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Role of parametric resonances in global chaos

D. Jeon, M. Bai, C. M. Chu, X. Kang, S. Y. Lee, A. Riabko, and X. Zhao
Department of Physics, Indiana University, Bloomington, Indiana 47405
(Received 18 April 1996

The quasi-isochronougl) dynamical system, in the presence of synchrotron radiation damping and rf
phase modulation, exhibits a sequence of period-2 bifurcations en route towards globaircstabgity) in a
region of modulation tune. The critical modulation amplitude for the onset of the global chaos shows a cusp as
a function of the modulation tune. This cusp is shown to arise from the transition from the 2:1 to the 1:1
parametric resonances. We have also studied the effect of the rf voltage modulation on the QI dynamical
system and found that the tolerance of the rf voltage modulation is much larger than that of the rf phase
modulation.[S1063-651X96)07509-5

PACS numbe(s): 29.20.Dh, 03.20ki, 05.45+b

I. INTRODUCTION whereh is the harmonic numbeig= Ap/p is the fractional
momentum deviation from the synchronous particle, the
Very short electron bunches, e.g., submillimeter in buncloverdot is the derivative with respect to the orbiting angle
length, can enhance applications such as time resolved e¥=s/R,, and 7 is the phase slip factor given by
periments, next generation light sources, coherent synchro-
tron radiations, and damping rings for the next linear collid- n=mot mot---, @
ers. A possible method to produce short bunches is to reduceh d the first ord d th d ord
the phase slip factor, or the momentum compaction factor fof/\€r€ 770 and »; are the first order an ¢ second oraer
electron storage rings. Because of its potential benefit, thg

physics of particle dynamics in low, lattices is important

hase slip factor. In many realistic storage rings, the trunca-
on of the phase slip factor at thg, term is a good approxi-
mation. Similarly, the equation of motion for the fractional

[1-8]. . tum deviation is oi b
In our earlier paper[1], we transformed the quasi- off-momentum deviation 1s given by
isochronous(QI) synchrotron Hamiltonian into a universal ] eV,
Weierstrass equation, where particle motion could be de- Bzﬁ(simﬁ—sin(ﬁs), 3
scribed by the Weierstragsfunction or the Jacobian elliptic 7B Eo

function [9,10. We showed that the QI dynamical system ,here V, and ¢ are the rf voltage and the synchronous

exhibited chaos at a relatively weak rf phase moduIationphase angle, andc andE, are the velocity and the energy
Due to the synchrotron radiation damping, stable fixed pointgt ihe peam.

(SFPg of parametric resonances become attractors. As the Using t=v.8 as the time variable
amplitude of the applied phase modulation increases, the sys- > '
tem exhibits a sequence of period-2 bifurcations en routq,-r
towards global chaos in a region of the modulation tune. Th ates. where
sequence of period-2 bifurcations has been attributed to para- "’
metric resonances of the Hamiltonian system. When the criti- 7 Ap dx
cal phase modulation amplitude is plotted as a function of X=———, p= at’ (4)
the modulation tune, a cusp appears. The question is, what o0 Po
causes the cusp in the stability of this dynamical systemthe synchrotron Hamiltonian for particle motion in QI stor-
Furthermore, what is the effect of the rf voltage modulation?3ge rings is given by1]
This paper studies the role of parametric resonances on
the stability of the QI dynamical system. Section Il studies 1,1, 1,
the effect of parametric resonances due to the rf phase modu- Ho=5p "+ 5Xx°= 3% ®)
lation on the stability of the dynamical system. Section llI
studies the effect of the rf voltage modulation on particleSince the universal Hamiltonian is autonomous, the “en-
motion. The conclusion is given in Sec. IV. ergy” E is a constant of motion. For particles inside the
bucket,Ee[0,3].
The equation of motion in the QI Hamiltonian with en-

Il. THE STABILITY OF QI SYSTEM ergy E is given by the standard Weierstrass equation:
WITH rf PHASE MODULATION
(dp(U)

du

wherewvg
vheVy| nocospd/2m B°E, is the small amplitude synchro-
on tune, and usingx(p) as conjugate phase space coordi-

The equation of motion for the rf phase coordingtef a
particle in a synchrotron is given by

