~zW0 ,u012p!.

After the beam has traveled around the storage ringN times
and the polarization has been measured whenever the beam
passed the gedanken polarimeter, one only has to average
over the different measurements in order to obtain^ fW&N . If
the particles of a beam are polarized parallel tonW (zW,u0) at
every phase space point, then the spin field of the beam is
invariant from turn to turn due to the periodicity property in
Eq. ~6!. But, in addition, even for beams which are not po-
larized parallel tonW , we see that the polarization observed at
a phase space pointzW and azimuthu0 is still parallel to
nW (zW,u0), if one averages over many measurements taken
when the beam has passed the azimuthu0.

For the special choicefW(zW,u0)5nW 0(u0), we can simplify

^ fW&N to

^ fW&N~zW0 ,u0!

5
1

N11(
m50

N

R„zW~u022pm!,u0 ,u022pm…•nW 0~u0!.

~22!

Equations~20! and~21! define an algorithm for obtaining an
nW axis. We see that the only information needed from track-
ing is the set of the N11 phase space points
zW(u0),zW(u022p), . . . ,zW(u022pN) and the N matrices
R„zW(u022p),u0 ,u022p…,R„zW(u024p),u0 ,u024p…, . . . ,
R„zW(u022pN),u0 ,u022pN…. Each matrix is a product of
one turn spin transfer matricesR(zW,u012p,u0). This means

that one tracks along the orbitzW(u) to obtain the spin transfer
matrix R„zW(u),u0 ,u… and stores it at theN instants, where
u5u022pN, . . . ,u5u024p,u5u022p. The function
fW(zW,u0) is chosen independently of the tracking results@for
example, one can take the choicefW(zW,u0)5nW 0(u0) of Eqs.
~16! and ~22!#.

The following two kinds of pathologies can occur:
~i! The nW axis is not unique: if the proposed algorithm

converges, then the result could depend on the choice of
fW(zW,u0).

~ii ! The stroboscopic average^ fW& vanishes forN→1` or
the sequence in Eq.~14! does not converge.

Both pathologies can be studied with the algorithm. The
first situation occurs for systems on spin-orbit resonances
@16#. In all examples studied so far, the stroboscopic average
seems to converge, implying the existence of annW axis. In
the second situation, the pointlike polarimeter atzW0 men-
tioned above monitors an averaged polarization which either
vanishes or fluctuates indefinitely.

IV. EFFICIENT IMPLEMENTATION ONLY USING
ONE TURN INFORMATION

In the previously outlined formalism for evaluating annW
axis by stroboscopic averaging, it became apparent that only

knowledge about one turn spin transfer matrices is required.
One can therefore reformulate the algorithm of Sec. III in
terms of one turn maps which are to be taken at a fixed but
arbitrary azimuth valueu0, and thereby obtain a more prac-
tical algorithm. Thus we introduce the one turn orbit transfer
mapMW which maps initial coordinateszW i into final coordi-
nates zW f5MW (zW i). Then in our notation we have
zW(u012p)5MW „zW(u0)…. To describe the transport of particles
with spinssW, we write for simplification the one turn spin
transfer matrixR(zW,u012p,u0) as R(zW), so that we have
sW f5R(zW i)•sW i . All other quantities which depend onu are
taken at the specified azimuthu0. For simplification, this
azimuth is not indicated in the following. As already men-
tioned, Eq.~10! can be used to define thenW axes atu0. This
condition, will be called the periodicity condition and now
reads

R~zW !•nW ~zW !5nW „MW ~zW !…. ~23!

A. Recipe

To illustrate the process of evaluating annW -axis atzW0 and
u0 in the case of linear orbit motion, we establish a recipe.

~1! Compute the linearized one turn phase space transfer
mapzW f5M•zW i .

~2! Define the set ofN11 phase space points

C5ˆcW j5~M21! j•zW0u jP$0, . . . ,N%‰. ~24!

~3! Compute the rotation matrixR(zWc.o.) which describes
the spin motion for particles on the closed orbitzWc.o.(u), and
extract the corresponding rotation vectornW 0. This is the pe-
riodic spin solution for particles on the closed orbit.

~4! Starting with a spin parallel tonW 0 at every phase space
point in C, track until the phase space pointzW0 is reached.
For a givenj this requires trackingj turns starting atcW j .

~5! Define the set of spin tracking results as

B5ˆbW 0~zW0!5nW 0 ,bW j~zW0!5R~cW1!•••••R~cW j !•nW 0u j

P$1, . . . ,N%‰. ~25!

~6! Define the sum of the elements inB as
sWN(zW0)5(1)/(N11)( j50

N bW j (zW0), and for usWNuÞ0 define

nWN5sWN /usWNu.
The vectorsWN(zW0) is equivalent tô fW&N(zW0 ,u0) in Sec. III,

if the initial distribution of spins is given bynW 0 as in Eq.
~22!.

