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We report an experimental investigation of the fragmentation process of a heavy drop falling in a lighter
miscible fluid. For fixed liquid composition and for different drop sizes, we observe that the fragmentation
cascade stops after a few breakups, once each individual droplet has reduced below a critical volume for
further splitting. Since each fragmentation is the outcome of a hydrodynamic instability, we expect fluctuations
in the size of the fragmented droplets. The main experimental outcomes are the following:~1! the first breakup
time scales with the size separation from the critical volume in a universal way independent of the fluid
composition;~2! in the region intermediate between the first and the last fragmentation, the droplet sizes
display multifractal properties, with the average dimensionD0 decreasing to a minimum and then increasing
again once diffusion prevails; and~3! the droplet height scales with time with an exponent independent of the
drop volume and composition.@S1063-651X~96!00607-1#

PACS number~s!: 47.53.1n, 47.20.2k, 68.10.2m

I. INTRODUCTION

We report the experimental investigation of the transient
dynamic phenomena occurring as a liquid droplet falls into a
lighter miscible fluid~solvent!. The process starts with the
deposition of a droplet on the surface of the solvent and
terminates by complete mixing. During the transient, there is
competition between the breakup induced by the nonlinear
hydrodynamic processes and the local damping due to the
diffusion of the velocity and concentration@1#. Thus, we
observe a transient regime within which the original drop
splits into successive families of daughter droplets, with
beautiful effects appealing to the aesthetical imagination@2#.
A century after the original report@1# the problem has been
reconsidered in better detail, showing that the competition
between the hydrodynamic instability and diffusional mixing
is ruled by two nondimensional numbers, namely, the frag-
mentation numberF @3#
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In the above relations,g is the gravity acceleration,Dr is the
density difference of the two fluids,r is the drop density,V
the initial drop volume,m andn the dynamic and kinematic
viscosities of the solvent, andD the mutual concentration
diffusion.

Above a critical valueFc @3#, the drop breaks into a num-
ber N1 of fragments which increases asS decreases@4#. If
each of theN1 secondary droplets has an individual fragmen-
tation number still higher thanFc a second breakup occurs.

For the fluid mixtures used in Refs.@3,4#, we did not observe
fragmentations beyond three steps, since at the third stage
the N5N1N2 tertiary droplets~N25number of fragmenta-
tions of each one of theN1 secondary droplets! were small
enough to have an individual fragmentation number below
Fc . From this point on, the breakup process stops and mix-
ing continues by pure diffusion. At the end of the breakup
process, we are thus faced with a constellation ofN droplets
of approximately the same size, falling with approximately
the same speed, and still connected by thin filaments. We
report a sequence of photos showing the morphological de-
tails of the fragmentation process~Fig. 1!.

The regions occupied by the heavier fluid can be observed
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FIG. 1. Side views of a drop falling in a lighter miscible fluid.
~a! The drop, initially spherical, has become a torus. Some regions
with greater density give rise to successive fragmentations, two in
~b! and six in~c!. The secondary droplets split again in the last stage
of fragmentation~d!.
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by doping the initial drop with sodium fluorescein dye in
such a small concentration that it would not perturb the hy-
drodynamic behavior, and yet sufficient to yield a detectable
fluorescence under laser illumination. In this way, we can
visually detect how the original spherical drop has been
spread after breaking up. At an intermediate time, the
evolved drop looks like a fractal object embedded in the
three-dimensional space provided by the solvent. Projecting
such an object, for example, from above onto a screen placed
at the bottom of the cell would provide patterns of difficult
interpretation, since we are superimposing different sections
and hence the same screen region receives contributions
from different heights. To solve this problem, we cut a thin
horizontal slice by illuminating the cell with a horizontal
laser lamina and study the fractal dimension of the set em-
bedded in the two-dimensional slice of illuminated solvent.
At any time, we expect to measure a generic multifractal
whose average dimension is between 2 and 1, depending on
the local trade-off between fragmentation and diffusion.

