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Stopping power in nonideal and strongly coupled plasmas
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The stopping power of dense nonideal plasmas is calculated in different approximation$-riateix
approximation for binary collisions is compared with the random phase approximation for dielectric fluctua-
tions. Within a microscopic model, the dynamical evolution of the velocity of the projectile is calculated. It
reproduces well experimental values for the stopping of fast heavy ions. A comparison with molecular dy-
namical simulation is performed for the friction coefficient. It is found that Thenatrix reproduces the
simulation result with a charge dependenceé st where£=ZI"%2 The connection to transport properties like
conductivity is presented. In this way we extend former srhakxpansions to strongly coupled plasmas.
Further improvements due to correlations are discussed. Both concepts, cluster decomposition and memory, are
compared and it is found that they lead to the same quantum virial corrections of Beth-Uhlenbeck type in
equilibrium. However, memory in the kinetic equation causes an additional renormalization of the effective
energy transfer in nonequilibriunpS1063-651X96)08409-7

PACS numbe(s): 52.20—j, 52.40.Mj, 05.20.Dd, 82.20.Mj

I. INTRODUCTION plasmas is shown. Later it was found that the enhancement
of the stopping power due to ion-ion correlations in weakly
Stopping power is an often investigated quantity. Onecoupled plasmas is suppressed in the strong coupling regime
must know how much energy can be deposited in a small6]. These constructive interference effects are disturbed by
volume, which has direct relevance for the prospect of inerthe collisions between target electrons. A promising treat-
tial fusion [1]. Experiments have shown that the stoppingment of strongly coupled plasmas employs wave packet mo-
power can be enhanced an order of magnitude due to stopecular dynamic$12]. There the electrons are represented by
ping of heavy ions in a nonideal plasma in comparison withGaussian wave packets, whose parameters follow a pseudo-
a cold gas as targg2]. Therefore it is important to study the Hamiltonian dynamics.
underlying microscopic processes. Here we follow a kinetic approach within the quantum
While most treatments solve the coupled Vlasov equatiorstatistical framework. We present the results obtained within
with the self-consistent Poisson equati@) only a few at-  different approximations resulting in different quantum col-
tempts are made to incorporate higher order correlationdision integrals. These calculations continue earlier investiga-
This is basically due to the fact that at very large projectiletions [13—-15 where random phase approximatiogRPA)
velocities the mean field approximation leads to quite goodind T-matrix approximation have been considered. The out-
results using Bethe-type formulas of the stopping pogr  line of the paper is as follows. In the second section we give
In the strong coupling limit the numerical solution of the an alternative derivation of the RPA stopping power, which
coupled Poisson-Vlasov equation leads to large differenceshows that the known formula is also valid for degenerate
from the linear theory5]. However, with respect to the fact plasmas. Then different limiting cases are compared with the
that the coupled Poisson and Vlasov equations are mean fiekkact numerical solution. In Sec. Ill we derive the binary
equations, it is certainly necessary to consider higher ordegollision component of the stopping power. Both expres-
diagrams if one would like to describe strongly coupled plas-sions, T matrix and RPA, are combined and the numerical
mas. This is also due to the reversible character of the Vlasokesults are presented for quantum mechanicahatrix and
equation, such that one has to incorporate collisions to proRPA calculations. It is found that the RPA by itself is higher
vide energy spreading and stopping. Recently comparisorfer dense, strongly coupled plasmas, where the collective
with molecular dynamical simulatiorf$] clearly show the transport of energy is dominant. In Sec. IV we present the
importance of collisions. This calculation as well as experi-dynamical solution for the velocity of projectiles and com-
mental measuremenfg] show a deviation from the charge pare with experimental values. There we describe the pen-
dependence of the stopping power at small velocities preetration of a fast heavy ion in a dense, nonideal plasma by
dicted by the linear theory. assuming that the surrounding plasma is in equilibrium. The
A further question that arises is the dynamical evolutionexperimental results are reproduced well. The comparison
of the effective projectile charge. If8] a master equation with molecular dynamical simulations is performed in Sec.
was solved including different processes contributing to the/. We find that theT-matrix approximation can describe the
one step ionization. Recent measurements point to the impofriction coefficient, which is the stopping power at small ve-
tance of multi-ionization processes. An extension of thdocities, for strongly coupled plasmas. In Sec. VI we give a
theory of stopping power was given by the inclusion of ashort discussion of possible extensions of the theory in order
structure factor for the projectile ion as a multicharged clusto incorporate correlations. The correlations are introduced
ter [8—11]. Therein, the correlated stopping of clusters isvia two different concepts; both the cluster decomposition in
considered and the relevance of structure effects in dendée polarization function and the memory effects lead to
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guantum virial corrections of Beth-Uhlenbeck type in equi- Q
librium. However, the memory effects are an expression of - O :
nonideality[16] and lead to an additional renormalization of SN "',c) | e
the stopping power. We will demonstrate that this renormal-