2
) =4(p—e)(p—e)(p—ey), ©®

) whereu= (1/\/6)t, p=x, and turning points are given by
é=hné, (1) e =3+cosg), e,=3+Ccos¢—120°), e;=3+cos¢+120°),
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10 —— ‘ , ‘ whereF is the hypergeometric functigi.0]. Using the gen-
\\ erating function
08 | T ] X
Fax9)= | pax 12
€3
061 k ] the angle variable is given by=dF,/3J=Qt.
o Due to the synchrotron radiation damping, the equation of

oal motion for QI storage rings is given by

X"+ Ax' +x—x?=0, (13

027 where the effective damping coefficient is given by

N Upde

, . . A=—= 14
0.00 0.05 o.;o 0.15 0.20 ve 2mEgvs’ (14

FIG. 1. O(E E B  the sharp drop i hrot with the damping decremeiat, the energy loss per revolu-
- 1. Q(E) vs E. Because of the sharp drop in synchrotron tion U, and the damping partition numbag . In QI storage

tune, many parametric resonances overlap with one another near t . : . ]
) . . rings, the effective damping coefficient is enhanced by the
separatrix trajectory leading to chaos. The upper and the lower

“straight lines” are, respectively, tunes obtained from the first or- Corresponding decrease in the synchrotron tune, i.e.,

- —1/2
der and the second canonical order perturbation expansions. |770| ’ V\_/he_zre the va_llue of can vary from 0 to 0.5.
In any realistic dynamical system, time dependent pertur-

bation is unavoidable. In the presence of the rf phase noise,

i = 1- i i i - . . - - - .
V_V'th ,g_ 3a.rccos(1— 12E). The Wel-ers.trass eI.I|pt|gzz fung the Hamiltonian in the normalized phase space coordinates is
tion is a single valued doubly periodic function of a single given by

complex variable. For a particle inside the separatrix, the

discriminantA =648E(1—6E) is positive, and the Weier- p? 1 1

strassp function can be expressed in terms of the Jacobian H= 7+ EXZ— §X3+ wnBX Coswpt, (15
elliptic function[10]

where w,,= v,/ vs is the normalized modulation tune, and
m @ a and v, are, respectively, the rf phase modulation ampli-
' tude and the modulation tune in the original accelerator co-
ordinate system. Note that the effective modulation ampli-
e,—e; siné o tude given by
e;—e; sSiN(é+60°)° ®

€1~ €3
6

t

x(t):e3+(e2—eg)snz<

B 718

= (16)
The separatrix orbit, which correspondate-= 1, is given by MoVs

is greatly enhanced for QI storage rings, i.e.,
(9  B~|n1l/l7/*% Including the damping force, the equation
of motion becomes

1 _ 3sinft
XoAV=1" Goshir 1 PV = (coshir 12

The tune of the QI Hamiltonian is given by X"+ AX +X—X2=— wy,B coswt. a7
Q(E)= 7 \/3 sin(&+60°) 142 (10 A. The width of stochastic layer near the separatrix
VBK(m) In many dynamical systems, e.g., the Duffing oscillator,

particle motion is bounded, thus global chaos plays little role
which is shown in Fig. 1 as a function of the enefgyWe in the stability of the dynamical system. On the other hand,
note particularly that the synchrotron tune decreases to zenfe stability region for the QI Hamiltonian system is limited
very sharply near the separatrix. Because of the sharp des a finite region of phase space. Existence of global chaos
crease in synchrotron tune, time dependent perturbation witan enhance the probability of unbounded particle motion.
cause overlapping parametric resonances and chaos near thigis section examines the condition for the stability of the
separatri{11—-13. The action of a torus is given by QI dynamical system.
First we examine the effect of rf phase modulation in the
1 absence of friction, where we expand the phase space coor-
J= o % pdx dinate in action-angle variablé¢s]:

o)

1 /2 3 1
:g\@(ez_es)z(el_es)llzf:(z,—§§3;m), (11 X:go"‘nz::l gnCONY, (18)
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FIG. 2. The Poincarsurface of section fow,,=0.86 with parameter8=0.02 is shown in the left plot. WithA=0, the dynamical
system can tolerate only a small modulation amplitideThe right plot shows the basin of attraction for the corresponding SFPs with
parameters,,=0.86B=0.06, and the damping paramefer 0.05. Lightly shaded area damps to the outer attractor and darker shaded area
converges to the inner attractor. All particles in the white space are unstable.

