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The stopping power of dense nonideal plasmas is calculated in different approximations. TheT-matrix
approximation for binary collisions is compared with the random phase approximation for dielectric fluctua-
tions. Within a microscopic model, the dynamical evolution of the velocity of the projectile is calculated. It
reproduces well experimental values for the stopping of fast heavy ions. A comparison with molecular dy-
namical simulation is performed for the friction coefficient. It is found that theT matrix reproduces the
simulation result with a charge dependence ofj1.4, wherej5ZG3/2. The connection to transport properties like
conductivity is presented. In this way we extend former smallG expansions to strongly coupled plasmas.
Further improvements due to correlations are discussed. Both concepts, cluster decomposition and memory, are
compared and it is found that they lead to the same quantum virial corrections of Beth-Uhlenbeck type in
equilibrium. However, memory in the kinetic equation causes an additional renormalization of the effective
energy transfer in nonequilibrium.@S1063-651X~96!08409-7#

PACS number~s!: 52.20.2j, 52.40.Mj, 05.20.Dd, 82.20.Mj

I. INTRODUCTION

Stopping power is an often investigated quantity. One
must know how much energy can be deposited in a small
volume, which has direct relevance for the prospect of iner-
tial fusion @1#. Experiments have shown that the stopping
power can be enhanced an order of magnitude due to stop-
ping of heavy ions in a nonideal plasma in comparison with
a cold gas as target@2#. Therefore it is important to study the
underlying microscopic processes.

While most treatments solve the coupled Vlasov equation
with the self-consistent Poisson equation@3# only a few at-
tempts are made to incorporate higher order correlations.
This is basically due to the fact that at very large projectile
velocities the mean field approximation leads to quite good
results using Bethe-type formulas of the stopping power@4#.
In the strong coupling limit the numerical solution of the
coupled Poisson-Vlasov equation leads to large differences
from the linear theory@5#. However, with respect to the fact
that the coupled Poisson and Vlasov equations are mean field
equations, it is certainly necessary to consider higher order
diagrams if one would like to describe strongly coupled plas-
mas. This is also due to the reversible character of the Vlasov
equation, such that one has to incorporate collisions to pro-
vide energy spreading and stopping. Recently comparisons
with molecular dynamical simulations@6# clearly show the
importance of collisions. This calculation as well as experi-
mental measurements@7# show a deviation from the charge
dependence of the stopping power at small velocities pre-
dicted by the linear theory.

A further question that arises is the dynamical evolution
of the effective projectile charge. In@3# a master equation
was solved including different processes contributing to the
one step ionization. Recent measurements point to the impor-
tance of multi-ionization processes. An extension of the
theory of stopping power was given by the inclusion of a
structure factor for the projectile ion as a multicharged clus-
ter @8–11#. Therein, the correlated stopping of clusters is
considered and the relevance of structure effects in dense

plasmas is shown. Later it was found that the enhancement
of the stopping power due to ion-ion correlations in weakly
coupled plasmas is suppressed in the strong coupling regime
@6#. These constructive interference effects are disturbed by
the collisions between target electrons. A promising treat-
ment of strongly coupled plasmas employs wave packet mo-
lecular dynamics@12#. There the electrons are represented by
Gaussian wave packets, whose parameters follow a pseudo-
Hamiltonian dynamics.

Here we follow a kinetic approach within the quantum
statistical framework. We present the results obtained within
different approximations resulting in different quantum col-
lision integrals. These calculations continue earlier investiga-
tions @13–15# where random phase approximation~RPA!
andT-matrix approximation have been considered. The out-
line of the paper is as follows. In the second section we give
an alternative derivation of the RPA stopping power, which
shows that the known formula is also valid for degenerate
plasmas. Then different limiting cases are compared with the
exact numerical solution. In Sec. III we derive the binary
collision component of the stopping power. Both expres-
sions,T matrix and RPA, are combined and the numerical
results are presented for quantum mechanicalT-matrix and
RPA calculations. It is found that the RPA by itself is higher
for dense, strongly coupled plasmas, where the collective
transport of energy is dominant. In Sec. IV we present the
dynamical solution for the velocity of projectiles and com-
pare with experimental values. There we describe the pen-
etration of a fast heavy ion in a dense, nonideal plasma by
assuming that the surrounding plasma is in equilibrium. The
experimental results are reproduced well. The comparison
with molecular dynamical simulations is performed in Sec.
V. We find that theT-matrix approximation can describe the
friction coefficient, which is the stopping power at small ve-
locities, for strongly coupled plasmas. In Sec. VI we give a
short discussion of possible extensions of the theory in order
to incorporate correlations. The correlations are introduced
via two different concepts; both the cluster decomposition in
the polarization function and the memory effects lead to
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quantum virial corrections of Beth-Uhlenbeck type in equi-
librium. However, the memory effects are an expression of
nonideality@16# and lead to an additional renormalization of
the stopping power. We will demonstrate that this renormal-
ization can account for further deviations from the charge
dependence of linear theory scaling.

II. STOPPING POWER BY DIELECTRIC FLUCTUATIONS

The long range fluctuations due to density oscillations are
described by the random phase approximation. Within this
approximation~see Fig. 1! the corresponding kinetic equa-
tion is the Lennard-Balescu kinetic equation whose collision
integral can be derived including external electric fields~la-
ser fields! and memory effects@17#. The field influences the
collision integral is two main ways. First, it widens thed
distribution of energy conservation by an oscillating part
;E2, and secondly, some retardation occurs which causes a
non-Markovian behavior of the collision integral.

