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The quasi-isochronous~QI! dynamical system, in the presence of synchrotron radiation damping and rf
phase modulation, exhibits a sequence of period-2 bifurcations en route towards global chaos~instability! in a
region of modulation tune. The critical modulation amplitude for the onset of the global chaos shows a cusp as
a function of the modulation tune. This cusp is shown to arise from the transition from the 2:1 to the 1:1
parametric resonances. We have also studied the effect of the rf voltage modulation on the QI dynamical
system and found that the tolerance of the rf voltage modulation is much larger than that of the rf phase
modulation.@S1063-651X~96!07509-5#

PACS number~s!: 29.20.Dh, 03.20.1i, 05.45.1b

I. INTRODUCTION

Very short electron bunches, e.g., submillimeter in bunch
length, can enhance applications such as time resolved ex-
periments, next generation light sources, coherent synchro-
tron radiations, and damping rings for the next linear collid-
ers. A possible method to produce short bunches is to reduce
the phase slip factor, or the momentum compaction factor for
electron storage rings. Because of its potential benefit, the
physics of particle dynamics in lowac lattices is important
@1–8#.

In our earlier paper@1#, we transformed the quasi-
isochronous~QI! synchrotron Hamiltonian into a universal
Weierstrass equation, where particle motion could be de-
scribed by the Weierstrass̀function or the Jacobian elliptic
function @9,10#. We showed that the QI dynamical system
exhibited chaos at a relatively weak rf phase modulation.
Due to the synchrotron radiation damping, stable fixed points
~SFPs! of parametric resonances become attractors. As the
amplitude of the applied phase modulation increases, the sys-
tem exhibits a sequence of period-2 bifurcations en route
towards global chaos in a region of the modulation tune. The
sequence of period-2 bifurcations has been attributed to para-
metric resonances of the Hamiltonian system. When the criti-
cal phase modulation amplitude is plotted as a function of
the modulation tune, a cusp appears. The question is, what
causes the cusp in the stability of this dynamical system?
Furthermore, what is the effect of the rf voltage modulation?

This paper studies the role of parametric resonances on
the stability of the QI dynamical system. Section II studies
the effect of parametric resonances due to the rf phase modu-
lation on the stability of the dynamical system. Section III
studies the effect of the rf voltage modulation on particle
motion. The conclusion is given in Sec. IV.

II. THE STABILITY OF QI SYSTEM
WITH rf PHASE MODULATION

The equation of motion for the rf phase coordinatef of a
particle in a synchrotron is given by

ḟ5hhd, ~1!

whereh is the harmonic number,d5Dp/p is the fractional
momentum deviation from the synchronous particle, the
overdot is the derivative with respect to the orbiting angle
u5s/R0, andh is the phase slip factor given by

h5h01h1d1•••, ~2!

whereh0 and h1 are the first order and the second order
phase slip factor. In many realistic storage rings, the trunca-
tion of the phase slip factor at theh1 term is a good approxi-
mation. Similarly, the equation of motion for the fractional
off-momentum deviation is given by

ḋ5
eV0

2pb2E0
~sinf2sinfs!, ~3!

whereV0 and fs are the rf voltage and the synchronous
phase angle, andbc andE0 are the velocity and the energy
of the beam.

Using t5nsu as the time variable, wherens
5AheV0uh0cosfsu/2pb2E0 is the small amplitude synchro-
tron tune, and using (x,p) as conjugate phase space coordi-
nates, where

x52
h1

h0

Dp

p0
, p5

dx

dt
, ~4!

the synchrotron Hamiltonian for particle motion in QI stor-
age rings is given by@1#

H05
1

2
p21

1

2
x22

1

3
x3. ~5!

Since the universal Hamiltonian is autonomous, the ‘‘en-
ergy’’ E is a constant of motion. For particles inside the
bucket,EP@0,16].

The equation of motion in the QI Hamiltonian with en-
ergyE is given by the standard Weierstrass equation:

S d`~u!

du D 254~`2e1!~`2e2!~`2e3!, ~6!

whereu5 (1/A6 ) t, `5x, and turning points are given by
e15

1
21cos(j), e25

1
21cos(j2120°), e35

1
21cos(j1120°),
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with j5 1
3arccos(1212E). The Weierstrass elliptic̀ func-

tion is a single valued doubly periodic function of a single
complex variable. For a particle inside the separatrix, the
discriminantD5648E(126E) is positive, and the Weier-
strass̀ function can be expressed in terms of the Jacobian
elliptic function @10#

x~ t !5e31~e22e3!sn
2SAe12e3

6
tUmD , ~7!

m5
e22e3
e12e3

5
sinj

sin~j160°!
. ~8!