While the first reports@3,4# were just phenomenological
relations between the number of fragments and the two
above nondimensional numbersF andS, we present here a
detailed experimental investigation. Our main result is that
we are able to clearly identify a fragmentation region which
is occurring in between the first fragmentation and the onset
of a regime dominated by pure diffusion. We are thus faced
with three distinct dynamical regions, the first one being
mainly ruled by the fragmentation numberF, the last one
dominated by diffusion, and the intermediate one, in which
fragmentation occurs, driven by the hydrodynamic instabili-
ties. The extent of this fragmentation region is determined by
the Schmidt numberS. We show that this region is charac-
terized by scaling laws with universal exponents, thus we
can infer that the fragmentation is a self-similar process. We
provide a statistical description of this process by measuring
the multifractal structure of the drop concentration distribu-
tion.

In Sec. II we present the experimental setup and we report
the measurements related to the dynamical behavior of the
falling drop. In Sec. III, we report the multifractal structure
of the drop concentration distribution, and in Sec. IV we
summarize the results.

II. EXPERIMENTAL SETUP AND MEASUREMENTS

A glass cell with a base size of 10310 cm2 and 40 cm
high, is filled with a solvent of pure distilled water and
mounted on a rigid metallic support. On top of the cell is
mounted a microsyringe that releases a drop close to the
center of the free surface at zero initial velocity andh50 ~h
being the downward vertical coordinate within the solvent!.
A collimated Argon laser beam, shaped as a thin lamina by a
cylindrical lens, crosses the solvent horizontally. The light
lamina has a thickness of approximately 500mm and has a
uniform intensity distribution over the whole cell depth. By
changing the height of the laminar beam, we can follow the
drop at different heights and times.

Beneath the cell is placed a plane mirror, at an angle of
45°, that reflects the fluorescence induced by the passage of
the drop through the two-dimensional slice of light. The
fragmented drop sections are imaged by an objective onto a

CCD camera consisting of 512 by 512 pixels, then recorded
by a VHS video recorder and digitized by a frame grabber
with 8-bit resolution. The objective of the camera is adjusted
in such a way that the focal depth is sufficiently long to
obtain sliced images at different heights through the cell.

Most of the experimental data refer to heavy drops, com-
posed of 15% glycerin and 85% water, seeded with a small
amount of sodium fluorescein dye~1025 mol/l!. When not
otherwise specified, the measurements are carried out for
drops with the same concentration ratio but with different
volumes. All the reported experiments have been performed
under isothermal conditions at a temperature of 2060.2 °C.
When we use different drop compositions, we select them
from the list of Table I, Ref. 4, where all relevant parameters
have been collected.

The fragmentation structure of a liquid drop at different
cell heights is ruled by the fluid parameters such asm, D, n,
r, and the cell thickness. We choose a cell size large enough
to consider the drop not affected by the lateral cell bound-
aries.

The experiment was carried out for different drop sizes,
corresponding to a drop volume ranging from 2 to 8ml ~mi-
crolitres!. In Fig. 2 we report the recorded horizontal sections
of a 4ml drop. The successive images are taken at successive
heights. It can be seen@Fig. 2~a!# the initial unperturbed drop
and @Figs. 2~b!–2~e!# the beginning of the fragmentation in-
stability with the formation of a torus. Then a first breakup
into five fragments takes place@Fig. 2~f!# followed by a fur-
ther fragmentation of the drop at the second breakup process
@Fig. 2~g!#. The last series of images show no further frag-
mentation but rather the gradual enlargement of the structure
until diffusion finally takes over the process@Figs. 2~h!–
2~j!#.

All the above images were successively recorded from
frames with individual pixel intensity greater than the back-
ground intensity~above threshold!. The square frames rang-
ing from 64364 up to 3203320 pixels fully contain the
region occupied by the drop. The temporal resolution of our
measurements is limited by the thickness of the light beam,
due to the fact that the drop spends some time in order to
cross it. The CCD camera has a standard video acquisition
rate, such that each frame lasts 40 ms. Initially, that is at
short heightsh, the drop takes only one frame timet to cross
the laminar beam. At intermediate and highh the drop takes
n52 or 3 frame times to go through the light sheet. A tem-
poral averaging is realized by summing over then successive
frames so that the integration time ranges from 40 to 120 ms.