ization can account for further deviations from the charge .Q @
dependence of linear theory scaling. = Q

Il. STOPPING POWER BY DIELECTRIC FLUCTUATIONS O
N = I\ T\ - -

The long range fluctuations due to density oscillations are -
described by the random phase approximation. Within this
a_lpprloximation(see Fig. J.the'cor'respond'ing kinetic equa- FIG. 1. The RPA approximation for the self-ener@pove as
_t'on is the Lennardeale_Scu k'_net'c equation th_)se_ COIIISIOr1/\/ell as T-matrix approximation(middle). The joint expression
integral can be derived including external electric figlids
ser field$ and memory effectfl7]. The field influences the
collision integral is two main ways. First, it widens th A. Stopping power in RPA
distribution of energy conservation by an oscillating part In the following we first neglect the memory effects,
~E?2, and secondly, some retardation occurs which causeswhich will be treated later in Sec. VI. Then the Lennard-
non-Markovian behavior of the collision integral. Balescu collision integral reads

counts the Fock term twice and has to be subtra@betbw).

2m dpadpydpy . C — —
|;B(D;R,t)=72b f(azw—ﬁ)eﬂpﬁ Po—Pa—Pp) S(Ea+Ep—E3 —ED)[farfy fafp—fafpfarfy]
X|Vba(p;_ pa,Eg’—Eg;R,t)F, (1)

with the one-particle distribution functiofh,=f(p,;R,t) of speciesa and correspondingly,=(1—f,) and the quasiparticle
energyEgz E?(p;R,t). Here a mixed representation is used wherie the transform of difference coordinatésthe center
of mass coordinate, artdthe center of mass time. The kinetic equati@his a complicated coupled equation including the
screened potentid? which is connected to the response functioby

Vap(d, 0, R, 1) =Vap()e 4, 0,R), 2
whereV,, is the Coulomb potential and the dielectric functions given in quasiparticle approximation as

dp  [fp(p—p:Rt) = fp(p;R,1)]
3 b b | . .
(2mh) w—Epf_p—FE#I—p (7]

s(p.w;R,t>=1+§ vbb<p>H8<p,w;R,t>=1+§ Vii(p) ®3)

Here I1° denotes the polarization function of the single-ing plasma, we assume that the projectile possesses a very
particle loop. Restricting to the free particle dispersion wesharp distribution around its velocity. This velocityt) is
can write the energy transfer rate per time from @9jin the  time dependent, while the target plasma is assumed to be in

form equilibrium with the one-particle Fermi distribution function
fy(E). For the projectle we have f,(p)
£ _<p_2f > =(27h)3n,8(p—u(t)) whereu(t)=m(t) andn, is the
a \2m, ® artificial density of the beam. Then the last term of the oc-

cupation factors irf4) vanishes and we derive

27 d®pd3qd®Q b b
- 27 qd*Q b b
Ea=7na% fmﬁ(ﬁmEQ—EQ_q)ﬁwnB(ﬁw)

