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The propagation of intense optical beams in gases undergoing ionization is analyzed. Two types of optical
beam modes are considered: a fundamental Gaussian and a higher-order radially polarized beam. The propa-
gation dynamics include the effects of diffraction, nonlinear self-focusing, and ionization. For sufficiently
intense optical beams the neutral gas undergoes ionization, generating a plasma which tends to defocus the
beam. An envelope equation governing the spot size for both types of beams is derived, analyzed, and solved
numerically. Self-guided solutions, which result from a balancing of diffraction, plasma defocusing, and
nonlinear self-focusing, are analyzed for both types of beams. These equilibrium solutions are found to be
unstable due to an ionization-modulation instability for which asymptotic growth rates are obtained. A self-
guided inverse Cherenkov accelerator based on the higher-order radially polarized mode is proposed and
analyzed. In addition, the depletion of the optical field due to collision and ionization losses is analyzed and the
attenuation length is derived.@S1063-651X~96!06810-9#

PACS number~s!: 41.75.Cn, 42.25.Bs, 52.40.Nk

I. INTRODUCTION

The propagation of optical pulses in gases is relevant to a
wide range of applications, such as ultrabroadband optical
generators@1,2#, optical harmonic generators@3,4#, x-ray la-
sers@5#, and laser-driven accelerators@6–12#. For these ap-
plications it is necessary that the optical pulse be intense and
propagate extended distances. In the absence of an optical
guiding mechanism the propagation distance is limited to
approximately a Rayleigh~diffraction! length. At sufficiently
high power and intensity the propagation distance is strongly
affected by nonlinear self-focusing and ionization~plasma
generation!.

An optical beam propagating in a neutral gas is affected
by diffraction, refraction, nonlinear self-focusing, ionization,
and plasma defocusing. Self-focusing, for example, is due to
the intensity-dependent part of the refractive index and oc-
curs when the optical power is above the nonlinear focusing
power@13–16#. As the beam focuses, the increased intensity
results in ionization and plasma formation which tends to
defocus the optical beam@9,17–21#, see Fig. 1. A balance
between the nonlinear focusing and plasma defocusing can
result in a self-guided optical beam.

In this paper the propagation, self-guiding, and stability
of two types of optical beams are analyzed. The two beams
considered are a fundamental Gaussian beam of the form
E0exp(2r 2/r s

21 ic)êx/21c.c. and a higher-order radially
polarized beam of the formE0(&r /r s)exp(2r 2/r s

2

1 ic)êr /21c.c., whereE0 is the electric field amplitude,r s is
the spot size, andc is the phase. The results of this paper
include ~1! envelope equations describing the evolution of
the optical beam spot size, which are derived by using the
source-dependent expansion method@22,23#, ~2! the critical
power for nonlinear self-focusing of the higher-order mode,
which is four times greater than that of the fundamental
Gaussian,~3! self-guided beam solutions, which result from
a balance of nonlinear self-focusing and plasma defocusing,
~4! the analysis of an ionization-modulation instability,
which disrupts self-guided beams,~5! the evolution of the
optical beam phase velocity, which is less than the speed of

light for a self-guided beam, and~6! a configuration of an
inverse Cherenkov accelerator, which is based on a self-
guided, radially polarized, higher-order Gaussian beam.

One important application of intense optical pulses propa-
gating in gases is laser-driven electron accelerators, which
are referred to as a class of inverse Cherenkov accelerators
~ICA’s! @6–9#. In the conventional ICA@6–8#, the optical
beam driver can consist of either a radially polarized~i!
higher-order Gaussian mode or~ii ! a nonideal first-order
Bessel mode. Associated with these modes is an accelerating
axial field peaked along the propagation direction~z axis!. In
general, the electron acceleration distance is limited by either
the diffraction distance or the electron slippage distance.
Since the optical beam in the ICA propagates in gas, the
phase velocity can be less than the speed of light and con-
trolled by varying the gas density. Electron slippage is mini-
mized by matching the electron velocity to the phase velocity
of the accelerating field. The acceleration distance, however,
is still limited by the diffraction length. For a higher-order

FIG. 1. Schematic of a fundamental Gaussian optical beam
propagating in a gas undergoing ionization. WhenP.PNG , the
beam self-focuses and the intensity increases, causing ionization.
Plasma is generated along the beam axis, tending to defocus the
beam. Self-guiding results by balancing nonlinear self-focusing
with plasma defocusing.
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Gaussian mode the diffraction length is a Rayleigh length
which is precisely the slippage distance in vacuum. In this
case, as far as energy gain is concerned, there is essentially
no advantage in introducing a gas since the effective accel-
eration length is limited to approximately a Rayleigh length
as discussed in Sec. V. For a fixed total optical beam power,
however, the energy gain in the conventional ICA can be
significantly increased by using a nonideal Bessel beam, as
discussed in Appendix D. To further enhance the energy
gain, the ICA requires self-guiding of the optical driver@9#.
Previous studies@6–8# of the ICA also neglect the intensity-
dependent effects in the refractive index, i.e., nonlinear self-
focusing, as well as ionization, i.e., plasma effects. We pro-
pose and analyze a self-guided ICA configuration that
operates at laser powers near the nonlinear self-focusing
power and at intensities high enough to slightly ionize the
gas.

Another possible application of intense optical beams in
gases is the generation of ultrabroadband@1,2# or harmonic
radiation@3,4#. A short-pulse optical beam propagating in a
nonlinear medium will, among other things, undergo self-
phase modulation@13–16# which results in frequency broad-
ening. Since the degree of frequency broadening increases
with both propagation distance and optical intensity, the self-
guiding of a short optical beam may be well suited for ultra-
broadband radiation generation. A self-guided Gaussian
beam may have application to harmonic generation@3,4#,
since the propagation medium consists mainly of a neutral
gas and a very narrow plasma column along the axis. The
harmonics could be guided by the driving optical beam and
phase matching may be achieved by introducing a back-
ground plasma.

This paper is organized as follows. The propagation
model is presented in Sec. II, and includes discussions of the
wave equation in a gas undergoing ionization, the linear and
nonlinear polarization, plasma generation, the reduced wave
equation, photoionization, the solution of the wave equation
using the source-dependent expansion method, and the re-
sulting equations describing the evolution of the envelope,
amplitude, and phase of the optical beam. The propagation of
a fundamental Gaussian beam is examined analytically and
numerically in Sec. III, including the envelope equation, self-
guided solutions, and the stability, i.e., the ionization-
modulation instability. Numerical results on the propagation
of the fundamental Gaussian beam are also presented in Sec.
III. The propagation of a higher-order radially polarized
beam is analyzed in Sec. IV, including the envelope equa-
tion, self-guided solutions, and the stability. Numerical re-
sults on the propagation of the higher-order radially polar-
ized beam are also presented in Sec. IV. The analysis of a
self-guided inverse Cherenkov accelerator is presented in
Sec. V. Attenuation of the optical beam due to electron col-
lisions and ionization losses is analyzed in Sec. VI. Section
VII contains a discussion and summary. This paper also in-
cludes four Appendices discussing~A! photoionization rates,
~B! electron collision frequencies,~C! radiative and collision
losses on accelerated electrons, and~D! inverse Cherenkov
acceleration with Bessel~axicon! beams.

II. PROPAGATION MODEL

The propagation of intense optical beams in gases is af-
fected by a combination of diffraction, refraction, and ion-

ization. The refractive index of a gas generally has an
intensity-dependent part@13–16#, n5n01n2I , wheren0 is
the linear refractive index,n2 is the nonlinear refractive in-
dex, andI is the intensity of the optical beam. Generally,n2
is positive and results in self-focusing of the optical beam if
the power is greater than the nonlinear focusing power. The
nonlinear focusing~critical! power for a fundamental Gauss-
ian beam@13–16# is PNG5l2/(2pn0n2), where l is the
vacuum wavelength. As the beam self-focuses the peak in-
tensity increases, resulting in ionization and the generation of
a plasma. In the region of the plasma the refractive index is
n(r )5n01n2I2v p

2(r )/2v2, wherevp5(4pq2np/m)
1/2 is

the plasma frequency,np is the plasma density, and
v52pc/l is the frequency of the optical beam. The local
decrease in the refractive index due to the plasma tends to
defocus the optical beam@9,17–21#. If diffraction, self-
focusing due ton2, and defocusing due to plasma generation
are properly balanced, a self-guided optical beam can be
formed and propagated over extended distances, i.e., many
vacuum Rayleigh lengths@9,20,21#.

Our propagation model includes a number of assump-
tions. The short-pulse optical beam is assumed to be ad-
equately described by a single source-dependent Laguerre-
Gaussian mode, which is a superposition of many vacuum
Laguerre-Gaussian modes. The model is not valid when the
optical power greatly exceeds the nonlinear focusing power,
since the beam is expected to filament into higher-order
modes. Ionization is considered in the high field limit@24–
28# ~Keldysh parameter less than unity! and is modeled by
the tunneling ionization rate; see Appendix A. The attenua-
tion of the optical beam due to ionization and collisional
losses is estimated and found to be small enough to neglect.
The nonlinear polarization field of the gas is included to third
order in the optical field whereas the plasma current is in-
cluded to first order.

A. Wave equation in gas undergoing ionization

The dynamics of optical beams propagating in a gas un-
dergoing ionization is governed by the wave equation,

~¹22c22]2/]t2!E54pc22~]2P/]t21]Jp /]t !, ~1!

where E is the electric field of the optical beam,
¹25¹'

21]2/]z2, z is the axial propagation direction,P is the
polarization field associated with the gas, andJp is the
plasma current density associated with the ionized gas. In
obtaining Eq.~1! we have neglected a small source term
proportional to the gradient of the plasma density.

1. Linear and nonlinear polarization

The polarization field can arise from a number of pro-
cesses; these include electronic polarization, molecular ori-
entation, electrostriction, saturated absorption, and thermal
effects @13–16#. In the present paper we will be concerned
with changing the refractive index on a fast time scale, typi-
cally less than 10212 sec. On this time scale the electronic
polarization is the dominant contribution to the nonlinear
refractive index and is due to the optical field modifying the
atomic electronic distribution.

In the simple Lorentz model@13–16# of the atom the elec-
trons are assumed to consist of a charge distribution oscillat-
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ing in an effective potential. Nonlinearities in the effective
potential result in a field-dependent refractive index for the
medium. In the following description of the polarization field
only isotropic matter having ensemble-averaged inversion
symmetry, i.e., centrosymmetric ensemble-averaged effec-
tive potentials, will be considered. This includes all liquids,
gases, amorphous solids, as well as many crystals.

The electric polarization field is defined byP5qnnxd ,
whereq is the electronic charge,nn is the density of atoms or
molecules andxd is the displacement of the electronic distri-
bution from equilibrium due to the optical field. The polar-
ization field in the classical single resonant frequency model
is given by@13–16#

]2P/]t21VR
2P2V1

2~P•P/Pn
2!P12G]P/]t5~q2nn /m!E,

~2!

whereVR is the characteristic resonant frequency of the elec-
tronic distribution,V1 is a constant associated with the non-
linear, i.e., nonparabolic, nature of the effective potential,Pn
is a normalizing polarization field amplitude, andG is a
damping term. Equation~2! is an accurate description for the
polarization field when the optical frequency is far from the
resonant frequencies. Typically, the resonant frequencyVR
is in the ultraviolet regime,VR@v. The polarization field
given by Eq. ~2! contains dispersion, damping, and third-
order nonlinear effects.

In the limit where~i! dispersive effects are weak~far from
resonance,VR@v!, ~ii ! damping effects can be neglected
~G!v!, and ~iii ! the nonlinear term in Eq.~2! is small
(V 1

2P2/Pn
2!V R

2), the polarization field can be approximated
by

P5x~1!E1x~3!^E–E&E5~1/4p!~n0
22112n0n2I !E, ~3!

where x~1!5q2nn/(mV R
2)!1 is the constant linear suscep-

tibility, x~3!5(V1/VR)
2(x (1))3/Pn

2!x (1)/^E–E& is the con-
stant third-order susceptibility of the neutral gas, the brack-
ets ^ & denote a time average,n05~114px~1!!1/2 is the lin-
ear refractive index of the neutral gas,n25(8p2/n 0

2c)x (3) is
the nonlinear component of the refractive index,
I5(c/4p)n0^E–E& is the intensity, andun2I u!n0 has been
assumed.