The separatrix orbit, which corresponds tom51, is given by

xsx~ t !512
3

cosht11
, psx~ t !5

3 sinht

~cosht11!2
. ~9!

The tune of the QI Hamiltonian is given by

Q~E!5
p@A3 sin~j160°!#1/2

A6K~m!
, ~10!

which is shown in Fig. 1 as a function of the energyE. We
note particularly that the synchrotron tune decreases to zero
very sharply near the separatrix. Because of the sharp de-
crease in synchrotron tune, time dependent perturbation will
cause overlapping parametric resonances and chaos near the
separatrix@11–13#. The action of a torus is given by

J5
1

2p R pdx

5
1

8
A2

3
~e22e3!

2~e12e3!
1/2FS 32 ,2 1

2
;3;mD , ~11!

whereF is the hypergeometric function@10#. Using the gen-
erating function

F2~x,J!5E
e3

x

pdx, ~12!

the angle variable is given byc5]F2 /]J5Qt.
Due to the synchrotron radiation damping, the equation of

motion for QI storage rings is given by

x91Ax81x2x250, ~13!

where the effective damping coefficient is given by

A5
l

ns
5

U0JE
2pE0ns

, ~14!

with the damping decrementl, the energy loss per revolu-
tionU0, and the damping partition numberJE . In QI storage
rings, the effective damping coefficient is enhanced by the
corresponding decrease in the synchrotron tune, i.e.,
A;uh0u21/2, where the value ofA can vary from 0 to 0.5.

In any realistic dynamical system, time dependent pertur-
bation is unavoidable. In the presence of the rf phase noise,
the Hamiltonian in the normalized phase space coordinates is
given by

H5
p2

2
1
1

2
x22

1

3
x31vmBx cosvmt, ~15!

wherevm5nm /ns is the normalized modulation tune, and
a and nm are, respectively, the rf phase modulation ampli-
tude and the modulation tune in the original accelerator co-
ordinate system. Note that the effective modulation ampli-
tude given by

B5
h1a

h0ns
~16!

is greatly enhanced for QI storage rings, i.e.,
B;uh1u/uh0u3/2. Including the damping force, the equation
of motion becomes

x91Ax81x2x252vmB cosvmt. ~17!

A. The width of stochastic layer near the separatrix

In many dynamical systems, e.g., the Duffing oscillator,
particle motion is bounded, thus global chaos plays little role
in the stability of the dynamical system. On the other hand,
the stability region for the QI Hamiltonian system is limited
to a finite region of phase space. Existence of global chaos
can enhance the probability of unbounded particle motion.
This section examines the condition for the stability of the
QI dynamical system.

First we examine the effect of rf phase modulation in the
absence of friction, where we expand the phase space coor-
dinate in action-angle variables@1#:

x5g01 (
n51

`

gncosnc, ~18!

FIG. 1. Q(E) vs E. Because of the sharp drop in synchrotron
tune, many parametric resonances overlap with one another near the
separatrix trajectory leading to chaos. The upper and the lower
‘‘straight lines’’ are, respectively, tunes obtained from the first or-
der and the second canonical order perturbation expansions.
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p52Q(
n51

`

ngnsinnc, ~19!

where

g05e31~e12e3!
K~m!2E~m!

K~m!
,

gn5~e12e3!
2p2

K2~m!

~21!nnqn

12q2n
, ~20!

with q5e2pK8/K. HereK andE are complete elliptic inte-
grals of the first and the second kind, respectively.

The Hamiltonian of Eq.~15! with rf phase modulation can
be expressed as

H5H0~J!1
1

2(n51

`

vmBgn~J!@cos~nc2vmt !

1cos~nc1vmt !#. ~21!

