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Self-guiding and stability of intense optical beams in gases undergoing ionization
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The propagation of intense optical beams in gases undergoing ionization is analyzed. Two types of optical
beam modes are considered: a fundamental Gaussian and a higher-order radially polarized beam. The propa-
gation dynamics include the effects of diffraction, nonlinear self-focusing, and ionization. For sufficiently
intense optical beams the neutral gas undergoes ionization, generating a plasma which tends to defocus the
beam. An envelope equation governing the spot size for both types of beams is derived, analyzed, and solved
numerically. Self-guided solutions, which result from a balancing of diffraction, plasma defocusing, and
nonlinear self-focusing, are analyzed for both types of beams. These equilibrium solutions are found to be
unstable due to an ionization-modulation instability for which asymptotic growth rates are obtained. A self-
guided inverse Cherenkov accelerator based on the higher-order radially polarized mode is proposed and
analyzed. In addition, the depletion of the optical field due to collision and ionization losses is analyzed and the
attenuation length is derivefiS1063-651X96)06810-9

PACS numbds): 41.75.Cn, 42.25.Bs, 52.40.Nk

I. INTRODUCTION light for a self-guided beam, an@) a configuration of an
inverse Cherenkov accelerator, which is based on a self-
The propagation of optical pulses in gases is relevant to guided, radially polarized, higher-order Gaussian beam.
wide range of applications, such as ultrabroadband optical One important application of intense optical pulses propa-
generator§1,2], optical harmonic generatof8,4], x-ray la- ~ gating in gases is Iaser—drivep electron accelerators, which
sers[5], and laser-driven acceleratdig-12). For these ap- are referred to as a class of inverse Cherenkov accglerators
plications it is necessary that the optical pulse be intense arfCA’S) [6-9]. In the conventional ICA6-8], the optical
propagate extended distances. In the absence of an optidam driver can consist of either a radially polarized
guiding mechanism the propagation distance is limited tdligher-order Gaussian mode Gf) a nonideal first-order
approximately a Rayleigtdiffraction) length. At sufficiently =~ Bessel mode. Associated with these modes is an accelerating
high power and intensity the propagation distance is strongljxial field peaked along the propagation directipraxis). In
affected by nonlinear self-focusing and ionizatigplasma ~ 9eneral, the electron acceleration distance is limited by either
generation the diffraction distance or the electron slippage distance.
An optical beam propagating in a neutral gas is affectecPince the optical beam in the ICA propagates in gas, the
by diffraction, refraction, nonlinear self-focusing, ionization, Phase velocity can be less than the speed of light and con-
and plasma defocusing. Self-focusing, for example, is due t§olled by varying the gas density. Electron slippage is mini-
the intensity-dependent part of the refractive index and ocMized by matching the electron velocity to the phase velocity
curs when the optical power is above the nonlinear focusin§f the accelerating field. The acceleration distance, however,
power[13—16. As the beam focuses, the increased intensityS still limited by the diffraction length. For a higher-order
results in ionization and plasma formation which tends to
defocus the optical beaf®,17-21, see Fig. 1. A balance A
between the nonlinear focusing and plasma defocusing can Optical Beam Envelope '
result in a self-guided optical beam.
In this paper the propagation, self-guiding, and stability
of two types of optical beams are analyzed. The two beams
considered are a fundamental Gaussian beam of the form

Egexp(—r?/r2+iy)e/2+c.c. and a higher-order radially
polarized beam of the formEy(v2r/ry)exp(—r?/r2 1 L iz §=Z_vtl

+i)e,/2+c.c., whereE, is the electric field amplitude is Plaima

the spot size, ang is the phase. The results of this paper

include (1) envelope equations describing the evolution of

the optical beam spot size, which are derived by using the

source-dependent expansion metfiad,23, (2) the critical Neutral Gas

power for nonlinear self-focusing of the higher-order mode,

which is four times greater than that of the fundamental FiG. 1. Schematic of a fundamental Gaussian optical beam
Gaussian(3) Self'guided beam SO|uti0nS, which result from propagating in a gas undergoing jonization. WHen PNG! the

a balance of nonlinear self-focusing and plasma defocusingseam self-focuses and the intensity increases, causing ionization.
(4) the analysis of an ionization-modulation instability, Plasma is generated along the beam axis, tending to defocus the
which disrupts self-guided beam@) the evolution of the beam. Self-guiding results by balancing nonlinear self-focusing
optical beam phase velocity, which is less than the speed afith plasma defocusing.

Propagation Direction
-

.
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Gaussian mode the diffraction length is a Rayleigh lengthzation. The refractive index of a gas generally has an
which is precisely the slippage distance in vacuum. In thisntensity-dependent pafi3—16, n=ny+n,l, wheren, is
case, as far as energy gain is concerned, there is essentiaihe linear refractive indexy, is the nonlinear refractive in-

no advantage in introducing a gas since the effective acceiex, andl is the intensity of the optical beam. Generalty,
eration length is limited to approximately a Rayleigh lengthis positive and results in self-focusing of the optical beam if
as discussed in Sec. V. For a fixed total optical beam powethe power is greater than the nonlinear focusing power. The
however, the energy gain in the conventional ICA can beygnjinear focusingdcritical) power for a fundamental Gauss-
S|_gn|f|cantly mcreased_ by using a nonideal Bessel beam, ag, beam[13—-16 is Pyge=A2/(27Nngn,), wWhere X is the
discussed in Appendix D. To further enhance the energy,,c,um wavelength. As the beam self-focuses the peak in-

gain, the ICA requires self-guiding of the optical driéx. tensity i e :
i . , ; y increases, resulting in ionization and the generation of
Previous studief6—8] of the ICA also neglect the intensity- a plasma. In the region of the plasma the refractive index is

dependent effects in the refractive index, i.e., nonlinear self- *"" 2 2 _ 2 12

focusing, as well as ionization, i.e., plasma effects. We prol{]h(é);)lr;‘;;gzl frecaﬂ(errzclziﬁ ' \il\slh?rr]eewppggfngq gg/nr;?[y '; nd
I If-gui ICA fi i h . P . ’

pose and analyze a self-guided ICA configuration tha =2c/\ is the frequency of the optical beam. The local

operates at laser powers near the nonlinear self-focusin in the refractive index d he ol d
power and at intensities high enough to slightly ionize the9€crease In the refractive index due to the plasma tends to

gas. defocus the optical bearf®,17-21. If diffraction, self-

Another possible application of intense optical beams infocusing due ta,, and defocusing due to plasma generation
gases is the generation of ultrabroadbfhc®] or harmonic ~ are properly balanced, a self-guided optical beam can be
radiation[3,4]. A short-pulse optical beam propagating in aformed and propagated over extended distances, i.e., many
nonlinear medium will, among other things, undergo self-vacuum Rayleigh length®,20,21.
phase modulatiofl3—16 which results in frequency broad- Our propagation model includes a number of assump-
ening. Since the degree of frequency broadening increasd®ns. The short-pulse optical beam is assumed to be ad-
with both propagation distance and optical intensity, the selfequately described by a single source-dependent Laguerre-
guiding of a short optical beam may be well suited for ultra-Gaussian mode, which is a superposition of many vacuum
broadband radiation generation. A self-guided Gaussiahaguerre-Gaussian modes. The model is not valid when the
beam may have application to harmonic genera{id], optical power greatly exceeds the nonlinear focusing power,
since the propagation medium consists mainly of a neutrasince the beam is expected to filament into higher-order
gas and a very narrow plasma column along the axis. Thenodes. lonization is considered in the high field lifg—
harmonics could be guided by the driving optical beam an®8] (Keldysh parameter less than unignd is modeled by
phase matching may be achieved by introducing a backthe tunneling ionization rate; see Appendix A. The attenua-
ground plasma. tion of the optical beam due to ionization and collisional

This paper is organized as follows. The propagationosses is estimated and found to be small enough to neglect.
model is presented in Sec. Il, and includes discussions of th€he nonlinear polarization field of the gas is included to third
wave equation in a gas undergoing ionization, the linear andrder in the optical field whereas the plasma current is in-
nonlinear polarization, plasma generation, the reduced waveluded to first order.
equation, photoionization, the solution of the wave equation
using the source-dependent expansion method, and the re- A. Wave equation in gas undergoing ionization
sulting equations describing the evolution of the envelope,
amplitude, and phase of the optical beam. The propagation ﬂe
a fundamental Gaussian beam is examined analytically an
numerically in Sec. lll, including thg envglope equgtiqn, §elf— (Vz—cfzazlatz)Ez4770*2(52P/at2+aJp/at), 1)
guided solutions, and the stability, i.e., the ionization-
modulation instability. Numerical results on the propagationwhere E is the electric field of the optical beam,
of the fundamental Gaussian beam are also presented in S&&=V2+#/9z% z is the axial propagation directioR, is the
lll. The propagation of a higher-order radially polarized polarization field associated with the gas, afyl is the
beam is analyzed in Sec. IV, including the envelope equaplasma current density associated with the ionized gas. In
tion, self-guided solutions, and the stability. Numerical re-obtaining Eq.(1) we have neglected a small source term
sults on the propagation of the higher-order radially polarproportional to the gradient of the plasma density.
ized beam are also presented in Sec. IV. The analysis of a
self-guided inverse Cherenkov accelerator is presented in 1. Linear and nonlinear polarization
Sec. V. Attenuation of the optical beam due to electron col- 11,4 polarization field can arise from a number of pro-

lisions and ionization losses is analyzed in Sec. VI. Sectionoqqeq:- these include electronic polarization, molecular ori-

Vllldcon;amsAa dlscdu_ssmg_and s_ummar\]ry. '_I'h|§ paper also Nentation, electrostriction, saturated absorption, and thermal
cludes four Appendices discussi#) photoionization rates, e c1s[13-14. In the present paper we will be concerned

I(B) electron coII||S|on lzjreqluenme(;C) radiative anéihcolhs;(on with changing the refractive index on a fast time scale, typi-
osses on accelerated electrons, &bdl inverse Cherenkov .y jess than 10' sec. On this time scale the electronic

acceleration with Besseaxicon) beams. polarization is the dominant contribution to the nonlinear
refractive index and is due to the optical field modifying the
atomic electronic distribution.

The propagation of intense optical beams in gases is af- In the simple Lorentz mod¢lL3—16 of the atom the elec-
fected by a combination of diffraction, refraction, and ion- trons are assumed to consist of a charge distribution oscillat-

The dynamics of optical beams propagating in a gas un-
rgoing ionization is governed by the wave equation,

Il. PROPAGATION MODEL
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ing in an effective potential. Nonlinearities in the effective AN /at=(w§/4w)E, (5)
potential result in a field-dependent refractive index for the
medium. In the following description of the polarization field wherew,= (4wq2np/m)1’2 is the electron plasma frequency.
only isotropic matter having ensemble-averaged inversiofrhe evolution of the plasma density depends on the photo-
symmetry, i.e., centrosymmetric ensemble-averaged effegpnjzation rate and is discussed later. In obtaining &,
tive potentials, will be considered. This includes all liquids, nonlinear and collisional effectsee Appendix Bhave been
gases, amorphous solids, as well as many crystals. neglected. lonization and collisional losses are analyzed in
The electric polarization field is defined B9=qn.X4,  Sec. VI and found to be small. Nonlinear plasma effects are
whereq is the electronic charge,, is the density of atoms or - small compared to the nonlinear neutral gas effects, which
molecules and is the displacement of the electronic distri- gre represented by the temml in Eq. (3). The magnitude of
bution from equilibrium due to the optical field. The polar- nonlinear plasma effects compared to nonlinear neutral gas
ization field in the classical single resonant frequency modegffects is approximately given by the ratio of the critical

is given by[13-14 power for relativistic focusing11,37 to the nonlinear focus-
ing power and is found to be negligibly small.
?PIot2+ Q2P — Q2(P-PIP2)P+ 2T 9P/ at=(g2n,, /m)E, gp ghgily
2 3. Reduced wave equation

where()y, is the characteristic resonant frequency of the elec- The propagation of the optical beam is described by Egs.
tronic distribution,(), is a constant associated with the non- (1), (3), and(5) together with the tunneling ionization model
linear, i.e., nonparabolic, nature of the effective potenRgl, discussed in Sec. Il B. To proceed with the analysis, it is
is a normalizing polarization field amplitude, addis a  convenient to transform from thez,t) coordinates to the
damping term. Equatio(®) is an accurate description for the (£,7) coordinates, wheré=z—vt and »=z. For a beam
polarization field when the optical frequency is far from the propagating in the positive direction with group velocity,
resonant frequencies. Typically, the resonant frequedgy ¢ is the distance behind the frot§=0) of the optical beam

is in the ultraviolet regime{)g>w. The polarization field and » is the propagation distance. In these new coordinates,
given by Eg.(2) contains dispersion, damping, and third- the optical field has the form

order nonlinear effects.