E3—-ES
.
X V(@ Ep— B o)L T of 6o 1 1)

do
X 2 — )=, 5
1B 6 )~ a3 o(1 o= &) @ Vsl @ fo-a~ o)z ©
The momentum conservation has been integrated out and the

statistical occupation factors have been rearranged. In viewhere the abbreviatiohw=Ej_,—E{ and the Bose occu-
of the aim of describing fast particles stopped in a surroundpation functionng have been introduced. We can now pro-
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ceed withV2,=V,.V,,/|€|2, which follows from the RPA o
in Eq. (2), and introduce the dielectric functidB) to obtain
the final result 0.08 17 -3

n=10 cm

T=2eV

E——%fﬂﬁ Na(f ®)Vaa(q)2me (g, )
a— (th)3 wlglhhw aaq € q! w).

E 0.06

i b
(6) E Bethe
> 0.04

B2

w

(0.4

As one sees, the sum over different species is subsumed int Bohr

the dielectric function. It is noteworthy to remark that this
result is valid for any arbitrary degeneracy. The presented APA
derivation shows that the resulf) is more generally valid o p 2 s 2 s
than those derived earli¢l3—15. Especially, the free en-
ergy dispersion is replaced by the quasiparticle one. Here we
derived (6) only within RPA. However, higher order corre- FIG. 2. The RPA stopping power for 28U projectile in
Iation§ like vgrtex corrections can 'be incprporqted ir_1 the di—compaﬂSon with the classical Boti0) and the quantum Beth®)
electric function, such th&i6) remains valid, which will be | oq it

discussed in Sec. VI. This fact is important for dense solid

state plasmas which have been used recently for stopping

0.02 -

v/vg

experiments. There the res(@) is applicable as well. with the Coulomb logarithni. geine=IN(20 M/ wf). For pa-
A more explicit form can be given by carrying out the rameters resembling classical transport the maximal wave
angular integration vector is often calculated by the shortest colliding distance

Kmax=Muv2eq/Z €% of two particles which leads to the clas-

E. 262 1 (=dK [v(ok+#kZ2m, sical Bohr result

—=——f —f downg(w)

Na  meov(t)Jo K J-pyk+nk2izm,

X Imsfl(ﬁk,w). (7) E _ deZsz) L (10)
- na— sov(t) Bohr

If we had used the momentum transfér=p,/n, for the

stopping power instead of the energy transfer rate we would

have to replace thew factor in (7) by the term jth Lg,,~=In(v3meo/w,Z,€?). Note that within the ap-
(0—1k*I2m,)/u(t). Because we restrict ourselves to heavyproximation(10) one uses a concefitolliding two particle,

ions this difference is not important here. nearest distangavhich is not includeda priori in the origi-
nal collision integral(1). Instead, if we wish to consider the
B. High velocity limit collision dominated regime we have to use Thenatrix ap-

In the case of velocities much larger than the thermafProximation in the next section. This will lead to the same
velocity and/or very heavy ions with mass,, the integra-  limiting formula. But it is already presented here in order to
tion limits in (7) can be extended ter«. Then the sum rule illustrate the close relation between different approximation

(B1) leads to the result schemes. Various limiting cases and improvements of ap-
. proximative formulas have been discussed in the literature,
Ea €5 (dk see[14], and citations therein.
n, - sov(t)f K’ 8 All approximative as well as exact formulas show that the

stopping power is essentially proportional to the squared

with the plasma frequencyw,. The expression shows the pla_sma fr_equen(_:y of the target plasma. Therefore the contri-
typical logarithmic divergence for small and large wave- bution of ions with much larger mass can often be neglected
lengthk. Let us remark that this divergence is absent in thedn comparison to the electron contribution of the target
complete expressiori7) for small wave vectors due to Plasma.