B. Convergence speed

It will now be shown that if the angle betweennW 0 and
bW j (zW0) is smaller than some positive numberj,p/2 for all
jP$1, . . . ,N11%, thennWN satisfies the periodicity condition
~23! for the nW axis up to an error which is smaller than or
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equal to 2 sec(j/2)tan(j)/(N11). Since evaluatingB by the
recipe of Sec. IV A requires trackingT5(N11)N/2 turns,
the accuracy is bounded byA2/Tsec(j/2)tan(j). This slow
convergence with the square root ofT is a very serious limi-
tation, and in Sec. IV C we will demonstrate how the con-
vergence can be considerably improved.

The proof of this convergence property goes along the

following lines. The averagesWN has been defined by

sWN~zW0!5
1

N11(j50

N

)
k51

j

R~cW k!•nW 0 . ~26!

Here we adopt the convention )k51
0 R(cW k)

5)k51
0 R(cW k21)51, and)k51

j R(cW k) is taken to mean the

following order of multiplication: R(cW1)•••••R(cW j ). To

check how wellsWN satisfies the periodicity conditions~23! of

thenW axis, we calculate

sWN~M•zW0!5
1

N11(j50

N

)
k51

j

R~cW k21!•nW 0

5
1

N11 S nW 01 (
j50

N21

)
k50

j

R~cW k!•nW 0D , ~27!

R~zW0!•sWN~zW0!5
1

N11(j50

N

)
k50

j

R~cW k!•nW 0 , ~28!

R~zW0!•sWN~zW0!2sWN~M•zW0!5
1

N11
„R~zW0!•bWN~zW0!2nW 0…

5
1

N11
„bWN11~M•zW0!2nW 0….

~29!

The lengthubWN11(M•zW0)2nW 0u is smaller than 2 sin(j/2),
as shown in Fig. 1. The length ofsWN is at least cos(j), and
here it becomes essential that there is a limit ofp/2 on the
anglej. This information is sufficient to establish the follow-
ing inequality:

uR~zW0!•nWN~zW0!2nWN~M•zW0!u5UR~zW0!•
sWN~zW0!

usWN~zW0!u
2

sWN~M•zW0!

usWN~M•zW0!u
U

5
1

usWN~zW0!u
UR~zW0!•sWN~zW0!2sWN~M•zW0!1

usWN~M•zW0!u2usWN~zW0!u

usWN~M•zW0!u
sWN~M•zW0!U

<
1

usWN~zW0!u
„uR~zW0!•sWN~zW0!2sWN~M•zW0!u1 zuR~zW0!sWN~zW0!u2usWN~M•zW0!uz…

<
2

usWN~zW0!u
uR~zW0!•sWN~zW0!2sWN~M•zW0!u

<
4 sin~j/2!

~N11!cos~j!
. ~30!

The error by which the vectornWN(zW0) violates the periodicity

condition ~23! of the nW axis is therefore smaller than
2 sec(j/2)tan(j)/(N11), and converges to 0 for largeN.

If one can prove the existence of a suitable number
j,p/2 for some spin transport system, one has proven the
existence of functionsnWN for this system which satisfy the
defining equation for thenW axis to arbitrary precision. Since,
however, these functionsnWN do not necessarily converge,
this does not prove the existence of annW axis for such a
system.

If the orbit motion can be described in terms of action-
angle variables, as is always the case for linear motion, and
the orbital angle advances for one turn (2p times the orbit
tunes! are not in resonance, then two important conclusions
about this tracking algorithm withj,p/2 can be drawn.

~1! If an nW axis nW (zW) exists, then the sequencenWN con-

verges tonW (zW) linearly in 1/N.

~2! If an nW axis exists and the spin rotation angle in one
turn is not a linear combination of orbit phase advances

modulo 2p, then thenW axis is unique up to a sign.
The proof is adapted from@5,16,17#. The first step will be

to show how to define a spin rotation angle which depends
only on orbital action variables. We assume that annW axis
exists and introduce two unit vectorsuW 1(zW) and uW 2(zW) to
create a right handed coordinate system (nW ,uW 1 ,uW 2). The vec-
tors uW 1 anduW 2 are therefore defined up to a rotation around
the nW axis by an arbitrary phase space dependent angle
f(zW). We express the spin vectorssW in terms of this coordi-
nate system bysW5s1nW 1s2uW 11s3uW 2. The coefficients1 does
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not change during the particle motion around the ring since
the particle transfer matrixR(zW) is orthogonal, and ensures
that (sW•nW ) is invariant. The spin motion described by the
R(zW) matrix is therefore simply a rotation around the
nW -axis by a phase space dependent anglen(zW):

S sf1

sf2

sf3
D 5S 1 0 0

0 cos„n~zW !… sin„n~zW !…

0 2sin„n~zW !… cos„n~zW !…
D S si1

si2

si3
D .

~31!

If we now introduce the complex quantityŝ
5e2 if(zW)(s21 is3), wheref(zW) is the arbitrary angle, then
the spin transport is described by

sf21 isf35e2 in~zW !~si21 isi3!, ~32!

eif„M
W ~zW !…ŝf5ei „2n~zW !1f~zW !…ŝi . ~33!