” , dh
p=—Q2 ng,simy, (19 siMyuee=0, wn=nQU*ny7| . (23
n=1 J=J1rp
where The left plot of Fig. 2 shows an example of the Poincare
surfaces of section with parameterB, {,,)=(0.02,0.86),
K(m)—E(m) where SFPs of two resonance islands in the phase space can

Jo=6€zt(e;—e3) be obtained from Eq(23) with n=1. Without phase space
damping, the tolerable value & is small.
5 - These two resonance islands rotate around the center of
—(ey—ey) 27 (—1)"ng (20) the bucket with tun€(Jgp). The sharp drop of synchrotron
Gn L 5K2(m) 1-g™ tune shown in Fig. 1 causes many parametric resonances to
overlap with one another near the separatrix orbit. This gives
rise to the local instability in a region of phase space between
two resonance islands shown in Fig. 2, where the stable re-
gion is limited to phase space areas around two SFPs.
The breakdown of Hamiltonian tori near the separatrix is
determined by the resonance condition given by

K(m) ~°

with q=e~"™/K_ HereK andE are complete elliptic inte-
grals of the first and the second kind, respectively.

The Hamiltonian of Eq(15) with rf phase modulation can
be expressed as

o

1
H=Hy(J)+ Engl omBgn(J)[cogny— wnt) wm~;,Q(En:/) (n,/ are integers (24)

+eogny+wpt)]. (21)  which is satisfied for all high order parametric resonances
with n//= w,,. Since theQ(E) of the QI Hamiltonian drops

When the modulation frequency is near a synchrotron harsharply near the separatrix, all parametric resonancéof
monic, e.g..wy,~nQ(J), Hamiltonian tori will be perturbed Eq. (24) overlap near the separatrix. The width of the sto-
coherently by the resonance term due to the stationary phag@astic layer is determined by the overlapping region of
condition. Transforming the Hamiltonian into the resonancethese parametric resonances. The stochastic layer width is
rotating frame with the generating functiofr,=[¢  usually characterized by the whisker map introduced by
—(wm/n)t]I;, the Hamiltonian in the resonance rotating Chirikov [15] to be discussed as follows.

frame becomes We consider the Hamiltonian of Ed15). The energy
change rate due to the time dependent perturbation is given
) by
Hi:a=Ho(J1) = —7 J1+ ho(Jp)cosngn) + AHpa (1),
W:7+[HO,H]:—mep Coswmt. (25

where the remaining time dependdiricoherent terms are ) ) ] ]
lumped into AH,.,(t). Because the effective resonance YSing the separatrix orbit of E9), the energy change in

strengthh,,(J) = 2wnBg,(J) is proportional tog,, the ex-  ©ne complete orbit is given by
pansion coefficients of the phase space coordinate if1By.

% 3
are also called resonance strength functions. The stable and yg— _ Bf Dot —to) COSVtdt= G_meB sing
unstable fixed point$SFP and UFPfor the time averaged m= ) st 0 m sinhmrw,,

resonance Hamiltonian of ER2) are given by (26)
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FIG. 3. The whisker map for
010 ¢ i B=0.003w,=4 is shown in the
© right plot. The corresponding
E -0.20 - i phase space map obtained from
~ numerical simulations of Eq17)
-0.30 1 is shown in the left plot.
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¢ ¢
where ¢= wyty. The revolution period near the separatrix istion in the phase space. SFPs of dominant parametric reso-
given by nances become attractors while SFPs of weak parametric
resonances are destroyed. In general, the Hamiltonian in Eq.
6 4 144 (21) is composed of a web of primary parametric resonances.
T(E)=27 el_egK(m)%4 I”\/m“m t_g/ The phase space locations of these resonance islands can be

@27) approximately obtained by drawing a horizontal lieg, in
Fig. 1. The location where the,, horizontal line intersects
Thus the whisker map is given by with the line (n//)Q(J), wheren,/ are integers, is the
phase space location where/” resonance occurs. As,
67Tw§18 ) increases, it intersects only those parametric resonances with
Env1=Ent ms'n¢n’ (28) large n, where the strength functiog, is also small. Thus
the stability of the dynamical system is less susceptible to
144 high frequency perturbation. In the QI dynamical system,
1—) (29 dominant parametric resonances are kel and 2 modes.
|6 —Enal Since the strengths of the 1:1 and 2:1 parametric resonances
The right plot of Fig. 3 shows the phase space plBt (

are large, they can interact coherently to generate a series of
—3%,¢) of the whisker map foB=0.003 andw,=4. The

secondary parametric resonances located in the range
corresponding phase space map obtained from numerical 55—(1’2)' Theseoverlapping parametric resonances can be
lutions of the original dynamics equatipBq. (17)] is shown

easily destroyed by the strong damping, however, they pro-
in the left plot. Because patrticle orbits outside the separatri

yide stochastic background for global chdasl1-13.
for the original dynamical system are unbounded, the Poin-

bni1= ¢n+wm|n(

care map for those orbits has few points in the left plot. B. The 1:1 parametric resonance
Within the stochastic layer of the whisker map, particles will  When the damping parametér of Eq. (17) becomes
eventually leak out to infinity. large, the attractor solutions or the periodic solutions can be