In the limit where(i) dispersive effects are wedlar from E=E exp(ik&)/2+c.c., (6)
resonance{)z>w), (ii) damping effects can be neglected
(I'<w), and (iii) the nonlinear term in Eq(2) is small
(Q 2P%/P2< 2), the polarization field can be approximated
by

whereE(r, 6,&, ) is the complex amplitude and is a slowly
varying function of¢ and », k= w/v, w=2c/\ is the opti-
cal frequency\ is the vacuum wavelength, and c.c. denotes
P=X(l)E+X(3)(E-E>E=(l/4w)(n§— 1+2nen,)E, (3) the cqmple_x conjugate_. In tr@,n)_ coo_rdinates, Eq(l) can
be written in the paraxial approximation as
where yY'=g?n,/(mQ 3)<1 is the constant linear suscep- A .
tibility, x®=(Q1/Qr)*(x™")%/P2<xY/(E-E) is the con- (V2 +2ikdldn)E=KZE, 7
stant third-order susceptibility of the neutral gas, the brack-
ets () denote a time average,=(1+4my")"? is the lin-  whereK? is given by
ear refractive index of the neutral gas= (87w%/n2c) x® is

the nonlinear component of the refractive index, K2=k§—2k2(n2/n0)l. (8
| = (c/4m)ny(E-E) is the intensity, andn,l|<n, has been
assumed. In obtaining Eq.(7) we used the transformatio@édz=d/9¢
+dldnpanddl dt= —v dld€. The linear group velocity as well
2. Plasma generation as the linear phase velocity is= w/k=c/n,. The paraxial

The ionization of the background gas by the optical beanfPProximation implies thak® is small compared téc. In
results in the generation of plasma electrons. The plasmie absence of the nonlinear indé%=0), the paraxial ap-
current density is given by,=qn,v,, wheren, andv, are proximation requires that_ the2 plazsma density be small com-
the plasma density and fluid velocity respectively. To lowestPared to the critical densityy;<w®.
order inv,, the continuity and fluid velocity equations are

B. Photoionization model
anplgt+V-(ngvp) =S, (49 L .
lonization can occur by electron collisional processes

[33-33 or by the intense optical fields direc{lg4—-28, i.e.,
photoionization. In the absence of collisions or for laser
whereS is the plasma source term proportional to the ion-pulses s_hort compared to a c_olli_sion_ time, photoionization is
ization rate,E is the optical electric field, the,xB force ~ the dominant process. Photoionization can take place by ei-
and thermal effects are neglected in E4p), and the elec- ther tunne_llng or multlphoton. processes, see Appendix A.
trons are assumed to be created with zero velocity wherl "€S€ regimes are characterized by the Keldysh parameter
ionized. Combining Eqg4a) and(4b), and keeping terms to  %=(Ui/é& ™, where U, is the ionization energy anés
lowest order inv,, the plasma current density is given by =(1/2)m(q|E|/mw)? is the electron oscillation energy. The
[29-3] low field limit (% .>1) corresponds to the multiphoton ion-

mMnydvy,/dt=qgn,E—mv,S, (4b)
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ization regime, whereas the high field limi#<1) corre-
sponds to the tunneling ionization regime.
The evolution of plasma density in E(fa) is given by

eral,E can be written in terms of a complete set of Laguerre-
Gaussian functions, i.e., source-dependent modes,

Nyl at=(Npo—nNp) W(|E]), (9) E=m2p [ampcospo)e, +bpypsin(pd)el IDR(x), (14)

wheren,q is the initial neutral densitWV(|I§|) is the ioniza- ~ where m,p=0,1,2 ..., ay ,(#) and by, ,(n) are complex
tion rate, and the convection ter¥h (n,v,) is neglected. For coefficients and are functions of), € and €| denote
a linearly polarized optical field, the ionization rate in the transverse unit vectors defining the polarization,

tunneling limit (y<1) is given by[24-2§ D rr;q()():)(pIZL POx)exd —(1—ia)x/2], x=2rr?2 ry(n) is

R _ R real and denotes the spot sizéz)=kr 2/(2R,) is real,R. is
W(|E|)=4(3/m)Y2Qo(U,) "M Ey /|E|) Y2 the radius of curvature associated with the wave front, and

_ R L P, is an associated Laguerre polynomial, eLlgf(y)=1 and

xex —3(U))¥E,/|E], (100 LP(x)=1+p—x. The representation in Eq14) forms a

complete set and can be used to represent an arbitrary optical
where Qy=a;c/a,=4.1x10'® sec?! is the characteristic beam.
atomic frequencya;=1/137 is the fine structure constant,  To proceed with the SDE analysis we substitute @¢)
a,=5.3x10"° cm is the Bohr radius),=U,/Uy, U, isthe  into the paraxial wave equation, E(f), carry out the indi-
ionization energy in eVJ,;=13.6 eV is the ionization en- cated differential operations, perform the operation
ergy of hydrogen|E| is the magnitude of the optical field,
and E,=|q|/a3=5.2 GV/cm is the atomic field of hydro- zw(cosp’a) sin(p’ 6))do/2m
gen. The intensity of a linearly polarized Gaussian optical 0 ’
beam in vacuum, with a peak field equal ®©,, is
| = (c/8m)E 2=3.6x 10 W/cn?. Equation(9) assumes that ©On both sides of the equation, multiply both sides by

the gas is at most singly ionized. The solution of Eg.  [D&(x)]*, and finally integrate ovey from O to «. The
yields algebraic details can be found in R¢R2]. The resulting

equation fora, , is

o .
1—eXp<—(no/c)LW(|E|)d§’”, (11 ( d LA

gy +Ams

2_ 2
kp_kpo

amp—imBay, 1 ,—i(M+p+1)B*an, 1,

where we have sel/dt=—(c/ny)dld¢ in Eq. (9), & is de-
fined in the regioré<0, £&=0 corresponds to the front of the
beam, andck,,=wpo=(47g%n,o/m)*? is the plasma fre- where

guency associated with the initial neutral gas density. For ]

low levels of ionization, i.e.n,<ny,, Eg.(11) reduces to Amp=Tslrsti(2m+p+1)

X[(1+ad)I(krd)—ars/rg+al2], (163

=—iFmp, (15)

0 ~
ko =kpo(no/c) f W(|E])dé". (12 , ,
¢ B(7)=—arg/rs—(1—a?)/(kr2)+ al2
The weakly ionized limit is sufficient to describe self- —i['rS/rS—Za/(krﬁ)], (16b
guiding of optical beams, since it will be shown that in the
highly ionized limitn,=n,, there is no matched beam solu- 1 m! 27 w ,
tion. The expression in Eq8) can be written as Fm,pzz_ﬂ.k (m+p)! fo d‘gfo dx K“(x.0,7)
0 ~ ~ ~
K2:k§o(n0/c)L W(|E|)dé" —2k3(ny/ng)l . (13) XE(x,0,7)-&[Dr(x)]*codpb)/(1+ 8,0, (169

d,p' Is the Kronecker delta, the dot denotes the operator

dldn, and the asterisk denotes the complex conjugate. The

equation forb,, , is identical to the one foa,, , except in the
The following analysis is based on the source-dependergixpression forF, ,, cos@6)/(1+ 6,0 is replaced with

expansior(SDE) method developed in Rgi22]. The SDE is  sin(p#d). In obtaining Eq.(15) a number of identities associ-

a powerful method for solving the paraxial wave equation forated with Laguerre-Gaussian functions were used, including

optical beams propagating in nonlinear media. In the SDEhe orthogonality relation

method, the optical beam is expanded in a complete set of

source-dependent orthogonal Laguerre-Gaussian functions. °°Dp( )(DP(x))*d :(n+p)! S

These functions are implicitly functions of the propagation m X/ (X X n! mn

distance,, through the optical beam parameters, i.e., spot

size, wavefront curvature, amplitude, and phase. The optical Equation(15), together with the definitions in Eq$16),

beam can be described by four coupled first-order differentiatlescribes the evolution of the various source-dependent

equations for the beam parameters in the variapblen gen-  Laguere-Guassian modes. However, Edp) is underdeter-

C. Source-dependent expansion method
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mined since there are more unknowns than equations. Ag 1 (= 1
additional constraint, i.e., a specification of the functionH]Zﬂ fo dx KZ(X,n)XPeXFJ(—X)[l_X/(1+p)],
B(7), is necessary to solve E(L5). The individual source-

dependent modes in E¢L4) are functions of the spot size,

r«(n), wavefront radius of curvatur®.=kr?2/(2a), ampli-  andK?is given by Eq.(13).

tude and phas@,, ,. SinceB(#) is also a function of ; and

a, the evolution of the source-dependent mode is governed
by the particular choice for the functidd. For example, if . .
we chooseB(7)=0, we recover the conventional vacuum Equations(19b) and (199 can be combined to form an
modes. In general, expansion in terms of the vacuum mode&velope equation for the optical beam

(B=0) requires many modes to accurately describe a guided 2 3

optical beam over distances of many Rayleigh lengths. A ﬂer/an2—4(1+krSH)/(ker)—O. (2D)
more appropriate choice f@(z) will depend on the particu- |, 5qgition, the amplitude, phase, curvature, and axial phase
lar problem under consideration and will be discussed later,

velocit of the optical beam are given, respectively, b
The dynamics ofi) a fundamental Gaussian beam dingl Y Uph P g P e

(20

D. Envelope, amplitude, and phase of optical beam

a higher-order radially polarized axially symmetric beam I(Eqrs)/dn=0, (223
will be considered. The fundamental Gaussian beam is de-

scribed by the mode numbens=0 and p=0, whereas the }90: —(1+ p)[2/(kr§)+ H]-G, (22b)
higher-order radially polarized axially symmetric beam is de-

scribed by the mode numbens=0 andp=1. The analysis a=kr2/(2R,) =krgr¢/2, (220

can be significantly simplified by setting=0.