screening and for large wave vectors due to quantum effects

which are mainly reflected in the de Broglie wavelength. The

loss of both, screening as well as quantum effects, during the C. Numerical results

approximation which leads frorfv) to (8), is often reintro- Here we would like to discuss the validity of the approxi-
duced by cut<_)ff procedures. For large wave vectors,.or)e a$nation formulas(9) and (10) in comparison with the exact
sumes a maxima,,,,and the small wave vectors are limited result(7). In Fig. 2 the stopping powedE/dx=E/n,v of a

mainly by the collective modevw,/v, see[18]. The well o ; ;
. . - projectile with mass number 238 and charge-1 in a
known Bethe-type formula is obtained by using the de Bro-plasma with density Zcm™3 and a temperature of 2 eV is

glie wavelength as maximal wave vector plotted versus velocity. One sees that the approximative for-
: 25 2 mulas are in agreement with the exact numerical result for
Ea: Z€w velocities higher than two times the thermal velocity. The

p
—=— ) S i ;
ng eou(t) Bethe: ©) disagreement for smaller velocities is quite obvious.
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FIG. 4. The stopping power fof*®U*" versus velocity for dif-

FIG. 3. The RPA stopping poweE for mass ratios between o
pping p ferent densities at a temperature of 2eV.

projectiles and target of 1,3,100 versus velocity.

) ) _ 5 where the stopping power is plotted at thermal velocity

The careful inspection of the numerical result of the exacersus density for different temperatures. One sees that for
RPA stopping power formuld7) leads to a zero at small |ower temperature the increase with density is more rapid
velocities. In Fig. 3 the stopping power for three differentthan for higher temperatures. A cold plasma can absorb
mass ratios is plotted versus velocity. This zero scales witlany more phonons than a hot plasma can. At higher tem-
the mass ratio between target and projedtile]. It shows perature a plasma becomes ideal, which means that the in-
of the target plasmescaled by mass ratipthe projectile will  the thermal motion and we expect that binary collisions are
be accelerated up to the temperature of the surroundingominaﬂng_
plasma. This describes the fact that subsonic projectiles can
absorb plasmons but not emit thgdb] (also known as the Ill. STOPPING POWER BY COLLISIONS

acoustic Cherenkov effect
Next we discuss the temperature as well as density depen- We now proceed and calculate the contribution of strong

dence of the exact RPA stopping power. In Fig. 4 the stopeollisions to the stopping power. Therefore we restrict our-
ping power for?3J 1" is plotted versus velocity for different selves to binary collision approximation and give the self-
densities. With increasing density of the target plasma thenergy in terms of the ladder summatiee Fig. 1 Then
stopping power is increased. This is further expressed in Fighe corresponding collision integral reads

2m d®p;d°p,d°py : :
IEOItZ(p,T) _ 7% J' (aZT)Gb S(pa+pPp—Pi—Pp) S(E3(p) + Eb(p) —E¥(p)— EP (p))

X[farfpfafp— fafbfa’fb’]KpapblTEa(Eg, —Ep)papn)l, (11)

where the ladder summation is represented byTthmatrix. The latter one can be expressed by the quantum mechanical
differential cross section. After a straightforward algebhppendix A we obtain for the energy transfer rate, in a manner
analogous to that of the preceding section for a nondegenerate plasma,

- 2
E npoy e ™ ’ZTF p2(1+mb/ma)> 2 2
—(v)=2 ——=—/| dpp’o. acosta—| 1+ ————— | sinha|e™ (P72MpT)(1+mp/ma)" 12
(=2 2l v Jo dPPomp) T (12
|
with the thermal velocityv?=2T/m, and the abbreviation A. Quantum transport cross sections

a=(vp/T)(1+m,/my,). The quantum mechanical transport

cross section was introduced as This cross section is obtained by solving the Sdimger

equation and using the representation of @heamatrix in
terms of scattering phase shifts.[lk0] a fit formula is given
which subsumed the numerical results for the transport cross

do
t = —_— —
o(p) J dx(1-cos)) dQ- (13 section for a plasma with charge=1,
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Here we have used a mean value for the maximal impact
parameterb,,= (1/«) 1+ 2(v/v)? such that it takes the
value 1 for small velocities and/w, for fast projectiles
where the collective mode limits the reaction time. The lim-
iting expression within the Coulomb logarithm approxima-
tion (16) coincides with the derivation if6,20] which has
been derived by an entirely different way.