Now we introduce orbital action-angle variablesJW andFW as
well as the angle advancesQW for one turn around the accel-
erator. Note that the symbolQW is 2p times the orbital tunes.
In these variables the one turn transport is characterized by
JW f5JW i andFW f5FW i1QW . Since the actions remain invariant
during the particle motion, we use the symbolsnJW(FW ) and
fJW(FW ) to indicate the spin rotation angle and the free phase
of the coordinate system for fixed actionsJW ,

ŝf5ei „2nJW~FW !1fJW~FW !2fJW~FW 1QW !…ŝi . ~34!

We now show howfJW(FW ) can be chosen so that the spin
motion characterized by the exponent becomes simplified.
As with any function of phase space, the rotationeifJW(F

W ) is
2p periodic in all componentsF j . Therefore, the rotation
anglefJW(FW ) has a periodic contributionf +JW(FW ) and a linear
contribution in the phases

fJW~FW !5f +JW~FW !1 jW•FW , ~35!

with some vectorjW that has integer components. The phase
space dependent spin rotationeinJW(F

W ) is also a periodic func-
tion of phase space. But since on the closed orbit (JW50) the
spin motion does not depend onFW , thereforenJW(FW ) only has
a periodic component, and no component linear inFW .

If the orbital angle advancesQW are not in resonance, then
fJW(FW ) can be chosen to eliminate the phase dependence of
the exponent in Eq.~34! completely. This can be seen by
Fourier transformation of the periodic functionsnJW(FW ) and
f +JW(FW ), leading to the requirement

n̆JW~kW !5f̆ +JW~kW !~12eik
W
•QW ! ~36!

for the Fourier coefficientsn̆JW(kW ) and f̆ +JW(kW ). Therefore,
f̆ +JW(kW ) can be chosen to eliminate all Fourier coefficients
except forkW50. With this choice the exponent reduces to
n̆JW(0)1 jW•QW . The vector jW can in general not be used to
simplify this expression and we therefore usually choose
jW50. With n(JW )5 n̆JW(0), thespin rotation of Eq.~34! then
simplifies to

ŝf5e2 in~JW !ŝi . ~37!

We have now achieved the goal of constructing a spin rota-
tion depending only on orbital actions. It is interesting to
note that if for amplitudesJW the integer coefficients ofjW can
be chosen so that

n~JW !1 jW•QW 50 mod2p, ~38!

one can eliminate the spin rotation completely. Here we only
analyze the case where this resonance condition is not satis-
fied.

The stroboscopic average is now performed by the recipe
of Sec. IV A, but this time in the coordinate system
(nW ,uW 1 ,uW 2) just constructed by the described choice of
f jW(fW ). We first establish the tracking pointscW j and note that
n5n(cW j ) is the same for all tracking points. In the coordinate
system (nW ,uW 1 ,uW 2), the vector components of the periodic
spin nW 0 on the closed orbit are not constant, but depend on
the phase space position (JW ,FW ). This vector is transported
from the phase space pointscW j to zW05(FW ,JW ) by the rotation
matrix

S 1 0 0

0 cos~ jn! sin~ jn!

0 2sin~ jn! cos~ jn!
D , ~39!

leading to the stroboscopic average in the coordinate system

FIG. 1. Estimation of the convergence speed. To guarantee con-
vergence of the stroboscopic average, the anglej between the di-

rection ofnW 0 and the transported spins has to stay belowp/2.
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sWN~FW ,JW !5
1

N11(j50

N S 1 0 0

0 cos~ jn! sin~ jn!

0 2sin~ jn! cos~ jn!
D

3S n0,1JW~FW 2 jQW !

n0,2JW~FW 2 jQW !

n0,3JW~FW 2 jQW !

D . ~40!

The first component ofsWN is ( j50
N n0,1JW(FW 2 jQW )/(N11); the

second and third components in complex notation are

ŝN5sN21 isN35
1

N11(j50

N

e2 i ~ jn!n̂0,JW~FW 2 jQW !, ~41!

wheren̂0,JW(FW )5n0,2JW(FW )1 in0,3JW(FW ). In terms of the Fourier
componentsn̆0,JW(kW ) of n̂0,JW(FW ), one obtains the inequality

uŝNu5U 1

N11(j50

N

e2 i j ~n1kW•QW !(
kW
n̆0,JW~kW !eik

W
•FW U

5
1

N11U(kW 12e2 i ~N11!~n1kW•QW !

12e2 i ~n1kW•QW !
n̆0,JW~kW !eik

W
•FW U

<
1

N11(kW
2

u12e2 i ~n1kW•QW !u
un̆0,JW~kW !u. ~42!

Similarly, for the first component ofsWN one obtains

sN,15n̆0,1JW~0!1
1

N11(kWÞ0

12e2 i ~N11!kW•QW

12e2 ikW•QW
n̆0,1JW~kW !eik

W
•FW .

~43!