A. Stopping power in RPA

In the following we first neglect the memory effects,
which will be treated later in Sec. VI. Then the Lennard-
Balescu collision integral reads
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with the one-particle distribution functionf a5 f (pa ;R,t) of speciesa and correspondinglyf̄ a5(12 f a) and the quasiparticle
energyEp

a5Ea(p;R,t). Here a mixed representation is used wherep is the transform of difference coordinates,R the center
of mass coordinate, andt the center of mass time. The kinetic equation~1! is a complicated coupled equation including the
screened potentialV which is connected to the response function« by
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whereVab is the Coulomb potential and the dielectric function« is given in quasiparticle approximation as
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Here P0 denotes the polarization function of the single-
particle loop. Restricting to the free particle dispersion we
can write the energy transfer rate per time from Eq.~1! in the
form
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ḟ aL

5
2p

\ (
b
E d3pd3qd3Q

~2p\!9
d~Ep

a1EQ
b 2Ep1q

a 2EQ2q
b !

3
Ep
a2Ep1q

a

2
uVab~q,Ep

a2Ep1q
a !u2@ f p1q

a f Q2q
b ~12 f Q

b !

2 f p
af Q

b ~12 f Q2q
b !2 f p

af p1q
a ~ f Q2q

b 2 f Q
b !#. ~4!

The momentum conservation has been integrated out and the
statistical occupation factors have been rearranged. In view
of the aim of describing fast particles stopped in a surround-

ing plasma, we assume that the projectile possesses a very
sharp distribution around its velocity. This velocityv(t) is
time dependent, while the target plasma is assumed to be in
equilibrium with the one-particle Fermi distribution function
f b(E). For the projectile we have f a(p)
5(2p\)3nad„p2u(t)… whereu(t)5mav(t) and na is the
artificial density of the beam. Then the last term of the oc-
cupation factors in~4! vanishes and we derive
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where the abbreviation\v5Eu2q
a 2Eu

a and the Bose occu-
pation functionnB have been introduced. We can now pro-

FIG. 1. The RPA approximation for the self-energy~above! as
well as T-matrix approximation~middle!. The joint expression
counts the Fock term twice and has to be subtracted~below!.
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ceed withVab2 5VaaVbb /u«u2, which follows from the RPA
in Eq. ~2!, and introduce the dielectric function~3! to obtain
the final result

Ėa52
2na
\ E d3q

~2p\!3
\vnB~\v!Vaa~q!2Im«21~q,\v!.

~6!

As one sees, the sum over different species is subsumed into
the dielectric function. It is noteworthy to remark that this
result is valid for any arbitrary degeneracy. The presented
derivation shows that the result~6! is more generally valid
than those derived earlier@13–15#. Especially, the free en-
ergy dispersion is replaced by the quasiparticle one. Here we
derived~6! only within RPA. However, higher order corre-
lations like vertex corrections can be incorporated in the di-
electric function, such that~6! remains valid, which will be
discussed in Sec. VI. This fact is important for dense solid
state plasmas which have been used recently for stopping
experiments. There the result~6! is applicable as well.

A more explicit form can be given by carrying out the
angular integration
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If we had used the momentum transferF5 ṗa /na for the
stopping power instead of the energy transfer rate we would
have to replace thev factor in ~7! by the term
(v2\k2/2ma)/v(t). Because we restrict ourselves to heavy
ions this difference is not important here.

B. High velocity limit

In the case of velocities much larger than the thermal
velocity and/or very heavy ions with massma , the integra-
tion limits in ~7! can be extended to6`. Then the sum rule
~B1! leads to the result
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with the plasma frequencyvp . The expression shows the
typical logarithmic divergence for small and large wave-
lengthk. Let us remark that this divergence is absent in the
complete expression~7! for small wave vectors due to
screening and for large wave vectors due to quantum effects
which are mainly reflected in the de Broglie wavelength. The
loss of both, screening as well as quantum effects, during the
approximation which leads from~7! to ~8!, is often reintro-
duced by cutoff procedures. For large wave vectors, one as-
sumes a maximalkmaxand the small wave vectors are limited
mainly by the collective modevp /v, see @18#. The well
known Bethe-type formula is obtained by using the de Bro-
glie wavelength as maximal wave vector
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with the Coulomb logarithmLBethe5 ln(2v2m/vp\). For pa-
rameters resembling classical transport the maximal wave
vector is often calculated by the shortest colliding distance
kmax5mv2«0 /Zae

2 of two particles which leads to the clas-
sical Bohr result
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with LBohr5 ln(v3m«0 /vpZae
2). Note that within the ap-

proximation~10! one uses a concept~colliding two particle,
nearest distance! which is not includeda priori in the origi-
nal collision integral~1!. Instead, if we wish to consider the
collision dominated regime we have to use theT-matrix ap-
proximation in the next section. This will lead to the same
limiting formula. But it is already presented here in order to
illustrate the close relation between different approximation
schemes. Various limiting cases and improvements of ap-
proximative formulas have been discussed in the literature,
see@14#, and citations therein.

All approximative as well as exact formulas show that the
stopping power is essentially proportional to the squared
plasma frequency of the target plasma. Therefore the contri-
bution of ions with much larger mass can often be neglected
in comparison to the electron contribution of the target
plasma.

C. Numerical results

Here we would like to discuss the validity of the approxi-
mation formulas~9! and ~10! in comparison with the exact
result ~7!. In Fig. 2 the stopping powerdE/dx5Ė/nav of a
projectile with mass number 238 and chargeZ51 in a
plasma with density 1017cm23 and a temperature of 2 eV is
plotted versus velocity. One sees that the approximative for-
mulas are in agreement with the exact numerical result for
velocities higher than two times the thermal velocity. The
disagreement for smaller velocities is quite obvious.