As one sees, expressioh7) approaches the limit

T=2eV

. T=8eV
T=14eV
0

165 16.75 17 17.25 17.5 17.75 18
tog,, (n [emS1) for large projectile velocities. Therefore E(.6) yields the
classical result10).

dE/d x[Mevicm]
o
2

UsmbSO

(18

L.=I

wpeaeb

FIG. 5. The stopping power fof*U'" at thermal velocity,

which is nearly the maximum of the stopping power, versus densi- C. Born approximation
ties for different temperatures. Instead of the classical cutoff used in the preceding sec-
42 tion, we now employ the quantum Born approximation of the
k"ag {(k)=agln| €2 l1+auny T matrix. Thus we use a screened potential which corre-
47 o (K)=2ln) € a,+a,n+azn’ sponds to the cutoff for small momenta by the inverse Debye
) screening lengthx and at large momenta by the thermal de
a .
x| 1+ agln 1] 41 , (14) Broglie Wavelength due to quantum effects. The transport
€ cross section then reads
with 7=m"2k?a3 and e=k?agrpey2. The parameter o'(p)= 2wt IN(1+4b)— ——— (19)
p*ag 1+4b|’

ap—ag as well as the effective Debye radiug, can be
found in [19]. This formula interpolates the data for the ) 902 o )
transport cross section using a static screened Debye potefyith @s the Bohr radius and=p“/#“«“. Following now the
tial with effective Debye radius. The coefficierts,as,a, S@M€ approximations used in the preceding section, which

are chosen to reproduce the Born approximationsferl ~ Mmeans we usp~u\v*+ovg, we arrive instead of17) at
and the first and second WKB approximation for small quan-

tum correctionsp<<1. The parameteras and ag are intro- _ 1 " . 4Acy,
duced to fit the behavior of the cross section in the quasiclas- Le E 2 In(1+4cy) 1+4cy)’ (20
sical limit for small values ok.
with
B. Classical limit
. S (Ut2+202)(vz+vt2)m§
Expression12) can be simplified if we use for the trans- Cp= 2k
port cross section the classical approximation which reads “p
[6] For large projectile velocities it approaches the limit
2
t(p)=2mbin| 1+ 3], 15 2my?
o'(p)=2mbgin| 1+ {7 (15 Le=in | 21
eﬁa)p

with by=e?uZ,/p?, w the reduced mass, and the maximumyyhich leads just to the known Bethe res(®, but with an
impact parameteb,. Further, we consider large projectile e~1 factor in the logarithm. This represer® in the limit of
velocities and heavy ions where we can replace the momeiyrge velocities better thaf®). Therefore the quantum-Born
tum dependence of the logarithm by the mean valugpproximation leads to an enhanced Bethe result for large
(p)=u(v?+v7). Then the cross section ifl2) can be projectile velocities. We also point out the different charge
taken out of the integral and the stopping power becomes dependencies ifil7) and(20) due to the different cutoffs.

erf| | -2 _g-wivy?
Ut vt\/;

with the Coulomb logarithm

Ea wgeg Lc D. Joint expressions

Ny €p v

, 16 . _ . .
(18 To consider both the stopping power due to dielectric

fluctuations and due to binary collisions one would add Egs.
(12) and (7). The inspection of the corresponding diagrams
in Fig. 1 shows that the Fock term is double counted by this
2 o 2. 22 2 2 way. Hence the Born term @%) or (12) has to be subtracted.