SinceusWNu.cos(j) andj,p/2, it is guaranteed thatsWN does
not converge to 0. For largeN, usWNu is given byn̆0,1JW , which
therefore does not vanish. Since the resonance condition~38!
is not satisfied for any vector of integersjW, none of the de-
nominators is zero, andsN,1 and ŝN converge linearly with
1/N. At this point we impose the condition onnW that the sum
on the right hand side of Eq.~42! converges. From the con-
vergence ofsWN , the convergence ofnWN to nW follows from

unW 2nWNu25UnW 2
sWN

usWNu
U25S 12

sN,1

usWNu
D 21S uŝNu

usWNu
D 2

52
usWNu2sN,1

usWNu
,2

usWNu2sN,1
usN,1u

,2S uŝNu
usN,1u D

2

. ~44!

There is a numberN* such that the absolute value of the
N dependent part ofsN,1 in Eq. ~43! is smaller than
n̆0,1JW(0)/2. If the number of turnsN is larger thanN* , we
conclude that

unWN2nW u,2A2
uŝNu

un0,1JW~0!u
, ~45!

which, together with Eq.~42!, establishes thatnWN conver-
gences linearly with 1/N.

The second conclusion to be proven is the uniqueness of
thenW axis. In the coordinate system (nW ,uW 1 ,uW 2), the periodic-
ity condition ~23! reads

S 1 0 0

0 cos~n! sin~n!

0 2sin~n! cos~n!
D •nW ~zW !5nW „MW ~zW !…, ~46!

with the obvious solutionnW (zW)5(1,0,0)T for all zW. If another
nW axis nW 2(zW) exists, thennW 22nW (nW •nW 2) is nonzero at least at
one phase space point and on all iterates of this point which
can be reached during particle motion. We normalize this
difference vector at these phase space points and write it as
cos„a(zW)…uW 11sin„a(zW)…uW 2. In orbital action-angle variables,
the functionaJW(FW ) again has a periodic contribution and a
linear contributionjW•FW .

In complex notation, the periodicity condition~46! reads

ei „2n~JW !1aJW~FW !…5eiaJW~FW 1QW !. ~47!

Sincen(JW ) does not depend onFW , the periodic part ofa has
to vanish. The resultingaJW5 jW•FW can only solve the period-
icity condition if there is a vectorjW with integer coefficients
fulfilling the resonance equation~38!, and then a secondnW
axis exists. For linear orbit motion with phase advances
which are not on resonances of type~38!, Eq. ~47! does not
have a solution, and thenW axis is unique. There is so far no
proof for nonlinear orbits, but nevertheless the method of
stroboscopic averaging can also be used for exploring non-
linear orbit motion.

C. Improved recipe with faster convergence

In Sec. IV A an algorithm was introduced which con-
verged with the square root of the numberT of turns tracked.
However, it is possible to obtain convergence linear inT,
when one takes advantage of the orthogonality of the spin
transfer matrix. To illustrate this, we again establish a recipe.

~1! Define, as before,

C5ˆcW j5~M21! j•zW0u jP$0, . . . ,N%‰. ~48!

~2! Define three orthogonal unit vectors$eW (1),eW (2),eW (3)%.
~3! Obtain the setsSj of the three vectorssW j

(1) , sW j
(2) , and

sW j
(3) by tracking theeW (k) for N2 j turns,

sW j
~k!5R~cW j11!•••••R~cWN!•eW ~k!. ~49!

~4! From the set of vectorsSj and the setS0, one can
obtain the spin transfer matrix from the phase space point
cW j to zW0 denoted byR̄(cW j ). This becomes clear when one

realizes thatsW0
(k)5R̄(cW j )•sW j

(k) for all k. Obtaining these
N11 transport matrices requires the propagation of three
spins around the circular accelerator forN turns.
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~5! Now we can compute the setB5ˆR̄(cW j )•nW 0u j
P$0, . . . ,N%‰. This is obviously identical to the set denoted
by B in Sec. IV B.

~6! The normalized average ofB, denoted bynWN , can
now again be computed as mentioned above, and solves the
defining equation for annW axis up to the small error dis-
cussed previously.

In this approach one only has to track three initial spin
directions overN turns, leading toT53N. The error is there-
fore bounded by 6 sec(j/2)tan(j)/T. This implies conver-
gence linear in the numberT of turns tracked. The following
example illustrates the speed of this method: when the angle
j happens to be 45°, and we require an accuracy at the
1023 level, this linear convergence approach only requires
6500 tracking turns; when the anglej is small, fewer itera-
tions are needed.

D. Backward tracking

In the two recipes of Secs. IV A and IV B, we needed to
find the setC of N11 backwards tracked phase space
points, and then launch spins at these points and track for-
ward so as to compute setB. In the case of linear motion, it
is trivial to obtain these backward tracked phase space
points. One simply transformszW0 into the action-angle vari-
ables of the linear motion, and determines the phase advance
per turn of the linear motion. Counting back these phase
advances and transforming the action-angle variables back
into phase space leads to the pointscW j . In the nonlinear case
this would actually require us to track forN more turns
around the ring.