Physics of the whisker map can be viewed as follows. Fobbtained by harmonic linearization methft]. The peri-
a given modulation tunev,,, the condition for parametric odic solution of Eq(17) for the 1:1 parametric resonance is
resonances near the separatrix is determined approximatedjven by
by Eqg.(24). Because mang:/ parametric resonances over-
lap with one another near the separatrix, the stochasticity is X=Xp+ X108 @mt+ x1).

localized mainly in the separatrix region. The width of sto-

chastic layer, estimated from the linearized whisker map, i$UPstituting the ansatz into EGL7) and keeping only the
given by first harmonic in the expansion, we obtain

3mwtB whB2=A2wiXE+ (wh—V1-2XD)2XE, (3D

(30)
with  tany; = — wpA/(03—V1-2X%), and X,=(1

In reality, the width of the stochastic layer depends sensi— v1—2X7)/2. Figure 4 shows the amplitud¢, of the pe-
tively on w,, due to occurrence of parametric resonances. Fofiodic solution of Eq.(17) obtained numerically foB=0.5
the QI dynamics system, the whisker map, which workswith A=0.1,0.3,0.5, and 0.7, respectively. The solution of
mainly for the particle motion near separatrix orbits, may notEq. (31) for B=0.5A=0.7 is also shown as a solid line.
be very useful in determining the stability criterion for the Figure 4 shows clearly that the periodic solution of the 1:1
dynamical system. parametric resonance plays a major role in particle motion in

In the presence of weak damping force, SFPs of paramethe QI Hamiltonian system at all modulation tunes except in
ric resonances turn into attractors. The right plot of Fig. 2the region of 2:1 parametric resonance.
shows the basin of attraction corresponding to the SFPs with From Eq. (31), we note thatX,= 1/.2 represents the
parameter8=0.06, w,=0.86, andA=0.05 obtained from maximum oscillation amplitude for which this dynamical
tracking 150< 150 particles with an initial uniform distribu- system is stable. Setting the maximum stable oscillation am-

L STomE
6| 2 sinhrop,
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FIG. 4. The amplitudeX; of the steady state solution, called
response, obtained numerically is plotted as a functiomw gffor
B=0.5 with damping parametek=0.1,0.3,0.5, and 0.7, respec-

FIG. 5. The curves correspond to the threshold modulation am-
plitude B,., for the 2:1 parametric resonance with damping param-
eter A=0.05,0.2,0.5, respectively. The critical modulation ampli-

tively. Solid lines correspond to the solutions of E@1) for ) . . )
A=0.7B=0.5. Two characteristic features shown in this figure aretfJde Bor,v:1 fqr the 1.1 parametric resonance I also marked in the
figure. The intercept oB,.; and B, ;.;, forming a cusp, corre-

(1) the threshold tune of the 2:1 resonance decreases with increas?

ing damping parametek, and(2) the appearance of a very strong tShpeO?g]S't'tr? tr;teag;;ugﬁzt'tofgrt?;isiplld gl;at:qeetffcl r:aessgnn;ncc: on top of
stop band around,,~1 for the 1:1 resonance. imiting ! P ' '

. . . Letth luti f this d d Mathi tion b
plitude asX;= 1/y/2, the maximum tolerable modulation et the solution ot this damped Mathieu equation be

amplitude for the 1:1 parametric resonance is given by ®
m
Y(t)lelz(S)COi(Tt+X1/2 : (35
1
__— [p2 v
Ber,1:1= 2 A"t an (32) The condition for the Mathieu instability can be obtained by
assumingX,,~eSt with s=0, i.e.,
for w,=1 [16]. At high modulation frequencies, the critical w2 2 w2
modulation amplitude for the 1:1 parametric resonance is a <_’“_ V1-2x2 +A2—m<X§. (36)
nearly linear function of the modulation frequency, i.e., 4 4
1 The threshold of the Mathieu instability, corresponding to
By 11~ — . s=0, is obtained by setting equality to E®@6), where, for a
RN R given damping parametdy, the threshold amplitudX, can