2. Plasma generation

The ionization of the background gas by the optical beam
results in the generation of plasma electrons. The plasma
current density is given byJp5qnpvp , wherenp andvp are
the plasma density and fluid velocity respectively. To lowest
order invp , the continuity and fluid velocity equations are

]np /]t1¹•~npvp!5S, ~4a!

mnp]vp /]t5qnpE2mvpS, ~4b!

whereS is the plasma source term proportional to the ion-
ization rate,E is the optical electric field, thevp3B force
and thermal effects are neglected in Eq.~4b!, and the elec-
trons are assumed to be created with zero velocity when
ionized. Combining Eqs.~4a! and~4b!, and keeping terms to
lowest order invp , the plasma current density is given by
@29–31#

]Jp /]t5~vp
2/4p!E, ~5!

wherevp5(4pq2np/m)
1/2 is the electron plasma frequency.

The evolution of the plasma density depends on the photo-
ionization rate and is discussed later. In obtaining Eq.~5!,
nonlinear and collisional effects~see Appendix B! have been
neglected. Ionization and collisional losses are analyzed in
Sec. VI and found to be small. Nonlinear plasma effects are
small compared to the nonlinear neutral gas effects, which
are represented by the termn2I in Eq. ~3!. The magnitude of
nonlinear plasma effects compared to nonlinear neutral gas
effects is approximately given by the ratio of the critical
power for relativistic focusing@11,32# to the nonlinear focus-
ing power and is found to be negligibly small.

3. Reduced wave equation

The propagation of the optical beam is described by Eqs.
~1!, ~3!, and~5! together with the tunneling ionization model
discussed in Sec. II B. To proceed with the analysis, it is
convenient to transform from the (z,t) coordinates to the
~j,h! coordinates, wherej5z2vt and h5z. For a beam
propagating in the positivez direction with group velocityv,
j is the distance behind the front~j50! of the optical beam
andh is the propagation distance. In these new coordinates,
the optical field has the form

E5Ê exp~ ikj!/21c.c., ~6!

whereÊ(r ,u,j,h) is the complex amplitude and is a slowly
varying function ofj andh, k5v/v, v52pc/l is the opti-
cal frequency,l is the vacuum wavelength, and c.c. denotes
the complex conjugate. In the~j,h! coordinates, Eq.~1! can
be written in the paraxial approximation as

~¹'
212ik]/]h!Ê5K2Ê, ~7!

whereK2 is given by

K25kp
222k2~n2 /n0!I . ~8!

In obtaining Eq.~7! we used the transformations]/]z5]/]j
1]/]h and]/]t52v]/]j. The linear group velocity as well
as the linear phase velocity isv5v/k5c/n0 . The paraxial
approximation implies thatK2 is small compared tok2. In
the absence of the nonlinear index~n250!, the paraxial ap-
proximation requires that the plasma density be small com-
pared to the critical density,v p

2,v2.

B. Photoionization model

Ionization can occur by electron collisional processes
@33–35# or by the intense optical fields directly@24–28#, i.e.,
photoionization. In the absence of collisions or for laser
pulses short compared to a collision time, photoionization is
the dominant process. Photoionization can take place by ei-
ther tunneling or multiphoton processes, see Appendix A.
These regimes are characterized by the Keldysh parameter
gk5~UI /eos!

1/2, whereUI is the ionization energy andeos
5(1/2)m(quÊu/mv)2 is the electron oscillation energy. The
low field limit ~gk.1! corresponds to the multiphoton ion-
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ization regime, whereas the high field limit~gk,1! corre-
sponds to the tunneling ionization regime.

The evolution of plasma density in Eq.~4a! is given by

]np /]t5~nn02np!W~ uÊu!, ~9!

wherenn0 is the initial neutral density,W(uÊu) is the ioniza-
tion rate, and the convection term“•(npvp) is neglected. For
a linearly polarized optical field, the ionization rate in the
tunneling limit ~gk,1! is given by@24–28#

W~ uÊu!54~3/p!1/2V0~ŨI !
7/4~EH /uÊu!1/2

3exp@2 2
3 ~ŨI !

3/2EH /uÊu#, ~10!

where V05a fc/a054.131016 sec21 is the characteristic
atomic frequency,af51/137 is the fine structure constant,
a055.331029 cm is the Bohr radius,ŨI5UI /UH , UI is the
ionization energy in eV,UH513.6 eV is the ionization en-

ergy of hydrogen,uÊu is the magnitude of the optical field,
andEH5uqu/a 0

255.2 GV/cm is the atomic field of hydro-
gen. The intensity of a linearly polarized Gaussian optical
beam in vacuum, with a peak field equal toEH , is
I5(c/8p)EH

2 .3.631016 W/cm2. Equation~9! assumes that
the gas is at most singly ionized. The solution of Eq.~9!
yields

kp
25kp0

2 F12expS 2~n0 /c!E
j

0

W~ uÊu!dj8D G , ~11!

where we have set]/]t52(c/n0)]/]j in Eq. ~9!, j is de-
fined in the regionj<0, j50 corresponds to the front of the
beam, andckp05vp05(4pq2nn0/m)

1/2 is the plasma fre-
quency associated with the initial neutral gas density. For
low levels of ionization, i.e.,np!nn0, Eq. ~11! reduces to

kp
25kp0

2 ~n0 /c!E
j

0

W~ uÊu!dj8. ~12!

The weakly ionized limit is sufficient to describe self-
guiding of optical beams, since it will be shown that in the
highly ionized limitnp.nn0 there is no matched beam solu-
tion. The expression in Eq.~8! can be written as

K25kp0
2 ~n0 /c!E

j

0

W~ uÊu!dj822k2~n2 /n0!I . ~13!

C. Source-dependent expansion method

The following analysis is based on the source-dependent
expansion~SDE! method developed in Ref.@22#. The SDE is
a powerful method for solving the paraxial wave equation for
optical beams propagating in nonlinear media. In the SDE
method, the optical beam is expanded in a complete set of
source-dependent orthogonal Laguerre-Gaussian functions.
These functions are implicitly functions of the propagation
distance,h, through the optical beam parameters, i.e., spot
size, wavefront curvature, amplitude, and phase. The optical
beam can be described by four coupled first-order differential
equations for the beam parameters in the variableh. In gen-

eral,Ê can be written in terms of a complete set of Laguerre-
Gaussian functions, i.e., source-dependent modes,

Ê5(
m,p

@am,pcos~pu!ê'1bm,psin~pu!ê'8 #Dm
p ~x!, ~14!

wherem,p50,1,2, . . . , am,p~h! and bm,p~h! are complex
coefficients and are functions ofh, ê' and ê'8 denote
transverse unit vectors defining the polarization,
D m

p (x)5xp/2L m
p (x)exp@2~12ia!x/2#, x52r 2/r s

2, r s~h! is
real and denotes the spot size,a~h!5kr s

2/(2Rc) is real,Rc is
the radius of curvature associated with the wave front, and
L m
p is an associated Laguerre polynomial, e.g.,L 0

p~x!51 and
L 1
p(x)511p2x. The representation in Eq.~14! forms a

complete set and can be used to represent an arbitrary optical
beam.

To proceed with the SDE analysis we substitute Eq.~14!
into the paraxial wave equation, Eq.~7!, carry out the indi-
cated differential operations, perform the operation

E
0

2p

„cos~p8u!, sin~p8u!…du/2p

on both sides of the equation, multiply both sides by
@D m

p ~x!#* , and finally integrate overx from 0 to `. The
algebraic details can be found in Ref.@22#. The resulting
equation foram,p is

S ]

]h
1Am,pDam,p2 imBam21,p2 i ~m1p11!B* am11,p

52 iFm,p , ~15!

where

Am,p5 ṙ s /r s1 i ~2m1p11!

3@~11a2!/~krs
2!2a ṙ s /r s1ȧ/2#, ~16a!

B~h!52a ṙ s /r s2~12a2!/~krs
2!1ȧ/2

2 i @ ṙ s /r s22a/~krs
2!#, ~16b!

Fm,p5
1

2pk

m!

~m1p!! E0
2p

duE
0

`

dx K2~x,u,h!

3Ê~x,u,h!•ê'@Dm
p ~x!#* cos~pu!/~11dp,0!, ~16c!

dp,p8 is the Kronecker delta, the dot denotes the operator
]/]h, and the asterisk denotes the complex conjugate. The
equation forbm,p is identical to the one foram,p except in the
expression forFm,p, cos(pu)/(11dp,0) is replaced with
sin(pu). In obtaining Eq.~15! a number of identities associ-
ated with Laguerre-Gaussian functions were used, including
the orthogonality relation

E
0

`

Dm
p ~x!~Dn

p~x!!* dx5
~n1p!!

n!
dm,n .

Equation~15!, together with the definitions in Eqs.~16!,
describes the evolution of the various source-dependent
Laguere-Guassian modes. However, Eq.~15! is underdeter-
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mined since there are more unknowns than equations. An
additional constraint, i.e., a specification of the function
B~h!, is necessary to solve Eq.~15!. The individual source-
dependent modes in Eq.~14! are functions of the spot size,
r s~h!, wavefront radius of curvature,Rc5kr s

2/(2a), ampli-
tude and phase,am,p . SinceB~h! is also a function ofr s and
a, the evolution of the source-dependent mode is governed
by the particular choice for the functionB. For example, if
we chooseB~h!50, we recover the conventional vacuum
modes. In general, expansion in terms of the vacuum modes
~B50! requires many modes to accurately describe a guided
optical beam over distances of many Rayleigh lengths. A
more appropriate choice forB~h! will depend on the particu-
lar problem under consideration and will be discussed later.

The dynamics of~i! a fundamental Gaussian beam and~ii !
a higher-order radially polarized axially symmetric beam
will be considered. The fundamental Gaussian beam is de-
scribed by the mode numbersm50 andp50, whereas the
higher-order radially polarized axially symmetric beam is de-
scribed by the mode numbersm50 andp51. The analysis
can be significantly simplified by settingm50.

In the following, it is assumed that the dynamics of the
optical beam can be adequately described by the behavior of
a single source-dependent mode, e.g., them50, p50 mode
for the fundamental Gaussian and them50, p51 mode for
the higher-order beam. In the SDE method, it is assumed that
the coupling to, as well as the amplitude of, the higher-order
source-dependent modes are small. In fact, an optimal choice
for the functionB~h! can be determined from Eq.~15! by
requiring that the higher-order source-dependent modes, i.e.,
m>1, are small. Since, for the cases under consideration,
ua0,pu@uam,pu for m>1, it is clear from Eq.~15! ~with m51!
that the optimal choice forB is

B5F1,p /a0,p , ~17!

whereB andF1,p are given by Eqs.~16b! and~16c!, respec-
tively. With this choice forB, Eq. ~15! ~with m50! yields

S ]

]h
1A0,pDa0,p52 iF 0,p , ~18!

whereA0,p andF0,p are given by Eqs.~16!. Equations~17!
and ~18! completely determine the evolution of the source-
dependent optical beam mode. Substituting Eqs.~16a! and
~16b! into Eqs.~17! and settinga0,p5E0exp~iu0!, whereE0
andu0 are real and denote the field amplitude and phase, we
obtain @22#

u̇01~11p!@~11a2!/~krs
2!2a ṙ s /r s1ȧ/2#52G, ~19a!

a ṙ s /r s1~12a2!/~krs
2!2ȧ/252H, ~19b!

ṙ s /r s22a/~krs
2!50, ~19c!

Ė0 /E01 ṙ s /r s50, ~19d!

whereG5F0,p/a0,p and H5F1,p/a0,p are real. The source
functionsG andH are given by

G
HJ 5

1

2k E0
`

dx K2~x,h!xpexp~2x!H 1
12x/~11p!J ,

~20!

andK2 is given by Eq.~13!.

D. Envelope, amplitude, and phase of optical beam

Equations~19b! and ~19c! can be combined to form an
envelope equation for the optical beam

]2r s /]h224~11krs
2H !/~k2r s

3!50. ~21!