FIG. 2. The RPA stopping power for a238U11 projectile in
comparison with the classical Bohr~10! and the quantum Bethe~9!
result.
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The careful inspection of the numerical result of the exact
RPA stopping power formula~7! leads to a zero at small
velocities. In Fig. 3 the stopping power for three different
mass ratios is plotted versus velocity. This zero scales with
the mass ratio between target and projectile@15#. It shows
that for projectile velocities smaller than the thermal velocity
of the target plasma~scaled by mass ratio!, the projectile will
be accelerated up to the temperature of the surrounding
plasma. This describes the fact that subsonic projectiles can
absorb plasmons but not emit them@15# ~also known as the
acoustic Cherenkov effect!.

Next we discuss the temperature as well as density depen-
dence of the exact RPA stopping power. In Fig. 4 the stop-
ping power for238U11 is plotted versus velocity for different
densities. With increasing density of the target plasma the
stopping power is increased. This is further expressed in Fig.

5 where the stopping power is plotted at thermal velocity
versus density for different temperatures. One sees that for
lower temperature the increase with density is more rapid
than for higher temperatures. A cold plasma can absorb
many more phonons than a hot plasma can. At higher tem-
perature a plasma becomes ideal, which means that the in-
teraction and therefore the RPA stopping is much lower than
the thermal motion and we expect that binary collisions are
dominating.

III. STOPPING POWER BY COLLISIONS

We now proceed and calculate the contribution of strong
collisions to the stopping power. Therefore we restrict our-
selves to binary collision approximation and give the self-
energy in terms of the ladder summation~see Fig. 1!. Then
the corresponding collision integral reads
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where the ladder summation is represented by theT matrix. The latter one can be expressed by the quantum mechanical
differential cross section. After a straightforward algebra~Appendix A! we obtain for the energy transfer rate, in a manner
analogous to that of the preceding section for a nondegenerate plasma,
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with the thermal velocityv t
252T/mb and the abbreviation

a5(vp/T)(11mb /ma). The quantum mechanical transport
cross section was introduced as

s t~p!5E dV~12cosu!
ds

dV
. ~13!

A. Quantum transport cross sections

This cross section is obtained by solving the Schro¨dinger
equation and using the representation of theT matrix in
terms of scattering phase shifts. In@19# a fit formula is given
which subsumed the numerical results for the transport cross
section for a plasma with chargeZ51,

FIG. 3. The RPA stopping powerĖ for mass ratios between
projectiles and target of 1,3,100 versus velocity.

FIG. 4. The stopping power for238U11 versus velocity for dif-
ferent densities at a temperature of 2eV.
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with h5p22k2aB
2 and e5k2aBrDeb/2. The parameter

a02a6 as well as the effective Debye radiusrDeb can be
found in @19#. This formula interpolates the data for the
transport cross section using a static screened Debye poten-
tial with effective Debye radius. The coefficientsa2 ,a3 ,a4
are chosen to reproduce the Born approximation forh@1
and the first and second WKB approximation for small quan-
tum correctionsh!1. The parametersa5 anda6 are intro-
duced to fit the behavior of the cross section in the quasiclas-
sical limit for small values ofe.

B. Classical limit

Expression~12! can be simplified if we use for the trans-
port cross section the classical approximation which reads
@6#

s t~p!52pb0
2lnS 11

bm
2

b0
2 D , ~15!

with b05e2mZa /p
2, m the reduced mass, and the maximum

impact parameterbm . Further, we consider large projectile
velocities and heavy ions where we can replace the momen-
tum dependence of the logarithm by the mean value
^p&'mA^v21v t

2&. Then the cross section in~12! can be
taken out of the integral and the stopping power becomes
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Here we have used a mean value for the maximal impact
parameterbm5(1/k)A112(v/v t)

2 such that it takes the
valuek21 for small velocities andv/vp for fast projectiles
where the collective mode limits the reaction time. The lim-
iting expression within the Coulomb logarithm approxima-
tion ~16! coincides with the derivation in@6,20# which has
been derived by an entirely different way.

As one sees, expression~17! approaches the limit

Lc5 ln
v3mb«0
vpeaeb

~18!

for large projectile velocities. Therefore Eq.~16! yields the
classical result~10!.

C. Born approximation

Instead of the classical cutoff used in the preceding sec-
tion, we now employ the quantum Born approximation of the
T matrix. Thus we use a screened potential which corre-
sponds to the cutoff for small momenta by the inverse Debye
screening lengthk and at large momenta by the thermal de
Broglie wavelength due to quantum effects. The transport
cross section then reads

s t~p!5
2p\4
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4 F ln~114b!2

4b

114bG , ~19!

with aB the Bohr radius andb5p2/\2k2. Following now the
same approximations used in the preceding section, which
means we usep'mAv21v t

2, we arrive instead of~17! at
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For large projectile velocities it approaches the limit

LC5 lnS 2mv2e\vp
D , ~21!

which leads just to the known Bethe result~9!, but with an
e21 factor in the logarithm. This represents~7! in the limit of
large velocities better than~9!. Therefore the quantum-Born
approximation leads to an enhanced Bethe result for large
projectile velocities. We also point out the different charge
dependencies in~17! and ~20! due to the different cutoffs.

D. Joint expressions

To consider both the stopping power due to dielectric
fluctuations and due to binary collisions one would add Eqs.
~12! and ~7!. The inspection of the corresponding diagrams
in Fig. 1 shows that the Fock term is double counted by this
way. Hence the Born term of~7! or ~12! has to be subtracted.
This expression, called here the joint expression, is well
known @21,22#.