be expressed as a function of the modulation twne and
the threshold modulation amplitud®,.; can be obtained
from Eq. (31). Figure 5 shows theB,.; vs w, for
Next, our goal is to show that the 2:1 parametric reso-A=0.05,0.2, and 0.5 respectively. The curves in Fig. 5 rep-
nance plays also an important role in chaos when the modiesent the onset of the 2:1 parametric resonance. The dy-
lation tune lies in the regiom,<2. First, we realize that namical system with parameterB,,,) located on the line
when a friction term is added to the Hamiltonian system, the,.,(w,,) encounters the threshold of the Mathieu instability.
threshold 2:1 resonance tune is lowered, i.e., particles seem- Now we can understand the lowering of the threshold of
ingly move slower in the phase space. This is evidentlyy,  vsA for the 2:1 parametric resonance shown in Fig. 4 as
shown in Flg 4, where the threshold modulation tune of tth”OWS. When the dampmg parameter is increased, for a
2:1 parametric resonance is lowered as the damping parargiven B, the threshold tune of 2:1 parametric resonance, de-
eter A increases. The reason that the threshold bifurcatiofermined by Eqs(31) and (36), is lowered due to a larger

tune of the 2:1 resonance is lowered will be addressed asscillation amplitudeX; of the 1:1 parametric resonance.

C. The 2:1 parametric resonance

follows. _ _ _ _The correspondin@,, 1.1 is also shown as lines marked 1:1
The periodic solution associated with the 2:1 parametriGn Fig. 4. The entire bucket of the QI dynamics system dis-
resonance can be obtained by using the ansatz appears if parameter8(w,,,) are above th8 ;.(wy) line.
X(t)=Xg+ Xicogwmt+ x1) +y(1). (33

D. Stability of the dynamical system

The equation of motion foy(t) is given by The Melnikov integral method has often been applied to
study the chaotic transition of many dynamical systems. If
y'+AY +[1-2Xy—2Xcod wpnt+ x1)]y=0. (34)  the stable and unstable orbits from a hyperbolic fixed point
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i FIG. 7. The coordinate of the Poincaresurface of section is
m°1_0 1 i plotted as a function of the modulation amplitud®@ at
wn=1.975A=0.2. A sequence of period-2 bifurcations is observed
leading to global chaos.

0.0 v |
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o, with the B,., obtained from Eq(36) for 0< w,,<2 and with
Br 1.1 for w=2. This agreement indicates that the 2:1 para-
FIG. 6. The critical phase modulation amplituBg (thin solid ~ metric resonance plays an important role in the stability of
lines) obtained from numerical simulations is shown as a functionthe QI dynamical system. As an example, Fig. 9 in R&f.
of w, for A=0.05 (lower plot, A=0.2 (middle ploy, andA=0.5  shows that the QI dynamical system, whep, is varied,
(top ploy. The lines joining triangular symbols ai#; obtained  proceeds through a sequence of period-2 bifurcations in
from the Melnikov integral method. Circle dots aB;:; and  reaching global chaos with parameteks=0.5B=0.5. In
B,., for the 1:1 and 2:1 parametric resonances. Note that the cusp iﬁict, the sequence of period-2 bifurcations will occur in the
B observed in numerical ;imulations is due to the transition fromregion of parametric space bounded By andB,.; curves
the 2:1 to the 1:1 parametric resonances. shown in Fig. 6. This sequence of period-2 bifurcations ap-

) __pears in all possible parametric variations. For example, Fig.
cross each other, the dynamical system becomes homoclinig, shows attractor solutions of the QI dynamics system with