In addition, the amplitude, phase, curvature, and axial phase
velocity vph of the optical beam are given, respectively, by

]~E0r s!/]h50, ~22a!

u̇052~11p!@2/~krs
2!1H#2G, ~22b!

a5krs
2/~2Rc!5kṙsr s/2, ~22c!

and

vph.~12 u̇0 /k!c/n0 , ~22d!

where uu̇/ku!1 was assumed in Eq.~22d!. Note that Eq.
~22a! implies that the optical power, which is proportional to
(E0r s)

2, is a conserved quantity, consistent with the paraxial
wave equation whenK2 is real.

For propagation in vacuum~n051! the solution of
Eqs. ~19a!–~19d! yield the conventional vacuum modes
@15,36#. In vacuum, the source terms vanish, i.e.,G5H50,
and the solutions are characterized by a spot size
r s5r s0(11h2/ZR0

2 )1/2, r s0 is the minimum spot size at
the focal point h5z50, ZR05kr s0

2 /2 is the Rayleigh
length, a5h/ZR05z/ZR0, a wave front radius of curva-
ture Rc5z(11ZR0

2 /z2), a phase factor u05u0~h50!
2~11p!tan21 a, an amplitudeE05E0(h50)r s0/r s , and a
phase velocityvph/c5112(11p)/k2r s

2.

III. FUNDAMENTAL GAUSSIAN BEAM PROPAGATION

We first consider the dynamics of a fundamental Gaussian
optical beam propagating in a gas undergoing ionization. The
fundamental Gaussian beam, polarized in thex direction, is
obtained by settingm5p50 andê'5êx in Eq. ~14!. Using
Eq. ~14! and Eq.~6! the Gaussian beam is given by

E5E0exp~2r 2/r s
21 ic!êx/21c.c., ~23!

wherec5kj1u01ar 2/r s
2 and the functionsE0, u0, a, and

r s are given by Eqs.~21! and ~22! with p50. From Eq.
~22a!, E0(j,h)5E0(j,h50)r s(j,h50)/r s(j,h), where
E 0

2(j,h50)r s
2~j,h50! is proportional to the optical beam

power P~j!. The intensity and power associated with the
Gaussian beam in a medium of refractive indexn0 are, re-
spectively,

I5~c/4p!^E3B&•ez5I pexp~2x!, ~24a!

P5~p/2!r s
2E

0

`

dx I ~x!5~p/2!r s
2I p , ~24b!
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whereI p5(cn0/8p)E 0
2 is the peak intensity along the axis,

r50, and^ & denotes time averaging.
To determine the optical beam dynamics from Eqs.~21!

and~22! the source functionsG~h! andH~h! in Eq. ~20! are
evaluated withp50. Substituting Eq.~13! into Eq. ~20! and
integrating overx we obtain

G
HJ 52~k/2!F ~n2 /n0!I pH 1

1/2J 2~kp0 /k!2HsG1

sG2
J G , ~25!

where the functionssG1, sG2 represent filling factors which
are essentially the ratio of the cross-sectional area of the
plasma to that of the optical mode times the normalized
plasma density. The functionssG1 andsG2 are given by

sG1

sG2
J 5E

0

`

dx~kp /kp0!
23 H 1

12xJ 3exp~2x!. ~26!

Ionization is maximum where the optical field amplitude is
maximum, i.e., atr50 for the fundamental Gaussian beam.
Since the tunneling ionization rateW~uÊu! depends exponen-
tially on the field amplitude, the radial profile of the plasma
density will be highly peaked about the axisr50. Equation
~26! can be simplified by expanding the integrand about
r50, which givessG15sG25sG , where

sG.E
j

0

dj8KG~j8!@r s
2~j8!/r s

2~j!#E
0

`

dx

3exp@2bG~j8!x/2#

.2E
j

0

dj8KG~j8!@r s
2~j8!/r s

2~j!#/bG~j8!, ~27!

and

KG~j!54n0~3/p!1/2~V0 /c!~ŨI !
7/4@Ẽ0~j!#21/2

3exp@2bG~j!#, ~28a!

bG~j!5~2/3!~ŨI !
3/2/Ẽ0~j!, ~28b!

and Ẽ05E0/EH . The quantitiesKG , bG , r s , and E0 are
functions ofj andh, whereas the powerP;r s

2E 0
2 is only a

function of j as implied by Eq.~22a!.

A. Envelope equation for the Gaussian beam

Using Eqs. ~25!–~28!, the envelope equation for the
Gaussian beam in Eq.~21! becomes

]2R/]h25ZR0
22R23~12P/PNG1 1

2 r s
2kp0

2 sG!, ~29!

where r s0 is constant,ZR05kr s0
2 /25pn0r s0

2 /l is the Ray-
leigh length associated with the spot sizer s0, R5r s/r s0 is
the normalized spot size,P5(p/2)I pr s

2 is the total power,
andPNG5l2/(2pn0n2) is the nonlinear focusing power for
the Gaussian beam@13–16#. The terms on the right-hand
side of Eq. ~29! denote, respectively, vacuum diffraction,
nonlinear focusing, and plasma defocusing.

In the absence of ionization~sG50! the envelope equa-
tion in Eq. ~29! has the solution

r s5r s0@11~12P/PNG!~h/ZR0!
2#1/2, ~30!

where ṙ s is assumed to be zero ath50. For P,PNG the
optical beam diffracts with an effective Rayleigh length
given by

ZR5~12P/PNG!21/2ZR0 . ~31!

ForP5PNG , diffractive spreading balances nonlinear focus-
ing and a matched self-guided beam can, in principle, be
obtained. However, small changes away fromP5PNG will
result in loss of equilibrium. ForP.PNG the optical beam
self-focuses. In the absence of ionization the beam focuses
down to zero spot size with a focal length given by

L f5~P/PNG21!21/2ZR0 , ~32!

However, as the beam focuses the intensity on axis increases
resulting in ionization and plasma defocusing, as is described
by Eq. ~29!.

B. Self-guided Gaussian beam

In the presence of ionization, self-guided solutions to Eq.
~29! can be obtained. The condition for a self-guided beam,
i.e., ]2R/]h250, is

P/PNG215kp0
2 r s

2sG/2>0. ~33!

Upon taking the derivative of this expression with respect to
j and using Eq.~27! we find that for a self-guided beam

]P/]j52kp0
2 PNGr s

2~j!KG~j!/bG~j!52PhG~j!, ~34!

where

hG516kp0
2 ~PNG /cn0!KG~j!/@E0

2~j!bG~j!#,

is a function ofE0~j!. The solution of Eq.~34! yields the
self-guided optical Gaussian beam power as a function ofj,

P~j!5PNGexpS E
j

0

hG~j8!dj8D . ~35!

Equation~33! or ~35! describes a family of equilibrium so-
lutions, i.e., there are various equilibrium profilesP~j!,
E0~j!, andr s~j! which satisfy these equations. For example,
if an equilibrium is chosen such thatE0~j! is constant along
the optical beam, thenhG is constant and Eq.~35! implies
P(j)5PNGexp~2jhG! and the spot size profile is given by
r s
2(j)5(16/cn0)P(j)/E 0

2. Behind the beam front,j,0, the
optical beam power and plasma density increase such that
the nonlinear self-focusing term and the plasma defocusing
term remain balanced. Other types of equilibria can be
found, for example, one in whichr s~j! is constant.

C. Stability of the Gaussian beam

In this section, the self-guided beam equilibrium de-
scribed above is shown to be inherently unstable, i.e., the
beam will undergo what we refer to as an ionization-
modulation ~IM ! instability. The IM instability is due to
varying degrees of ionization along the beam and results in
the modulation of the beam envelope and the disruption of
the back of the beam. To examine the stability of the self-
guided beam equilibrium, the envelope equation, Eq.~29!, is
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expanded about the equilibrium solution. The perturbations
dr ~j,h! anddE~j,h! are such thatr s(j)1dr andE0(j)1dE
denote the perturbed spot size and optical field amplitude,
respectively. Furthermore, since the optical beam power
within the paraxial approximation is nonevolving, i.e., inde-
pendent ofh, the perturbationsdr and dE are related by
dr52(r s/E0)dE. Expansion of the envelope equation, Eq.
~29!, yields

]2dr /]h252
4kp0

2

k2r s
3~j!

E
j

0

dj8KG~j8!r s~j8!dr ~j8,h!, ~36!

wherebG@1 has been assumed~typically the case!. For the
special case of an equilibrium with a constant spot size,
r s(j)5r s0, Eq. ~36! becomes

F ]3

]j]h22kg
3~j!Gdr50, ~37!

where k g
35[2kp0/(krs0)]

2KG~j!. Equation ~37! can be
solved taking a Laplace transform in theh variable, yielding

dr;E
B
ds expFsh2s22E

j

0

dj8kg
3G , ~38!

wheres is the Laplace transform variable and the integration
is over the Bromwich contour. The asymptotic behavior of
dr can be found by integrating Eq.~38! using the saddle
point method,

dr;expF34 ~16 i) !S 2h2E
j

0

dj8kg
3D 1/3G . ~39!

Alternatively, the asymptotic behavior ofdr can be deter-
mined from Eq.~37! by assumingdr is a function of only the
variablex5~2j!1/3h2/3 and assumingkg

3 is constant. Substi-
tuting dr5dr (x) into Eq. ~37! yields

4
27 ~]3/]x31 3

2x
21]2/]x22 1

2x
22]/]x!dr52kg

3dr .
~40!

In the asymptotic limit,x→`, Eq. ~40! reduces to

~]3/]x3!dr52 27
4 kg

3dr , ~41!

which yields the solution in Eq.~39!.
The growth rate in Eq.~39! can be simplified by noting

that, along the axisr50, the equilibrium plasma density pro-
file is given by ]np/]j52nn0KG and Eq. ~39! becomes
dr;exp@(16 i))Ne~j,h!#, where

Ne5~3/25/3!~np /nn0!
1/3~kp0r s0h/ZR0!

2/3 ~42!

is the number ofe folds. If the equilibrium is nearly constant
in j, the plasma density profile is given bynp/nn05ujuKG
and the number ofe folds is Ne5a0uju1/3h2/3 where
a05~3/4!(2KG)

1/3(kp0r s0/ZR0)
2/3. The IM instability grows

as a function of the distance behind the head of the optical
beam,uju, and the propagation distanceh.

The dependence ofNe on j indicates that the number ofe
folds at the back of the beam is greater than near the front.
The IM instability disrupts the back of the beam, and the
disruption point propagates toward the front. The disruption

point can be defined as the point on the beam where the
initial perturbation is increased by exp~N0!, whereN0@1 is
the number ofe folds necessary for disruption. This point
moves toward the front of the beam with relative velocity
vd52c(]Ne/]h)/(]Ne/]j), whereNe(j,h)5N0 . For the
case where the plasma density profile is linear, i.e.,
np5KGnn0uju, the disruption velocity in the beam frame is

vd52cN0
3a0

23h23. ~43!

To gain some understanding of the IM instability, con-
sider increasing the spot size of an initially matched optical
beam, i.e.,dr ~h50!.0. In this case the beam intensity and
ionization rate are reduced resulting in less plasma genera-
tion and enhanced focusing of the beam. The focusing opti-
cal beam overshoots its equilibrium value such thatdr,0
some distance behind the beam front. Whendr,0, the in-
tensity, ionization rate, and plasma density increase, causing
the beam to defocus and overshoot its equilibrium value.
This focusing and defocusing of the beam results in the IM
instability. The modulation amplitude and period are func-
tions of the distance back from the head of the optical beam,
uju, and the propagation distance,h5z, as indicated by Eq.
~42!.

D. Numerical results for Gaussian beams

1. Dynamic solutions

The propagation dynamics of the fundamental Gaussian
beam is studied by numerically solving the envelope equa-
tion, Eq. ~29!, for the spot sizer s~j,h!. The envelope equa-
tion is numerically integrated inh ~axial propagation dis-
tance! using a finite-difference method, where the initial
conditions r s~j,h50! and @]r s~j,h!/]h#h50 are specified.
Note that in evaluating the filling factorsG~j,h! in Eq. ~27!,
the integral overj8 is carried out at everyh step, since the
integrand in Eq.~27! is a function ofj8 andh. We consider
a linearly polarized laser pulse with a Gaussian radial profile
and an initial ~h5z50! axial profile given byE0(j,0)
5Ep0sin~puju/L! for 2L<j<0, whereEp05(8pI p0/c)

1/2 is
the initial peak electric field,I p053.031013 W/cm2 is the
initial peak intensity, andL560mm is the pulse length. With
wavelengthl51 mm and initial spot sizer s0580 mm, the
peak power isP053.0 GW and the diffraction length is
ZR052.0 cm. The optical pulse propagates in air at 1 atm:
neutral gas densitynn052.731019 cm23, nonlinear index
@37# n255.6310219 cm2/W, normalized ionization potential
UI /UH51.07, and nonlinear focusing powerPNG52.8 GW
~P0/PNG.1.1!.