When the modulation frequency is near a synchrotron har-
monic, e.g.,vm'nQ(J), Hamiltonian tori will be perturbed
coherently by the resonance term due to the stationary phase
condition. Transforming the Hamiltonian into the resonance
rotating frame with the generating functionF25@c
2(vm /n)t#J1 , the Hamiltonian in the resonance rotating
frame becomes

Hn:15H0~J1!2
vm

n
J11hn~J1!cos~nc1!1DHn:1~ t !,

~22!

where the remaining time dependent~incoherent! terms are
lumped into DHn:1(t). Because the effective resonance
strengthhn(J)5

1
2vmBgn(J) is proportional togn , the ex-

pansion coefficients of the phase space coordinate in Eq.~18!
are also called resonance strength functions. The stable and
unstable fixed points~SFP and UFP! for the time averaged
resonance Hamiltonian of Eq.~22! are given by

sinnc1FP50, vm5nQ~J1FP!6n
dhn
dJ U

J5J1FP

. ~23!

The left plot of Fig. 2 shows an example of the Poincare´
surfaces of section with parameters (B,vm)5(0.02,0.86),
where SFPs of two resonance islands in the phase space can
be obtained from Eq.~23! with n51. Without phase space
damping, the tolerable value ofB is small.

These two resonance islands rotate around the center of
the bucket with tuneQ(JFP). The sharp drop of synchrotron
tune shown in Fig. 1 causes many parametric resonances to
overlap with one another near the separatrix orbit. This gives
rise to the local instability in a region of phase space between
two resonance islands shown in Fig. 2, where the stable re-
gion is limited to phase space areas around two SFPs.

The breakdown of Hamiltonian tori near the separatrix is
determined by the resonance condition given by

vm'
n

l
Q~En:l ! ~n,l are integers!, ~24!

which is satisfied for all high order parametric resonances
with n/l >vm . Since theQ(E) of the QI Hamiltonian drops
sharply near the separatrix, all parametric resonancesn:l of
Eq. ~24! overlap near the separatrix. The width of the sto-
chastic layer is determined by the overlapping region of
these parametric resonances. The stochastic layer width is
usually characterized by the whisker map introduced by
Chirikov @15# to be discussed as follows.

We consider the Hamiltonian of Eq.~15!. The energy
change rate due to the time dependent perturbation is given
by

dH0

dt
5

]H0

]t
1@H0 ,H#52vmBp cosvmt. ~25!

Using the separatrix orbit of Eq.~9!, the energy change in
one complete orbit is given by

DE52vmBE
2`

`

psx~ t2t0!cosvmtdt5
6pvm

3B

sinhpvm
sinf,

~26!

FIG. 2. The Poincare´ surface of section forvm50.86 with parametersB50.02 is shown in the left plot. WithA50, the dynamical
system can tolerate only a small modulation amplitudeB. The right plot shows the basin of attraction for the corresponding SFPs with
parametersvm50.86,B50.06, and the damping parameterA50.05. Lightly shaded area damps to the outer attractor and darker shaded area
converges to the inner attractor. All particles in the white space are unstable.
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wheref5vmt0. The revolution period near the separatrix is
given by

T~E!52A 6

e12e3
K~m!'4 ln

4

A12m
' lnS 144

u 1
6 2Eu D .

~27!

Thus the whisker map is given by

En115En1
6pvm

3B

sinhpvm
sinfn, ~28!

fn115fn1vmlnS 144

u 1
6 2En11u

D . ~29!

The right plot of Fig. 3 shows the phase space plot (E
2 1

6,f) of the whisker map forB50.003 andvm54. The
corresponding phase space map obtained from numerical so-
lutions of the original dynamics equation@Eq. ~17!# is shown
in the left plot. Because particle orbits outside the separatrix
for the original dynamical system are unbounded, the Poin-
caré map for those orbits has few points in the left plot.
Within the stochastic layer of the whisker map, particles will
eventually leak out to infinity.

Physics of the whisker map can be viewed as follows. For
a given modulation tunevm , the condition for parametric
resonances near the separatrix is determined approximately
by Eq. ~24!. Because manyn:l parametric resonances over-
lap with one another near the separatrix, the stochasticity is
localized mainly in the separatrix region. The width of sto-
chastic layer, estimated from the linearized whisker map, is
given by

UE2
1

6 U< 3pvm
4B

2 sinhpvm
. ~30!

In reality, the width of the stochastic layer depends sensi-
tively onvm due to occurrence of parametric resonances. For
the QI dynamics system, the whisker map, which works
mainly for the particle motion near separatrix orbits, may not
be very useful in determining the stability criterion for the
dynamical system.