which is an indicator of chgotic motion. The Melnikov inte- A=0.2,0,,=1.975 as a function of the modulation ampli-
gral for the QI system is given b ] tude B. This corresponds to drawing a vertical line in the
middle plot of Fig. 6 withw,,=1.975. AtB~0.3, the dy-
: , (37) namical system encounters Mathieu instability and under-
sinhron, 5 goes period-2 bifurcation. The dynamical system evolves
into global chaos via a sequence of period-2 bifurcations.
When the vertical line intersects the thin solid line at
_ B~0.75, the system becomes completely unstable. As the
Bcr:i S'nh”“’m_ (39  modulation amplitudeB is increased beyond 1.06, the dy-
57 wgm namical system recovers from global instability and passes
through a reversed sequence of period-2 bifurcation to reach
Based on the Melnikov integral method, the critical modula-a single steady state solution.
tion amplitudeB,, for the chaotic condition is proportional to ~ The evolution from disorder to order in the presence of a
the damping paramete. stronger modulation is due to the increase in the potential
Now we definethe critical modulation amplitud8., as  well depth created by the 1:1 parametric resonance. When
the minimum modulation amplitude such that the entirethe parameteB is larger than 1.35, the stable bucket area
bucket is unstable. The thin solid line in Fig. 6 shows thedisappears, due entirely to the 1:1 parametric resonance. The
critical modulation parameteB., as a function ofw,, ob-  parametric space bounded by tBg(w,,) line and theB,.;
tained numerically with parametefs=0.05,0.2, and 0.5, re- line in Fig. 6 will show the characteristics of period-2 bifur-
spectively. The estimation obtained from the Melnikov inte-cation. Since the region of parametric space bounded by
gral is also shown as a line joining triangular symbols. NoteB., and B,., is very small, the system becomes nearly un-
that the Melnikov integral method fails in providing tihe  stable once the threshold of 2:1 parametric resonance is
and w,, dependence of the stability curve. The thresholdreached.
B,., of period-2 bifurcation and the critical modulation am-  Figure 8 shows the attractor solution@g,= 2.0 (the up-
plitude for the 1:1 parametric resonand®, ., are also per plod and w,,=2.1 (the lower ploj as a function of the
plotted as dots in the same figure. It is interesting to note thanodulation amplituddB with a damping parametek=0.2.
B, obtained from numerical simulation agrees in fine detailsThey correspond to two vertical lines at,=2.0 and 2.1

67Ta),3nBsinwmt0 6A

where the condition fob =0 becomes
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FIG. 9. The resonance strength functi@dsfor n=1,2,3, and 4
0o 02 06 0B 10 12 are plotted as a function &. Note tha| G,|>|G,| in most regions

B of phase space. Thus the 2:1 parametric resonance is more impor-
tant than the 1:1 parametric resonance for the voltage modulation.
FIG. 8. The coordinate of the Poincaresurface of section is
plotted as a function of the modulation amplituBeat 2.0 (the  HereH, is the unperturbed Hamiltonian of E¢p), and w,

upper plo} and w,,= 2.1 (the lower plo} with A=0.2. andb are modulation tune and the fractional modulation am-
plitude, i.e.,

drawn in the middle plot of Fig. 6. Since these two lines do

not intersectB.(wp), the system does not reach global AV

chaos, yet the sequence of period-2 bifurcations can be iden- “y ~D cosw,t.

tified. In particular, the second period-2 bifurcation has to
arise from the remnant time dependent tekid,.,(t). Be-
cause the 2:1 parametric resonance has a finite width in the
parametric space, it is evident that the course of global chaos When the voltage modulation amplitudeis small, the
would proceed through the sequence of period-2 bifurcaHamiltonian can be expanded in action-angle variables
tions. (J,%) of the unperturbed Hamiltonian. Expanding in

It is often misquoted in the literature that the instability of action-angle variables,
a dynamical system at a low modulation tune, euj,=<3,
proceeds through the Hopf bifurcation. We find from our I02=2 G eV
numerical simulations that the above statement is not true for o
the QI dynamical system. At a small damping paraméter
the threshold of instability proceeds through subharmoniovhereG_,=G;y; the perturbed Hamiltonian of Eg41) be-
excitations due to the nonlinear term in the Hamiltonian, i.e.comes
B.=<B,.; (see the bottom plot of Fig.)6At a large damping
parameter, the 2:1 parametric resonance becomes more im- . .
portant than the subharmonic terms, as shown in the top plot ~ H=Ho(J)+ 7 Zw Gule/ M T et +el(Mmet] (43
of Fig. 6, whereB,.;<B,,. "

A. Parametric resonances

(42)

o

wheren=0 term does not affect particle motion, and the
lll. PARTICLE DYNAMICS IN QI voltage modulation in the QI Hamiltonian contains all har-
WITH rf VOLTAGE MODULATION monics. Using Eq(19), we find that the most important con-