The simulation begins with the optical pulse at focus
~]r s/]h50! in the neutral gas. With the initial value of
the filling factor sG computed via Eq.~27!, the envelope
equation, Eq.~29!, is integrated in the simulation variables
j5z2vt and h5z. Figures 2~a! and 2~b! show the initial
h50 optical beam intensityI and plasma densitynp versus
~r ,j!. In Figs. 2~a! and 2~b!, the direction of propagation is
towards the right. Plots ofI andnp versus radius at the pulse
center ~j5230 mm! are shown in Fig. 2~c! for this case.
Note also that the nonlinear nature of the ionization process
causes the plasma density gradient versus bothr andj to be
considerably sharper than the intensity gradient.
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The evolution of the optical pulse is shown in Figs. 3~a!–
3~d!, where the spot sizer s ~dashed line!, intensityI on axis
~solid line!, and plasma densitynp on axis~dotted line! are
plotted versusj at ~a! h5z50, ~b! 6 cm,~c! 8 cm, and~d! 10
cm. Initially, the spot size is constant along the optical pulse,
as shown in Fig. 3~a!. BecauseP0.PNG , the center of the
pulse is focused while the front and back portions diffract, as
seen in Fig. 3~b!. At j.225 mm, where P.PNG and
np!nn0, diffraction balances nonlinear focusing and the spot
size remains constant atr s5r s0. Behind this point, focusing
increases the optical intensity, producing a corresponding in-
crease in the ionization rate. Because ionization is a highly
nonlinear process, the steepness of the plasma density gradi-
ent also increases. Increased ionization and increased plasma
density gradients are shown in Figs. 3~b!–3~d!. Increased

ionization causes the latter portion of the optical pulse to
diffract, as can be seen in Figs. 3~c! and 3~d!. The rapid
change in the plasma density at the steepening ionization
front results in a correspondingly rapid change in the focus-
ing of the optical pulse. This results in an increasingly nar-
row intensity spike at the ionization front.

The optical pulse structure observed in Figs. 3~c! and 3~d!
occurs even when the powerP greatly exceeds the nonlinear
focusing thresholdPNG . For example, Figs. 4~a!–4~d! show
the evolution of a pulse withP0/PNG52. Except for the
initial power and the initial spot sizer s05110 mm ~and a
corresponding change inZR053.8 cm!, the parameters of
Fig. 4 are identical to those of Fig. 3. As in Fig. 3, there is a
point near the front of the pulse in Fig. 4~at j.215 mm!
whereP.PNG , np!nn0, and diffraction balances nonlinear
focusing. Also as before, nonlinear focusing of the pulse be-
hind this point leads to an increasingly steep ionization front.
This, in turn, produces an increasingly narrow optical inten-
sity spike.

2. Self-guided solutions

Examples of matched beam equilibria are shown in Figs.
5 and 6. In both cases, we consider a linearly polarizedl51
mm optical pulse with a Gaussian radial profile propagating
in air at 1 atm~nn052.731019 cm23, n255.631019 cm2/W,
UI /UH51.07, andPNG52.8 GW!. Figure 5 shows optical
power profiles ~solid lines! and plasma density profiles
~dashed lines! plotted versusj along the axis for equilibria
with constantE0~j! profiles. Equilibria are shown for three
different values of the optical intensity:I p5I 15531013

W/cm2, I 25631013 W/cm2, and I 35731013 W/cm2. Here,
E0(j)5(8pI p/c)

1/2 is constant along the length of the opti-
cal pulse, such that the variation in powerP~j! corresponds
to a variation in spot sizer s5(2P/pI p)

1/2. Note that the
constantE0 profile produces a constant ionization rate and a
linear rise innp/nn0!1. Also, the power profiles are expo-
nential functions as given in Eq.~35!.

Figure 6 shows optical power and plasma density pro-
files for equilibria with constantr s(j)5r s0 profiles. In this
case, matchedE0~j! profiles are determined numerically
from Eq. ~34! for three different values of the leading-edge
~j50! intensity: I p5I 15531013 W/cm2, I 255.131013

W/cm2, andI 355.231013 W/cm2. In this case, the variation
in optical powerP~j! corresponds to a variation in intensity
I p52P/pr s0

2 , such thatE0 increases withuju along the
length of the pulse. As a result, the ionization rate increases
as a function ofuju. Increased ionization~defocusing! re-
quires increased power~focusing! to compensate, further in-
creasing the ionization in a highly nonlinear manner. As a
result, the constant-r s equilibrium profiles can be very sensi-
tive to the value ofI p as in Fig. 6.

3. Ionization-modulation instability

An example of the IM instability for a fundamental
Gaussian beam obtained by numerical solution of the enve-
lope equation, Eq.~29!, is shown in Fig. 7. Here, we consider
the propagation in air of a constant-r s equilibrium with
I p~j50!53.031013 W/cm2, r s5r s0.78 mm, andZR0.1.9
cm. In this case, there is very little initial ionization and
the growth of the instability is extremely slow withP(j)

FIG. 2. Surface plots of~a! optical pulse intensityI and ~b!
plasma densitynp plotted versus~r ,j! ath5z50 for a fundamental
Gaussian beam propagating in air at 1 atm; propagation is towards
the right. Plot ~c! shows the intensityI ~solid line! and plasma
densitynp ~dashed line! versusr at the pulse center~j5230 mm!.
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FIG. 3. Spot sizer s ~dashed line!, intensityI ~solid line!, and plasma densitynp ~dotted line! plotted versusj on axis at~a! h5z50, ~b!
6 cm, ~c! 8 cm, and~d! 10 cm. The initial peak intensity isI p053.031013 W/cm2, the initial spot size isr s0580 mm, and the peak power
is P053.0 GW.1.1PNG . The direction of propagation is towards the right.

FIG. 4. Spot sizer s ~dashed line!, intensityI ~solid line!, and plasma densitynp ~dotted line! plotted versusj on axis at~a! h5z50, ~b!
6 cm, ~c! 8 cm, and~d! 10 cm. Here,I p053.031013 W/cm2, r s05110mm, andP055.6 GW.2.0PNG .
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.PNG52.8 GW along the length of the optical pulse. The
evolution of the optical pulse is shown in Figs. 7~a!–7~f!,
where the spot sizer s ~solid line! and plasma densitynp on
axis ~dashed line! are plotted versusj at ~a! h5z50, ~b! 400
cm, ~c! 450 cm,~d! 500 cm,~e! 550 cm, and~f! 600 cm. In
Fig. 7, the direction of propagation is towards the right.

The simulation begins, Fig. 7~a!, with the optical pulse at
focus ~]r s/]h50! in the neutral gas. In Fig. 7~a!, the spot
size r s is constant along the pulse andnp~j! increases lin-
early sinceE0 is approximately constant. At later times, Figs.
7~b!–7~d!, oscillations inr s cause oscillations in the ioniza-
tion rate such that each region wherer s has decreased cor-
responds to an increase in ionization. This is particularly
noticeable at the back of the pulse~j5260mm! is Fig. 7~c!.

Eventually, there is a large enough increase in the plasma
density so that the latter portion of the optical pulse is defo-
cused, i.e., the guiding is disrupted. When the optical pulse is
sufficiently defocused the ionization rate falls and
dnp/dj.0. Thus, an ‘‘ionization front’’ develops which
propagates forward in the beam frame. This can be seen in
Fig. 7~e!, where the ionization front is atj.240mm, and in
Fig. 7~f!, where the ionization front is atj.233 mm. Fig-

ures 7 indicate that the disruption velocity is in good agree-
ment with Eq.~43!.

The growth of the instability of Fig. 7 is plotted versus
j at fixed h5z5550 cm in Fig. 8~a!, where lnuDr u, from
the numerical integration of the envelope equation, is com-
pared to the number ofe folds Ne from Eq. ~42!. Here,
Dr5(r s2r s0)/r s0. Similarly, lnuDr u versush5z at fixed
j5249 mm is shown in Fig. 8~b!. For both plots, excellent
agreement is observed between the slope ofNe~j! and the
peaks of the lnuDr u curve. As expected, agreement tends to
break down forj, h→0, where the growth is not yet asymp-
totic, and for lnuDr u→0, where the growth is nonlinear.

IV. HIGHER-ORDER RADIALLY POLARIZED BEAM
PROPAGATION

We now consider the dynamics of a radially polarized
optical beam propagating in a gas undergoing ionization. The
radially polarized optical beam is formed by takingm50,
p51 in Eq. ~14!, settinga0,15b0,15E0exp~iu0!, ê'5êx and
ê'8 5êy . The resulting field, from Eqs.~6! and ~14!, is

E.E0~&r /r s!exp~2r 2/r s
21 ic!êr /21c.c., ~44!

where c5kj1u01ar 2/r s
2 and êr5~cosu!êx1~sinu!êy

is the unit radial vector. The functionsE0, u0, a, and
r s satisfy Eqs. ~21! and ~22! with p51. From Eq.
~22a!, E0(j,h)5E0(j,h50)r s(j,h50)/r s(j,h), where
E 0

2(j,h50)r s
2(j,h50) is proportional to the optical

beam powerP~j!. The axial field component associated
with the radial field in Eq.~44!, as obtained from“•E50,
is maximum along the axis and given by

Ez.
2& i

krs
E0@12~r 2/r s

2!~12 ia!#exp~2r 2/r s
21 ic!êz/2

1c.c., ~45a!

Ez~r50!.
2& i

krs
E0exp~ ikj1 iu0!êz/21c.c., ~45b!

where the expression in Eq.~45b! is valid along thez axis,
i.e., r50. The intensity and power associated with the radi-
ally polarized beam in a medium of refractive indexn0 are,
respectively,

I5~c/4p!^E3B&•êz5I px exp~12x!, ~46a!

P5~p/2!r s
2E

0

`

dx I ~x!5~ep/2!r s
2I p , ~46b!

where I p5(cn0/8p)E 0
2/e is the maximum intensity, which

occurs atx51 (r5r s/&), e.2.72 and^ & denotes time av-
eraging. Similar higher-order radially polarized modes have
been produced using an axicon focusing configuration
@38,39#.

To determine the optical beam dynamics from Eqs.~21!
and~22! the source functionsG~h! andH~h! in Eq. ~20! are
evaluated withp51. SubstitutingK2 from Eq. ~13! into Eq.
~20! and integrating overh yields

FIG. 5. Equilibrium profiles of powerP ~solid lines! and plasma
density on axisnp ~dashed lines! plotted versusj for three different
values of intensityI p : I 15531013 W/cm2, I 25631013 W/cm2,
andI 35731013W/cm2. Here,E05(8pI p/c)

1/2 is constant versusj
such thatr s5(2P/pI p)

1/2.

FIG. 6. Equilibrium profiles of powerP ~solid lines! and plasma
densitynp on axis~dashed lines! plotted versusj for three different
values of leading-edge~j50! intensity I p5I 155.031013 W/cm2,
I 255.131013 W/cm2, and I 355.231013 W/cm2. Here, r s is con-
stant versusj such thatI (j)52P(j)/pr s0

2 .
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G
HJ 52~k/2!F ~e/2!~n2 /n0!I pH 1

1/4J 1~kp0 /k!2HsR1

sR2
J G , ~47!

where the filling factorssR1,2 are given by

sR1

sR2
J 5E

0

`

dx~kp /kp0!
2xe2xH 1

12x/2. ~48!