1 (vi+2v°) (v +vy) mbso)_ 17) This expression, called here the joint expression, is well

Lc=2, =Inf 1+
c zb: 2 ( 2w5e5e; known[21,22.
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FIG. 6. The stopping power calculated by RPA(M, T matrix FIG. 7. The stopping power as in Fig. 6 calculated by RFA,
in (12), and the Coulomb logarithm approximati@h6) together  matrix, and Coulomb logarithm together with the classical Bohr
with the classical Bohr resuldashed in (10) versus velocity for  result versus velocity for high density and high temperature.
low density and high temperature. A projectile with chaiye 1
and a mass of*8 was chosen. The dotted line represents the jointRPA contribution is almost equal to the contribution from
expression resultl (g + | goiz— | Landad) - the binary collisions. The Coulomb logarithm approximation
exceeds thel matrix remarkably. If we decrease the tem-
Evaluating the Born term leads to express{@hbut with  perature of the plasma in Fig. 8, then the RPA contribution is
—Ime instead of Ine ™. It is interesting to consider the limit |arger than the binary collisions. This can be understood such
of large velocities in the same manner as it was done in Segnat at low temperatures and high densities the collective
Il B. Using the sum rulegB2) for the corresponding expres- pehavior dominates the energy transfer, while at high tem-
sion with —Ime instead of Ine ~* we get just the RPA result peratures and low densities the binary collisions dominate.
(8). Because this has to be subtracted, the joint expressiophe Coulomb logarithm coincides almost with the RPA re-
consists therefore only of the binary collision tefdf) or  sult in Fig. 8 and overestimates tfie matrix by about a
(10) in the limit of large velocities. This shows clearly that in factor of 2. We can conclude that stopping due to collective
the large velocity domain the stopping power is dominatechehavior, i.e., absorption and emission of plasmons, is the
by the binary collisions. This fact was observed als§28  most important contribution in dense nonideal plasmas.
where the enhancement of the stopping power due to dielec-
tric theory in a strongly correlated plasma is destroyed by
collisions, which was found in agreement with molecular
dynamical simulations. Therefore the collisions dominate in
the strong coupling regime due to the charge dependence. It We describe the penetration of a projectile into the plasma
has to be remarked that the Born term with bare Coulomtby the following model assumption$.) The frequency of
potential is divergent in contrast to the RPA result as it isheavy ions should be lower than the inverse relaxation time
known from the Landau collision integral. Therefore the nu-of the plasma such that the plasma is in equilibrigim.The
merical evaluation of the Born term {i@) is only meaningful beam of projectiles propagates in one dimensi@in The
with, e.g., a statically screened Coulomb potential. dynamical evolution of the projectile is described by its ve-
The subtracting scheme does not mean that the RPA cotecity
tribution can be neglected. Therefore we check in the follow-
ing the case foZ,=1. Instead of using approximative for- 002
mulas for high velocities, Eq12) is calculated numerically Bt
with the help of the qguantum mechanical transport cross sec- **[ rea v 3
tions. We see from the numerical solution @) and (12 — 0015
that the RPA contribution becomes more important for dense§ vizs ciog Tezev
plasmas at low temperatures. To illustrate this, Fig. 6 shows2 " oy
the stopping power of38U'* calculated from this different ~ x oot
contribution. The density ofi=10" cm™2 and temperature 00075
of T=18 eV are in the region where the plasma is ideal. One T-matrix N
sees that the contribution due to binary collisions exceeds the o008
contribution from RPA by a factor of 2. For higher velocities ooz
the expression approaches the classical Bohr result, which 0
leads to unphysical high stopping power at projectile veloci-
ties around thermal velocity of the plasma. The approxima- vivg
tion by the Coulomb logarithn§16) shows a rough agree-
ment with the exacfT-matrix result. The joint expression FIG. 8. The stopping power as in Fig. 6 calculated by RFA,
interpolates between the RPA result and Theatrix. In Fig.  matrix, and Coulomb logarithm together with the classical Bohr
7 we have chosen a higher densitynef 10’cm™2. Here the  result versus velocity for high density and low temperature.