In the presence of weak damping force, SFPs of paramet-
ric resonances turn into attractors. The right plot of Fig. 2
shows the basin of attraction corresponding to the SFPs with
parametersB50.06, vm50.86, andA50.05 obtained from
tracking 1503150 particles with an initial uniform distribu-

tion in the phase space. SFPs of dominant parametric reso-
nances become attractors while SFPs of weak parametric
resonances are destroyed. In general, the Hamiltonian in Eq.
~21! is composed of a web of primary parametric resonances.
The phase space locations of these resonance islands can be
approximately obtained by drawing a horizontal linevm in
Fig. 1. The location where thevm horizontal line intersects
with the line ~n/l )Q(J), where n,l are integers, is the
phase space location wheren:l resonance occurs. Asvm
increases, it intersects only those parametric resonances with
largen, where the strength functiongn is also small. Thus
the stability of the dynamical system is less susceptible to
high frequency perturbation. In the QI dynamical system,
dominant parametric resonances are then51 and 2 modes.
Since the strengths of the 1:1 and 2:1 parametric resonances
are large, they can interact coherently to generate a series of
secondary parametric resonances located in the rangevm
P(1,2). Theseoverlapping parametric resonances can be
easily destroyed by the strong damping, however, they pro-
vide stochastic background for global chaos@1,11–13#.

B. The 1:1 parametric resonance

When the damping parameterA of Eq. ~17! becomes
large, the attractor solutions or the periodic solutions can be
obtained by harmonic linearization method@14#. The peri-
odic solution of Eq.~17! for the 1:1 parametric resonance is
given by

x5X01X1cos~vmt1x1!.

Substituting the ansatz into Eq.~17! and keeping only the
first harmonic in the expansion, we obtain

vm
2B25A2vm

2X1
21~vm

2 2A122X1
2!2X1

2 , ~31!

with tanx152vmA/(vm
2 2A122X1

2), and X05(1
2A122X1

2)/2. Figure 4 shows the amplitudeX1 of the pe-
riodic solution of Eq.~17! obtained numerically forB50.5
with A50.1,0.3,0.5, and 0.7, respectively. The solution of
Eq. ~31! for B50.5,A50.7 is also shown as a solid line.
Figure 4 shows clearly that the periodic solution of the 1:1
parametric resonance plays a major role in particle motion in
the QI Hamiltonian system at all modulation tunes except in
the region of 2:1 parametric resonance.

From Eq. ~31!, we note thatX15 1/A2 represents the
maximum oscillation amplitude for which this dynamical
system is stable. Setting the maximum stable oscillation am-

FIG. 3. The whisker map for
B50.003,vm54 is shown in the
right plot. The corresponding
phase space map obtained from
numerical simulations of Eq.~17!
is shown in the left plot.
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plitude asX15 1/A2, the maximum tolerable modulation
amplitude for the 1:1 parametric resonance is given by

Bcr,1:15
1

A2
AA21vm

2 ~32!

for vm>1 @16#. At high modulation frequencies, the critical
modulation amplitude for the 1:1 parametric resonance is a
nearly linear function of the modulation frequency, i.e.,

Bcr,1:1'
1

A2
vm .

C. The 2:1 parametric resonance

Next, our goal is to show that the 2:1 parametric reso-
nance plays also an important role in chaos when the modu-
lation tune lies in the regionvm<2. First, we realize that
when a friction term is added to the Hamiltonian system, the
threshold 2:1 resonance tune is lowered, i.e., particles seem-
ingly move slower in the phase space. This is evidently
shown in Fig. 4, where the threshold modulation tune of the
2:1 parametric resonance is lowered as the damping param-
eter A increases. The reason that the threshold bifurcation
tune of the 2:1 resonance is lowered will be addressed as
follows.

The periodic solution associated with the 2:1 parametric
resonance can be obtained by using the ansatz

x~ t !5X01X1cos~vmt1x1!1y~ t !. ~33!

The equation of motion fory(t) is given by

y91Ay81@122X022X1cos~vmt1x1!#y'0. ~34!

Let the solution of this damped Mathieu equation be

y~ t !5X1/2~s!cosS vm

2
t1x1/2D . ~35!

The condition for the Mathieu instability can be obtained by
assumingX1/2;est with s>0, i.e.,

S vm
2

4
2A122X1

2D 21A2
vm
2

4
<X1

2 . ~36!