In the following, it is assumed that the dynamics of theand
optical beam can be adequately described by the behavior of .
a single source-dependent mode, e.g.,nhe0, p=0 mode vph=(1—6g/k)c/ng, (220
for the fundamental Gaussian and tine=0, p=1 mode for . )
the higher-order beam. In the SDE method, it is assumed thayhere [6/k| <1 was assumed in E¢22d). Note that Eq.
the coupling to, as well as the amplitude of, the higher-ordef22@ implies that the optical power, which is proportional to
source-dependent modes are small. In fact, an optimal choid&ofs)? is @ conserved quantity, consistent with the paraxial
for the functionB(7) can be determined from E@l5) by ~ Wave equation whek? is real.
requiring that the higher-order source-dependent modes, i.e., FOr propagation in vacuunny=1) the solution of
m=1, are small. Since, for the cases under consideratior£ds- (198—(19d yield the conventional vacuum modes
|lagp|>|anm | for m=1, itis clear from Eq(15) (with m=1) [15,36]. In vacuum, the source terms vanish, i@ H=0,

that the optimal choice foB is and the solutions are characterized by a spot size
re=reo(1+ 7%220)Y% ry is the minimum spot size at
B=Fy,/agp, (17)  the focal point 7=2=0, Zro=kr2/2 is the Rayleigh

length, a=nlZgo=12/ZR,, a wave front radius of curva-
ture R,=z(1+Z3,/z°), a phase factor fy=6y(7=0)
—(1+p)tan ! a, an amplitudeE,=Eq(7=0)r/rs, and a
phase velocity ,,/c=1+2(1+p)/k?r &.

whereB andF, , are given by Eqs(16b) and(160), respec-
tively. With this choice forB, Eq. (15) (with m=0) yields

i A
—+
&77 0,p

agp= _iFoyp, (18 IIl. FUNDAMENTAL GAUSSIAN BEAM PROPAGATION

We first consider the dynamics of a fundamental Gaussian
whereA,, andF,, are given by Eqs(16). Equations(17) optical beam propagating in a gas ur_wderg_oing _ioniz_atior_w. The
and (18) completely determine the evolution of the source-fundamental Gaussian beam, polarized in xheirection, is
dependent optical beam mode. Substituting K463 and ~ Obtained by settingn=p=0 ande, =&, in Eq. (14). Using
(16b) into Eqs.(17) and settinga, ,= Eqexpli ), whereE,  EQ. (14) and Eq.(6) the Gaussian beam is given by

and 6, are real and denote the field amplitude and phase, we 2,2+ a
obtain[22] E=Eqexp(—ré/rstiyg)el2+c.c, (23

: o , where y=ké+ 65+ ar?/r 2 and the function€,, 6,, a, and
ot (L+p)[(1+a)/(kr))—ars/rstal2]==G, (1989 ¢ are given by Egs(21) and (22) with p=0. From Eq.
(226)! Eo(§'77):Eo(fa.ﬂzo)rs(glﬂzo)/rs(gﬂ)a. where
atIrs+ (1—a?)/(kr?)— al2= —H, (19p  E§(&n=0)ri(£5=0) is proportional to the optical beam
power P(§). The intensity and power associated with the
Gaussian beam in a medium of refractive indgxare, re-

— 2 _
rs/fs—2al(krg)=0, (199 spectively,
Eo/Eg+1¢/rs=0, (199 | =(cl/4m)(EXB)-&,=Ipexp — x), (243
where G=Fg,/a,, andH=F,/a,, are real. The source P:(rr/Z)rgfde |()()=(7T/2)f§|p- (24b)
functionsG andH are given by 0
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wherelp=(cno/87r)E§ is the peak intensity along the axis, wherer is assumed to be zero at=0. For P<Pyg the

r=0, and( ) denotes time averaging. optical beam diffracts with an effective Rayleigh length
To determine the optical beam dynamics from E@4) given by

and(22) the source function&(z) andH(#) in Eq. (20) are 1

evaluated withp=0. Substituting Eq(13) into Eq. (20) and Zg=(1-P/Png) ™ "“Zro- (39

integrating overy we obtain . . . :
g g X For P= Py, diffractive spreading balances nonlinear focus-

1 o6l ing and a matched self-guided beam can, in principle, be
(nZ/nO)Ip[llz] _(kpolk)z:a_ } , (259 obtained. However, small changes away frér Py g will
G2 result in loss of equilibrium. FoOP> P, the optical beam
where the functionsg;, og, represent filling factors which self-focuses. In the absence of ionization the beam focuses
are essentially the ratio of the cross-sectional area of théown to zero spot size with a focal length given by
plasma to that of the optical mode times the normalized _ _1z
plasma density. The functiongs; and o, are given by Li=(P/Png—1) "*Zgo, (32)

G j—
H(=—(ki2)

However, as the beam focuses the intensity on axis increases
xXexp—x). (26 resulting in ionization and plasma defocusing, as is described
by Eq. (29).

OG1 _ * 2 1
UGZJ—L dx(Kp/Kpo)“X 1—y
lonization is maximum where the optical field amplitude is . )
maximum, i.e., at =0 for the fundamental Gaussian beam. B. Self-guided Gaussian beam

Since the tunneling ionization raW/(|E|) depends exponen-  |n the presence of ionization, self-guided solutions to Eq.

tially on the field amplitude, the radial profile of the plasma(29) can be obtained. The condition for a self-guided beam,
density will be highly peaked about the axis-0. Equation j.e., #R/97°=0, is

(26) can be simplified by expanding the integrand about

r =0, which givesog;=0g,=0og, Where P/Png—1=K3ri0/2=0. (33
0 * Upon taking the derivative of this expression with respect to
. ' ’ 2/ &1 2
‘TG_L dé'Ka(&)Irs(é )/rs(g)]fo dx & and using Eq(27) we find that for a self-guided beam

Xexd —bg(&")x/2] 9Pl 9E= —KzoPnal 5(§)Ka(£)/bg(£)=—Phg(£), (34

where

0
ZZLdf’Ke(ﬁ')[r§(§')/f§(§)]/be(§’), (27)
he=16k30(Pna/cno)Ka(§)/[EF(£)ba(£)],

and is a function ofEy(£). The solution of Eq(34) yields the
KG(§)=4n0(3/7r)1’2(90/c)(0|)7"‘[E0(§)]‘1’2 self-guided optical Gaussian beam power as a functiofj of
— 2 0
XeHbelO)) (28 P&)=Pucer] | he<§'>d§'). (@5
ba(£)=(2/3)(U})*Eq(&), (28b)

- N Equation(33) or (35) describes a family of equilibrium so-
and Eq=Ey/Ey;. The quantitiesK, bg, sy azn_d Eo ar¢  utions, i.e., there are various equilibrium profilé(¢),
functions of¢ and 7, whereas the powdP~rEgisonlya g (g andr (& which satisfy these equations. For example,

function of £ as implied by Eq(223. if an equilibrium is chosen such the(é) is constant along
the optical beam, thehg is constant and Eq35) implies
A. Envelope equation for the Gaussian beam P(&) =Pyngexp(—£&hg) and th(?;. spot size profile is given by
Using Egs. (25—(28), the envelope equation for the r§(_§)=(16/cno)P(§)/ES. Behind the beam frong<0, the
Gaussian beam in E§21) becomes optical beam power and plasma density increase such that

the nonlinear self-focusing term and the plasma defocusing
P*RI9n*=ZpdR™3(1—PIPyg+3r2k206), (29  term remain balanced. Other types of equilibria can be
found, for example, one in whichy(¢) is constant.
wherer g, is constantZgro=Kkr 2,/2=mnyr 3,/\ is the Ray-
leigh length associated with the spot sizg, R=rJ/rg is
the normalized spot SiZ§,’=(7T/2)|pr§ is the total power, ) . ] o
andPyg=\?/(2mnyn,) is the nonlinear focusing power for In this section, the seIf-guu_jed beam eqU|I|br|um de-
the Gaussian beafl3—16. The terms on the right-hand Scribed gbove is shown to be inherently unstaple,.Le.., the
side of Eq.(29) denote, respectively, vacuum diffraction, 0@am will undergo what we refer to as an ionization-

C. Stability of the Gaussian beam

In the absence of ionizatiofr;=0) the envelope equa- Varying degrees of ionization along the beam and results in
tion in Eq. (29) has the solution the modulation of the beam envelope and the disruption of

the back of the beam. To examine the stability of the self-
re=reo[ 1+ (1—P/Png)(1/Zgro)?1*2, (300  guided beam equilibrium, the envelope equation, 28), is
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expanded about the equilibrium solution. The perturbationgoint can be defined as the point on the beam where the
or(¢&,m) andSE(¢,m) are such that (&) + 6r andEy (&) + 6E initial perturbation is increased by ef,), whereNy>1 is
denote the perturbed spot size and optical field amplitudehe number ofe folds necessary for disruption. This point
respectively. Furthermore, since the optical beam powemoves toward the front of the beam with relative velocity
within the paraxial approximation is nonevolving, i.e., inde-vy= —c(dNJdn)/(INJ ), whereNg(&,7)=N,. For the
pendent ofz, the perturbationssr and SE are related by case where the plasma density profile is linear, i.e.,
or=—(rJEy) SE. Expansion of the envelope equation, Eg. np=KGnno|§|, the disruption velocity in the beam frame is
(29), yields

vg=2cN3ay 3y 3. (43

P?orlan®=—

k2 3(5 f de’Ke(£)rs(&7)or(&", ), (36) To gain some understanding of the IM instability, con-
_ sider increasing the spot size of an initially matched optical
wherebg>1 has been assumétypically the casg For the  peam, i.e.,6r (z=0)>0. In this case the beam intensity and

special case of an equilibrium with a constant spot sizejonization rate are reduced resulting in less plasma genera-

rs«(§)=rso, EQ. (36) becomes tion and enhanced focusing of the beam. The focusing opti-
3 cal beam overshoots its equilibrium value such that0
9 13 _ some distance behind the beam front. Wh%nr<0, the in-
2~ kg(§) |or =0, (37 DA o .
23 tensity, ionization rate, and plasma density increase, causing

the beam to defocus and overshoot its equilibrium value.
This focusing and defocusing of the beam results in the IM
instability. The modulation amplitude and period are func-
tions of the distance back from the head of the optical beam,
, (38 |&, and the propagation distancg=z, as indicated by Eq.
(42).

where k§=[2ko/(krs)]°Kg(é). Equation (37) can be
solved taking a Laplace transform in thevariable, yielding

0
5r~f ds exp{sn—szf de'ke
B 13

wheres is the Laplace transform variable and the integration ) _
is over the Bromwich contour. The asymptotic behavior of D. Numerical results for Gaussian beams
or can be found by integrating E¢38) using the saddle

1. Dynamic solutions

point method, . . :
The propagation dynamics of the fundamental Gaussian
3 _ AL beam is studied by numerically solving the envelope equa-
or~exp; (1xiv3)| 2y f dé’ky] | (39 tion, Eq.(29), for the spot size (£ 7). The envelope equa-
¢ tion is numerically integrated in; (axial propagation dis-
Alternatively, the asymptotic behavior &f can be deter- tance} _using a finite-difference method, where the_ .initial
mined from Eq(37) by assumingsr is a function of only the ~ conditions r(§,7=0) and [dr(&n)/dn],, are specified.
variablex=(—&3;2?3 and assumingg is constant. Substi- Note that in evaluating the filling factarg(¢,7) in Eq. (27),

tuting or = or (x) into Eq. (37) yields the integral ove’ is carried out at every, step, since the
integrand in Eq(27) is a function of¢ and . We consider
57 (9% ax3+ §x10% X2 = 5x 291 9x) 81 = — k3o . a linearly polarized laser pulse with a Gaussian radial profile

(40) and an initial (y=z=0) axial profile given byEO(f 0)
S =Eposin(mlé|/L) for —L=<¢&<0, whereE o= (87! Olc)
In the asymptotic limitx—ce, Eq. (40) reduces to the initial peak electric field) ,o=3. Ox10' Wich? is the
3003\ s 2703 initial peak intensity, andl =60 um is the pulse length. With
(7°/9x7) or = = kgor, (41) wavelengthh=1 um and initial spot size ;=80 um, the
which yields the solution in Eq39). peak power isP,=3.0 GW and the diffraction length is

Zpo=2.0 cm. The optical pulse propagates in air at 1 atm:

The growth rate in Eq(39) can be simplified by noting E

that, along the axis=0, the equilibrium plasma density pro-
file is given by dny/dé=—nKg and Eq.(39) becomes
Sr~exd(1=iv3)Ng(& 7], where

neutral gas density,,=2.7x10" cm 3, nonlinear index
[37] n,=5.6x10"° cm?/W, normalized ionization potential
U,/U,4=1.07, and nonlinear focusing powBy;=2.8 GW
(PO/PNG::L]')
Ne=(3/2%%) (N, /nno) " (Kpor s07/Zo) (42) The simulation begins with the optical pulse at focus
(drg/dn=0) in the neutral gas. With the initial value of
is the number oé folds. If the equilibrium is nearly constant the filling factor o computed via Eq(27), the envelope
in & the plasma density profile is given ?—|§|KG equation, Eq(29), is integrated in the simulation variables
and the number ofe folds is Ny=ay|¢] ’3 23 where ¢=z—vt and »=z. Figures 2a) and 2b) show the initial
ap=(314)(2K ) "(Kpor s/ Zro) . The IM mstablhty grows  5=0 optical beam intensity and plasma density,, versus
as a function of the distance behlnd the head of the opticdlr,£). In Figs. Za) and 2b), the direction of propagation is
beam,|¢, and the propagation distanae towards the right. Plots dfandn,, versus radius at the pulse
The dependence ®f, on ¢ indicates that the number ef  center(é=—30 wm) are shown in Fig. @) for this case.
folds at the back of the beam is greater than near the frontNote also that the nonlinear nature of the ionization process
The IM instability disrupts the back of the beam, and thecauses the plasma density gradient versus bathd ¢ to be
disruption point propagates toward the front. The disruptionconsiderably sharper than the intensity gradient.
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ionization causes the latter portion of the optical pulse to
diffract, as can be seen in Figs(cB and 3d). The rapid
change in the plasma density at the steepening ionization
front results in a correspondingly rapid change in the focus-
ing of the optical pulse. This results in an increasingly nar-
row intensity spike at the ionization front.