FIG. 5. The stopping power for238U11 at thermal velocity,
which is nearly the maximum of the stopping power, versus densi-
ties for different temperatures.
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Evaluating the Born term leads to expression~7! but with
2Im« instead of Im«21. It is interesting to consider the limit
of large velocities in the same manner as it was done in Sec.
II B. Using the sum rule~B2! for the corresponding expres-
sion with2Im« instead of Im«21 we get just the RPA result
~8!. Because this has to be subtracted, the joint expression
consists therefore only of the binary collision term~16! or
~10! in the limit of large velocities. This shows clearly that in
the large velocity domain the stopping power is dominated
by the binary collisions. This fact was observed also in@23#
where the enhancement of the stopping power due to dielec-
tric theory in a strongly correlated plasma is destroyed by
collisions, which was found in agreement with molecular
dynamical simulations. Therefore the collisions dominate in
the strong coupling regime due to the charge dependence. It
has to be remarked that the Born term with bare Coulomb
potential is divergent in contrast to the RPA result as it is
known from the Landau collision integral. Therefore the nu-
merical evaluation of the Born term in~7! is only meaningful
with, e.g., a statically screened Coulomb potential.

The subtracting scheme does not mean that the RPA con-
tribution can be neglected. Therefore we check in the follow-
ing the case forZa51. Instead of using approximative for-
mulas for high velocities, Eq.~12! is calculated numerically
with the help of the quantum mechanical transport cross sec-
tions. We see from the numerical solution of~7! and ~12!
that the RPA contribution becomes more important for dense
plasmas at low temperatures. To illustrate this, Fig. 6 shows
the stopping power of238U11 calculated from this different
contribution. The density ofn51012 cm23 and temperature
of T518 eV are in the region where the plasma is ideal. One
sees that the contribution due to binary collisions exceeds the
contribution from RPA by a factor of 2. For higher velocities
the expression approaches the classical Bohr result, which
leads to unphysical high stopping power at projectile veloci-
ties around thermal velocity of the plasma. The approxima-
tion by the Coulomb logarithm~16! shows a rough agree-
ment with the exactT-matrix result. The joint expression
interpolates between the RPA result and theT matrix. In Fig.
7 we have chosen a higher density ofn51017cm23. Here the

RPA contribution is almost equal to the contribution from
the binary collisions. The Coulomb logarithm approximation
exceeds theT matrix remarkably. If we decrease the tem-
perature of the plasma in Fig. 8, then the RPA contribution is
larger than the binary collisions. This can be understood such
that at low temperatures and high densities the collective
behavior dominates the energy transfer, while at high tem-
peratures and low densities the binary collisions dominate.
The Coulomb logarithm coincides almost with the RPA re-
sult in Fig. 8 and overestimates theT matrix by about a
factor of 2. We can conclude that stopping due to collective
behavior, i.e., absorption and emission of plasmons, is the
most important contribution in dense nonideal plasmas.

IV. COMPARISON WITH EXPERIMENTS
OF HEAVY ION STOPPING

We describe the penetration of a projectile into the plasma
by the following model assumptions.~i! The frequency of
heavy ions should be lower than the inverse relaxation time
of the plasma such that the plasma is in equilibrium.~ii ! The
beam of projectiles propagates in one dimension.~iii ! The
dynamical evolution of the projectile is described by its ve-
locity

FIG. 6. The stopping power calculated by RPA in~7!, T matrix
in ~12!, and the Coulomb logarithm approximation~16! together
with the classical Bohr result~dashed! in ~10! versus velocity for
low density and high temperature. A projectile with chargeZ51
and a mass of238U was chosen. The dotted line represents the joint
expression result (I LB1IBoltz2I Landau).

FIG. 7. The stopping power as in Fig. 6 calculated by RPA,T
matrix, and Coulomb logarithm together with the classical Bohr
result versus velocity for high density and high temperature.

FIG. 8. The stopping power as in Fig. 6 calculated by RPA,T
matrix, and Coulomb logarithm together with the classical Bohr
result versus velocity for high density and low temperature.
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v̇~ t !52
F@v~ t !#

ma
, v~0!5v0 , ~22!

whereF5@1/v(t)#•(Ė/n) represents the stopping power in
terms of the energy transfer rate.

With the help of the derived stopping power we are now
able to describe the dynamical evolution of the projectile.
Thus we have to solve within this model the differential
equation

v̇~ t !52
1

v~ t !

Ėa„v~ t !…

mana
, ~23!

where the right hand side represents the stopping power in
terms of the previously calculated energy transfer rate. For
comparison with experiments we choose a data set for a
beam of238U531 with a beam energy ofE56.3 MeV/u on a
hot argon plasma. This experiment was chosen because the
mean charge state remains constant within this experiment,
which was assumed during the entire calculation@24#. The
experimental values of plasma density and temperature serve
as an input for the stopping power calculation. The result can
be seen in Fig. 9. TheZ-pinch discharge occurs around the
time point of 4ms. We have plotted the comparison with the
quantum result~20! and the classical result~17!. Whereas the
quantum results lead to a higher stopping power for high
densities the classical result reproduces the experimental val-

ues more appropriately. This is understandable due to the
different charge dependencies. In the classical result the cut-
off is given due to the minimal distance, resulting in a charge
dependence of the stopping powerZa

2ln(11c/Za
2). In con-

trast, the quantum cutoff is given due to the thermal de Bro-
glie wavelength, which leads to aZa

2 dependence of the stop-
ping power.