The successively recorded sections provide an Eulerian
description of the process. In order to achieve a link with the
Lagrangian point of view, we have to determine the time at
which the falling drop reaches a given height. For this pur-
pose, we proceed in the following way. We illuminate a
large volume~almost one half! of the entire cell with a white
lamp, and then an area of 70370 mm2 of the orthogonal side
of the cell is imaged on a CCD camera. A graduated scale
with millimetric partition is put on the cell and is also im-
aged. When the drops are released, a video recorder registers
on a TV tape the lateral view of the falling drops. The timet
of arrival of the drop at a given heighth is determined by
playing the video tape with a timer. We start the timer when
the drop touches the water meniscus and we stop it when the
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drop arrives at the selected height, thus obtaining the desired
time interval. In order to average the measured time intervals
and to reduce the error, we repeat the measurement ten times
for each drop volume and each cell height.

The h(t) resulting from the time measurements is re-
ported in Fig. 3 for a drop volume of 2ml. From this graph
it is evident that there are three distinct regions I–III, each
one following a power lawh;tg i , with different exponents
g i . The first change~boundary I-II! corresponds to the first
breakup whereas the second change~boundary II-II! corre-
sponds to the establishment of pure diffusion. Thus, it can be
clearly seen that the intermediate region~II !, where fragmen-
tation takes place, is a transient between two distinct situa-
tions, that of the whole drop falling down~I! and that of
diffusing droplets no more undergoing fragmentations~III !.

In Fig. 4 we report the exponentsg i ~i5I,II,III !, charac-
terizing the three dynamical regions of the falling drop, for

different drop volumes. By fitting the data with a power law,
it can be seen that the first exponentg I changes with the
volume V as V0.5060.02, the third exponentgIII changes as
V0.2260.02, whereas the second exponentgII is constant and is
0.3460.02. Furthermore, repeating these measurements for
different drop compositions, even though, as expected, the
sizes of the three regions change, nevertheless the exponent
gII remains the same. Due to the transient character of the
phenomenon and to the experimental limitations, the power
laws are obtained over a very limited range of data values
~less than one decade!, nevertheless we think that they can
give an interesting suggestion on the universal behavior of
the fragmentation process. At least, they are a clear signature
of the three distinct dynamical regions which characterize the
transient evolution of the fragmentation process.

In particular, this regime is initiated by the first breakup.
We can experimentally establish that the breakup timetbu is
the longer, the closer the fragmentation numberF is to its

FIG. 2. Horizontal sections of the falling drop at successive heightsh: ~a! 2.0 mm;~b! 12.0 mm;~c! 17.0 mm;~d! 22.0 mm;~e! 27.0 mm,
formation of the torus;~f! 32.0 mm, first breakup with the formation of five fragments;~g! 37.0 mm, second breakup;~h! 42.0 mm;~i! 47.0
mm; and~j! 52.0 mm, enlargement of the fragmented structure. The frame sizes are~a!, ~b!, ~c!, ~d! 64364 pixels;~e! 1283128 pixels;~f!,
~g!, ~h! 2563256 pixels; and~i!, ~l! 3203320 pixels, and the initial drop volume is 4ml.

FIG. 3. Measured drop heighth as a function of the arrival time
t, for an initial drop volume of 2ml. The two vertical dashed lines
mark, respectively, the occurrence of the first breakup and the onset
of pure diffusion without further fragmentations. This way, three
regions are identified:~I! that corresponding to the first breakup and
ruled mainly by the fragmentation numberF, ~II ! that correspond-
ing to secondary fragmentations and whose extent depends on the
Schmidt numberS, and ~III ! that of pure diffusion. The data of
region II are fitted with a power law~solid line! whose exponent is
about 0.33.

FIG. 4. Scaling exponentsgI , gII , andgIII of the height vs time
h;tg for the three different regions, respectively, as a function of
the initial drop volumeV. The points are experimental data and the
solid lines are best fits withgI;V0.5060.02 for the onset of the in-
stability, gIII;V0.2260.02 for the onset of diffusion and
gII;V0.0060.02 for the fragmentation region. Thus the second region
shows a universal behavior with an exponentgII50.3460.02 inde-
pendent from the initial drop size.
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critical value Fc . As said in Ref.@3#, it is impossible to
disentangle the combined role played by the Kelvin-
Helmholtz ~KH! and Rayleigh-Taylor~RT! instabilities.
However, due to the general character of the phenomenon,
we should expect a universal law of the type

tbu;~F2Fc!
2b, ~3!

whereb is a positive number which does not depend on the
fluid composition.