The tunneling ionization rateW~uÊu! is maximum when the
optical field is maximum. The magnitude of the radial polar-
ized field in the expression fork p

2, Eq.~12!, can be written as
uÊu5E0(11y)1/2exp@~11y!/2#, where y52r 2/r s

2(j8)21,
and has a maximum aty50, i.e., r5r s(j8)/A2. Expanding
uÊu for y!1 gives uÊu.(E0/Ae)(12y2/4). Using this ex-
pression inW~uÊu!, and noting thatW~uÊu! is highly peaked
abouty50, gives

kp
2~j!/kp0

2 .eE
j

0

dj8KR~j8!e2bR~j8!y2/4, ~49!

where

KR~j!54n0~3/p!1/2e23/4~V0 /c!~ŨI !
7/4@Ẽ0~j!#21/2

3exp@2bR~j!#, ~50a!

bR~j!5 2
3e

1/2~ŨI !
3/2/Ẽ0~j!, ~50b!

and Ẽ05E0/EH . Inserting Eq.~49! into the expressions for
the filling factors, Eq.~48!, and assumingbR@1 allows the
integration overr to be carried out yielding

FIG. 7. Spot sizer s ~solid line! and plasma densitynp on axis~dashed line! plotted versusj at ~a! h5z50, ~b! 400 cm,~c! 450 cm,~d!
500 cm,~e! 550 cm, and~f! 600 cm, for an initially matched laser pulse withI p53.031013W/cm2 andr s~j!.78mm propagating in air. The
direction of propagation is towards the right.
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sR1

sR2
J 52ApE

j

0

dj8KR~j8!bR
21/2~j8!H 1

12Xs
2/2JXs

4

3exp~12Xs
2!, ~51!

whereXs5r s(j8)/r s(j).

A. Envelope equation for the higher-order beam

Using Eq. ~47! for the source functionH, the envelope
equation in Eq.~21! becomes

]2R/]h25ZR0
22R23~12P/PNR1 1

2 r s
2kp0

2 sR2!, ~52!

where r s0 is constant,ZR05kr s0
2 /25pn0r s0

2 /l is the Ray-
leigh length associated with the spot sizer s0, R5r s/r s0 is
the normalized spot size,P5(ep/2)I pr s

2 is the total power,
and PNR54PNG52l2/(pn0n2) is the nonlinear focusing
power for the higher-order radially polarized beam. The
terms on the right-hand side of Eq.~52! denote, respectively,
vacuum diffraction, nonlinear focusing, and plasma defocus-
ing. In the absence of ionization,sR250, the solution to Eq.
~52! for r s is given by Eq.~30! with PNG replaced byPNR .

B. Self-guided higher-order beam

The condition for a matched beam, i.e.,]2R/]h250, is
given by

P/PNR215kp0
2 r s

2sR2/2>0. ~53!

Equation ~53! describes a family of equilibrium solutions,
i.e., there are various equilibrium profilesP~j!, E0~j!, and
r s~j! which satisfy Eq.~53!. For the special case of a con-
stant spot size matched beam,r s5r s0, the matched-beam
power is given by

]P/]j52~Ap/2!kp0
2 PNRr s0

2 KR~j!/bR
1/2~j!, ~54!

whereKR~j! andbR~j! are functions ofP~j! throughE0~j!,
i.e., P(j)5(cn0/16)E 0

2(j)r s0
2 .

C. Stability of the higher-order beam

The stability of the matched-beam equilibrium can be
analyzed by perturbing the envelope equation, Eq.~52!,
about the matched-beam solution. This is accomplished by
introducing a constant power perturbation to the spot size
and field amplitude of the formr s(j)1dr (j,h) and
E0(j)1dE(j,h), where dE/E052dr /r s . In the limit
bR@1, the envelope perturbation satisfies the equation

]2dr /]h252
Ap

2

kp0
2 r s0
ZR0
2 R3 E

j

0

dj8@~22Xs
2!bR~j8!dr ~j8!

12Xs~224Xs
21Xs

4!dr ~j!#

3r s~j8!KR~j8!bR
21/2~j8!Xs

2e12Xs
2
. ~55!

For a constant spot size equilibrium,Xs51, Eq. ~55! be-
comes

S ]2

]h2 2 2E
j

0

dj8
kr
3

bR
D ]dr

]j
5kr

3~j!dr , ~56!

where kr
352Ap@kp0/(krs0)#

2KRbR
1/2. In the limit bR@Ne

@1, whereNe is the number ofe folds of the instability, the
second term on the left of Eq.~56! can be neglected and the
asymptotic behavior ofdr is given by

dr;expF34 ~16 i) !S 2h2E
j

0

dj8kr
3D 1/3G . ~57!

Notice that, for an equilibrium in whichE0~j! is nearly con-
stant, the peak equilibrium plasma density occurs atr5r s/&
and is given bynp/nn0.2eKRj. In this limit, the asymp-
totic behavior ofdr can be written asdr;exp[(16 i))Ne],
where

Ne5
3

4 SAp

e
bR
1/2~np /nn0!~kp0r s0h/ZR0!

2D 1/3, ~58!

is the number ofe folds. Hence, the growth rate of the IM
instability for the higher-order optical beam differs roughly
by a factor of (pbR/4e

2)1/6;1 from that of the fundamental,
assuming equal values atkp0r s0, np/nn0, andh/ZR0.

D. Numerical results for the higher-order beam

1. Dynamic solutions

The propagation dynamics of a higher-order radially po-
larized laser pulse can be described by a numerical solution
of the envelope equation, Eq.~52!. Initially, h5z50, the

FIG. 8. Perturbed radius lnuDr u ~solid line! and number ofe
folds Ne ~dashed line! plotted ~a! versusj at fixedh5550 cm and
~b! versush at fixedj5249mm. Here,Dr5(r s2r s0)/r s0 is deter-
mined from the integration of the envelope equation, Eq.~29!,
whileNe is given by Eq.~42!. Note that log is the natural logarithm
to basee, i.e., ln.
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profile of the radial electric field is uE(r ,j)u
5E0(j,0)(&r /r s)exp(2r 2/r s

2), with an axial profile
E0(j,0)5Ep0e

1/2sin~puju/L! for 2L<j<0, where L560
mm is the optical pulse length. The peak initial field, occur-
ring at r5r s/&, is Ep05(8pI p0/c)

1/2, whereI p054.731013

W/cm2 is the peak initial optical intensity. With wavelength
l51 mm and initial spot sizer s0535mm, the peak power is
P052.5 GW and the diffraction length isZR050.4 cm. We
consider propagation in hydrogen~H2! at 30 atm: nonlinear
index @4# n253.3310218 cm2/W, ionization energyUI515.4
eV, neutral densitynn058.131020 cm23, and nonlinear fo-
cusing powerPNR51.9 GW ~P0/PNR.1.3!. Hydrogen is
chosen for its low atomic numberZa and, hence, Brems-
strahlung losses can be neglected, see Appendix C.

The simulation begins with the optical pulse at focus
~]r s/]h50! in the neutral gas with intensityI (r ,j) and
plasma densitynp(r ,j) profiles initialized as shown in Figs.
9~a! and 9~b!, where the direction of propagation is towards
the right. The accelerating fieldĒz5uÊzu profile is plotted in
Fig. 9~c!, whereEz5Êzexp(ikj)/21c.c. with Ez given by
Eq. ~45!. Plots of I , Ēz , andnp versus radius at the pulse
center~j5230mm! are shown in Fig. 9~d! for this case. The
highly nonlinear nature of the ionization process causes the
plasma density gradient versus bothr andj to be consider-
ably sharper than the intensity gradient.

The evolution of the optical pulse is shown in Figs.
10~a!–10~d!, where the spot sizer s ~dashed line!, accelerat-
ing field Ēz on axis~solid line!, and plasma densitynp ~dot-
ted line! are plotted versusj at ~a! h5z50, ~b! 0.4 cm,~c!
0.7 cm, and~d! 1.0 cm. In Figs. 10~a!–10~d!, np~j! is evalu-

ated atr5rmin/&, wherermin is the minimum value ofr s~j!.
Initially, the spot size is constant along the optical pulse, and
the peak accelerating field isĒz.400 MV/m, as in Fig.
10~a!. SinceP0.PNR , the center of the pulse is focused
while the front and back portions diffract, as shown in Fig.
10~b!. The increasing optical intensity in the center of the
pulse increases the accelerating field sinceĒz;I 1/2. Diffrac-
tion balances nonlinear focusing atj.221 mm, where
P.PNR , and the spot size remains constant,r s5r s0. Behind
this point, focusing increases the optical intensity, producing
a corresponding increase in the ionization rate. Increased
ionization and increased plasma density gradients are shown
in Figs. 10~a!–10~c!. Increased ionization causes the optical
pulse to diffract, reducingĒz in the latter portion of the
pulse, as shown in Figs. 10~c! and 10~d!. The rapid change in
the plasma density at the steepening ionization front results
in a corresponding rapid change in the focusing of the pulse.
This results in an increasingly narrow spike inĒz at the
ionization front. The peak accelerating field isĒz.1.1 GV/m
at h5z51.0 cm.2.5ZR0.

2. Self-guided solutions

An example of a self-guided, higher-order radially polar-
ized beam of wavelengthl51 mm propagating in hydrogen
~H2! at 30 atm is shown in Fig. 11. For H2 at 30 atm,
nn058.131020 cm23, n253.3310218 cm2/W, UI /UH51.1,
and PNR.1.9 GW. The matched beam conditions can be
determined from Eq.~53! together with Eq.~51! for a given
axial intensity profile. For equilibria with constantE0~j! pro-

FIG. 9. Surface plots of~a! optical pulse intensity,I , ~b! plasma densitynp , and~c! accelerating fieldĒz5uÊzu plotted versus~r ,j! at
h5z50 for a higher-order radially polarized beam propagating in H2 at 30 atm. The direction of propagation is towards the right. Plot~d!
shows the intensity~solid line!, accelerating fieldĒz ~dashed line!, and plasma densitynp ~dotted line! plotted versusr at the pulse center.
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files, i.e., constant peak intensity ofI p54.731013W/cm2, the
matched profiles for powerP and plasma densitynp at
r5rmin/& versusj are shown in Fig. 11. For these param-
eters, the degree of ionization is small,np/nn0<1024. The
spot size is given byr s

2(j)52P(j)/(peIp), which gives
r s(j50)5rmin531mm at the front of the beam. The on-axis
accelerating field, also shown in Fig. 11, has the maximum
value 450 MV/m at the front of the optical beam. Since
Ēz;n 2

1/2;n n0
1/2, the accelerating gradient can be increased

by increasing the gas pressure.

3. Ionization-modulation instability

As discussed in Sec. IV C, the optical beam undergoes an
IM instability. Numerical simulations of Eq.~52! show that,
with a 1% initial perturbation of the spot size, the IM insta-
bility significantly disrupts the equilibrium beam profile of
Fig. 11 after;10 cm of propagation. The growth rate of the
IM instability is a highly nonlinear function of the optical
intensity through the plasma density. Reducing the intensity
in the example of Fig. 11 to 3.231013W/cm2 ~which reduces
Ēz to 300 MeV/m! results in a matched beam with very little
ionization ~the plasma density is reduced by a factor of
;130! and little variation in power and spot size along the
length of the optical pulse. Simulations show that with a 1%
perturbation in the spot size, the pulse propagates.1 m
without significant disruption. The behavior of the IM insta-
bility is shown in the following numerical example. In this
example, however, the instability is allowed to grow from
numerical noise to facilitate comparison to the theoretical
growth rate.

Propagation of a guided pulse in H2 at 30 atm is shown in
Fig. 12. Initially, I p53.231013 W/cm2 is constant through-
out the pulse, the peak accelerating field isĒz5300 MV/m,
the spot size is r s.37 mm ~ZR0.0.44 cm!, and
P(j).PNR51.9 GW. The evolution of the optical pulse is
shown in Figs. 12~a!–12~d!, where the spot sizer s ~dashed
line!, accelerating fieldĒz on axis ~solid line!, and plasma
densitynp at r5rmin/& ~dotted line! are plotted versusj at
~a! h5z50, ~b! 60 cm, ~c! 75 cm, and~d! 90 cm. Initially,
the spot size is constant along the optical pulse, and the peak

FIG. 10. Spot sizer s ~dashed line!, accelerating fieldĒz on axis~solid line!, and plasma densitynp at r5rmin/& ~dotted line! plotted
versusj at ~a! h5z50, ~b! 0.4 cm,~c! 0.7 cm, and~d! and 1.0 cm. Here, the initial spot size isr s0535 mm, the peak power isP052.5
GW.1.3PNR , and the direction of propagation is towards the right.