In the case of the linearly convergent method of Sec.
IV C, this extra effort becomes unnecessary. One can start
with the phase space pointzW0 and launch three particles with
spins alongeW (1), eW (2), and eW (3). Tracking backward in the
azimuth defines theN11 setsPj of the spinspW j

(1) , pW j
(2) , and

pW j
(3) with

pW j
~k!5R21~cW j !•••••R

21~cW1!•eW
~k!. ~50!

From the setsPj and P0 one can again compute the spin
transfer matrixR(cW j ), and with these matrices one obtains
the setB with the elementsbW j5R̄(cW j )•nW 0, which again leads
to nWN by averaging.

E. Forward tracking

There is an even more fundamental problem in the case of
nonlinear motion than the computation time. When the lat-
tice or the effect of separate nonlinear elements are com-
puted by nonlinear transfer maps, the inverses of these maps
might not be known. In this case the required phase space
pointscW j cannot be computed at all. Nevertheless our method
can be used to obtain the vectornWN as follows. The argu-
ments of Sec. IV D can simply be repeated for tracking for-
ward. One establishes the phase space pointscW j5MW (cW j21)
with cW05zW0 for jP$1, . . . ,N%, and simultaneously the sets
Sj by tracking the three unit vectorssW j21

(k) for one turn with

sW0
(k)5eW (k). As in the fourth step of the recipe in Sec. IV C one

can then obtain the spin transfer matrixR̄(cW j ) from the phase
space pointzW0 to cW j . The inverse of this transfer matrix is
simply obtained by transposition leading to the vectors
bW j5R̄(cW j )

T
•nW 0. The normalized average of the vectorsbW j is

then the stroboscopic averagenW inv,N of the inverse motion.
For this average the error of the periodicity condition for the
inverse motion converges linearly to zero. Fortunately, an
nW axis of the inverse motionnW inv(zW) is also annW axis of the
forward motion, since the periodicity condition of the inverse
motion reads as

R21
„MW 21~zW !…•nW inv~zW !5nW inv„MW

21~zW !…, ~51!

and from this it follows thatnW inv(zW) also obeys the periodic-
ity condition ~23! of the forward motion.

F. Tracking rotation angles and rotation vectors

One can represent a rotation matrix by its rotation vector
bW and its rotation anglefP@0,p#. The simplest representa-
tion is in terms of the vector gW 5sin(f/2)bW and
k5cos(f/2). The rotation matrix is then given by

Ri j52~k2d i j1g ig j2k« i jkgk!2d i j . ~52!

This representation can be easily transported through an ac-
celerator by means of the equations

k̃5k1k22gW 1•gW 2 , k5uk̃u, ~53!

gW 5~gW 1k21gW 2k11gW 23gW 1!
k̃

k
. ~54!

It is therefore even more appropriate and faster by about a
factor of 3 to track rotation matrices represented bygW and
k directly, than to track three spin vectors.

V. APPROXIMATION OF LINEAR SPIN-ORBIT MOTION

In this section we consider the special case of linear spin-
orbit motion as a way to illustrate and confirm the chief
features of our algorithm@18#. For this purpose we define
two periodic vectorsmW and lW orthogonal tonW 0 in order to
obtain an orthonormal right-handed dreibein at the previ-
ously specified azimuthu0. We then write a spin vectorsW in
the form

sW5A12a22b2nW 01amW 1b lW. ~55!

In the case where botha andb are much smaller than unity,
we may treat the spin in a first order approximation ina and
b so that the spin vector~55! can be written as

sW5nW 01amW 1b lW, ~56!

and is normalized in linear approximation. We combine the
two-component vector
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s̃W5S a

b D ~57!

and the orbit vectorzW into a single vectorz̃W of d12 compo-
nents. By linearizing the equations of motion with respect to
z̃W , an initial spin-orbit coordinatez̃W i at azimuthu0 is mapped
into a final coordinatez̃W f after one turn around the ring@7# by
the (d12)3(d12) spin-orbit transfer matrixM̃ ,

z̃W f5M̃• z̃W i ,M̃5SM 0

G D D , ~58!

whereM again denotes thed3d dimensional orbit transfer
matrix. The matricesG andD are 23d and 232 matrices,
respectively, with

s̃W f5G•zW i1D• s̃W i . ~59!

In order to simplify the following formulas, we introduce the
23d-dimensional componentGm of the transfer matrix
M̃m for m turns around the ring. We note that the two-
component vector corresponding tonW 0 is ñW050 so that
propagating this initial spin vector at a phase space pointzW i
once around the ring leads to the final spins̃W f5Gm•zW i .
Therefore, we define the two-component vectors̃WN analogous
to Eq. ~26! by

s̃WN~zW0!5 (
m50

N

Gm•M
2m
•zW0 , M̃m5SMm 0

Gm DmD .
~60!

From Eq.~58!, it follows that

Gm•M
2m5 (

k50

m21

Dk
•G•M2~k11!. ~61!