The threshold of the Mathieu instability, corresponding to
s50, is obtained by setting equality to Eq.~36!, where, for a
given damping parameterA, the threshold amplitudeX1 can
be expressed as a function of the modulation tunevm , and
the threshold modulation amplitudeB2:1 can be obtained
from Eq. ~31!. Figure 5 shows theB2:1 vs vm for
A50.05,0.2, and 0.5 respectively. The curves in Fig. 5 rep-
resent the onset of the 2:1 parametric resonance. The dy-
namical system with parameters (B,vm) located on the line
B2:1(vm) encounters the threshold of the Mathieu instability.

Now we can understand the lowering of the threshold of
vm vsA for the 2:1 parametric resonance shown in Fig. 4 as
follows. When the damping parameter is increased, for a
givenB, the threshold tune of 2:1 parametric resonance, de-
termined by Eqs.~31! and ~36!, is lowered due to a larger
oscillation amplitudeX1 of the 1:1 parametric resonance.
The correspondingBcr,1:1 is also shown as lines marked 1:1
in Fig. 4. The entire bucket of the QI dynamics system dis-
appears if parameters (B,vm) are above theBcr,1:1(vm) line.

D. Stability of the dynamical system

The Melnikov integral method has often been applied to
study the chaotic transition of many dynamical systems. If
the stable and unstable orbits from a hyperbolic fixed point

FIG. 4. The amplitudeX1 of the steady state solution, called
response, obtained numerically is plotted as a function ofvm for
B50.5 with damping parameterA50.1,0.3,0.5, and 0.7, respec-
tively. Solid lines correspond to the solutions of Eq.~31! for
A50.7,B50.5. Two characteristic features shown in this figure are
~1! the threshold tune of the 2:1 resonance decreases with increas-
ing damping parameterA, and~2! the appearance of a very strong
stop band aroundvm'1 for the 1:1 resonance.

FIG. 5. The curves correspond to the threshold modulation am-
plitudeB2:1 for the 2:1 parametric resonance with damping param-
eterA50.05,0.2,0.5, respectively. The critical modulation ampli-
tudeBcr,1:1 for the 1:1 parametric resonance is also marked in the
figure. The intercept ofB2:1 and Bcr,1:1, forming a cusp, corre-
sponds to the bifurcation threshold of the 2:1 resonance on top of
the limiting stable orbit for the 1:1 parametric resonance.
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cross each other, the dynamical system becomes homoclinic,
which is an indicator of chaotic motion. The Melnikov inte-
gral for the QI system is given by@1#

D5
6pvm

3Bsinvmt0
sinhpvm

1
6A

5
, ~37!

where the condition forD50 becomes

Bcr5
A

5p

sinhpvm

vm
3 . ~38!

Based on the Melnikov integral method, the critical modula-
tion amplitudeBcr for the chaotic condition is proportional to
the damping parameterA.

Now we definethe critical modulation amplitudeBcr as
the minimum modulation amplitude such that the entire
bucket is unstable. The thin solid line in Fig. 6 shows the
critical modulation parameterBcr as a function ofvm ob-
tained numerically with parametersA50.05,0.2, and 0.5, re-
spectively. The estimation obtained from the Melnikov inte-
gral is also shown as a line joining triangular symbols. Note
that the Melnikov integral method fails in providing theA
and vm dependence of the stability curve. The threshold
B2:1 of period-2 bifurcation and the critical modulation am-
plitude for the 1:1 parametric resonance,Bcr,1:1, are also
plotted as dots in the same figure. It is interesting to note that
Bcr obtained from numerical simulation agrees in fine details

with theB2:1 obtained from Eq.~36! for 0<vm<2 and with
Bcr,1:1 for vm>2. This agreement indicates that the 2:1 para-
metric resonance plays an important role in the stability of
the QI dynamical system. As an example, Fig. 9 in Ref.@1#
shows that the QI dynamical system, whenvm is varied,
proceeds through a sequence of period-2 bifurcations in
reaching global chaos with parametersA50.5,B50.5. In
fact, the sequence of period-2 bifurcations will occur in the
region of parametric space bounded byBcr andB2:1 curves
shown in Fig. 6. This sequence of period-2 bifurcations ap-
pears in all possible parametric variations. For example, Fig.
7 shows attractor solutions of the QI dynamics system with
A50.2,vm51.975 as a function of the modulation ampli-
tude B. This corresponds to drawing a vertical line in the
middle plot of Fig. 6 withvm51.975. AtB'0.3, the dy-
namical system encounters Mathieu instability and under-
goes period-2 bifurcation. The dynamical system evolves
into global chaos via a sequence of period-2 bifurcations.
When the vertical line intersects the thin solid line at
B'0.75, the system becomes completely unstable. As the
modulation amplitudeB is increased beyond 1.06, the dy-
namical system recovers from global instability and passes
through a reversed sequence of period-2 bifurcation to reach
a single steady state solution.