The stopping after the pinch is described quite reasonably,
but the energy loss before the pinch is overestimated. This
can be explained because there is still a cold plasma while
we calculate the stopping with formulas for hot nonideal
plasmas.

Another experiment is chosen from@2#. Here the charge
state of the projectile is changing during the penetration
through the plasma. This is illustrated in Fig. 10 where we
have calculated the stopping power for different charge states
with the experimental density and temperature. One sees that
the experimental stopping power can only be reproduced as-
suming that the charge is changing betweenZ54 and
Z55. The charge dynamics can be treated within a phenom-
enological approach in@3#. From the microscopic point of
view the dynamical evolution of the charge state has to be
treated in a forthcoming work.

V. COMPARISON WITH MOLECULAR DYNAMICAL
SIMULATIONS

The observation in the preceding section underlines the
importance of the charge dependence of the stopping power,
which plays an important role in current discussions. For
instance, in @6# a comparison with molecular dynamical
simulations yields a charge dependence ofZa

1.4 at small ve-
locities. Here we can discuss the stopping power~16! in
comparison to the classical approximation~17! and the quan-
tum result ~20!. Whereas the latter one shows only aZa

2

dependence, the classical result leads to a more involved
dependenceZa

2ln(11c/Za
2). From the latter form we see that

for special density and temperature dependentc any depen-
dence betweenZa

2 and a constant can be approached with
increasing charge. This is in clear disagreement with the re-
sults of the molecular dynamical simulations@6#, where a
(ZaG

3/2)1.43 dependence was found pertaining to higher

FIG. 9. The relative energy loss of238U531 with E056.3 MeV/u
beam energy versus time of theZ pinch in an argon plasma. The
experimental values~solid line! are from Wetzleret al. @24#. The
theoretical curves~dashed! are calculated with the experimental
density and temperature of theZ pinch as input. The lower dashed
line corresponds to the classical result and the upper dashed line to
the quantum result. The difference is mostly due to the different
charge dependencies. The lack of data between 3 and 4ms is due to
the strong focusing force of the plasma current resulting in decreas-
ing intensity of the beam after the plasma~plasma lens effect!
@33,24#. The theoretical curves interpolate between 3 and 4ms.

FIG. 10. The relative energy loss of84Kr with E0545 keV/u
beam energy versus time of theZ pinch in a hydrogen plasma. The
experimental values~solid line! are from@2#. The theoretical curves
are calculated with different assumed charge states of the projectile
for the experimental density and temperature of theZ pinch as
input. One sees that the projectile charge reaches a charge state of
4/5.
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charges and plasma parameter. This shows the limits of the
weak coupling theory.

In Fig. 11 we plotted the result of the molecular dynami-
cal simulation@6# with our different approximation schemes.
The double logarithmic plot shows the friction coefficient
which is just the stopping power at small velocities divided
by the velocity, as a function ofZG3/2. Here the plasma pa-
rameter is introduced asG5(e2/4p«0kBT)(4pn/3)1/3. The
simulation has been performed with three different sets of
plasma parameters ofG50.11~crosses!, G50.34~triangles!,
andG51.08 ~circles!. The data appear to be almost scaling
with ZG3/2. A more careful inspection shows slight devia-
tions from a unique curve. This is due to an explicit tempera-
ture dependence besides this scaling from linear theory. This
is also confirmed by the RPA result~7!. There we plotted
three different temperatures ofT53,5,10 eV. The lower the
temperature the steeper is the increase of the density. These
curves are not on one line, indicating the nonlinear character.
But the RPA result overestimates the simulation results con-
siderably due to theZ2 scaling. This is reduced in reality by
two-particle collisions which destroy the collective modes.

We see that the Coulomb logarithm approximation~16!
can account for the simulation result only up toZG3/2'1.
Then the friction is underestimated due to the
ln(11a/Z2G3) behavior. TheT-matrix result ~12! can ac-
count for much higher densitiesZG3/2'325, which is un-
derstandable because we account for much higher order cor-
relations due to ladder summation than the Born
approximation~16!. But for the very strongly coupled case
this fails as well.

Connection to transport properties

The stopping power at small velocities yields direct ac-
cess to the conductivity as a transport property. Therefore we
imagine the projectile as a moving currentj which causes
Joule heat due to friction and a conductivityr,

jWEW 5r j 25r~neZv !252^Ė&. ~24!

From this consideration we find a direct connection between
the dimensionless conductivityr*5r(4p«0)

2T3/2/e2Am
and a scaled stopping power

lim
v→0

lv t
vT

dE

dx
5

Z2G3

2pA2
r* , ~25!

where v t
252T/m is the thermal velocity and

l5e2/(12p«0T) the Landau length. Consequently, Fig. 11
can be considered also as a scaled plot of the conductivity in
a strongly coupled plasma. Therefore the treatment presented
here is a generalization of earlier calculations@25#, where
virial expansions with respect toG have been found, to
higher coupled plasmaG>1. This will be further investi-
gated for the strong coupled limit in the next section.

The inspection of Fig. 3 shows that the required limit of
small velocities is only possible for mass ratios between pro-
jectile and targetm/M→0. Otherwise we would obtain a
negative resistivity with a'1/v2 singularity, which is a di-
rect expression of the acoustic Cherenkov effect, see the dis-
cussion of the numerical results in Sec. II C.

Now we present approximate results from theT matrix
and from the RPA in order to compare to other analytical
results. From~12! we obtain a dimensionless conductivity in
T-matrix approximation as

r tm* 5
«0
2A2

3ApTe4m3Z2
E
0

`

dpp5s t~p!e2p2/2mT. ~26!