We expand the phase space coordinatezW0 in eigenvectors
yW j of the one turn transfer matrixM ,

zW05(
j51

d

ajyW j , ~62!

with expansion constantsaj and eigenvaluesl j
21 ,

M•yW j5l j
21yW j . ~63!

Thus we obtain

Gm•M
2m
•yW j5 (

k50

m21

l j
k11Dk

•G•yW j . ~64!

We do not consider the case of spin-orbit resonances, so
that the matrices12l jD are nonsingular. Thus Eq.~64! sim-
plifies to

Gm•M
2m
•yW j5l j~12l j

mDm!•~12l jD !21
•G•yW j .

~65!

From this follows

(
m50

N

Gm•M
2m
•yW j5l j@~N11!12~12l j

N11DN11!•~12l jD !21#•~12l jD !21
•G•yW j , ~66!

so that

lim
N→`

F 1

N11(
m50

N

Gm•M
2m
•yW j G5l j~12l jD !21

•G•yW j .

~67!

Combining this with Eqs.~60! and ~62!, we obtain

ñW~zW0!5(
j51

d

ajl j~12l jD !21
•G•yW j , ~68!

where ñW is the two-component vector corresponding tonW .
For d56 this yields the well known expression of thenW axis
for the case of linear spin-orbit motion@9,15#. This confirms
the method of stroboscopic averaging for the linear case.
Also, our predictions about convergence speed are confirmed
as follows. In storage rings the particle motion can only be

stable if the eigenvalues haveul j u<1. To analyze the con-
vergence speed, one has to realize thatD is a rotation matrix,
and therefore that

u~12l j
N11DN11!s̃Wu<~11ul j uN11!us̃Wu<2us̃Wu for all s̃W,

~69!

unWN~zW0!2nW ~zW0!u<
2

N11(j51

d

uaj uu~12l jD !22
•G•yW j u.

~70!

This inequality also shows that for linear spin-orbit motion
one finds convergence linear in 1/N, and it can also be seen
that the convergence speed decreases with the orbital ampli-
tudesaj and becomes very slow close to first order spin-orbit
resonances.

VI. NUMERICAL EXAMPLES

In order to illustrate which quantities can be computed
and how effective stroboscopic averaging can be in numeri-
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cal computations, we apply it to a model accelerator with a
known nW axis. Since this model is somewhat artificial, we
also apply our method to the vertical motion of the HERA
proton ring. For simplicity, the vertical bends at the interac-
tion regions have been ignored.

A. Comparison with an analytically solvable model

In this section we consider a special model@19# with
d52 andzW5(F,J). The equations of motion are given by

dF

du
~u!5

Q

2p
,

dJ

du
~u!50,

dsW

du
~u!5VW „F~u!,J…3sW~u!, ~71!

with

VW ~F,J!5
1

2p
„n0eW11mAJ~eW3sinF1eW2cosF!…, ~72!

wherem is a real parameter. Hence initial coordinateszW i are
taken into final coordinateszW f by zW f5MW (zW i) with
F f5F i1Q and Jf5Ji . In the following we assumen0
ÞQ and thatn0/2p is not integer. This model corresponds to
the rotating field approximation often used to discuss spin
resonance in solid state physics@20#. We now introduce the
orthogonal matrixT(eW ,w) describing a rotation around a unit
vectoreW by an anglew. Transforming the spin components
of sW into a rotating frame by introducingsW rot5T(eW1 ,F)•sW,
one obtains the simplified equation of the spin motion,

dsW rot
du

~u!5VW rot~J!3sW rot~u!, VW rot~J!5
1

2p S n02Q

mAJ
0

D .
~73!

If in this frame a spin field is oriented parallel toVW rot , this
field does not change from turn to turn. Therefore
nW rot5VW rot /uVW rotu is annW axis. In the original frame thisnW axis
is

nW ~F,J!5
n02Q

un02Qu
1

L
„~n02Q!eW11mAJ~eW3sinF

1eW2cosF!…, ~74!

L5A~n02Q!21m2J, ~75!

where the sign factor (n02Q)/un02Qu has been chosen so
that on the closed orbit (J50) thenW axis nW (F,0) coincides
with nW 05eW1. As with any function of phase space thisnW axis
is a periodic function inF.

We now perform the stroboscopic average by the recipe
of Sec. IV A to compute annW axis atzW05(F,J) andu0,

nWN5
1

N11(j50

N

)
k51

j

R~F2kQ,J!•nW 0 ~76!

5
1

N11(j50

N

)
k51

j

T~eW1 ,2F!•T~nW rot ,L!•T~eW1 ,F!•nW 0

~77!

5
1

N11
T~eW1 ,2F!•(

j50

N

T~nW rot , jL!•eW1 . ~78!

If L/2p is not an integer, after some tedious manipulations
one obtains

unWN~F,J!2nW ~F,J!u5A2A12tN, ~79!

tN5S 11
m2J

~N11!2~n02Q!2
12cos„~N11!L…

12cos~L! D 21/2

.

~80!