The evolution from disorder to order in the presence of a
stronger modulation is due to the increase in the potential
well depth created by the 1:1 parametric resonance. When
the parameterB is larger than 1.35, the stable bucket area
disappears, due entirely to the 1:1 parametric resonance. The
parametric space bounded by theBcr(vm) line and theB2:1
line in Fig. 6 will show the characteristics of period-2 bifur-
cation. Since the region of parametric space bounded by
Bcr andB2:1 is very small, the system becomes nearly un-
stable once the threshold of 2:1 parametric resonance is
reached.

Figure 8 shows the attractor solution atvm52.0 ~the up-
per plot! andvm52.1 ~the lower plot! as a function of the
modulation amplitudeB with a damping parameterA50.2.
They correspond to two vertical lines atvm52.0 and 2.1

FIG. 6. The critical phase modulation amplitudeBcr ~thin solid
lines! obtained from numerical simulations is shown as a function
of vm for A50.05 ~lower plot!, A50.2 ~middle plot!, andA50.5
~top plot!. The lines joining triangular symbols areBcr obtained
from the Melnikov integral method. Circle dots areBcr,1:1 and
B2:1 for the 1:1 and 2:1 parametric resonances. Note that the cusp in
Bcr observed in numerical simulations is due to the transition from
the 2:1 to the 1:1 parametric resonances.

FIG. 7. The coordinatex of the Poincare´ surface of section is
plotted as a function of the modulation amplitudeB at
vm51.975,A50.2. A sequence of period-2 bifurcations is observed
leading to global chaos.
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drawn in the middle plot of Fig. 6. Since these two lines do
not intersectBcr(vm), the system does not reach global
chaos, yet the sequence of period-2 bifurcations can be iden-
tified. In particular, the second period-2 bifurcation has to
arise from the remnant time dependent termDH2:1(t). Be-
cause the 2:1 parametric resonance has a finite width in the
parametric space, it is evident that the course of global chaos
would proceed through the sequence of period-2 bifurca-
tions.

It is often misquoted in the literature that the instability of
a dynamical system at a low modulation tune, e.g.,vm< 1

2,
proceeds through the Hopf bifurcation. We find from our
numerical simulations that the above statement is not true for
the QI dynamical system. At a small damping parameterA,
the threshold of instability proceeds through subharmonic
excitations due to the nonlinear term in the Hamiltonian, i.e.,
Bcr<B2:1 ~see the bottom plot of Fig. 6!. At a large damping
parameter, the 2:1 parametric resonance becomes more im-
portant than the subharmonic terms, as shown in the top plot
of Fig. 6, whereB2:1<Bcr .

III. PARTICLE DYNAMICS IN QI
WITH rf VOLTAGE MODULATION

In the presence of rf voltage modulation, the equation of
motion for the normalized phase space coordinates is given
by

p85x2x2, ~39!

x852p2bp cosvvt, ~40!

where the Hamiltonian is given by

H5H01
1

2
p2b cosvvt. ~41!

HereH0 is the unperturbed Hamiltonian of Eq.~5!, andvv
andb are modulation tune and the fractional modulation am-
plitude, i.e.,

DV

V
5b cosvvt.

A. Parametric resonances

When the voltage modulation amplitudeb is small, the
Hamiltonian can be expanded in action-angle variables
(J,c) of the unperturbed Hamiltonian. Expandingp2 in
action-angle variables,

p25( Gne
inc, ~42!

whereG2n5Gn* the perturbed Hamiltonian of Eq.~41! be-
comes

H5H0~J!1
b

4 (
n52`

`

Gn@e
i ~nc1vvt !1ei ~nc2vvt !#, ~43!

where n50 term does not affect particle motion, and the
voltage modulation in the QI Hamiltonian contains all har-
monics. Using Eq.~19!, we find that the most important con-
tribution in the voltage modulation comes from then52
term, and allGn vanishes at the separatrix orbit. The effect
of the voltage modulation on particle motion is much weaker
than the perturbation arising from the rf phase modulation
~see Sec. III and Ref.@1#!. Figure 9 showsGn as a function
of E for n51,2,3, and 4.