If we now use the screened Born approximation~20! and
carry the functionF(c)5 ln(11c)2c/(11c) out of the in-
tegral at the maximal value of momentum we obtain the
result

r tm* 5
2Ap

3
FS 2m2v t

2

\2k2 D , ~27!

with the inverse Debye screening lengthk. On the other
hand, using now the RPA expression~7!, we expand for
small velocities and infinite projectile mass and derive

rRPA* 5
4A2p

3 E
0

`

dk
k3

~k21k2!2
. ~28!

Using the same cutoff wavelength we have used to derive the
Bethe-type formula~9! the result reads

rRPA* 5
2A2p

3
FS 4m2v t

2

\2k2 D . ~29!

To compare with the Brooks-Herring result of transport
theory @26# one gets in screened Born approximation

rBH* 5
pA2p

16
FS 12m2v t

2

\2k2 D . ~30!

This result is obtained considering the momentum relaxation
as the dominant process. In comparison with theT-matrix

FIG. 11. A double logarithmic plot of the friction coefficient
versusZG3/2 with the plasma parameterG. The points are the results
from the simulation @6# for three different plasma parameters
G50.11 ~crosses!, G50.34 ~triangles!, andG51.08 ~circles!. The
Coulomb approximation~16! is compared with theT-matrix ap-
proximation ~12! and the RPA results~7! for three different tem-
peraturesT52,5,10eV. While the Coulomb logarithm and theT
matrix follow the scaling of the linear theory, the RPA result shows
deviations with different temperatures.
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result and the RPA result we see the differences in the pref-
actor as well as the cutoff wavelength. This is due to the
energy relaxation which was treated here as the main process
in heavy ion stopping.

VI. EXTENSION TO STRONG COUPLING

A. Higher order correlations

The problem of including higher order correlations in the
stopping power of strongly coupled plasma is solved by a
cluster decomposition ofP(qW ,z) in the dielectric function
~3!

P~qW ,v!5P1
0~qW ,v!1P2

0~qW ,v!1•••, ~31!

whereP1
0(qW ,z) is the one-particle contribution to the polar-

ization function~3! andP2
0(qW ,z) is the two-particle contri-

bution to the polarization function@27#, whose graph is given
in Fig. 12. The evaluation of this graph can be found in
@27–29# with the following expression for the two-particle
contribution to the polarization function:

P2
0~qW ,v!5 (

n,n8,P

g~EnP
ab!2g~En8P1q

ab
!

v1EnP
ab2En8,P1q

ab uMnn8~q!u2

2 (
p1 ,p2

g~Ep1
a 1Ep2

b !2g~Ep11q
a 1Ep2

b !

v1Ep1
a 2Ep11q

b .

~32!

This result for the two-particle polarization function is
formally similar to the single-particle polarization function
P0 in ~3!. The single-particle~Fermi! distribution f (Ep) has
been replaced by the two-particle~Bose! distribution
g(EnP

ab)5@exp(EnP
ab2mab)21#21. The summations over

n,n8 include bound states as well as scattering states.Mnn8
is the structure factor of the correlated plasma andmab the
chemical potential of the bound pair.

The compressibility as an equation of state on the two-
particle level can be obtained by@30#

K5
1

n2 S ]n

]m D
T

5
b

n2
lim
q→0

E
2`

`

dvS~q,v!, ~33!

wheren is the density andm the chemical potential. The
dynamical structure factorS(q,v) is linked to the imaginary
part of the dielectric function via

S~q,v!5
1

pV~q!

1

ebv21
Im«R~q,v!. ~34!

Using ~32! the following expression for the compressibility
is obtained@29#:

K~b,m!5
1

n2
b

V0
H(

p
f p~12 f p!

14(
P,a

E
2`

` dE

p
gSE1

P2

4mD
3F11gSE1

P2

4mD GDaP~E!J , ~35!

with Da given by

DaP~E!5caF(
m

pd~E2EamP!1
]

]E
daP~E!G . ~36!

It contains the contribution of bound states (EamP) and of
scattering states with the scattering phase shiftdaP(E). Here
a denotes the channel of two-particle states,P its total mo-
mentum, andm the internal quantum number for the bound
states.g(E) is the two-particle~Bose! distribution function
including the chemical potentials of both particles, andca
represents the degeneracy factor of the channela.

This expression coincides with the compressibility one
finds from the Beth-Uhlenbeck formula via~33!

n~b,m!5
1

V0
(
p

f p1
2

V0
(
P,a

E
2`

` dE

p
gSE1

P2

4mDDaP~E!.

~37!

Therefore the inclusion of next order cluster expansion in the
polarization leads to a consistent equation of state on the
level of Beth-Uhlenbeck virial corrections@29#.

B. Contribution of ions to the stopping power

Now we evaluate explicitly the influence of the target ions
the stopping power. Thus we concentrate on the bound state
part of ~36! and~37!. Following the same steps as presented
before we obtain for nondegenerate plasmas

«512(
b

Vbb~P01Pbound
0 1Pscatt

0 !. ~38!

Additionally to the free one-particle polarization function we
get a bound and a scattering contribution. The part resulting
from the bound state contribution has a structure similar to
the free part except for interchanging the mass of the single
particle with the mass of the bound state particles and an
additional structure factor. From this term follows the well
known Saha equation for the relation between free and
bound densities in equilibrium,

2na1b5nanbS lalb

la1b
D 3e2EB /T. ~39!