FIG. 11. Accelerating fieldĒz on axis ~solid line!, power P
~dashed line! and plasma densitynp at r5rmin/& ~dotted line! plot-
ted versusj for intensityI p54.731013W/cm2. Here,E0 is constant
versusj.
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accelerating field isĒz.300 MV/m, as in Fig. 12~a!. At later
times, Figs. 12~b!–12~d!, oscillations inr s cause oscillations
in the ionization rate such that each region wherer s has
decreased corresponds to an increase in2dnp/dj. Eventu-
ally, the plasma density is sufficiently large that the latter
portion of the optical pulse is defocused. In the region where
the pulse is sufficiently defocused the ionization rate falls,
dnp/dj.0, and an ionization front develops which propa-
gates toward the front of the beam at the disruption velocity
vd , see Eq.~43!. This can be seen in Fig. 12~c!, where the
ionization front is atj.242 mm, and in Fig. 12~d!, where
the ionization front is atj.229 mm.

The growth of the perturbed radius due to the instability is
plotted versusj at fixed h575 cm in Fig. 13~a!, where
lnuDr u, from the integration of the envelope equation, Eq.
~52!, is compared to the number ofe foldsNe from Eq.~58!.
Here,Dr5(r s2r s0)/r s0, wherer s~j! is plotted in Fig. 12~c!.
Similarly, growth versush5z at fixedj5240mm is shown
in Fig. 13~b!. For both plots, good agreement is obtained
between the slope ofNe~j! and the peaks of the lnuDr u curve.
As expected, agreement tends to break down forj,h→0,
where the growth is not yet in the asymptotic limit, and for
lnuDr u→0, where the growth is nonlinear.

V. SELF-GUIDED INVERSE CHERENKOV
ACCELERATOR

A. Electron energy gain in vacuum

The axial field component of a higher-order radially po-
larized optical beam, which has an amplitude on axis of

Ez0.(2&/krs)E0 , can be used to accelerate an injected
electron beam propagating along thez axis @9,40–43#. In
vacuum, the phase velocityvph of the optical beam is greater
than c and near the focal point isvph/c.112/kZR0. Since
vph.c, phase slippage between the electrons and optical
beam will occur. For a highly relativistic injected electron in
vacuum, the slippage distanceLs is defined as the distance
over which the electron phase slips by one-half an optical
period, Ls~vph2c!/c.l/2, which givesLs.pZR0/2. It can
be shown that a highly relativistic electron interacting with
the axial optical fieldEz in vacuum, Eq.~59!, from z52` to
z5` experiences zero net energy gain. This result is a par-
ticular case of the Lawson-Woodward theorem@44,45#.

It can also be shown@9,38–43#, however, that if the in-
teraction distance is limited by placing a mirror approxi-
mately one Rayleigh length from the focal point, i.e.,
2ZR0<z<`, then the maximum energy gain for a highly
relativistic electron isWe@MeV#.P1/2@GW#. Material dam-
age considerations, associated with the introduction of an
optical component near focus, place serious limits on the
optical intensity@9,42#.

B. Electron energy gain in the conventional ICA

By introducing a neutral gas into the interaction region, as
in the inverse Cherenkov accelerator~ICA!, the phase veloc-
ity of the optical beam can be reduced and phase slippage
reduced. In the conventional ICA@6–8#, the optical beam
diffracts and the effects of nonlinear self-focusing and ion-
ization are neglected. For a higher-order Gaussian beam the

FIG. 12. Accelerating fieldĒz on axis~solid line!, spot sizer s ~dashed line!, and plasma densitynp at r5rmin/& ~dotted line! plotted
versusj at ~a! h5z50, ~b! 60 cm,~c! 75 cm, and~d! and 90 cm, for an initially matched optical pulse withI p53.231013W/cm2 propagating
in H2 at 30 atm. This initial radius isr s~j!.37 mm. The direction of propagation is towards the right.
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phase velocity near focus isvph/c.112/kZR02(n021)/n0 .
Typically n021!1 and is proportional to the neutral gas
densitynn0. Proper choice ofnn0 can result invph<c and the
reduction of phase slippage; however, diffraction remains an
important limitation.

The energy gain in a conventional ICA driven by a
higher-order Gaussian beam can be calculated as follows.
Assuming vacuum diffraction and neglecting nonlinear and
plasma effects, the axial electric field alongr50 in the con-
ventional ICA is given by

Ez~r50!52Ez0~11z2/ZR0
2 !21sinc, ~59!

where Ez05(2&/krs0)E0(z50) is the peak axial elec-
tric field, c5kz2ckt/n022 tan21z/ZR01c0 is the phase,
and c0 is a constant. Equation~59! follows from Eq.
~45! with E0(j,h)5E0(j,h50)r s0/r s(h), where r s
5r s0(11h2/ZR

2)1/2 andh5z. The energy gain of a highly
relativistic electron interacting with the optical field, given
by Eq. ~59!, in a medium with linear refractive indexn0 is
given by

We5qE
2`

`

dz Ez~r50!522pqEz0DkZR0
2 exp~2DkZR0!,

~60!

for Dk>0 and We50 for Dk,0, where Dk
5k(n021/b0)/n0.k(n02121/2g 0

2)/n0 , g05~12b0
2!21/2 is

the electron relativistic mass factor,b05v0/c, v0 is the axial
electron velocity, and an initial phase of sinc051 was as-
sumed. In obtaining Eq.~60! the electron trajectory was
taken along r50 from z52` to z5`, where
z5b0ct.ct~121/2g0

2!. Equation~60! is valid as long as the
energy gain is less than the initial energy,We!(g021)mc2.
For highly relativistic electrons in vacuum~b051 and
n051!, Dk vanishes and the energy change is zero,We50, in
accordance with the Lawson-Woodward theorem. In a gas,
the energy gainWe is maximum whenDkZR051, i.e., when
n0215n0/kZR011/2g 0

25 1
2 [(l/pr s)

2/n011/g 0
2]. In this

case, the maximum energy gain in the conventional ICA is
given by

Wmax52qEz0~2p/e!ZR052qE0~0!~2&p/e!r s0 . ~61!

The maximum energy gain is the product of the peak axial
field Ez0 and (2p/e)ZR0, which is the effective acceleration
length. In terms of the optical power, Eq.~61! can be written
as

Wmax@MeV#52.3P1/2@GW#. ~62!

A similar result can be obtained in vacuum acceleration by
limiting the interaction region to approximately 2ZR about
the laser focus through the use of optical components~e.g.,
mirrors!.

In addition to the higher-order Gaussian optical beam dis-
cussed above, a conventional ICA could be driven by a first-
order Bessel~axicon! beam@7,8#. A nonideal Bessel beam
~finite transverse extent! consisting ofN rings ~lobes! will
propagate a distanceLmax>NZR0, whereZR05kr 0

2/2 andr 0
is the width of an individual ring. Consequently, the maxi-
mum energy gain in a conventional ICA driven by a Bessel
beam is approximately a factor ofN1/2 greater than an ICA
driven by a higher-order Gaussian beam, assuming equal to-
tal power in each of the beams, as discussed in Appendix D.

The above calculation of the energy gain in the conven-
tional ICA assumes vacuum diffraction, i.e., the effects of
nonlinear self-focusing and ionization are neglected. Equa-
tion ~60! only holds for powers below the nonlinear focusing
power,P!PNR , and intensities below the ionization thresh-
old, I!I I . Typically, at atmospheric pressures,PNR;10 GW
~1 TW! for al51 mm ~10mm! laser, the single-stage energy
gain in a conventional ICA driven by a higher-order Gauss-
ian beam, Eq.~62!, is limited toWe;5 MeV ~50 MeV!.
Higher energy gains require higher laser power, and the ef-
fects of self-focusing and ionization can no longer be ne-
glected. Recent experiments at Brookhaven National Labo-
ratory @8# on the conventional ICA observed a 3.7 MeV
energy gain~31 MeV/m! of an injected electron beam~40
MeV! using a 580-MW CO2 laser~l510.6mm! in 2.2 atm
of H2 gas.

C. Electron acceleration in the self-guided ICA

To enhance the single-stage energy gain, a self-guided
ICA configuration is proposed and analyzed. The self-guided
ICA operates at laser powers near the nonlinear focusing
power and intensities near the ionization intensity. The self-
guided ICA is based on the optically guided higher-order
radially polarized optical beam described in Sec. IV. The
energy gain is enhanced since~i! the self-guided ICA oper-

FIG. 13. Perturbed radius lnuDr u ~solid line! and number ofe
foldsNe ~dashed line! plotted~a! versusj at fixedh5z575 cm and
~b! versusz at fixedj5240mm. Here,Dr5(r s2r s0)/r s0 is deter-
mined from the time integration of the envelope equation, Eq.~52!,
whileNe is given by Eq.~58!. Note that log is the natural logarithm
to basee, i.e., ln.
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ates at higher power and intensity which increases the accel-
erating field, and~ii ! the optical beam is self-guided, which
increases the acceleration length beyond the limits of
vacuum diffraction.

1. Phase velocity

The evolution of the spot size of the higher-order radially
polarized beam in the self-guided ICA is described by Eq.
~52!. In addition, the evolution of phase velocityvph5cbph
of the higher-order radially polarized beam is given by Eq.
~22d! with p51 together with Eqs.~47! and ~51!,

bph.n0
2114~n0k

2r s
2!21

3F12
3

2

P

PNR
1
1

8
r s
2kp0

2 ~sR112sR2!G , ~63!

where the terms on the right-hand side denote, respectively,
the contributions from the linear refractive index, finite spot
size, nonlinear refractive index, and the plasma. For a self-
guided beam withr s5r s0, the phase velocity isbph,1 and
given by

bph.@120.5~l/pn0r s0!
2P/PNR#n0

21. ~64!

The Lorentz factor associated withbph is gph5~12bph
2 !21/2,

gph.@~l/pn0
2r s0!

2P/PNR112n0
22#21/2. ~65!

The nonlinear refractive indexn2 can have a significant con-
tribution to the phase velocity.

The phase velocity can be controlled by introducing a
small amount of background plasma. A transversely uniform
background plasma will increase the phase velocity but have
no effect on the focusing of the optical beam. By introducing
a background plasma, the right-hand sides of Eqs.~63!–~65!
will be modified by the addition of the termk pb

2 /2k2, where
k pb
2 54pq2nb/mc2 andnb is the background plasma density.

The background plasma can be created by introducing a
small concentration of easily ionized gas, i.e., a gas with a
low ionization energyUI . In addition, the background den-
sity can be tapered as a function ofz to increase the phase
velocity and optimize electron acceleration.

2. Accelerating gradient

In the self-guided ICA, the accelerated electrons are
acted on by both an axial acceleratingEz field as well as a
transverseEr field ~for rÞ0!. For an electron near the
axis, r 2/r s

2!1, the field components associated with the
higher-order radially polarized mode are given by
Ez.2(2&/krs)E0sinc and Er.(&r /r s)E0cosc, where
c.kj1u0 is the phase, as given by Eqs.~44! and ~45!. For
E0.0 the electron will experience axial acceleration with
in the phase regions sinc.0 and transverse focusing within
the phase regions cosc,0. Simultaneous acceleration and
transverse focusing occurs forp/2,c12pn,p, where
n50,61,62, . . . .

The accelerating gradientEz05(&/p)(l/n0r s0)E0
can be estimated by considering the case of a self-guided
beam and assuming that the peak intensity is near the ion-
ization intensity I I ~;1014 W/cm2! and that the power is
near the nonlinear focusing power, i.e.,I P.I I andP.PNR .

For this case we find thatE0.(8peII /cn0)
1/2, l/r s

.(p/2)(en0n2I I)
1/2, and the accelerating gradient becomes

Ez0.~en2I I /2n0!
1/2E0.~2e/n0!~pn2I I /c!1/2I I

1/2, ~66!

which is a function of onlyn2 andI I . For the equilibrium in
Fig. 11,Ez0.450 MeV.

VI. IONIZATION AND COLLISIONAL LOSSES

In this section the attenuation length of the optical field
due to electron collisions and ionization losses is obtained by
solving the wave equation, Eq.~1!, in the one-dimensional
limit in the absence of the nonlinear polarization fieldP.
Collisions and ionization losses enter the wave equation
through the plasma current densityJp .