In the presence of rf voltage modulation, the equation off1Pution in the voltage modulation comes from the-=2

motion for the normalized phase space coordinates is givelf™M: and allG, vanishes at the separatrix orbit. The effect

of the voltage modulation on particle motion is much weaker

by than the perturbation arising from the rf phase modulation
p' =x—x2, (39) (see Sec. lll and Refl]). Figure 9 showss, as a function
of E for n=1,2,3, and 4.
x'=—p—bp cosw,t, (40) In general, the time dependent perturbation will not be
important unless the stationary phase condition is satisfied.
where the Hamiltonian is given by At the resonance condition

1 dy
H=Hq+ Epzb cosw, t. (41) wvwna~nQ(J), (44)
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FIG. 10. The left plot shows the Poincasarface of section foA=0,b=0.21, andw,=1.95. Note that the stable region is limited to
phase space region near the SFPs of 2:1 parametric resonance. The right plot shows the basin of attréctidhlfor-0.21, and
w,=1.95. With a phase space damping, the stable phase space region is dramatically increased.

the stationary phase condition gives rise to coherent pertutor solutions or the periodic solutions can be obtained by
bation on Hamiltonian tori. Transforming the Hamiltonian harmonic linearization methodL4]. Let the ansatz of Egs.
into the resonance rotating frame with the generating func¢47) and(48) be given by

tion, Fo=[¢— (w, /n)t]J4, the Hamiltonian is given b
2=Lg= (e, I, guen by X=Xo+ X108 w,t+ x1), (49)

w, 1
Hn:leO(Jl)_F‘]ldl'E|Gn|cosn¢l+Xn)+AHn:l(t)i 5
X14/1-2X
(45 p=Pot —————sin(w,+ x1). (50

v

where we have lumped all incoherent terms iathl,.4(t).

The fixed points of the time averaged Hamiltonian are given
Substituting the ansatz into Eq#8), we obtain

by
1
Sin(nlﬂl,:p-i-)(n):O, wv=nQ(J1Fp)iEn dJn [A2w§+(w5—\/1—2Xi)2
(46) +b?\1-2X{(wZ—\1—2X3) X,
There aren SFPs anah UFPs for the resonance Hamiltonian. b 5
The perturbed Hamiltonian of E¢43) has generally a web == 5 0,A(1—-y1-2X]

of parametric resonances. When resonance islands overlap
with one another, chaos can occur in the overlapping region X \/A2w5+(w5— \/1—2X§)2, (51
of the phase space. The left plot of Fig. 10 shows the Poin-

caresurface of section fow,=1.95 ando=0.21. Note here

that stable motion is only localized near the SFPs of the 2:Wwith  tany; = (w?— V1-2X3) /(- w,A) and Xo=(1

parametric resonance. - \/1—2X21)/2. In the weak damping and small modulation

In the presence of phase space damping, the equation afmplitude approximation, the modulation amplitude is re-
motion becomes lated to modulation tune by,~1— X2, which agrees rea-
, ) sonably well with that of Eq(51) for the n=1 mode. The

P =X—=X5 (47) amplitude of attractors obtained from numerical simulations
is shown in Fig. 11 foA=0.01 andB=0.3. Solid lines show

X'=—p—bp cosw,t—Ax, (48)  the solution of Eq(51) for the 1:1 resonance. Other attractor

solutions can be identified as 2:1, 3:1, 3:2, and 5:2 paramet-
and the SFPs of parametric resonances become attractofs resonances.

The right plot of Fig. 10 shows the basin of attraction with  Nte thatX,=0 is a solution of Eq.51) for all w,

parameters\=0.1,0,=1.95, andb=0.21. Here, the appear- However, Fig. 11 shows that there is a gapugk2, where
ance of the center attractor in the right plot indicates that th«. — g s not a solution of Eq(51). This gap ofw,=2 cor-

tune of the dynamical system is slightly lowered, and theresponds to the Mathieu instability. The steady state solution
stable region in the phase space is also increased by thg ,, ~2 can be obtained by the ansatz

damping force.