We checked such a conjecture on a series of data. For the
fluid composition of Fig. 2 we haveDr53.931022 g cm23,
m5131022 g cm21 s21 and D59.831026 cm2 s21. Thus,
the fragmentation numberF ranges from 7.33105 to
29.13105 as the drop volume is varied from 2 to 8ml. The
critical fragmentation numberFc is equal to 2.83105 @3#. We
report in Fig. 5 the measured breakup timestbu as a function
of the normalized separation from the critical fragmentation
number [(F2Fc)/Fc]

21 and for two different drop compo-
sitions. It can be seen that there is a scaling law as Eq.~3!
with an exponentb50.6660.05 which is independent from
the drop composition. This result reenforces the indication
that the fragmentation process proceed in a universal way,
following a quite general scaling law at the onset.

III. TRANSIENT FRACTAL DIMENSION

Images of Fig. 2 are samples of the images chosen for
processing. Each digitized image contains levels of the nor-
malized intensity varying from 0 to 255, with a size of the
processing box ranging from 64364 to 3203320 pixels. In
order to compute the fractal dimensionD0 of the space oc-
cupied by the drop, we adopted a box-counting algorithm@5#
consisting in partitioning the space into equally sized cubes
of side«. If N(«) is the number of cubes required to cover
the space, the Renyi dimension can be calculated according
to Eqs.~6!–~8!

Dq5 lim
«→0

1

q21

ln ( i51
N~«!pi

q

ln~«!
, ~4!

wherepi is the image probability in thei th box defined as
follows. In the discrete frame processing, we split theN3N-
pixels frame intom3m-pixels boxes, wherem specifies the
~discrete! « value selected. If we callx (y) the horizontal
~vertical! pixel coordinates, then thei th box will span the
coordinates fromxi to xi1m andyi to yi1m . Calling I xy the
signal observed at pixel (x,y), the total signal is given by

I t5 (
x,y51

N

I xy , ~5a!

whereas the local signal observed in thei th box is given by

I i5 (
x5xi

xi1m

(
y5yi

yi1m

I xy . ~5b!

With this in mind, we define as image probability of thei th
box the quantity

pi5
I i
I t
. ~5c!

Adopting Eq.~4!, we calculate theDq curve for different
drops at different heights. TheDq curves are related to the
singularity spectrumf (a) by a Legendre transform@8#. The
function f (a) describes how densely a singularity of strength
a is distributed over the analyzed set. Thus,f (a) can also be
seen as the fractal dimension of the subset over which the
singularities scale asa and a set characterized by a spectrum
of these dimensions is called multifractal since it can be
thought of as constituted by many fractal subsets@9,10#. In
particular,D0 , which is the fractal dimension of each image,
corresponds to the maximum off (a) vs a plot.

Figure 6 shows theDq and the correspondingf (a) curves
derived from the analysis of the images recorded at different
heights for a drop volume of 4ml. Due to statistical limita-
tions of our data,Dq are meaningful only in the range25
,q,5. In Figs. 6~a! and 6~b! we report the results obtained
for short heights inside the cell~h from 12 to 47 mm!. In this
range of heights the fragmentation process takes place, giv-
ing rise to a fractalization of the drop set. It can be clearly
seen that, starting from a fractal dimensionD052, this is
continuously reducing until it reaches a value close to 1.3.
Once the transient fractalization is over, that is, once further
fragmentation is inhibited by diffusion, a reverse process,
leading to the restoration of the dimensionD052, takes
place as shown in Fig. 6~c!, 6~d!. This reverse process is
rather slow and it can be observed, correspondingly, over a
larger range of heights inside the cell~h from 80 to 260 mm!.
Similar results are obtained for different drop volumes.