The optical pulse structure observed in Figg) 2ind 3d)
occurs even when the powBrgreatly exceeds the nonlinear
focusing thresholdPy . For example, Figs.(&)—4(d) show
the evolution of a pulse withP,/Pyg=2. Except for the
initial power and the initial spot size;;=110 um (and a
corresponding change idr,=3.8 cm), the parameters of
Fig. 4 are identical to those of Fig. 3. As in Fig. 3, there is a
point near the front of the pulse in Fig. (&t é&=—15 um)
whereP=Py, n,<np,, and diffraction balances nonlinear
focusing. Also as before, nonlinear focusing of the pulse be-
hind this point leads to an increasingly steep ionization front.
This, in turn, produces an increasingly narrow optical inten-
sity spike.

(a)

2. Self-guided solutions

Examples of matched beam equilibria are shown in Figs.
5 and 6. In both cases, we consider a linearly polarized
pm optical pulse with a Gaussian radial profile propagating
in air at 1 atm(n,,,=2.7x10° cm 3, n,=5.6x10"° cm?/W,
U,/Uy=1.07, andPys=2.8 GW). Figure 5 shows optical

power profiles (solid lineg and plasma density profiles
i I ] e (dashed linesplotted versust along the axis for equilibria
0.8F 14x10 with constantEy(¢) profiles. Equilibria are shown for three
i ] o s different values of the optical intensity:so=ll=5>< 103
0.6} 131077 57 Wien?, 1,=6X 10" Wien¥, and|5=7x10" W/cn?. Here,
<°" : 7 Eq(&)= (8l p/c)l’2 is constant along the length of the opti-
— 04rp 12x10 o cal pulse, such that the variation in powRfé) corresponds
F\n e to a variation in spot size = (2P/ml )2 Note that the
0.2 71x10 constantE, profile produces a constant ionization rate and a
of o . :o Iinea_r rise in.np/nn(,«l.. Als.o, the power profiles are expo-
0 05 {0 15 50 nenglal functions as given in E@35). .
r/rso Figure 6 shows optical power and plasma density pro-

files for equilibria with constantg(§)=r, profiles. In this
case, matchedEy(¢é) profiles are determined numerically
from Eq. (34) for three different values of the leading-edge
c{£=0) intensity: 1,=1,=5x10" Wicn?, 1,=5.1x10"
Jen?, andl 3=5.2X 10113 Wi/cn?. In this case, the variation
in optical powerP (&) corresponds to a variation in intensity
l,=2P/ar &, such thatE, increases withl¢ along the
) ) ) o length of the pulse. As a result, the ionization rate increases
The evolution of the optical pulse is shown in Fig&a)3- a5 a function of|&. Increased ionizatioridefocusing re-
3(d), where the spot size; (dashed ling intensityl on axis  quires increased powéfocusing to compensate, further in-
(solid ling), and plasma density, on axis(dotted ling are  creasing the ionization in a highly nonlinear manner. As a

plotted versug at(a) 7=z=0, (b) 6 cm,(c) 8 cm, andd) 10  resylt, the constants equilibrium profiles can be very sensi-
cm. Initially, the spot size is constant along the optical pulsetjye to the value of , as in Fig. 6.

as shown in Fig. @&). BecauseP,> Py, the center of the
pulse is focused while the front and back portions diffract, as
seen in Fig. &). At &=-25 um, where P=Pys and
ny,<nj, diffraction balances nonlinear focusing and the spot An example of the IM instability for a fundamental
size remains constant a{=r,. Behind this point, focusing Gaussian beam obtained by numerical solution of the enve-
increases the optical intensity, producing a corresponding inope equation, Eq29), is shown in Fig. 7. Here, we consider
crease in the ionization rate. Because ionization is a highlyhe propagation in air of a constant-equilibrium with
nonlinear process, the steepness of the plasma density gradjj,(§=0)=3.0><1013 W/cn?, re=ry =78 um, andZgo=1.9

ent also increases. Increased ionization and increased plasmm. In this case, there is very little initial ionization and
density gradients are shown in Figsbg-3(d). Increased the growth of the instability is extremely slow witR(¢&)

FIG. 2. Surface plots ofa) optical pulse intensity and (b)
plasma density, plotted versusgr,é) at »=z=0 for a fundamental
Gaussian beam propagating in air at 1 atm; propagation is towar
the right. Plot(c) shows the intensity (solid line) and plasma
densityn, (dashed lingversusr at the pulse centeg=—30 um).

3. lonization-modulation instability
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FIG. 5. Equilibrium profiles of poweP (solid lineg and plasma
density on axis\, (dashed lingsplotted versug for three different

values of intensityl

1, =5x10" Wicn?, 1,=6x10" Wicn?,

andl;=7x10" W/cn?. Here,Eq= (8l ,/c)"?is constant versus

such thatr = (2P/ 7l ;)2

=Pne=2.8 GW along the length of the optical pulse. The

evolution of the optical pulse is shown in Figsa/7(f),
where the spot size; (solid line) and plasma density, on
axis (dashed lingare plotted versug at (a) =z=0, (b) 400
cm, (c) 450 cm,(d) 500 cm,(e) 550 cm, andf) 600 cm. In
Fig. 7, the direction of propagation is towards the right.
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ures 7 indicate that the disruption velocity is in good agree-
ment with Eq.(43).

The growth of the instability of Fig. 7 is plotted versus
& at fixed »=z=550 cm in Fig. 8a), where IjAr|, from
the numerical integration of the envelope equation, is com-
pared to the number oé folds N, from Eq. (42). Here,
Ar=(rg—rg)/rs. Similarly, InAr| versus »=z at fixed
&=—49 um is shown in Fig. &). For both plots, excellent
agreement is observed between the slop®&gg) and the
peaks of the InAr| curve. As expected, agreement tends to
break down for§, »—0, where the growth is not yet asymp-
totic, and for InAr|—0, where the growth is nonlinear.

IV. HIGHER-ORDER RADIALLY POLARIZED BEAM
PROPAGATION

We now consider the dynamics of a radially polarized
optical beam propagating in a gas undergoing ionization. The
radially polarized optical beam is formed by taking=0,
p=1 in Eq. (14), settingay 1= by 1= E¢expli 6y), &, =€, and

/

ei=éy. The resulting field, from Eqg6) and(14), is
E=Eq(V2rirgexp —r2/ri+iy)&l2+c.c., (44

where ¢=Kké+fp+ar?/ri and &=(cos)g,+(sin6)g
is the unit radial vector. The functiong,, 6,, «, and

The simulation begins, Fig.(d@), with the optical pulse at
focus (ar Jdn=0) in the neutral gas. In Fig.(®, the spot s satisfy Egs.(21) and (22) with p=1. From Eq.
sizer is constant along the pulse amd(9) increases lin- (228, Eq(€,7)=Eo(£,7=0)rs(§, 7=0)/r«(¢,7), where
early sinceE, is approximately constant. At later times, Figs. Eo(¢,7=0)rs(¢,7=0) is proportional to the optical
7(b)-7(d), oscillations inr cause oscillations in the ioniza- beam powerP(§). The axial field component associated
tion rate such that each region wherehas decreased cor- With the radial field in Eq.(44), as obtained fron¥-E=0,
responds to an increase in ionization. This is particularlyis maximum along the axis and given by
noticeable at the back of the pul&e=—60 um) is Fig. 7c). _

Eventually, there is a large enough increase in the plasma _ 2V2i
density so that the latter portion of the optical pulse is defo- —Z  kr.

o Eol1—(r?/r3)(1—ia)lexp —r?r2+iy)e,/2
cused, i.e., the guiding is disrupted. When the optical pulse is °

sufficiently defocused the ionization rate falls and +c.c., (453
dny/dé=0. Thus, an “ionization front” develops which

propagates forward in the beam frame. This can be seen in 2V2i ] o

Fig. 7(e), where the ionization front is a@=—40 um, and in Er=0)= kr, Eoexpliké+ido)e/2+c.c., (45D

Fig. 7(f), where the ionization front is af=—33 um. Fig-

where the expression in E¢45b) is valid along thez axis,

. —2 i.e., r=0. The intensity and power associated with the radi-
2.0 i ] 1x10 ally polarized beam in a medium of refractive indexare,
A ] respectively,
167 7
% ‘ = |=(C/47T)<E><B>-éz=|p)( exp(1—yx), (463
2= 1.0f 51075
& 2 -
[ ° P:(wlz)rgf dx I(x)=(em/2)r2l,,  (46b
0.5 I 7 0
ot Trneapa. -o wherelp:(cnol&r)ES/e is the maximum intensity, which
—80 —20 0 occurs aty=1 (r=r¢v2), e=2.72 and( ) denotes time av-

¢ (um)

FIG. 6. Equilibrium profiles of poweP (solid lineg and plasma
densityn, on axis(dashed linesplotted versug for three different
values of leading-edgé=0) intensity I ,=1,=5.0x 10" W/cn?,
1,=5.1x10" W/cn?, and |;=5.2x10"® W/cn?. Here,r is con-

stant versus such thatl (¢) =2P(&)/#r .

eraging. Similar higher-order radially polarized modes have
been produced using an axicon focusing configuration
[38,39.