One sees thatunWN2nW u is an oscillating function ofJ whose
local maxima increase withJ, reflecting the fact that large
orbital amplitudes reduce the convergence speed. This be-
havior is plotted in Fig. 2. In this and the other figures con-
cerned with the solvable model we used the parameters
n050.6p, Q50.46p, m50.2p, andF50.32. For largeN,
Eqs. ~79! and ~80! predict that the convergence is indeed
linear in 1/N, as illustrated by the slope of21 in Fig. 3. Also
one sees thatunWN2nW u vanishes whenL/2p is not an integer,
and if (N11)L/2p is an integer. WhenL/2p is an integer
we have

tN5S 11
m2J

~n02Q!2D
21/2

. ~81!

Therefore, in this casenWN does not converge tonW . This is no
surprise, since the condition whereL/2p is an integer
amounts to the resonance condition~38! which leads to this
nonuniqueness of thenW axis. It is interesting that the local
maxima ofunWN2nW u do not occur at these resonance points.

Figure 4 shows the variation of the opening angle of the
polarization field as a function of orbital amplitude. Since
nW 0•nW 5un02Qu/L, as well as nW 0•nWN5(1)/(N
11)( j50

N T11(nW rot , jL), do not depend on the angle variable
F, the depicted angles are equivalent to the phase averaged
opening angle. The good agreement with the analytically
computed opening angle of thenW axis shows that accurate
values for the field can be obtained with a very limited num-
ber of turns.

This analytically solvable model can also be used to illus-
trate the construction of a phase independent spin rotation
anglen(J). Having obtained annW axis, one can transform the
spin components ofsW into a rotated coordinate system
(nW ,uW 1 ,uW 2). With the simple choice

uW 1~F,J!5
1

unW 3eW1u
~nW 3eW1!5

n02Q

un02Qu ~eW2sinF2eW3cosF!,

~82!

uW 2~F,J!5nW 3uW 1 , ~83!
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both of which are clearly periodic inF, one can show that
the spin rotation angle is independent ofF; that is,

n~J!5
n02Q

un02Qu
L. ~84!

However,n(J) is free up to multiples of the orbit tune as
outlined in Sec. IV B. We can use this freedom to obtain a
n(J) which reduces ton0 on the closed orbit (J50). The
only choice which satisfies this condition is obtained by an
additional rotation ofuW 1 anduW 2 aroundnW by 2F,

uW 1~F,J!5eW1
mAJ

L
sinF1eW2cosF sinFS n02Q

un02Qu
2

n02Q

L D
2eW3S n02Q

un02Qu
cos2F1

n02Q

L
sin2F D , ~85!

uW 2~F,J!5nW 3 uW 1 . ~86!

Both are again periodic inF, and again we obtain a spin
rotation angle independent ofF, viz.

FIG. 2. Referring to the ana-
lytically solvable model: The de-
viation of the stroboscopic aver-

age nWN from the analytically

calculatednW as a function of the
amplitudeJ in phase space.

FIG. 3. Referring to the analytically solvable model: Convergence of the stroboscopic averagenWN to the analytically calculatednW with the
numberN of turns tracked forJ514.
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n~J!5
n02Q

un02Qu
L1Q. ~87!

Correspondingly, on the closed orbit,uW 1 anduW 2 reduce to

uW 1~F,0!52eW3
n02Q

un02Qu
, uW 2~F,0!5eW2

n02Q

un02Qu
.

~88!

B. Application to the HERA proton ring

The HERA proton ring stores protons with an energy of
820 GeV. At this energy, the proton spin rotates about
1566.85 times around the vertical direction in a flat ring dur-
ing one turn. The HERA ring is not completely flat. Never-
theless this number illustrates the complexity of spin motion.
If a change of the phase space position of a particle initiates
a relative change of the one turn spin rotation by only one
part in 104, the angle of precession has changed by 56 de-
grees. This simple observation already hints at the strong
dependence of the equilibrium spin direction on the phase
space coordinates pointed out in the Introduction. To illus-
trate this fact, we restricted ourselves to vertical motion with
a tune of 0.29, ignored the vertical bends to obtain a flat ring,
and computed the third order expansion of the spin transfer
matrix with respect to the vertical phase space coordinates
using the differential algebra codeCOSY INFINITY @21#. Fi-
nally we stored the third order phase space expansion of the
corresponding rotation vectorgW . This power expansion was
then used by the programSPRINTto obtain thenW axis. Due to
the strong phase space dependence of the spin motion, this
expansion does not represent the real spin motion in HERA
very well, but it is nevertheless useful to demonstrate the

applicability of stroboscopic averaging. We transported spins
by means of this rotation vector, and approximated the orbit
motion by the linear transport matrix.

In a realistic accelerator, the existence of thenW axis can-
not be guaranteed, but an approximately invariant spin field
can be found if the seriesnWN converges. To indicate the
convergence of this series, we plotunWN2nW 20 000u for the
phase space point withyi50.4 mm andyi850 in the East
interaction region. This corresponds to an emittance of 69p
mm mrad, and is therefore a particle at approximately 4s of
the beam distribution. The slope of21 in the double loga-
rithmic scale of Fig. 5 illustrates clearly that the convergence
is linear in 1/N as derived in Sec. IV B.