TheD0 dimensions extracted from the plots of Fig. 6 are
reported, vs the cell heighth, in Fig. 7. From this plot it can
be seen that up to the onset of the instability~first breakup!,

FIG. 5. Breakup timetbu as a function of the reduced fragmen-
tation number [(F2Fc)/Fc]

21 in a log-log plot. Experimental
points correspond to two different drop compositions: full dots 15%
glycerin and 85% water; empty dots 30% glycerin and 70% water.
The best fits~solid lines! give a slopeb50.6660.05.
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D0 is close to 2. As the fragmentation starts,D0 decreases
gradually down to a value around 1.3. From this point on,
diffusion takes over and the transient fractal tends to disap-
pear into a uniform solution of the drop and the solvent,
eventually recoveringD052.

IV. CONCLUSIONS

We have given an experimental characterization of the
dynamical and statistical features of a drop falling in a
lighter miscible fluid. We have shown that the process can be
divided into three distinct dynamical regions, one corre-
sponding to the onset of the first hydrodynamic instability,
one characterized by the successive fragmentation of the ini-
tial drop into smaller droplets, and one, dominated by diffu-
sion, in which the droplets mix with the solvent without un-
dergoing further fragmentations.

In the fragmentation region the heighth reached by the
falling drop scales with the corresponding arrival timet as a
power law with an exponentgII50.3460.02 which does not
depend on the initial drop volume. Moreover, independently
of the fluid composition, the first breakup time scales with
the separation from the critical fragmentation number.

The region of fractalization corresponds to a transient pro-
cess in between the onset of the first instability and pure
diffusion. The multifractal structure of the droplet projection
at different heights can be interpreted as determined by a
distribution of concentration which is related to the self-
similar character of the fragmentation process. Therefore,
even though we cannot make a direct comparison with simi-
lar results obtained for jet turbulence@9#, we can infer that

the fragmentation cascade has some generic properties of the
self-similar processes. In particular, it can be seen as a tran-
sient multifractal that could be associated with the break-
down of a single eddy in a turbulent process@11#. On the
other hand, we also have the reverse process in the course of
which diffusion reestablishes a uniform phase with drop and
solvent homogeneously mixed.

From a heuristic point of view, a fragmentation due to
hydrodynamic instabilities eventually stopped by diffusion
reminds us of the turbulent cascade associated with a high
Reynolds number Re5vr /n. In our case, theF number is the
ratio of the diffusion timer 2/D ~r being the initial drop
radius! to the characteristic timer /vs ~vs5gDrr 2/m being
the sedimentation velocity! associated with the propagation
across the drop radius of hydrodynamic disturbances due to
the relative velocity between drop and solvent@3#. Hence,F
can be simply written asF5rvs/D and it looks like a Rey-
nolds number, with the replacement of the kinetic viscosity
with the concentration diffusion. Thus our experiment dis-
closes useful analogies with turbulence. As we compare Re
andF, while r andv are common to both, replacement ofn
with D means going from 1021–1022 cm2/s to 1025–1026

cm2/s ~see the data of Ref. 6; Table I form andD!. However,
such an analogy which may have a pedagogical value,
should not be pushed too far, since the return to a higher
dimension here reported is peculiar of a transient regime,
whereas turbulent investigations refer to stationary regimes.

In summary, the drop fragmentation is a transient fractal
taking place before the establishment of pure mixing be-
tween drop and solvent. The extent of this fractal can be
controlled by changing the Schmidt numberS, which means
varying the number of successive fragmentation stages al-
lowed by the trade-off between diffusive and kinematics ef-
fects.
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FIG. 7. Measured fractal dimensionD0 as a function of the cell
heighth, with clear evidence of the two regimes plotted separately
in Fig. 6.

FIG. 6. Multifractal properties of the falling drop.~a!, ~b! Plots
of Dq vs q and of f (a) vs a for different heights~h512, 22, 27,
32, 47 mm from top to bottom!. ~c!, ~d! Plots ofDq vs q and of
f (a) vsa for different heights~h580, 110, 140, 170, 260 mm from
bottom to top!. The upper part,~a! and ~b!, refers to the regime of
increasing fractalization~instabilities prevailing over diffusion!, the
lower part,~c! and~d!, to decreasing fractalization~diffusion over-
coming instabilities!.
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