B. Harmonic linearization method and periodic solutions X(t)=Xo+ X1c0d w,t+ x1) +Y(1), (52

The Hamiltonian formalism is not applicable when the
damping parametek of Eq. (17) becomes large. The attrac- wherey(t) satisfies
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FIG. 11. The amplitudes of periodic solutions are shown as a
function of the voltage modulation tune, for A=0.01 and
b=0.3. Note that 1:1, 3:2, 2:1, 5:2, 3:1 resonances are excited due

00, | MHH|m\\uuu‘..“‘u.wm.mm..‘um.\uuu\n|||nHlﬂl\l\lﬂlﬂﬂﬂmu w

to a very weak damping paramet&r=0.01. 0 2. 0 3.0
V
" bw” ’
Y AT T com )Y 1-2(1+b cosw,t) FIG. 12. The shaded areas mark the stable regions of the QI
v dynamical system under the rf voltage modulation with the damp-
w,A ing parameteA=0.1 (lower ploYy, andA= 0.5 (upper ploj, respec-
X[Xo+XsCo8 w,t+ x1) ]+ - ——= V= tively. The white areas inl,w,) correspond to the condition that
1+b cosw,t v
v

the entire bucket is unstable. For completeness, we include the para-
(53 metric regionb> 1 in our study of the stability of the QI dynamical

system. The solid line that connects dots corresponds to the critical
This is the generalized Mathieu equation with phase Spac@odulation amplitude obtained from the Melnikov integral method.
damping. The general solution can be expressed as 2A sinhmo,

o™ 770)5((1)34— l)|w3—l| '

(56)
(54)

+ L .
y= Xl,zcos< 2 e Based on the Melnikov integral method, the critical modula-

tion amplitudeb,, for the chaotic condition is proportional to
In a finite tune window, the amplitude has a solution the damping parametéy. Note also that the Melnikov inte-

Xy~ €Stwith s>0. ThusXy,=0 corresponds to the UFP of 9ral has a pole ab,=1. This means that the=1 harmonic

2:1 parametric resonance in E6). This instability is 1S usually not excited by the rf voltage modulation. The
called the Mathieu instability. physics is that the rf voltage modulation at a tunewgf=1

can be averaged to zero, and the particle motion can tolerate
- o a large voltage modulation amplitude. In reality, the dynami-
C. Transition to global chaos and Melnikov integral cal system with amplitude modulation is complicated be-

We observe in the previous few sections that the QI dy-cause many subharmonics can be excited by the Mathieu
namics system will encounter global chaos when the modulnstability.
lation amplitude is large. What is the critical modulation am-  T0 provide a complete analysis on the stability of the QI
plitude for the onset of global chaos? Usit4y) and Egs. dynamical system under rf voltage modulation, we perform
(48), the distance between the stable and unstable orbits fro@xtensive numerical simulations, where the critical modula-

the UFP of the unperturbed Hamiltonian is given by thetion amplitude isdefinedas the condition that the entire
Melnikov integral[14] bucket is unstable. The shaded areas of Fig. 12 depict para-

metric regions B, »,) where there exist stable phase space
* points in the bucket. In other words, parameters in the white
:L [Xex(t) = X5,(D) ][ D Psy(£) COS0, (+10) + Apsy(1) Jdit space regions correspond to the result that the entire rf
bucket is unstable. The critical modulation paraméigifor
6A the onset of global chaos can be identified as the boundary
5 between the shaded area and the white space. Although
b>1 is unphysical, the stability of this dynamical system is
(59 studied in the entire parametric space for completeness. The
estimation obtained from the Melnikov integral is also
where Xg, and p, of the separatrix orbit given by Eq9) shown for comparison. We observe that the Melnikov inte-
have been used to obtain the Melnikov integral. The condigral does not provide detailed understanding of the stability
tion for a homoclinic structure near the separatrix is given byof this dynamical system.

3
=7 Trbwﬁ(w%— 1)(1- wg)sinwvtocsch Tw,)+
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IV. CONCLUSION system, the stability can be obtained reliably by the method
of parametric resonance analysis, while the Melnikov inte-
i o gral method fails even to provide a proper dependence of the
Lzsrgirgrl]Cfssggéhigarfg'o?héo sqc;)bt:ﬁtl Cgf?ﬁefcg :]h:mg:laldystability on the modulation tune and the damping parameter.
Y : m= = y y We have also studied the effect of voltage modulation on the

system Is determined mainly by the 1:1 parameric resoQI dynamical system. We find that the QI dynamical system

Tf%iirgrtﬁé"t:cz ’rgs]?)rfa:\ifear?:rguestzg rterzlseoréall:n;: eéfo%;opiif trgig_insensitive to rf voltage modulation provided that the volt-
nance to be unstabl@Mathieu instability. This gives rise to ge modulation amplitude is smaller than 0.2.

a global instability to the entire QI bucket. Thus the charac- ACKNOWLEDGMENTS
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In conclusion, we have identified the role of parametric
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