In that section, convergence could only be guaranteed if
the angle between the vectorsbWN andnW 0 stayed smaller than
p/2 during tracking. As an example we checked this require-
ment foryi50.4 mm and found that this condition is violated
as illustrated in Fig. 6, and convergence cannot be guaran-
teed ad hoc. Nevertheless, an approximately periodic spin
field is obtained.

One can easily check this by tracking a spin which is
initially parallel to nWN for many turns. In order fornWN to
approximate annW axis, the tracked spins have to lie approxi-
mately on a closed curve on the unit sphere. Four such
closed curves were created by computingnW 12 000at the phase
space pointsyi50.1 mm, yi50.2 mm, yi50.3 mm, and
yi50.4 mm withyi850, and tracking for a further 600 turns.
In Fig. 7 we display the projections of these curves on the
horizontal plane.

Optimization of the average polarization of a particle
beam requires that the equilibrium polarization direction for
every particle is almost parallel to the average polarization
direction. We therefore averaged the angle betweennWN and

FIG. 4. Opening angle of the

analytically calculated nW ~dia-
monds! and the stroboscopic aver-

agenWN for N520 ~1! as a func-
tion of phase space amplitudeJ.
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nW 0 over the orbital phases and displayed this divergence for
different phase space amplitudes in Fig. 8.

Yet another way of illustrating the importance of thenW
axis is illustrated in Fig. 9. Particles at 100 different phases
at a normalized emittance of about 4p mm mrad, corre-
sponding to yi50.1 mm andyi850, have been tracked
through HERA for 500 turns while the beam was initially
polarized 100% parallel tonW 0. Similar kinds of tracking re-

sults were presented in@22#. Since this polarization distribu-
tion is not the equilibrium distribution, the averaged polar-
ization exhibits a strong beat. This figure also shows that

when spins at phase space coordinatezW are initially parallel
to nW (zW), the averaged polarization stays constant. Therefore,
by starting simulations with spins parallel to thenW axis, one
can perform a much cleaner analysis of beam polarization in
accelerators.

FIG. 5. Indication of convergence for a realistic accelerator: The slope of21 in the double logarithmic scale illustrates that the
convergence is linear in 1/N.

FIG. 6. Angle between the

tracked spins andnW 0 for yi50.4
mm. To guarantee convergence,
this angle has to stay between 0
and p/2. For many spins this
angle is substantially larger; nev-
ertheless we do obtain a good con-
vergence speed.
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FIG. 7. Referring to the flat HERA model: The stroboscopic averagenWN for N512 000 tracked for a further 600 turns foryi50.1, 0.2,
0.3, and 0.4 mm.

FIG. 8. Referring to the flat HERA model: Phase averaged opening angle of the stroboscopic averagenWN for N5200 as a function of the
vertical phase space amplitudeJ.
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In this paper we do not want to discuss in detail the pos-
sible countermeasures which can be taken to reduce the
opening angle of the polarization distribution in a given ac-
celerator. Nevertheless, with one example we want to dem-
onstrate the possibility of such counter measures. The pic-
tures in Fig. 10 were calculated for the actual nonflat HERA
lattice, and compare thenW axis before and after the introduc-
tion of four Siberian snakes@4# into the accelerator.

CONCLUSION

We introduced an algorithm for computing the Derbenev-
Kondratenko spin axis (nW axis! from straightforward spin
phase space tracking data with the following features:

~i! It can be implemented in any existing spin tracking
program.

~ii ! For an accuracy on the 1023 level typically less than
3000 turns have to be tracked.

FIG. 9. Propagation of a beam
that is initially completely polar-

ized parallel tonW 0 leads to a fluc-
tuating average polarization. For
another beam that is initially po-
larized parallel to the periodic

spin solutionnW , the average polar-
ization stays constant, in this case
equal to 0.765.

FIG. 10. Referring to the actual HERA lattice as of 1996~left! and after incorporation of a suitable choice of four Siberian snakes~right!:

Variation ofnW (zW) over a 2s vertical phase space ellipse.
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~iii ! No artificial damping is needed.
~iv! Since our method is nonperturbative, no resonance

factors appear in the algorithm and it is applicable even near
spin–orbit resonances.

With the method of stroboscopic averaging, important
features of accelerators can now be analyzed. One very sig-
nificant field of study will be the computation of spin tune
spreads, which previously could hardly be analyzed and are
now easily accessible. Diffusion and damping terms could be
added to the analysis, andg]nW /]g @5# can be computed for
the simulation of electron polarization in storage rings. In
addition, numerical checks of uniqueness, convergence near

resonances, and the effect of nonlinear orbit motion should
be made.

It is the opinion of the authors that now, after the intro-
duction of stroboscopic averaging, spin tracking in storage
rings should always be initialized with spins parallel to the
equilibrium distribution, since much clearer analysis be-
comes possible.
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