To determine the optical beam dynamics from E@4)
and(22) the source function&(z) andH(#) in Eq. (20) are
evaluated withp=1. Substitutingk? from Eq. (13) into Eq.
(20) and integrating over, yields
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FIG. 7. Spot size (solid line) and plasma density, on axis(dashed lingplotted versug at (a) »=z=0, (b) 400 cm,(c) 450 cm,(d)
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G 1 OR1 2 2 __ 0 ’ ’ —b "y
H]=—<k/2> (e/z)(nzmonp[ 1,4]+<kpo/k>2[(,m] , (47 G(E)Go=e | d'Ke(g)e ™Y, (49
where the filling factorsrg, , are given b
g R1,.2 9 y where
Um]:fwdx(k Ik )2Xe—X{ t (48) o
ore) o TTPITRO 1=x12 Kr(&)=4ng(3/m) %% (Qo/c) (U Eq(£)]
The tunneling ionization ratW(|I§|) is maximum when the exd —br(e)], (509

optical field is maximum. The magnitude of the radial polar-
ized field in the expression fdxr,zj, Eqg.(12), can be written as
|E|=Eo(1+y)Y2exd(1+y)/2], where y=2r?/r3(¢')—1,
and has a maximum at=0, i.e.,r=ry&)/\2. Expanding _
|E| for y<1 gives |E|=(Ey/\e)(1—y?/4). Using this ex- andE,=Ey/Ey . Inserting Eq.(49) into the expressions for
pression inW(|E|), and noting thatV(|E|) is highly peaked the filling factors, Eq.(48), and assumingz>1 allows the
abouty=0, gives integration over to be carried out yielding

br(&)=2eY4U))¥YEq(&), (50b)
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o[ - - P/PNr—1=K5or 50Ra/2=0. (53

Equation (53) describes a family of equilibrium solutions,
i.e., there are various equilibrium profilé¥¢), Ey(¢), and
r<(¢) which satisfy Eq.(53). For the special case of a con-
stant spot size matched beam=r,, the matched-beam
power is given by

IP19E= — (NI K2 Prrr HKR(E/DRAE),  (54)

whereKg(§€) andbg(£) are functions ofP(¢) throughEy(§),
i.e., P(&)=(cny/16)E5(&)r 2,

log(lar]), N

C. Stability of the higher-order beam

f ‘ (b) 1 The stability of the matched-beam equilibrium can be
n N, [theory] 7 analyzed by perturbing the envelope equation, EsR),
=’ _of about the matched-beam solution. This is accomplished by
. C introducing a constant power perturbation to the spot size
T -4f and field amplitude of the formry(&)+6r(&,7) and
2 r Eo(&)+ SE(£,7), where SE/Ey=—4rirg. In the limit
E" -6 E br>1, the envelope perturbation satisfies the equation
-8k ) 2
r log(Jarl) [sim.] \/; k&qr 0
~10t - ' PorlonP=— 53 | d&'[(2—X2)bp(¢")or(¢")
2 ZpoR® Je
0 200 400 600
7 (em) +2Xy(2—4X2+ XY o1 (£)]
FIG. 8. Perturbed radius [lar| (solid line) and number ofe ><rs(f')KR(§’)b§1/2(§')X§e17X§. (55)

folds N, (dashed ling plotted (a) versus¢ at fixed =550 cm and

(b) versusy at fixedé=—49 um. Here Ar = (ro—r)/ry is deter-  For a constant spot size equilibriurXg=1, Eq. (55 be-
mined from the integration of the envelope equation, EZ§), comes

while N, is given by Eq(42). Note that log is the natural logarithm

to baseg, i.e., In. & 0 . kr3 gor —13
(5_772_ 2Ld§ ba a—g—kr(@ﬁr, (56)
o 0 1
Um]:zﬁf dg'KR(g')le’z(g’)[1_X2,2]x;‘ where k¥=2/a[kyo/ (Krso) 1?Kgb&2 In the limit bgsN,
R2 £ s >1, whereN, is the number o€ folds of the instability, the
xexp(1—X2), (51  second term on the left of E¢56) can be neglected and the

asymptotic behavior obr is given by
279? f dg’kf‘) .
&

. . Notice that, for an equilibrium in whicEy(¢) is nearly con-
Using Eqg.(47) for the source functiorH, the envelope stant, the peak equilibrium plasma density occuns=at/v2

whereX =r(&')/r (€).

5r~ex;{§(1tix/§) (57)

A. Envelope equation for the higher-order beam

equation in Eq(21) becomes and is given byn,/n,,=—eKgé. In this limit, the asymp-
PRII2=Z2R™3(1— PIPyg+ %rgkgoom)’ (52) :[/(\?rt:grt;ehavior ofér can be written agr ~exp[(1+£iv3)N],

wherer g is constantZgg=Kkr 2,/2=mnor 2/\ is the Ray- 3 (VT L, |

leigh length associated with the spot sizg, R=rJ/r, is Ne=7 | o~ PR (Np/Nno) (Kpol 07/ Zro) |, (58)

the normalized spot siz&® = (en/2)I pr§ is the total power,

and Pyr=4Pys=2\?/(mngn,) is the nonlinear focusing is the number ok folds. Hence, the growth rate of the IM
power for the higher-order radially polarized beam. Theinstability for the higher-order optical beam differs roughly
terms on the right-hand side of EG2) denote, respectively, by a factor of grbg/4e?)~1 from that of the fundamental,
vacuum diffraction, nonlinear focusing, and plasma defocusassuming equal values Rior 55, Np/Npo, and 7/Zgy.

ing. In the absence of ionizationg,=0, the solution to Eq.

(52) for rg is given by Eq.(30) with Py replaced byPyg. D. Numerical results for the higher-order beam

1. Dynamic solutions

B. Self-guided higher-order beam The propagation dynamics of a higher-order radially po-

The condition for a matched beam, i.¢?R/977=0, is larized laser pulse can be described by a numerical solution
given by of the envelope equation, E@52). Initially, »=z=0, the
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FIG. 9. Surface plots ofa) optical pulse intensityl, (b) plasma densityr,, and(c) accelerating fieIcE_Z=|I§Z| plotted versudr ,£) at
n=z=0 for a higher-order radially polarized beam propagating jraH30 atm. The direction of propagation is towards the right. @ipt
shows the intensitysolid line), accelerating fieldE, (dashed ling and plasma density, (dotted ling plotted versus at the pulse center.

profile of the radial electric field is |E(r,¢)]
=EO(§,O)(ﬂr/r§)exp(—r2/r5), with an axial profile
Eo(£,0)=Epe"ssin(nlg/L) for —L<&<0, where L=60

ated atr =r ,;/v2, wherer ,;, is the minimum value of 4(§).
Initially, the spot size is constant along the optical pulse, and
the peak accelerating field iE,=400 MV/m, as in Fig.

um is the optical pulse length. The peak initial field, occur-10(a). Since P,>Pyg, the center of the pulse is focused

ring atr =rv2, is Eyo= (87l ,o/C) 2 wherel ,o=4.7x10"

while the front and back portions diffract, as shown in Fig.

Wi/en?’ is the peak initial optical intensity. With wavelength 10(b). The increasing optical intensity in the center of the
A=1 pum and initial spot size ;=35 um, the peak power is pulse increases the accelerating field sifice 1. Diffrac-

Py=2.5 GW and the diffraction length Bzg=0.4 cm. We
consider propagation in hydrogéhl,) at 30 atm: nonlinear
index[4] n,=3.3x10 8 cn?/W, ionization energyJ,=15.4
eV, neutral densityn,;=8.1x10?° cm~3, and nonlinear fo-
cusing powerPyg=1.9 GW (Py/Pygr=1.3). Hydrogen is

tion balances nonlinear focusing d@=-—21 um, where
P=Pygr, and the spot size remains constagtr ;. Behind

this point, focusing increases the optical intensity, producing
a corresponding increase in the ionization rate. Increased
ionization and increased plasma density gradients are shown

chosen for its low atomic numbef, and, hence, Brems- in Figs. 1Ga)—10(c). Increased ionization causes the optical

strahlung losses can be neglected, see Appendix C.

pulse to diffract, reducindgs, in the latter portion of the

The simulation begins with the optical pulse at focuspulse, as shown in Figs. €) and 1@d). The rapid change in

(orgon=0) in the neutral gas with intensity(r,&) and

the plasma density at the steepening ionization front results

plasma densityi,(r,£) profiles initialized as shown in Figs. in a corresponding rapid change in the focusing of the pulse.
9(a) and gb), where the direction of propagation is towards This results in an increasingly narrow spike fify at the

the right. The accelerating fiel,=|E,| profile is plotted in
Fig. 9c), whereE,=E_exp(k¢)/2+c.c. with E, given by

ionization front. The peak accelerating fielddg=1.1 GV/m
at n=z=1.0 cm=2.%2g,.

Eq. (45). Plots ofl, E,, andn, versus radius at the pulse

center(¢=—30 um) are shown in Fig. @) for this case. The

highly nonlinear nature of the ionization process causes the

plasma density gradient versus betland ¢ to be consider-
ably sharper than the intensity gradient.

2. Self-guided solutions

An example of a self-guided, higher-order radially polar-
ized beam of wavelength=1 um propagating in hydrogen

The evolution of the optical pulse is shown in Figs. (H,) at 30 atm is shown in Fig. 11. For,Hat 30 atm,

10(a)—1Qd), where the spot size, (dashed ling accelerat-
ing field E, on axis(solid line), and plasma density, (dot-
ted line are plotted versug at (a) »=z=0, (b) 0.4 cm,(c)
0.7 cm, andd) 1.0 cm. In Figs. 1&)-10(d), n,(¢) is evalu-

Npo=8.1x10%° cm~3, n,=3.3x10° %8 cn?/W, U,/U,=1.1,
and Pyg=1.9 GW. The matched beam conditions can be
determined from Eq(53) together with Eq(51) for a given
axial intensity profile. For equilibria with constaB(£) pro-
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versus¢ at (a) »=z=0, (b) 0.4 cm,(c) 0.7 cm, and(d) and 1.0 cm. Here, the initial spot sizerigy)=35 wm, the peak power i®,=2.5

GW=1.3P\R, and the direction of propagation is towards the righ

files, i.e., constant peak intensity lpf=4.7x10"3 W/cn?, the
matched profiles for poweP and plasma density, at
r=rmin/V2 versusé are shown in Fig. 11. For these param-
eters, the degree of ionization is smaﬂ,/nnoslo“‘. The
spot size is given by §(§)=2P(§)/(Trelp), which gives
r«(6=0)=r =31 um at the front of the beam. The on-axis

t.

3. lonization-modulation instability

As discussed in Sec. IV C, the optical beam undergoes an
IM instability. Numerical simulations of Eq52) show that,
with a 1% initial perturbation of the spot size, the IM insta-
bility significantly disrupts the equilibrium beam profile of
Fig. 11 after~10 cm of propagation. The growth rate of the

accelerating field, also shown in Fig. 11, has the maximumy,"instapility is a highly nonlinear function of the optical

value 450 MV/m at the front of the optical beam. Since

1212
E,~n3z"~nyg,

by increasing the gas pressure.

1.5] I | | 3X1O—4
o
RN PIPNR . -
o | 2x10 =
: o
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5
g gt
5 o z 11x10
S
W ®
i I s 0
’ e _40 —-20 0

FIG. 11. Accelerating fieldE, on axis (solid line), power P
(dashed lingand plasma density, atr =r y,/v2 (dotted ling plot-
ted versust for intensity| ,=4.7x 10" W/cn?. Here,E is constant
versusé.

intensity through the plasma density. Reducing the intensity

the accelerating gradient can be increaseqlthe example of Fig. 11 to 3:210™ W/cn? (which reduces

E, to 300 MeV/m results in a matched beam with very little
ionization (the plasma density is reduced by a factor of
~130) and little variation in power and spot size along the
length of the optical pulse. Simulations show that with a 1%
perturbation in the spot size, the pulse propagatdsm
without significant disruption. The behavior of the IM insta-
bility is shown in the following numerical example. In this
example, however, the instability is allowed to grow from
numerical noise to facilitate comparison to the theoretical
growth rate.