Now we give the contribution of the ions with an effective
chargeZ to the stopping power. For simplicity we choose the
approximated RPA result for the polarization function~8!
and obtain the stopping power

FIG. 12. The next order of the cluster expansion of the polar-
ization function.
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Ėa

na
5

Za
2e2

«0v~ t !(b Fvp
2~b!lnS vkmaxvp~b! D

1vp
2~Zmb!lnS vkmax

vp~Zmb!
D G , ~40!

where the sum runs over different electron and ion species.
Here we signed the mass dependence of the corresponding
plasma frequencyv(ma)

254pea
2na /ma«0 explicitly. We

arrive at the result which is intuitively understandable. The
stopping power is given by the sum of electron and ion con-
tributions. One sees that for big mass differences between
electrons and ions in a plasma only the electron contribution
counts remarkably.

C. Memory effects

An alternative way to consider correlations is due to the
concept of memory and retardation on the level of the one-
particle distribution. There the evolution of the distribution
becomes retarded due to correlations in the system. In@31#
an additional collision integral was derived which accounts
for the memory in first order gradient approximation

]

]T
f a5(

b
I ab
B @ f #1

]

]T(b I ab
corr@ f #, ~41!

where I ab
B is the quantum mechanical Boltzmann collision

term ~11! and I ab
corr comes from the retardation expansion,

I ab
corr522E dpa8dpbdpb8

~2p\!6
d~pa1pb2pa82pb8!

3u^papbuT abR upa8pb8&u
2P8

1

Ea1Eb2Ea82Eb8

3$ f a8 f b8~17 f a!~17 f b!2~17 f a8!~17 f b8! f af b%, ~42!

where P8 is the derivative of the principal value. The analo-
gous formula holds for the RPA expression. It was shown in
@31# that this additional collision integral leads to the same
Beth-Uhlenbeck virial correction as given by the cluster de-
composition in~37!. It accounts for nonideality of the plasma
and results in a slower relaxation@16#. We have shown in
this way that the memory effect represents higher order cor-
relations which can be alternatively described by cluster de-
composition in equilibrium.

D. Stopping power in nonequilibrium

Besides the generalization of the stopping power due to
cluster decomposition in the dielectric function~3!, which
leads to the same equilibrium virial corrections as the
memory effects, there are nonequilibrium effects included in
the generalized kinetic equation. We will show that this leads
to a renormalization of stopping power. From the generalized
kinetic equation~41! we find the energy transfer in the form

]

]t
^E~v !&5 K p2

2ma
IBL 1

]

]t
^Ecorr@v~ t !#&, ~43!

where ^Ecorr&5^(p2/2ma)I corr& and the nonideal correction
to the stopping power becomes

2F@v#5
d

dx
^E&5

1

v K p2

2ma
IBL 1

v̇
v

]

]v
^Ecorr@v#&.

~44!

Here we have abbreviated for the correlated term beyond
RPA,

^Ecorr&5\
2ea

2

p«0

1

v~ t !E0
`dk

k E2v~ t !k1\k2/2ma

v~ t !k1\k2/2ma

3dvvnB~v!
]Re«~\k,v!/]v

u«~\k,v!u2
. ~45!

In contrast to~7! we have here instead of the imaginary part
of « the frequency derivative of the real part. Equation~45!
has therefore the same form as~7! but with an additional
factor under the integrand which is the inverse of Landau
damping\/G5\Re«8(vp)/Im«(vp), which can be found
by linearization of the dispersion relation@32#. In other
words, near a collective pole where the Landau damping
becomes small the expression~45! can be large and the lin-
earization of memory effects fails.

The differential equation for the projectile velocity reads
then in generalization to~22! from ~44!

v̇5
F@v#eff
ma

5
~1/mav !^~p2/2ma!I

B&
11~1/v !~]/]v !^Ecorr@v#&/ma

. ~46!

We see that the effective stopping power becomes renormal-
ized due to the memory effects, or equivalently nonideality
of the plasma. Here we would like to stress that the charge
dependence of the stopping power is modified additionally
due to the memory effects in~46!. A rough estimation can be
found choosing the momentum of the Landau damping equal
to the thermal one. Then we can write the Landau damping
out of the integral. This is in analogy with the Coulomb
logarithm approximation, which was performed in~16! from
~12!, and results here in

Feff5
F

11~t/mav !~]/]v !~vF !
, ~47!

with t5\/G the lifetime of plasmons. This formula is the
main result of this section. It shows that the stopping power
of the weak coupling theory becomes renormalized by plas-
mon lifetime effects. Due to the mass of the projectile this
renormalization becomes significant only for very dense
plasmas.

Using the small momentum expansion the Landau damp-
ing can be calculated as@32#

1

t
5g~p!5\

Im«~vp!

Re8«~vp!

5\Vbb

vpnbAp

2v tp
~e2~p/2mbv t!

2
2e2~2p/2mbv t!

2
!.

~48!
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The classical limit is obvious. In Fig. 13 the Landau damping
can be seen for two different temperatures and a density of
631023 cm23 which corresponds to a Bruckner parameter in
units of Bohr radiusr s51.5. The damping is shifted to
higher momenta for lower temperatures. Furthermore, the
discrepancy between classical and quantum results becomes
significant for lower temperatures. With the help of this Lan-
dau damping we plotted in Fig. 14 the enhanced Bethe for-
mula ~20! together with the Coulomb logarithm approxima-
tion ~16! with and without lifetime renormalizations. We find
an enhancement of the stopping power in the region of the
maximum, i.e., around the thermal velocity of the plasma.
We suggest that this stopping power formula~47! may serve
as a quantitative estimate of the effect of memory or nonide-
ality effects on the stopping power.