IV. COMPARISON WITH EXPERIMENTS
OF HEAVY ION STOPPING
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FIG. 10. The relative energy loss &fKr with Eq=45 keV/u
beam energy versus time of tlepinch in a hydrogen plasma. The
experimental valuegsolid line) are from[2]. The theoretical curves

dE/E

0. /,,' are calculated with different assumed charge states of the projectile
4 for the experimental density and temperature of theinch as
vosp 2 input. One sees that the projectile charge reaches a charge state of
!ﬁ"' " r a/5.
ol
2 25 s as 4 as s 55 ues more appropriately. This is understandable due to the
t (us) different charge dependencies. In the classical result the cut-

off is given due to the minimal distance, resulting in a charge
FIG. 9. The relative energy loss 88U with E,=6.3 Mev/u  dependence of the stopping pow&fin(1+c/ZZ). In con-
beam energy versus time of tiepinch in an argon plasma. The trast, the quantum cutoff is given due to the thermal de Bro-
experimental valuessolid line) are from Wetzleret al. [24]. The  glie wavelength, which leads toZf dependence of the stop-
theoretical curvegdashed are calculated with the experimental ping power.
density and temperature of tizepinch as input. The lower dashed The stopping after the pinch is described quite reasonably,
line corresponds to the classical result and the upper dashed line gt the energy loss before the pinch is overestimated. This
the quantum resul_t. The difference is mostly due to _the differenicgn pe explained because there is still a cold plasma while
charge dependencies. The lack of data between 3 quelid due o \ye calculate the stopping with formulas for hot nonideal
the strong focusing force of the plasma current resulting in decrea%|asmas_
ing intensity of the beam after the plasnfplasma lens effegt Another experiment is chosen frof]. Here the charge
[33,24). The theoretical curves interpolate between 3 anes4 state of the projectile is changing during the penetration
through the plasma. This is illustrated in Fig. 10 where we
b(t)=— Flo(®)] . v(0)=0,, (22) have calculated the stopping power for different charge states
m, with the experimental density and temperature. One sees that
) the experimental stopping power can only be reproduced as-
whereF=[1/v(t)]- (E/n) represents the stopping power in suming that the charge is changing betwezs4 and
terms of the energy transfer rate. Z=5. The charge dynamics can be treated within a phenom-
With the help of the derived stopping power we are nowenological approach ifi3]. From the microscopic point of
able to describe the dynamical evolution of the projectile.view the dynamical evolution of the charge state has to be
Thus we have to solve within this model the differential treated in a forthcoming work.
equation

. V. COMPARISON WITH MOLECULAR DYNAMICAL
1 Ea((t) SIMULATIONS

i)(t):_v(_t)m' (23

The observation in the preceding section underlines the

where the right hand side represents the stopping power iffPortance of the charge dependence of the stopping power,
terms of the previously calculated energy transfer rate. FoW/hich plays an important role in current discussions. For
comparison with experiments we choose a data set for Stance, in[6] a comparison with molecular dynamical
beam of228U53* with a beam energy dE=6.3 MeV/u on a smjglatlons yields a charge dependenceZ?f at small ve-