In the presence of ionization and electron collisions, the
equation for the plasma current density given by Eq.~5! is
modified,

]Jp /]t5~vp
2/4p!E2nmJp , ~67!

where nm is the effective electron collision frequency for
momentum transfer and is discussed in Appendix B. Since
the optical frequency is large compared to the collision fre-
quency,v0@nm , Eq. ~67! can be approximated by

]Jp /]t.~vp
2/4p!~12 inm /v0!E, ~68!

wherenp;v p
2 is given by Eq.~9!.

Using the field representation in Eq.~6!, the one-
dimensional wave equation in thej,h variables becomes

2~ ik1]/]j!]Ê/]h5kp
2~12 inm /v0!Ê, ~69!

whereckp5vp~j! is the plasma frequency. Sincek!u]/]ju
andnm/v0!1, Eq. ~69! can be approximated by

]

]h
Ê.2 i ~v0 /c!@12 inm /v01~ ic/v0!]/]j#~ṽp

2Ê/2!,

~70!

wherev05ck, ṽp5vp(j)/v0 is the normalized plasma fre-
quency, and n051 has been assumed. Substituting
Ê5E0exp~iu0! into Eq. ~70!, whereE0~j,h! andu0~j,h! are
the real field amplitude and phase, we obtain

]E0
2/]h.2G~j,h!E0

2, ~71a!

]u0
]h

.2
1

2
ṽp
2~v0 /c!S 11

h

2

]ṽp
2

]j D , ~71b!

where

cG5nmṽp
22c]ṽp

2/]j2
c

2
ṽp
2] ln~E0

2!/]j ~72!

is the effective damping rate due to collisions and ionization.
A similar result, i.e., Eq.~71!, has been obtained in Ref.@30#.

In Eq. ~72!, the first termnmṽ p
2 represents losses due to

collisions. The second term2c]ṽ p
2/]j5Wṽ p

2nn0/np repre-
sents ionization losses due to the fact that an electron pro-
duced by ionization in the presence of an optical field leaves
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behind a residual energy approximately equal to the oscilla-
tion energyeos. The ionization loss term can also be derived
by equating the rate of loss of electromagnetic energy
2c]~E0

2/8p!/]h to the rate at which electrons are being pro-
duced2c]np/]j5Wnn0 multiplied by the average oscilla-
tion energy per electroneos5q2E 0

2/2mv 0
2, which gives

c]E 0
2/]h25Wṽ p

2(nn0/np)E 0
2. This expression for the ion-

ization losses assumes that the oscillation energy is large
compared to the electron ionization energy,eos.UI . The
third term on the right-hand side of Eq.~72! represents the
slippage of the optical beam envelope in thej5z2ct, h5z
frame since the group velocityvg,c in the presence of the
plasma.

Three-dimensional effects can be approximated by intro-
ducing a filling factorf into Eq. ~71a!. The rate of decrease
of optical beam power, due to collisions and ionization
losses, is given by

]P/]h.2P/Ld , ~73!

where

Ld5ck2/~nmkp
21Wkn

2! f ~74!

is the attenuation length. In Eq.~74!, W is the tunneling
ionization rate, kp5(4pq2np/mc2)1/2, kn5(4pq2nn0/
mc2)1/2, f5sp/sL!1 is the filling factor, andsp ~sL! is
the transverse cross-sectional area of the generated plasma
~laser!. As an example, fornn0.2.731019 cm23 andnp/nn0
.1024, nm.nen.731012 sec21 as discussed in Appendix
B. AssumingW/c.1022 cm21, the attenuation distance is
Ld.103f21 cm.

The actual frequency of the optical beam isv
52](kj1u0)/]t5ck1c]u0/]j. Using Eq.~71b! we find

v/v0.12
h

2
]ṽp

2/]j2
h2

16
]2ṽp

4/]j2. ~75!

The third term on the right-hand side of Eq.~75! is typically
small compared to the second term. Furthermore, since
]v p

2/]j,0, the frequency will be upshifted as the optical
beam propagates@29–31#.

VII. DISCUSSION

The propagation of both fundamental and higher-order
Gaussian optical beams in gases undergoing ionization has
been studied analytically and numerically. The propagation
model includes the effects of the linear and nonlinear polar-
ization current, the linear plasma current, and plasma genera-
tion via tunneling ionization. Envelope equations describing
the evolution of the spot size, amplitude, and phase of the
optical beam were derived by applying the source-dependent
expansion method to the paraxial wave equation in ther ,
j5z2ct/n0, and h5z coordinate system. The envelope
equation for the evolution of the spot sizer s is given by Eq.
~29! for the fundamental Gaussian beam or Eq.~52! for the
higher-order radially polarized beam. The nonlinear focusing
power for the high-order beamPNR was found to be four
times that of the fundamental Gaussian beam, i.e.,
PNR54PNG52l2/(pn0n2).

The evolution of an optical pulse with an initial power

profile of the formP(j)5P0sin
2~pj/L! for 2L<j<0 with

P0.PN has been studied by numerically solving the enve-
lope equation Eq.~29! @Eq. ~52!#, wherePN5PNG ~PNR! for
the fundamental Gaussian~high-order radially polarized!
beam. The front portion of the optical beam whereP,PN

diffracts up to the point whereP5PN . The point on the
front of the optical beam whereP5PN remains guided,
r s.r s0. A narrow region of the pulse just behind the position
whereP*PN will focus. In the region where focusing oc-
curs the intensity and the ionization rate increase, resulting in
a sharp rise in the plasma density. The increase in plasma
density causes the remainder of the pulse to diffract. This
behavior is shown in Figs. 3, 4, and 12.

Self-guided solutions, i.e.,]r s/]h50, can result from a
balancing of diffraction, nonlinear self-focusing, and plasma
defocusing. These solutions are characterized by beam pro-
files with P5PN at the front~j50! of the beam, since the
plasma density vanishes at the leading edge of the optical
beam. As the plasma density increases behind the front of the
beam ~j,0!, the power in the self-guided beam also in-
creases such thatP.PN and ]P/]j,0. For a typical self-
guided solution the amount of ionization is small,
np/nn0<1024. Examples of self-guided beam profiles are
shown in Figs. 5, 6, and 11.

Self-guided optical beams are subject to an ionization-
modulation~IM ! instability. The mechanism of the IM insta-
bility can be understood by considering a perturbation of the
spot sizedr for which the power is constant. For example, if
the beam spot size is increased, i.e.,dr.0, the beam inten-
sity and ionization rate are reduced, resulting in less plasma
generation. Nonlinear self-focusing and plasma defocusing
are no longer balanced and the beam focuses. The focusing
beam overshoots its equilibrium value, i.e.,dr,0, some dis-
tance behind the front. Whendr,0, the intensity, ionization
rate, and plasma density increase, causing the beam to defo-
cus and again overshoot its equilibrium value. This focusing
and defocusing of the beam due to a varying amount of
ionization throughout the beam results in the IM instability.
For a fundamental Gaussian beam, the asymptotic linear
growth of the instability is given bydr;exp@~16i)!Ne#,
whereNe.[(kp0r s0h/ZR0)

2np(j)/nn0]
1/3, as given by Eq.

~42!. The modulation amplitude increases with both the dis-
tance from the front of the beam,uju, and the propagation
distanceh5z. The IM instability leads to a disruption~ero-
sion! of the back of the beam which moves toward the beam
front at a relative velocityvd given by Eq.~43!. Good agree-
ment was obtained between numerical solutions of the full
envelope equation for the IM instability in the linear regime
and the analytical expressions for the asymptotic growth
rates, as shown in Figs. 8 and 13.

The results in Sec. III show that self-guiding of a Gauss-
ian beam requires a nearly constant axial power profile with
P.PNG and a peak intensity near the ionization threshold,
I P.I I . Recent experiments on the propagation of short~200
fs, l50.8mm! laser pulses in air have been performed at the
University of Michigan@17#. In these experiments, a large
portion of the initial laser power was observed to be confined
to a narrow spot size~;40 mm! that propagated some 20 m
in air at 1 atm. The intensity in the narrow filament was on
the order of 1014 W/cm2 and partial ionization was observed
along the propagation axis. The laser pulse was injected into
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air with a large spot size~;1 cm! and a peak power several
times the nonlinear focusing power,P.6PNG.10 GW,
wherePNG.1.7 GW for air. These experimental conditions
are far from the theoretical conditions for self-guiding a
Gaussian beam, as found in Sec. III. Not only is the observed
threshold for nonlinear focusing substantially higher than the
calculated value, but a significant portion of the optical
power is observed to reside in a large halo surrounding the
central filament. This large radius~;1 cm! halo strongly
affects the propagation dynamics. The present analysis does
not directly apply to this experiment since the observed op-
tical beam is apparently far from a Gaussian transverse pro-
file.

In addition, a self-guided inverse Cherenkov accelerator
~ICA! has been proposed and analyzed. In this accelerator
configuration a self-guided higher-order radially polarized
optical beam propagates through a gas. Associated with the
high-order mode is an axial electric field component that is
maximum along the axis and can be used to accelerate an
injected electron beam. The phase velocity of the self-guided
mode is less than the speed of light and can be controlled by
introducing a uniform background plasma. Since the self-
guided mode has a power near the nonlinear focusing power,
P.PNR , the amplitude of the axial electric field can be writ-
ten asEz0.9.6(n2/c)

1/2I p/n0 , whereI p is the peak optical
beam intensity. Large values of the axial field amplitude,
typically on the order of 0.5 GV/m, require large values ofn2
and I p . Sincen2 is proportional to the neutral gas density
nn0, the accelerating field can be increased by increasingnn0.
To avoid excessive amounts of plasma and defocusing, the
peak intensity should be near the ionization threshold,
I p.I I . In the self-guided mode the propagation distance is
limited by the IM instability. Since the number ofe folds of
the IM instability scales asNe;n p

1/3, where the plasma den-
sity np is a highly nonlinear function ofI p , the peak intensity
must be kept sufficiently low.
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APPENDIX A: PHOTOIONIZATION RATES

Photoionization can take place in either the tunneling or
multiphoton regime@24–28#. These regimes are character-
ized by the Keldysh parametergk5~UI /eos!

1/2, whereUI is
the ionization energy andeos5

1
2m~quÊu/mv!2 is the electron

oscillation energy. The Keldysh parameter can also be writ-
ten asgk5vt t , wherett is the tunneling time, i.e., the tran-
sit time of the electron through the atomic Coulomb barrier.
The low-field limit ~gk.1! corresponds to the multiphoton
ionization regime, whereas the high-field limit~gk,1! corre-
sponds to the tunneling ionization regime.

In the high-field limit,gk,1, the ionization rate can be
determined by a tunneling calculation for an atom in the
presence of a static electric field of amplitudeE. The tunnel-
ing ionization rate, i.e., the probability~per unit time! of
ionization, is given by@25#

W54V0~ŨI !
5/2~EH /E!exp@2 2

3 ~ŨI !
3/2EH /E#, ~A1!

where the variables in Eq.~A1! have been normalized
in terms of atomic constants. In Eq.~A1!, V05a fc/a0
54.131016 sec21 is the characteristic atomic frequency,
a f52pq2/hc51/137 is the fine-structure constant,a fc is
the characteristic atomic velocity,a05h2/(4p2q2m)
55.331029 cm is the Bohr radius,ŨI5UI /UH , UI is the
ionization energy in eV,UH513.6 eV is the ionization en-
ergy of hydrogen, andEH5uqu/a0

255.2 GV/cm is the hydro-
genic electric field. The ionization rate in Eq.~A1! vanishes
at both small and large values of the electric field, and has a
maximum atE52.3(ŨI)

3/2EH .
In the limit gk!1, the tunneling time is much less

than the laser period,tt!v21, and therefore Eq.~A1!
describes the instantaneous ionization rate in the laser
field. For a circularly polarized laser field of the form
E5uÊu@cos(kz2vt)êx1sin(kz2vt)êy#, where uÊu is con-
stant, the ionization rate is obtained by settingE5uÊu in Eq.
~A1!. For a linearly polarized laser field of the form
E5uÊu cos(kz2vt)êx , the average ionization rate is ob-
tained by averaging Eq.~A1! over a laser oscillation period.
The average ionization rate for a linearly or radially polar-
ized laser field is found to be given by

W54~3/p!1/2V0~ŨI !
7/4~EH /uÊu!1/2

3exp@2 2
3 ~ŨI !