VII. SUMMARY

Different approximation schemes have been employed to
calculate the stopping power numerically in nonideal dense
plasmas. The ladder summation gives more important contri-
butions than the RPA for a dilute plasma at high tempera-
tures. This situation is changed at higher densities and lower
temperature. There collective effects, like plasmon emission
and absorption, are dominant. This means that the RPA is an
appropriate starting point for the calculation of the stopping
power. The derivation presented here yields a RPA expres-
sion for the stopping power that is valid in any degeneracy of
the plasma. This is an extension of former presentations. Dif-
ferent limits are discussed and the range of validity is dem-
onstrated.

A comparison with molecular dynamical simulations was
performed. We found a better agreement of theT-matrix
approximation for strongly coupled plasmas than the Born-
Coulomb logarithm approximation~16!. The RPA result
overestimates the data considerably. While the Coulomb
logarithm approximation and theT matrix follow the scaling

law of the linear theory, which is only dependent onZG3/2,
the RPA results show deviations. This can be seen by an
explicit temperature dependence. TheT matrix describes the
behavior well up to plasma parameter ofZG3/253. The joint
expression betweenT matrix and RPA shows too high values
as well as the RPA itself in comparison with the simulation
result. The connection to transport coefficients like friction
and conductivity is made. The results presented here are an
extension of former smallG expansions.

Within a model of fast heavy projectiles we solve the
equation of motion with the help of the microscopic energy
transfer. Using the experimental values for density and tem-
perature in a typicalZ-pinch discharge, we are able to repro-
duce the experimental values of the stopping of238U531 in a
hot argon plasma after the pinch.

Further improvement in the calculated stopping power is
expected from the inclusion of correlations. We present two
alternative schemes to incorporate higher order correlations.
One treatment improves the dielectric function by a cluster
decomposition. The other approach relies on the inclusion of
retardation and memory effects. Both schemes lead to the
same quantum virial corrections of Beth-Uhlenbeck type in
equilibrium. However, the memory effect results in an addi-
tional renormalization of the effective stopping power. This
memory effect is controlled by the plasmon lifetime. We
found an enhancement of the stopping power in the region of
thermal velocity of the plasma for very dense and nonideal
plasmas. This lifetime effect results from the retardation. It
renormalizes the charge dependency of the stopping power,
especially at small velocities.
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APPENDIX A: CALCULATION OF THE
COLLISION INTEGRAL

Here we briefly sketch the derivation of Eq.~12! from Eq.
~11!. First we introduce convenient coordinates via

FIG. 13. The Landau damping in dependency on the wave vec-
tor for two different temperatures. The density is 6.331023cm23

corresponding to a Bruckner parameter ofr s51.5 in units of the
Bohr radius. For lower temperatures the deviation of the classical
result ~dashed curve! from the quantum mechanical one becomes
significant.

FIG. 14. The enhanced Bethe formula~RPA! from ~20! and the
Coulomb logarithm formula (C-log! from ~16! with ~solid! and
without ~dashed! lifetime effects from retardation.
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p85
ma

M
pb82

mb

M
pa8,

K85pa81pb8 ~A1!

such that the momentum distribution function can be written
asd(Dp)5d(K82K) and the energy conservation becomes
d(DE)52md(p22p82), wherem is the reduced andM the
total mass of colliding particles. Secondly the quantum dif-
ferential cross section can be found from theT matrix by

2pm

\ E
0

` p82dp8

~2p\!3
d~p822p2!ZK pUTSK, K2

2M
1
p2

2m D Up8L Z2

5
p

2m

ds

dVS V,
p2

2m D . ~A2!

Here we neglected the center of mass momentum depen-
dence of the cross section, which would enter only for in-
medium cross sections. The collision integral~11! becomes
then

IBoltz~p!5
1

mE dpb
~2p\!3

E dV8p
ds

dVS V8,
p2

2m D
3@ f a8 f b8 f̄ a f̄ b2 f af b f̄ a8 f̄ b8#, ~A3!

with K5pa1pb andp5(m2 /M )pa2(m1 /M )pb . Multiply-
ing this collision integral withp2/2ma and integrating over
the momentumpa we derive the energy transfer. Using the
Boltzmann distribution functions for the targetf b and the
delta distributionf a(p)5(2p\)3nad„p2u(t)… for the pro-
jectile we obtain

Ėa

na
5
nblb

3

m E dpdK

~2p\!6
p2K

M
e2@p2~mb /M !K#2/2mbT

3dS u2p2
ma

M
K D E dV8~cosa2cosa8!
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5
nblb
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m E dpdK

~2p\!6
p
pK

M
e2@p2~mb /M !K#2/2mbT

3dS u2p2
ma

M
K Ds t~p!, ~A4!

where angular relations are used and the transport cross sec-
tion ~13! was introduced. After straightforward algebra and
trivial integrals we end up with Eq.~12!.

APPENDIX B: SUM RULES

The sum rules used can be found easily in the following
way:

E
2`

1`

dvvnB~v!Im«21~v!

5E
0

1`

dvvnB~v!Im«21~v!

1E
0

1`

dvvnB~2v!Im«21~v!

52E
0

1`

dvvIm«21~v!5
p

2
vp
2 . ~B1!

Here we used the fact that Im«(v) is an odd function and
nB(2v)5212nB(v). The sum rule for the last equality
can be found in any textbook. A related sum rule reads
analogously

E
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1`

dvvnB~v!Im«~v!52
p

2
vp
2 . ~B2!
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