Propagation of a guided pulse i, t 30 atm is shown in
Fig. 12. Initially, | ,=3.2x10"3 W/cn? is constant through-
out the pulse, the peak accelerating fieldis=300 MV/m,
the spot size isrg=37 um (Zgry=0.44 cm, and
P(&)=Pygr=1.9 GW. The evolution of the optical pulse is
shown in Figs. 1&)—-12d), where the spot size, (dashed
line), accelerating fieldg, on axis(solid line), and plasma
densityn, atr=r,/v2 (dotted ling are plotted versug at
(@ »=z=0, (b) 60 cm,(c) 75 cm, and(d) 90 cm. Initially,
the spot size is constant along the optical pulse, and the peak
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FIG. 12. Accelerating fieIcE_Z on axis(solid ling), spot sizer s (dashed ling and plasma density, atr=r,/v2 (dotted ling plotted
versust at(a) 7=2=0, (b) 60 cm,(c) 75 cm, andd) and 90 cm, for an initially matched optical pulse witj¥3.2X 10 W/cn? propagating
in H, at 30 atm. This initial radius isg(£)=37 um. The direction of propagation is towards the right.

accelerating field i€,~300 MV/m, as in Fig. 123). At later  E,;=(2v2/krg)E,, can be used to accelerate an injected
times, Figs. 1&b)—12d), oscillations inr s cause oscillations electron beam propagating along theaxis [9,40—43. In

in the ionization rate such that each region whegehas  vacuum, the phase velocity,, of the optical beam is greater
decreased corresponds to an increase-@m,/d¢. Eventu-  thanc and near the focal point is,y/c=1+2/kZgo. Since
ally, the plasma density is sufficiently large that the Iattervph>c, phase slippage between the electrons and optical
portion of the optical pulse is defocused. In the region whereyeam will occur. For a highly relativistic injected electron in
the pulse is sufficiently defocused the ionization rate fallsyacyum, the slippage distantg is defined as the distance

dn,/dé=0, and an ionization front develops which propa- oyer which the electron phase slips by one-half an optical
gates toward the front of the beam at the disruption Veloc'typeriod L(vn—C)/c=M/2, which givesL = mZg/2. It can
» E=sWPp ) s :

Vd» Sef E?'(‘B)', Thitswcarllge Seen :jn,':i?:: 0‘21’ Wheri the be shown that a highly relativistic electron interacting with
lonization front is atf=—42 pm, and in Fig. &), where the axial optical fielcg, in vacuum, Eq(59), from z=—xto
the ionization front is ag=—29 um.

; . ... Z=o00 experiences zero net energy gain. This result is a par-
The growth of the.perturkied rad|u§ dug to the instability 'Sticular case of the Lawson-Woodward theorftd. 45,
plotted versust at fixed »=75 cm in Fig. 18), where It can also be showf9,38—-43, however, that if the in-
In|Ar|, from the integration of the envelope equation, Eq. ! . S ' ; . .
(52), is compared to the number effolds N, from Eq. (58). teraction distance IS limited by placing a mirror approxi-
Here, At = (.— I o)/ o5, Wherer (&) is plotted in Fig. 12c). mately 0<ne Rayleigh Iength from the fo<_:a| point, i.e.,
Similarly, growth versusy=z at fixed é&=—40 um is shown —Zgosz=<w=, then the maximum Snergy gain for a highly
in Fig. 13b). For both plots, good agreement is obtainedrelat'v'suc. electlron |$/Ve[MgV]:P .Z[GW]' _I\/Iatenal _dam—
betweén the.slo ) and,the eaks of the At | curve age considerations, associated with the introduction of an
As expected agreer%ent tends ?o break downé{@;r—>0. optical component near focus, place serious limits on the
where the growth is not yet in the asymptotic limit, and forOptlcaI intensity{9,42].

In|Ar|—0, where the growth is nonlinear. o .
B. Electron energy gain in the conventional ICA

V. SELF-GUIDED INVERSE CHERENKOV By introducing a neutral gas into the interaction region, as
ACCELERATOR in the inverse Cherenkov acceleraftitA), the phase veloc-

ity of the optical beam can be reduced and phase slippage

reduced. In the conventional ICP6-8], the optical beam

The axial field component of a higher-order radially po- diffracts and the effects of nonlinear self-focusing and ion-

larized optical beam, which has an amplitude on axis ofization are neglected. For a higher-order Gaussian beam the

A. Electron energy gain in vacuum
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FIG. 13. Perturbed radius|lir| (solid line) and number of
folds N, (dashed lingplotted(a) versus¢ at fixed =z=75 cm and
(b) versusz at fixedé=—40 um. Here, Ar =(rg—rqg)/rg is deter-
mined from the time integration of the envelope equation,(B8),
while N, is given by Eq(58). Note that log is the natural logarithm
to baseg, i.e., In.

phase velocity near focusig/c=1+2/kZgy—(ny—1)/ny.
Typically ny—1<1 and is proportional to the neutral gas
densityn,o. Proper choice ofi,q can result i ;<c and the

reduction of phase slippage; however, diffraction remains al

important limitation.

The energy gain in a conventional ICA driven by a
higher-order Gaussian beam can be calculated as follow
Assuming vacuum diffraction and neglecting nonlinear and’

plasma effects, the axial electric field alongO0 in the con-
ventional ICA is given by

E,(r=0)=—E(1+2%/Z3,) *siny, (59
where E o= (2v2/kry)Eq(z=0) is the peak axial elec-
tric field, y=kz—ckt/ng—2 tan 'z/Zgy+ ¢ is the phase,
and ¢, is a constant. Equatiort59) follows from Eq.
(45 with_ Eo(£,7)=Eo(£,7=0)rs/rs(7), where rg
=ro(1+ 7%Z3%)Y? and 7=z. The energy gain of a highly
relativistic electron interacting with the optical field, given
by Eqg. (59), in a medium with linear refractive index, is
given by

W, = qf_wdz E/(r=0)=—2mqE,AkZZexp — AkZgo),
(60)

for Ak=0 and W,=0 for Ak<O, where Ak
= k(o= 1Bo)/Ng=k(ng— 1= 112y §)Ing, yo=(1- B3 *?is
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the electron relativistic mass fact@y,=v¢/c, vq is the axial
electron velocity, and an initial phase of gj=1 was as-
sumed. In obtaining Eq(60) the electron trajectory was
taken along r=0 from z=-w to 2z=w, where

7= Boct=ct(1—1/2y3). Equation(60) is valid as long as the
energy gain is less than the initial enerly,<(y,—1)mc.

For highly relativistic electrons in vacuuniB,=1 and
ny=1), Ak vanishes and the energy change is z&/p=0, in
accordance with the Lawson-Woodward theorem. In a gas,
the energy gaiW, is maximum whem\kZz,=1, i.e., when
No— 1=no/kZro+ 1/2y5=2[(N mr)?Ing+1/y3]. In this
case, the maximum energy gain in the conventional ICA is
given by

Wmax: - qEzo(ZW/e)ZRO: - qu(O)(Z\QW/e)I’So (61)

The maximum energy gain is the product of the peak axial
field E,, and (2m/e)Zgq, which is the effective acceleration
length. In terms of the optical power, E@1) can be written

as

W,,2] MeV]=2.3PY GW]. (62

A similar result can be obtained in vacuum acceleration by
limiting the interaction region to approximatelyZg about
the laser focus through the use of optical componéais.,
mirrors).

In addition to the higher-order Gaussian optical beam dis-
cussed above, a conventional ICA could be driven by a first-
order Besselaxicon) beam[7,8]. A nonideal Bessel beam
(finite transverse extentonsisting ofN rings (lobeg will
propagate a distande, .,=NZg,, WhereZgp,=kr2/2 andr,
is the width of an individual ring. Consequently, the maxi-
mum energy gain in a conventional ICA driven by a Bessel
beam is approximately a factor &/ greater than an ICA
driven by a higher-order Gaussian beam, assuming equal to-
tal power in each of the beams, as discussed in Appendix D.
The above calculation of the energy gain in the conven-
tional ICA assumes vacuum diffraction, i.e., the effects of
nonlinear self-focusing and ionization are neglected. Equa-

tion (60) only holds for powers below the nonlinear focusing

ower,P<<Pyg, and intensities below the ionization thresh-
old, I <I, . Typically, at atmospheric pressur&z~10 GW

(1 TW) for aA=1 um (10 um) laser, the single-stage energy
gain in a conventional ICA driven by a higher-order Gauss-
ian beam, Eq(62), is limited to W,~5 MeV (50 MeV).
Higher energy gains require higher laser power, and the ef-
fects of self-focusing and ionization can no longer be ne-
glected. Recent experiments at Brookhaven National Labo-
ratory [8] on the conventional ICA observed a 3.7 MeV
energy gain(31 MeV/m) of an injected electron beat@0
MeV) using a 580-MW CQ laser(A=10.6 um) in 2.2 atm

of H, gas.

C. Electron acceleration in the self-guided ICA

To enhance the single-stage energy gain, a self-guided
ICA configuration is proposed and analyzed. The self-guided
ICA operates at laser powers near the nonlinear focusing
power and intensities near the ionization intensity. The self-
guided ICA is based on the optically guided higher-order
radially polarized optical beam described in Sec. IV. The
energy gain is enhanced sin@¢ the self-guided ICA oper-
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ates at higher power and intensity which increases the acceror this case we find thaiEoz(Sqrelllcno)l’Z, Nrg
erating field, andii) the optical beam is self-guided, which =(m/2)(enyn,l,)*2 and the accelerating gradient becomes
increases the acceleration length beyond the limits of

vacuum diffraction. E,o=(enyl /2n0) " Eg=(2e/ng) (mn,l /0) V{2, (66)

1. Phase velocity which is a function of onlyn, andl, . For the equilibrium in

. . . . Fig. 11,E ;=450 MeV.
The evolution of the spot size of the higher-order radially g 20

polarized beam in the self-guided ICA is described by Eq.

(52). In addition, the evolution of phase velocity,,=c S,

of the higher-order radially polarized beam is given by Eq. In this section the attenuation length of the optical field

(22d) with p=1 together with Eqs(47) and (51), due to electron collisions and ionization losses is obtained by
solving the wave equation, Eql), in the one-dimensional
limit in the absence of the nonlinear polarization fidtd
Collisions and ionization losses enter the wave equation

, (63  through the plasma current densiy.

In the presence of ionization and electron collisions, the
quation for the plasma current density given by Ej.is
odified,

VI. IONIZATION AND COLLISIONAL LOSSES

Bon=Ng "+ 4(ngk?r2) 1

3 P 1.,
X 1_ E P_NR+ g rskpo(O'R1+2(TR2)
where the terms on the right-hand side denote, respectively,
the contributions from the linear refractive index, finite spot
size, nonlinear refractive index, and the plasma. For a self-
guided beam witlr ;=r,, the phase velocity ig,,<1 and

given by where v, is the effective electron collision frequency for
ra 2 -1 momentum transfer and is discussed in Appendix B. Since
Porn=L1= 0.5\ 7ol 50)“P/Pgr]Ng ©4  the optical frequency is large compared to the collision fre-

The Lorentz factor associated Wiy, is ypn=(1-B%) "2, ~ 9uency.wp>un, Eq.(67) can be approximated by

3dpldt=(w3/Am)E— vl (67)

thz[()\/wngrSO)ZP/PNR"_ 1_n62]7l/2_ (65) 0Jp/ﬂt2(w5/4ﬂ)(l_iVm/wO)E, (68)

The nonlinear refractive index, can have a significant con- Wheren,~w¢ is given by Eq.(9).

tribution to the phase velocity. ~Using the field representation in Eq6), the one-
The phase velocity can be controlled by introducing adimensional wave equation in thign variables becomes

small amount of background plasma. A transversely uniform ) A ) . A

background plasma will increase the phase velocity but have 2(ik+019&) 9Bl dm=Ky(1—ivm/wo)E, (69)

no effect on the focusing of the optical beam. By introducing

a background plasma, the right-hand sides of E8R)—(65)

will be modified by the addition of the terij,/2k?, where

k5o=4mg’ny/mc” andny, is the background plasma density. , A

The background plasma can be created by introducing a— E:—i(wolc)[l—ivm/wo+(ic/wo)a/ag](ng/Z),

small concentration of easily ionized gas, i.e., a gas with (70

low ionization energyJ, . In addition, the background den-

sity can be tape_re_d as a function oto in_crease the phase wherewy=ck, @p=wy(£)/w, is the normalized plasma fre-

velocity and optimize electron acceleration. quency, and ny=1 has been assumed. Substituting