3/2EH /uÊu#. ~A2!

Whengk.1, ionization occurs by a multiphoton process.
In this caseN0 photons are required to increase the electron
energy by the ionization energyUI . For an electron ionized
from the ground state to the continuum, the ionization rate
can be approximated by

W.AvN0
3/2~2gk!

22N0, ~A3!

whereA is a constant on the order of unity andN0 is the
smallest whole number for whichN0hv/2p5UI , i.e.,N0 is
the number of photons required for ionization.

APPENDIX B: ELECTRON COLLISION FREQUENCY

As the electrons in the weakly ionized gas or plasma os-
cillate under the influence of the optical field, they collide
with the background electrons, ions, and neutral atoms. The
electron collision frequency for momentum transfer is

nm5nei1nen, ~B1!

wherenei ~nen! is the electron-ion~electron-neutral! collision
frequency. The electron-electron collision frequency does
not contribute tonm because the momentum of any pair of
colliding electrons and associated current~masses and
charges are identical! are conserved. Electrons colliding with
electrons will therefore be accelerated on average as if the
collision frequency were zero. Electron-electron collisions,
however, lead to thermalization of the electrons.

The electron-ion collision frequency is given by@46#

nei5431026lnLeiniZ
2eos

23/2 @sec21#, ~B2!

where lnLei is the Coulomb logarithm ~typically,
lnLei.10–20!, Z is the ion charge state,ni is the ion density
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in units of cm23 ~niZ is the electron plasma density! andeos
is the electron oscillation energy in units of eV.

The electron-neutral collision frequency is given by@33–
35#

nen5^vennsen~ve!&, ~B3!

wheresen is the electron-neutral cross section,ve is the elec-
tron velocity, and the bracketŝ& denote an averaging over
the electron velocity distribution. The electron-neutral cross
section is generally a complicated function of the electron
velocity. At low electron velocities the cross section is hard-
sphere-like and independent of velocity,sen.s0, where
s0;10215 cm2 is the hard-sphere cross section. As the elec-
tron velocity approaches the characteristic atomic electron
velocity, polarization scattering is the dominant process and
sen}1/ve . The characteristic atomic electron velocity is
v05a fc, whereaf51/137 is the fine-structure constant and
the characteristic electron energymv 0

2/2513.6 eV. At sub-
stantially higher electron velocities the scattering becomes
Coulomb-like andsen;1/v e

4. The electron-neutral collision
frequency can therefore be estimated to benen.nns0vos for
vos,v0 andnen.nns0v0 for vos.v0, wherevos is the elec-
tron oscillation velocity.

Typically, the electron-neutral collisions is the dominant
collisional process in weakly ionized gases. As an example,
consider the case where the neutral density isnn05331019

cm23 and the electron oscillation velocity isvos5qE0/
mv5531023c ~eos5mv os

2 /256.3 eV!. For a linearly polar-
ized laser of wavelengthl51 mm, these parameters corre-
spond to a peak intensity ofI53.531013 W/cm2 and peak
electric field amplitude ofE051.63108 V/cm. Taking
s0.10215 cm2, Eq. ~B3! yields an electron-neutral collision
frequency ofnen.731012 sec21, i.e., an electron-neutral col-
lision time of ten5nen

21;140 fsec.
If, for the same example, the gas is weakly ionized with

ni51023nn05331016 cm23 and the electron oscillation en-
ergy iseos56.3 eV, the electron-ion collision frequency from
Eq. ~B2! for singly ionized gas~Z51! is nei.831010 sec21,
i.e., an electron-ion collision time oftei5nei

21.13 psec. For
these parameters the electron-neutral collision frequency is
much greater than the electron-ion collision frequency,
nen@nei .

As another example consider the case of a plasma in
which all the atoms are singly ionized, i.e.,Z51 andni5nn0
is the initial neutral density. For a laser intensity ofI51018

W/cm2 and wavelengthl51 mm, the oscillation energy is
eos.0.2 MeV. For a neutral density ofnn051019 cm23, the
electron-ion collision frequency isnei.43106 sec21 and
tei5nei

21.250 nsec.

APPENDIX C: RADIATIVE AND COLLISIONAL LOSSES
ON ACCELERATED ELECTRONS

In an inverse Cherenkov or a laser-plasma accelerator, the
accelerated electrons interact with both the background elec-
trons and nuclei. This interaction results in a loss of electron
beam energy as well as an increase in beam emittance. Ac-
celerated electrons traveling through neutral gas or plasma
are scattered by the atomic nuclei and emit bremsstrahlung.
The emission of bremsstrahlung represents a loss in electron
energy. In addition, a highly relativistic electron will lose

energy due to collisions with atomic or plasma electrons.
The rate of change of energy of the accelerated electrons

is given by

dWe /dz5Gacc2Grad2Gcol , ~C1!

whereWe5(g21)mc2 is the electron energy,Gacc5qEz de-
notes the accelerating gradient andGrad ~Gcol! denotes the
radiative ~collisional! energy loss. The rate of electron en-
ergy loss due to bremsstrahlung is@47,48#

Grad.2We /Lb , ~C2!

where

Lb5~ 16
3 a fnaZa

2r e
2lnL!21, ~C3!

is the radiation damping length. In Eq.~C3!, na is the density
of nuclei, Za is the atomic number,a f52pq2/hc51/137
is the fine-structure constant,r e5q2/mc252.8310213 cm
is the classical electron radius, andL is a function of the
maximum and minimum impact parameters. The choice of
L depends on various factors, such as the electron energy
range and electronic screening effects. For highly relativistic
energies,We@Wc , where complete screening occurs,L
.233Z a

21/3. At lower energies,We!Wc , where screening
can be neglected,L.g. The critical energyWc defining
these regimes isWc.192Z a

21/3mc2 and typically lnL;5–
10. In hydrogen~Za51! at 1 atm~na55.431019 cm23! the
radiation damping length isLb.12 km, where we have taken
lnL55.

For a highly relativistic electron, the energy loss due to
collisions with atomic or plasma electrons is given by the
Bethe formula@47,48#,

Gcol.4pner e
2mc2lnB, ~C4!

wherene5naZa is the total electron density andB is the
ratio of the maximum to minimum impact parameter. The
ratio of radiative energy loss, Eq.~C2!, to collisional energy
loss ~C4! is

Grad/Gcol5
gZa
323

lnL

lnB
.1.431023We@MeV#. ~C5!

For an electron traveling through hydrogen~Za51! gas or
plasma the radiative energy loss term is larger than the col-
lision loss for energies above 700 MeV.

In addition, accelerated electrons will undergo small-
angle scattering off nuclei, which leads to an increase in the
electron beam emittance. The normalized emittance of the
electron beam is given byen.gR^u2&1/2, whereR is the rms
beam radius and̂u2&1/2 is the rms divergence angle of the
beam. The rate of growth in the mean square angle is given
by

d^u2&/dz516pZa~Za11!nar e
2g22lnL, ~C6!

and the normalized emittanceen increases according to
@48,49#

den
2

dz
5g2R2d^u2&/dz5R2/Ls , ~C7!
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whereL s
21516pZa(Za11)nar e

2lnL. For hydrogen at 1 atm
~Za51, na55.431019 cm23, and lnL55!, Ls.470 cm.

APPENDIX D: INVERSE CHERENKOV ACCELERATION
WITH BESSEL „AXICON … BEAMS

In addition to the higher-order Gaussian optical beam dis-
cussed in Sec. IV, an inverse Cherenkov accelerator~ICA!
could be driven by a first-order Bessel optical beam@7,8#.
Both optical beams are axially symmetric, radially polarized,
and have an axial field peaked along thez axis. Nonideal
Bessel beams~finite in transverse extent! can be formed us-
ing axicon mirrors@38,39#. Both the nonideal Bessel beam
and the higher-order Gaussian beam diffract, limiting the ac-
celeration distance. For a fixed total optical beam power,
however, the energy gain in an ICA can be substantially
higher when driven by a Bessel optical beam as opposed to a
higher-order Gaussian optical beam. Nonlinear self-focusing
in the gas and the effects of ionization are neglected in the
following.

The wave equation in the paraxial approximation for a
radially polarized, axially symmetric fieldEr propagating in
a medium with linear refractive indexn0 is

F ]2

]r 2
1
1

r

]

]r
2r2212ikS ]

]z
1
1

v
]

]t D G Êr50, ~D1!

whereEr5Êr(r ,z,t)e
i (kz2vt)/21c.c.,Êr is slowly varying in

z and t compared withk21 and v21, v5c/n0, k5v/v,
v52pc/l is the frequency, andl is the vacuum wavelength.
An exact solution to Eq.~D1! which maintains a constant
transverse profile is

Er5E0J1~k'r !exp@ i ~k2Dk!z2vt#1c.c., ~D2!

where J1 is the Bessel function of the first kind of order
unity,Dk5k'

2 /2k, k' is the transverse wave number, andE0
is the radial field amplitude. The ideal Bessel field in Eq.
~D2! ~infinite in transverse extent! is nondiffracting@50# in
the sense that the transverse profile remains constant. The
power, however, contained within an ideal Bessel beam is
infinite since*dr J 1

2(k'r )r5` when integrated fromr50 to
r5`. Associated with the radially polarized field in Eq.~D2!
is the axial field

Ez5
ik'E0

k2Dk
J0~k'r !exp@ i ~k2Dk!z2vt#1c.c. ~D3!

The axial accelerating field in Eq.~D3! is peaked along thez
axis and has axial phase velocityvph5v/(k2Dk),

vph.v@11~k'v/v!2/2#, ~D4!

which can be less thanc for n0.11(k'c/v)
2/2, where it is

assumed that (k'c/v)
2!1.

The ideal Bessel beam consists of an infinite number
of rings ~lobes! extending radially to infinity and hav-
ing a radial width of r 0.p/k' . Since the asymptotic
form ~k'r@1! for the Bessel function is J1(k'r )
;(2/pk'r )

1/2cos~k'r23p/4!, the power in each ring is es-
sentially the same. If the power in each ring is denoted by
P0, then the total power contained in a nonideal Bessel beam
of a finite radial extentRmax is P.NP0, whereN5Rmax/r 0
is the number of rings. In principle, the number of rings can
be large,N@1. A nonideal Bessel beam consisting ofN rings
diffracts away sequentially starting with the outermost ring
@51#. The outermost ring diffracts after a distance;pr 0

2/l,
the next ring diffracts after a distance 2pr 0

2/l, and so on until
the innermost ring diffracts away after a distance;Npr 0

2/l.
Hence, the maximum propagation distance of a nonideal
Bessel beam consisting ofN rings of width r 0 is

Lmax.NZR0 , ~D5!

whereZR05pr 0
2/l is the Rayleigh length associated with

the individual rings, assumingn0.1.
The maximum energy gain in the ICA driven by a non-

ideal Bessel beam is

Wmax52qEz0Lmax, ~D6!

assuming that the axial phase velocity is matched to the elec-
tron velocity, whereEz05(k'/k)E0 is the axial accelerating
field along thez axis given by Eq.~D3!. The radial field
amplitude in terms of the power within a ring is

E0.~2p/r 0!~P0 /cn0!
1/2. ~D7!

Using Eqs.~D5! and ~D7!, the maximum energy gain from
Eq. ~D6!, in terms of the total optical power, is
Wmax5C0N

1/2P1/2, whereC052qp2/(cn0)
1/2. In practical

units,

Wmax~MeV!51.7N1/2@P~GW!#1/2 ~D8!

for an ICA driven by a nonideal Bessel beam. If a higher-
order Gaussian optical beam of the same total powerP were
used instead of the nonideal Bessel beam, the maximum en-
ergy gain, Eq.~62!, would beWmax~MeV!52.3@P~GW!#1/2.
The energy gain in the ICA is;N1/2 times greater for a
nonideal Bessel beam as compared to a higher-order Gauss-
ian beam of the same total power.

The ratio of the accelerating gradient for the nonideal
Bessel beam,EzB , to that of the higher-order Gaussian beam,
EzG , is EzB/EzG;N21/2(r s0/r 0)

2, wherer s0 is the spot size
for the higher-order Gaussian beam.
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