In general, the time dependent perturbation will not be
important unless the stationary phase condition is satisfied.
At the resonance condition

vv'n
dc

dt
'nQ~J!, ~44!

FIG. 8. The coordinatex of the Poincare´ surface of section is
plotted as a function of the modulation amplitudeB at 2.0 ~the
upper plot! andvm52.1 ~the lower plot! with A50.2.

FIG. 9. The resonance strength functionsGn for n51,2,3, and 4
are plotted as a function ofE. Note thatuG2u.uG1u in most regions
of phase space. Thus the 2:1 parametric resonance is more impor-
tant than the 1:1 parametric resonance for the voltage modulation.
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the stationary phase condition gives rise to coherent pertur-
bation on Hamiltonian tori. Transforming the Hamiltonian
into the resonance rotating frame with the generating func-
tion, F25@c2(vv /n)t#J1, the Hamiltonian is given by

Hn:15H0~J1!2
vv

n
J11

1

2
uGnucos~nc11xn!1DHn:1~ t !,

~45!

where we have lumped all incoherent terms intoDHn:1(t).
The fixed points of the time averaged Hamiltonian are given
by

sin~nc1FP1xn!50, vv5nQ~J1FP!6
1

2
nU dGn

dJ U.
~46!

There aren SFPs andn UFPs for the resonance Hamiltonian.
The perturbed Hamiltonian of Eq.~43! has generally a web
of parametric resonances. When resonance islands overlap
with one another, chaos can occur in the overlapping region
of the phase space. The left plot of Fig. 10 shows the Poin-
carésurface of section forvv51.95 andb50.21. Note here
that stable motion is only localized near the SFPs of the 2:1
parametric resonance.

In the presence of phase space damping, the equation of
motion becomes

p85x2x2, ~47!

x852p2bp cosvvt2Ax, ~48!

and the SFPs of parametric resonances become attractors.
The right plot of Fig. 10 shows the basin of attraction with
parametersA50.1,vv51.95, andb50.21. Here, the appear-
ance of the center attractor in the right plot indicates that the
tune of the dynamical system is slightly lowered, and the
stable region in the phase space is also increased by the
damping force.

B. Harmonic linearization method and periodic solutions

The Hamiltonian formalism is not applicable when the
damping parameterA of Eq. ~17! becomes large. The attrac-

tor solutions or the periodic solutions can be obtained by
harmonic linearization method@14#. Let the ansatz of Eqs.
~47! and ~48! be given by

x5X01X1cos~vvt1x1!, ~49!

p5P01
X1A122X1

2

vv
sin~vvt1x1!. ~50!

Substituting the ansatz into Eqs.~48!, we obtain

@A2vv
21~vv

22A122X1
2!2

1b2A122X1
2~vv

22A122X1
2!#X1

52
b

2
vvA~12A122X1

2!

3AA2vv
21~vv

22A122X1
2!2, ~51!

with tanx15(vv
22A122X1

2)/(2vvA) and X05(1
2A122X1

2)/2. In the weak damping and small modulation
amplitude approximation, the modulation amplitude is re-
lated to modulation tune byvv'12 1

2X1
2, which agrees rea-

sonably well with that of Eq.~51! for the n51 mode. The
amplitude of attractors obtained from numerical simulations
is shown in Fig. 11 forA50.01 andB50.3. Solid lines show
the solution of Eq.~51! for the 1:1 resonance. Other attractor
solutions can be identified as 2:1, 3:1, 3:2, and 5:2 paramet-
ric resonances.

Note thatX150 is a solution of Eq.~51! for all vv .
However, Fig. 11 shows that there is a gap ofvv'2, where
X150 is not a solution of Eq.~51!. This gap ofvv52 cor-
responds to the Mathieu instability. The steady state solution
at vv'2 can be obtained by the ansatz

x~ t !5X01X1cos~vvt1x1!1y~ t !, ~52!

wherey(t) satisfies

FIG. 10. The left plot shows the Poincare´ surface of section forA50,b50.21, andvv51.95. Note that the stable region is limited to
phase space region near the SFPs of 2:1 parametric resonance. The right plot shows the basin of attraction forA50.1,b50.21, and
vv51.95. With a phase space damping, the stable phase space region is dramatically increased.
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y91SA1
bvv

11b cosvvt
D y81F122~11b cosvvt !

3@X01X1cos~vvt1x1!#1
bvvA

11b cosvvt
Gy50.

~53!