E=Egexpli 0y into Eq. (70), whereEy(&,7) and 6y(¢,7) are

the real field amplitude and phase, we obtain

In the self-guided ICA, the accelerated electrons are

where cky=w,(£) is the plasma frequency. Sinde<|d/d]
and v, Jwy<1, Eq.(69) can be approximated by

2. Accelerating gradient

acted on by both an axial acceleratifig field as well as a JEY an=—T(&,7)ES, (719
transverseE, field (for r#0). For an electron near the )
axis, r?/r2<1, the field components associated with the 30 -2 n doy
higher-order radially polarized mode are given by ﬁ:_i wp(wo/C) 1+§(9_§ ' (71b)

E,=—(2v2/kr)Egsing and E,=(v2r/rg)Eycoss, where

y=ké+ 6, is the phase, as given by Edd4) and(45). For  where

E,>0 the electron will experience axial acceleration with

in the phase regions sjip-0 and transverse focusing within

the phase regions c¢<.0. Simultaneous acceleration and

transverse focusing occurs for/2<y+2mn<, where

n=0,£1,£2,... . is the effective damping rate due to collisions and ionization.
The accelerating gradientE,,=(v2/7)(AM/ngro)Eq A similar result, i.e., Eq(71), has been obtained in R¢80].

can be estimated by considering the case of a self-guided In Eq. (72), the first termvma')%P2 represents losses due to

beam and assuming that the peak intensity is near the iomollisions. The second term cdw p/agzv\ragnnolnp repre-

ization intensityl, (~10" W/cn?) and that the power is sents ionization losses due to the fact that an electron pro-

near the nonlinear focusing power, i.Bs=1, andP=Pyg.  duced by ionization in the presence of an optical field leaves

C
cl'= v, @5~ Cim5/IE— > @50 In(Ej)la¢ (72
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behind a residual energy approximately equal to the oscillaprofile of the formP (&)= Pgsir’(w¢/L) for —L<£<0 with

tion energye,s. The ionization loss term can also be derived P,> P, has been studied by numerically solving the enve-
by equating the rate of loss of electromagnetic energyope equation Eq29) [Eq. (52)], wherePy= Py (PnR) for
—cd(E§/8m)/am to the rate at which electrons are being pro-the fundamental Gaussiathigh-order radially polarized
duced —cany/d§=Wn,o multiplied by the average oscilla- peam. The front portion of the optical beam whéte Py

tion energy per electrone,s=q°Eg/2mwg, which gives iffracts up to the point wher@=Py. The point on the
CIE o/ 97— =Ww p(Nno/Np) E. This expression for the ion-  front of the optical beam wher®=P,, remains guided,
ization losses assumes that the oscillation energy is Iarg,eszrso_ A narrow region of the pulse just behind the position
compared to the electron ionization energy>U,. The \yhere p=p will focus. In the region where focusing oc-
third term on the right-hand side of E(r2) represents the ;1< yhe intensity and the ionization rate increase, resulting in
shppage_z of the opiical beam_ envelqpe in hez—ct, 7=z a sharp rise in the plasma density. The increase in plasma
frame since the group velocity;<c in the presence of the oty causes the remainder of the pulse to diffract. This

plasma. . . . . behavior is shown in Figs. 3, 4, and 12.
Three-dimensional effects can be approximated by intro- Self-guided solutions, i.egr/dn=0, can result from a

d]tjcing_ a Ifillki)ng factorf intoqu. (713. l'll'_h_e rate ogd_ecr_eas_e balancing of diffraction, nonlinear self-focusing, and plasma
IO optica _eamb power, due to collisions and Ionization yetqcysing. These solutions are characterized by beam pro-
osses, IS given Dy files with P=Py, at the front(é=0) of the beam, since the

. plasma density vanishes at the leading edge of the optical
Plon==PlLg, (73 beam. As the plasma density increases behind the front of the
where beam (¢<0), the power in the self-guided beam also in-
creases such th&>Py and dP/9é<0. For a typical self-
LdzckZ/(,,mk§+W|<§)f (74) ~ guided solution the amount of ionization is small,

np/nn0<10*4. Examples of self-guided beam profiles are

is the attenuation length. In Eq74), W is the tunneling shown in Figs. 5, 6, and 11.
ionization rate, k,=(4mq’ny/mc?)?  k,=(4mg’n,g/ Self-guided optical beams are subject to an ionization-
mc*)'2 f=g /o <1 is the filling factor, ando,, (o) is ~ modulation(IM) instability. The mechanism of the IM insta-
the transverse cross-sectional area of the generated plastility can be understood by considering a perturbation of the
(lase). As an example, fon,,=2.7x10" cm > and ny/n,,  Spot sizedr for which the power is constant. For example, if
=104 v=ve,=7X 10" sec ! as discussed in Appendix the beam spot size is increased, i&>0, the beam inten-
B. AssumingW/c=10"2 cm %, the attenuation distance is Sity and ionization rate are reduced, resulting in less plasma
Ly=10*"1cm. generation. Nonlinear self-focusing and plasma defocusing

The actual frequency of the optical beam is  are no longer balanced and the beam focuses. The focusing
=—d(k&+ 0p)/ at=ck+cabyl d€. Using Eq.(71b) we find beam overshoots its equilibrium value, i.&:<0, some dis-
tance behind the front. Whefr <0, the intensity, ionization
rate, and plasma density increase, causing the beam to defo-
cus and again overshoot its equilibrium value. This focusing
and defocusing of the beam due to a varying amount of
The third term on the right-hand side of H&5) is typically ~ ionization throughout the beam results in the IM instability.
small compared to the second term. Furthermore, sincEor a fundamental Gaussian beam, the asymptotic linear
Jw33¢<0, the frequency will be upshifted as the optical growth of the instability is given byr ~exp(1+iv3)N,],

U 7
ol wo=1= 5 JBy 06— 1= Payl 9. (75)

beam propagatd29—31. where Ng=[(Kpof 597/ Zgo) “Np(€)/No] *%, as given by Eq.
(42). The modulation amplitude increases with both the dis-
VII. DISCUSSION tance from the front of the bean|, and the propagation

distancen=z. The IM instability leads to a disruptiotero-

The propagation of both fundamental and higher-ordession) of the back of the beam which moves toward the beam
Gaussian optical beams in gases undergoing ionization hdsont at a relative velocity 4 given by Eq.(43). Good agree-
been studied analytically and numerically. The propagatiorment was obtained between numerical solutions of the full
model includes the effects of the linear and nonlinear polarenvelope equation for the IM instability in the linear regime
ization current, the linear plasma current, and plasma generand the analytical expressions for the asymptotic growth
tion via tunneling ionization. Envelope equations describingrates, as shown in Figs. 8 and 13.
the evolution of the spot size, amplitude, and phase of the The results in Sec. Ill show that self-guiding of a Gauss-
optical beam were derived by applying the source-dependeran beam requires a nearly constant axial power profile with
expansion method to the paraxial wave equation inrthe P=Pyg and a peak intensity near the ionization threshold,
¢é=z—ct/ng, and n=z coordinate system. The envelope |p=1,. Recent experiments on the propagation of st200
equation for the evolution of the spot sizgis given by Eq.  fs, A=0.8 um) laser pulses in air have been performed at the
(29 for the fundamental Gaussian beam or Esp) for the  University of Michigan[17]. In these experiments, a large
higher-order radially polarized beam. The nonlinear focusingportion of the initial laser power was observed to be confined
power for the high-order bearRyg was found to be four to a narrow spot sizé~40 um) that propagated some 20 m
times that of the fundamental Gaussian beam, i.e.in air at 1 atm. The intensity in the narrow filament was on
Pnr=4Png=2\%/(7ngn,). the order of 1& W/cn? and partial ionization was observed

The evolution of an optical pulse with an initial power along the propagation axis. The laser pulse was injected into
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air with a large spot sizé~1 cm) and a peak power several where the variables in Eq(Al) have been normalized
times the nonlinear focusing powePR=6Pys=10 GW, in terms of atomic constants. In EqAl), Qy=a¢C/a,
wherePyc=1.7 GW for air. These experimental conditions =4.1x10'® sec! is the characteristic atomic frequency,
are far from the theoretical conditions for self-guiding a a;=2mq?hc=1/137 is the fine-structure constanic is
Gaussian beam, as found in Sec. lll. Not only is the observethe characteristic atomic velocity,aq=h?/(47°g?m)
threshold for nonlinear focusing substantially higher than the=5.3x10"° cm is the Bohr radiusy,=U,/U, U, is the
calculated value, but a significant portion of the opticalionization energy in eVUJ,=13.6 eV is the ionization en-
power is observed to reside in a large halo surrounding thergy of hydrogen, ané,=|q|/a3=5.2 GV/cm is the hydro-
central filament. This large radius-1 cm) halo strongly genic electric field. The ionization rate in EGA1) vanishes
affects the propagation dynamics. The present analysis does both small and large values of the electric field, and has a
not directly apply to this experiment since the observed opmaximum atE=2.3(U,)%%€,,.

tical beam is apparently far from a Gaussian transverse pro- In the limit y<<1, the tunneling time is much less
file. than the laser periodrp<w !, and therefore Eq.(Al)

In addition, a self-guided inverse Cherenkov acceleratodescribes the instantaneous ionization rate in the laser
(ICA) has been proposed and analyzed. In this acceleratdield, For a circularly polarized laser field of the form
configuration a self-guided higher-order radially polarizedE=|E|[coskz— wt)&+sin(kz— wt)g ], where [E| is con-
optical beam propagates through a gas. Associated with theant, the ionization rate is obtained by settibg|E| in Eq.
high-order mode is an axial electric field component that iSA1), For a linearly polarized laser field of the form
maximum along the axis and can be used to accelerate @& =|E| coskz— wt)g,, the average ionization rate is ob-
injected electron beam. The phase velocity of the self-guidethined by averaging EqA1) over a laser oscillation period.
mode is less than the speed of light and can be controlled byhe average ionization rate for a linearly or radially polar-
introducing a uniform background plasma. Since the selfized laser field is found to be given by
guided mode has a power near the nonlinear focusing power,

P=Pyr, the amplitude of the axial electric field can be writ- W= 4(3/m)Y20(U,) " E,/|E|) V2
ten asE,=9.6(n,/c)" ,/n,y, wherel, is the peak optical = s o
beam intensity. Large values of the axial field amplitude, xexd —5(U,)>Ey/|E[]. (A2)

typically on the order of 0.5 GV/m, require large valuesgf o .
and|,. Sincen, is proportional to the neutral gas density When »>1, ionization occurs by a multiphoton process.
N0, the accelerating field can be increased by increasigg In this caseN, phqton_s are required to increase th(_e e!ectron
To avoid excessive amounts of plasma and defocusing, thg"€ray by the ionization enerdy, . For an electron ionized
peak intensity should be near the ionization thresholdfrom the grour_ld state to the continuum, the ionization rate
l,=1,. In the self-guided mode the propagation distance i°a" be approximated by

limited by the IM instability. Since the number effolds of a2 _oN

the IM instability scales abl,~n /3, where the plasma den- W=AwNg (2", (A3)
sity n,, is a highly nonlinear function df,, the peak intensity

must be kept sufficiently low where A is a constant on the order of unity amv, is the

smallest whole number for whidNghw/27m=U,, i.e.,Ngy is

the number of photons required for ionization.
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fice of Naval Research and the Department of Energy. _As the electrons in the weakly ionized gas or plasma os-
cillate under the influence of the optical field, they collide

with the background electrons, ions, and neutral atoms. The

electron collision frequency for momentum transfer is
Photoionization can take place in either the tunneling or

multiphoton regime24—28. These regimes are character- Vm= VeiT Ven, (BY)

ized by the Keldysh parameteg=(U,/e,9Y? whereU, is . _ .

the ionization energy ane,.=im(g|El/mw)? is the electron Wherew; () is the electron-iorelectron-neutraicollision

oscillation energy. The Keldysh parameter can also be writfrequency. The electron-electron collision frequency does

ten asy,= w7, Wheres is the tunneling time, i.e., the tran- NOt contribute tov,, because the momentum of any pair of

sit time of the electron through the atomic Coulomb barrier.colliding electrons and associated currefihasses and

The low-field limit (y>1) corresponds to the multiphoton charges are identicedre conserved. Electrons colliding w'|th

ionization regime, whereas the high-field linit,<1) corre- ele(_:tr_ons will therefore be accelerated on average qs_lf the

sponds to the tunneling ionization regime. collision frequency were zero. Electron-electron collisions,
In the high-field limit, %<1, the ionization rate can be however, lead to thermalization of the electrons.

determined by a tunneling calculation for an atom in the The electron-ion collision frequency is given p46]

presence of a static electric field of amplituBeThe tunnel-

ing ionization rate, i.e., the probabilitgper unit time of Vei=4X 107 6InA ¢ Z%€, 3% [sect], (B2

ionization, is given byf25]

APPENDIX A: PHOTOIONIZATION RATES

_ _ where I\, is the Coulomb logarithm (typically,
W=40,(U,)YAEL/E)exd —2(U))%EL/E], (A1)  InA,=10-20, Z is the ion charge state; is the ion density
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in units of cm 3 (n,Z is the electron plasma densitgnde,;  energy due to collisions with atomic or plasma electrons.

is the electron oscillation energy in units of eV. The rate of change of energy of the accelerated electrons
The electron-neutral collision frequency is given[B3— is given by
35]
dWe/dz= G4~ Grag— Geals (C1
Ven= <Uenn0'er(Ue)>y (B3)

whereW,= (y—1)m¢® is the electron energy,.=qE, de-
whereo,, is the electron-neutral cross sectiop,is the elec- notes the accelerating gradient a6,y (G,) denotes the
tron velocity, and the brackets) denote an averaging over radiative (collisiona) energy loss. The rate of electron en-
the electron velocity distribution. The electron-neutral crossrgy loss due to bremsstrahlung[#7,49
section is generally a complicated function of the electron
velocity. At low electron velocities the cross section is hard- Grag™=—We/Ls, (C2)
sphere-like and independent of velocity,,=o0,, where where

15 . !
09~1071° cn? is the hard-sphere cross section. As the elec-
tron velocity approaches the characteristic atomic electron
velocity, polarization scattering is the dominant process and

oo 1lv,. The characteri'stic atpmic electron velocity is i the radiation damping length. In E@€3), n, is the density
vo= a;C, Wherea;=1/137 is the fine-structure constant and ¢ 1 clei Z, is the atomic numberg;=27g2/hc=1/137

the characteristic electron energy 3/2=13.6 eV. At sub- is the fine-structure constant,=q%/mc=2.8x10 1 cm
stantially higher electron velocities the scattering becomeg; ihe classical electron radiLfs ardis a function of the
Coulomb-like ando,~1/v ¢. The electron-neutral collision maximum and minimum impac’t parameters. The choice of
frequency can therefore be estimated togg=n,00v0s Or A gepends on various factors, such as the electron energy
Vos<o nd vey=n,aqu fOr vos>vo, Wherev s is the elec-  ran46 and electronic screening effects. For highly relativistic

tron oscillation velocity. o ____energies,W,>W,, where complete screening occurs,
Typically, the electron-neutral collisions is the dommant:2332;1/3. At lower energies\W,<W.

collisional process in weakly ionized gases. As an example, ¢ Where screening
ISI In Weaxly 1oniz : X an be neglectedA=y. The critical ener definin
consider the case where the neutral density js=3x10° g A YWe g

3 et =2 these regimes i%V,=1927 ; ®*mc® and typically IM\~5—
cm ° and Ege eIectron2 oscillation veIouty i80s=AdEo/ 10, In hydrogenZ,=1) at 1 atm(n,=5.4x10° cm 3 the
Mw=5X10""c (e,,=mv f2=6.3 eV). For a linearly polar-

: radiation damping length is,=12 km, where we have taken
ized laser of wavelength=1 um, these parameters corre- | 4 —g

spond to a peak intensity df=3.5x10*> W/cn? and peak For a highly relativistic electron, the energy loss due to

electricilgield amplitude of E;=1.6x10° Vicm. Taking  cojiisions with atomic or plasma electrons is given by the
09=10"15 cn?, Eq. (B3) yields an electron-neutral collision Bethe formula[47,49

frequency ofv,=7Xx10'? sec’}, i.e., an electron-neutral col-
lision time of 7= vg~140 fsec. _ o _ Geo=47Ner 2McInB, (C4)
If, for the same example, the gas is weakly ionized with
n,=10 3n,,=3X 10" cm 2 and the electron oscillation en- wheren,=n,Z, is the total electron density arl is the
ergy ise,s=6.3 eV, the electron-ion collision frequency from ratio of the maximum to minimum impact parameter. The
Eq. (B2) for singly ionized gagZ=1) is v,=8%x10" sec?, ratio of radiative energy loss, E¢C2), to collisional energy
i.e., an electron-ion collision time of,=r,'=13 psec. For loss(C4) is
these parameters the electron-neutral collision frequency is
much greater than the electron-ion collision frequency, G IG _7_251 m
Ver™ Vei- rad’=col™ 323 InB
As another example consider the case of a plasma in
which all the atoms are singly ionized, i.€51 andn;=n Q For an electron traveling through hydrogé€n,=1) gas or
is the initial neutral density. For a laser intensitylefloq plasma the radiative energy loss term is larger than the col-
W/en? and wavelengthh=1 um, the oscillation energy is lision loss for energies above 700 MeV.

Lp= (¥ an,ZiriinA) 2, (C3)

=1.4x10 *W[MeV]. (C5

€,=0.2 MeV. For a neutral density of,,=10"° cm3, the In addition, accelerated electrons will undergo small-

electron-ion collision frequency is,=4x10° sec! and  angle scattering off nuclei, which leads to an increase in the

Tei= Ve - =250 nsec. electron beam emittance. The normalized emittance of the
electron beam is given bg,= yR(#A)2 whereR is the rms

APPENDIX C: RADIATIVE AND COLLISIONAL LOSSES beam radius and¢”)' is the rms divergence angle of the

ON ACCELERATED ELECTRONS beam. The rate of growth in the mean square angle is given
b
In an inverse Cherenkov or a laser-plasma accelerator, they
accelerated electrons interact with both the background elec- d(6?)/dz=16mZ,(Z5+ 1)Nar2y 2nA, (C6)

trons and nuclei. This interaction results in a loss of electron

beam energy as well as an increase in beam emittance. Aghd the normalized emittance, increases according to
celerated electrons traveling through neutral gas or plasmi8,49

are scattered by the atomic nuclei and emit bremsstrahlung. 4e2

The emission of bremsstrahlung represents a loss in electron H€n _ V2R2d(6%)/dz=R?/L,, (C7)
energy. In addition, a highly relativistic electron will lose dz
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wherelL 5 1=16wZ,(Z,+1)n,r 2InA. For hydrogen at 1 atm which can be less thamfor n,>1+ (k, c/w)?2, where it is

(Z,=1,n,=5.4x10" cm3, and IM=5), L=470 cm. assumed thatk({ ¢/ w)?<1.
The ideal Bessel beam consists of an infinite number
APPENDIX D: INVERSE CHERENKOV ACCELERATION of rings (lobe9 extending radially to infinity and hav-
WITH BESSEL (AXICON ) BEAMS ing a radial width ofro=/k, . Since the asymptotic

» . i . _form (k r>1) for the Bessel function isJ;(k,r)

In addition to the higher-order Gaussian optical beam d'5'~(2/wkir)1’2cos(kir —3m/4), the power in each ring is es-
cussed in Sec. IV, an inverse Cherenkov accelerd@h)  sentially the same. If the power in each ring is denoted by
could be driven by a first-order Bessel optical beB8].  p_ then the total power contained in a nonideal Bessel beam
Both optical bear_ns are axially symmetric, raghally pqlanzed,of a finite radial extenR,,, is P=NP,, whereN=R../r,
and have an axial field peaked along thexis. Nonideal s the number of rings. In principle, the number of rings can
Besse! beamglnlte in transverse exteht'an be formed us- pe largeN>1. A nonideal Bessel beam consistinghofings
ing axicon mirrors[38,39. Both the nonideal Bessel beam (jffracts away sequentially starting with the outermost ring
and the higher-order Gaussian beam diffract, limiting the acf51). The outermost ring diffracts after a distancerr 2\,
celeration distance. For a fixed total optical beam POWerihe next ring diffracts after a distance—ﬂé/)\, and so on until
however, the energy gain in an ICA can be substantiallhe jnnermost ring diffracts away after a distaned r Z/x.

higher when driven by a Bessel optical beam as opposed t013ence, the maximum propagation distance of a nonideal
higher-order Gaussian optical beam. Nonlinear self-focusinggesse| beam consisting f rings of widthr is

in the gas and the effects of ionization are neglected in the

following. L max=NZgo, (D5)
The wave equation in the paraxial approximation for a o , i )

radially polarized, axially symmetric fiell, propagating in Where Zgo=mT /A is the Rayleigh length associated with

a medium with linear refractive index, is the individual rings, assumingy=1. _
The maximum energy gain in the ICA driven by a non-

- ideal Bessel beam is
E,=0, (DJ)

Wiax= — dEzoL maxs (D6)

whereE, =E,(r,z,t)e'®* “Y/2+c.c.,E, is slowly varying in

z andt compared withk ! and o™}, v=c/ng, k=wlv,
w=21c/\ is the frequency, anil is the vacuum wavelength.
An exact solution to Eq(D1) which maintains a constant
transverse profile is

assuming that the axial phase velocity is matched to the elec-
tron velocity, whereE = (k, /k)E, is the axial accelerating
field along thez axis given by Eq.[D3). The radial field
amplitude in terms of the power within a ring is

— 1/2
E,=EJy(k, r)exfdi(k—Ak)z—wt]+c.c., (D2) Eo=(2m/ro)(Po/cno) ™ 7

Using Egs.(D5) and (D7), the maximum energy gain from
Where Jl iS the BeSSG| funCtion Of the fiI’St klnd Of Order Eq (D6)' in terms of the total Optica' power, is
unity, Ak=k?/2k, k, is the transverse wave number, &gl W= CoNY2PY2 where Cy= — q?/(cny) Y2 In practical
is the radial field amplitude. The ideal Bessel field in Eq.ypits,
(D2) (infinite in transverse extents nondiffracting[50] in
the sense that the transverse profile remains constant. The Wia MeV) = LNV P(GW) ]2 (D8)
power, however, contained within an ideal Bessel beam i
infinite sincefdr J%(k, r)r=o when integrated from=0 to
r =, Associated with the radially polarized field in Ef2)
is the axial field

?or an ICA driven by a nonideal Bessel beam. If a higher-
order Gaussian optical beam of the same total pdverere
used instead of the nonideal Bessel beam, the maximum en-
ergy gain, Eq.(62), would beW,,.(MeV)=2.3P(GW)]"2

ik, Eq The energy gain in the ICA is-N*? times greater for a

E.=1 Ak Jo(kinexdi(k—Akjz—wt]+c.c. (D3)  nonideal Bessel beam as compared to a higher-order Gauss-
ian beam of the same total power.
The axial accelerating field in E¢D3) is peaked along the The ratio of the accelerating gradient for the' nonideal
axis and has axial phase velocity,=w/(k— Ak), Bessel beant;,, to that of the higher-order Gaussian beam,
E,c. is E,g/E,o~ N~ Y3(r/ro)? wherer, is the spot size
vph:v[1+(klv/w)2/2], (D4) for the higher-order Gaussian beam.
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