This is the generalized Mathieu equation with phase space
damping. The general solution can be expressed as

y5X1/2cosS vv

2
t1x1/2D . ~54!

In a finite tune window, the amplitude has a solution
X1/2;est with s.0. ThusX1/250 corresponds to the UFP of
2:1 parametric resonance in Eq.~46!. This instability is
called the Mathieu instability.

C. Transition to global chaos and Melnikov integral

We observe in the previous few sections that the QI dy-
namics system will encounter global chaos when the modu-
lation amplitude is large. What is the critical modulation am-
plitude for the onset of global chaos? Using~47! and Eqs.
~48!, the distance between the stable and unstable orbits from
the UFP of the unperturbed Hamiltonian is given by the
Melnikov integral@14#

D5 È`

@xsx~ t !2xsx
2 ~ t !#@bpsx~ t !cosvv~ t1t0!1Apsx~ t !#dt

5
3

4
pbvv

2~vv
211!~12vv

2!sinvvt0csch~pvv!1
6A

5
,

~55!

wherexsx and psx of the separatrix orbit given by Eq.~9!
have been used to obtain the Melnikov integral. The condi-
tion for a homoclinic structure near the separatrix is given by

bcr5
2A sinhpvv

pvv
2~vv

211!uvv
221u

. ~56!

Based on the Melnikov integral method, the critical modula-
tion amplitudebcr for the chaotic condition is proportional to
the damping parameterA. Note also that the Melnikov inte-
gral has a pole atvv51. This means that then51 harmonic
is usually not excited by the rf voltage modulation. The
physics is that the rf voltage modulation at a tune ofvv51
can be averaged to zero, and the particle motion can tolerate
a large voltage modulation amplitude. In reality, the dynami-
cal system with amplitude modulation is complicated be-
cause many subharmonics can be excited by the Mathieu
instability.

To provide a complete analysis on the stability of the QI
dynamical system under rf voltage modulation, we perform
extensive numerical simulations, where the critical modula-
tion amplitude isdefinedas the condition that the entire
bucket is unstable. The shaded areas of Fig. 12 depict para-
metric regions (b,vv) where there exist stable phase space
points in the bucket. In other words, parameters in the white
space regions correspond to the result that the entire rf
bucket is unstable. The critical modulation parameterbcr for
the onset of global chaos can be identified as the boundary
between the shaded area and the white space. Although
b.1 is unphysical, the stability of this dynamical system is
studied in the entire parametric space for completeness. The
estimation obtained from the Melnikov integral is also
shown for comparison. We observe that the Melnikov inte-
gral does not provide detailed understanding of the stability
of this dynamical system.

FIG. 11. The amplitudes of periodic solutions are shown as a
function of the voltage modulation tunevv for A50.01 and
b50.3. Note that 1:1, 3:2, 2:1, 5:2, 3:1 resonances are excited due
to a very weak damping parameterA50.01.

FIG. 12. The shaded areas mark the stable regions of the QI
dynamical system under the rf voltage modulation with the damp-
ing parameterA50.1 ~lower plot!, andA50.5 ~upper plot!, respec-
tively. The white areas in (b,vv) correspond to the condition that
the entire bucket is unstable. For completeness, we include the para-
metric regionb.1 in our study of the stability of the QI dynamical
system. The solid line that connects dots corresponds to the critical
modulation amplitude obtained from the Melnikov integral method.
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IV. CONCLUSION

In conclusion, we have identified the role of parametric
resonances in the transition to global chaos for the QI dy-
namical system. Atvm>2, the stability of the dynamical
system is determined mainly by the 1:1 parametric reso-
nance. Atvm'2, the 2:1 parametric resonance, on top of the
1:1 parametric resonance, causes the SFP of the 1:1 reso-
nance to be unstable~Mathieu instability!. This gives rise to
a global instability to the entire QI bucket. Thus the charac-
teristics of global chaos~instability! for vm<2 will proceed
through a sequence of period-2 bifurcation, which arises
from the 2:1 parametric resonance. For the QI dynamical

system, the stability can be obtained reliably by the method
of parametric resonance analysis, while the Melnikov inte-
gral method fails even to provide a proper dependence of the
stability on the modulation tune and the damping parameter.
We have also studied the effect of voltage modulation on the
QI dynamical system. We find that the QI dynamical system
is insensitive to rf voltage modulation provided that the volt-
age modulation amplitudeb is smaller than 0.2.
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