hot argon plasma. This experiment was chosen because thReities. Here we can discuss the stopping powd) in
mean charge state remains constant within this experimengomparison to the classical approximatid) and the quan-
which was assumed during the entire calculafigd]. The tum result(20). Whereas the latter one shows onlyz3
experimental values of plasma density and temperature ser@ependence, the classical result leads to a more involved
as an input for the stopping power calculation. The result casiependenc@zin(1+c/Z3). From the latter form we see that
be seen in Fig. 9. Th&-pinch discharge occurs around the for special density and temperature depenaeaty depen-
time point of 4 us. We have plotted the comparison with the dence betweeZ? and a constant can be approached with
guantum resul€20) and the classical result7). Whereas the increasing charge. This is in clear disagreement with the re-
guantum results lead to a higher stopping power for highsults of the molecular dynamical simulatiof®|, where a
densities the classical result reproduces the experimental va(Z,I'¥)1*® dependence was found pertaining to higher
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' / JE=pj?=p(nez)*=—(E). (24)
0.5 -
-~ ) sim *"'/ From this consideration we find a direct connection between
iy ' T-mat the dimensionless conductivity* =p(4me e“ym
° K he dimensionl ductivity* = p(4eo) T e?m
f 05 = and a scaled stopping power
z K RPA CHlog i Aoy dE zr3 . o5
;;4.5 UILnOUT dx_zﬂ-\/zp ' (25
e 2
3_2,5 where v?=2T/m is the thermal velocity and
N=e?/(12me,T) the Landau length. Consequently, Fig. 11

&

* 4 05 0 05 1 15 can be considered also as a scaled plot of the conductivity in
logip(Z T 372) a strongly coupled plasma. Therefore the treatment presented
here is a generalization of earlier calculatidi®§], where
FIG. 11. A double logarithmic plot of the friction coefficient virial expansions with respect tb have been found, to
versusZI'*2 with the plasma paramet&r. The points are the results higher coupled plasm&=1. This will be further investi-
from the simulation[6] for three different plasma parameters gated for the strong coupled limit in the next section.
I'=0.11 (crossep I'=0.34 (triangles, andI'=1.08 (circles. The The inspection of Fig. 3 shows that the required limit of
Coulomb approximatior{16) is compared with thel-matrix ap-  small velocities is only possible for mass ratios between pro-
proximation(12) and the RPA resulté?) for three Qiﬁerent tem- jectile and targetm/M —0. Otherwise we would obtain a
peraturesT=2,5,10eV. While the Coulomb logarithm and tie  \egative resistivity with a~ 1/v2 singularity, which is a di-
mat_rlx_follow_the §callng of the linear theory, the RPA result showsrect expression of the acoustic Cherenkov effect, see the dis-
deviations with different temperatures. cussion of the numerical results in Sec. Il C.
ow we present approximate results from fhematrix

. . N
charges and plasma parameter. This shows the limits of the,q from the RPA in order to compare to other analytical

weak qoupling theory. . results. Fron{12) we obtain a dimensionless conductivity in
In Fig. 11 we plotted the result of the molecular dynami-1_atrix approximation as

cal simulation6] with our different approximation schemes.

The double logarithmic plot shows the friction coefficient e2\2 "
which is just the stopping power at small velocities divided pfmzo—Awf dpp5gt(p)e*P2’2mT, (26)
by the velocity, as a function &I"®2 Here the plasma pa- 3VnTe'm®z2Jo

rameter is introduced d8=(e%/4meokgT)(47n/3)Y3. The
simulation has been performed with three different sets o
plasma parameters df=0.11(crosseg I'=0.34(triangles,
andI'=1.08 (circles. The data appear to be almost scaling
with ZI'®2. A more careful inspection shows slight devia-
tions from a unique curve. This is due to an explicit tempera- 27 ( 2m2vt2)

i we now use the screened Born approximati@®) and
carry the function®(c)=In(1+c)—c/(1+c) out of the in-
tegral at the maximal value of momentum we obtain the
result

ture dependence besides this scaling from linear theory. This ——
is also confirmed by the RPA resulf). There we plotted hok
three different temperatures o= 3,5,10 eV. The lower the . . .
temperature the steeper is the increase of the density. Thegéth the inverse Debye screening length On the other

curves are not on one line, indicating the nonlinear characte 'and, using now the RPA expressi¢), we expand for

But the RPA result overestimates the simulation results con§m‘e1II velocities and infinite projectile mass and derive
427 (= k3
dk
3 Jo

siderably due to th&? scaling. This is reduced in reality by
(k?+ k%)%

P:‘m: 3 (27

two-particle collisions which destroy the collective modes. PEpA=
We see that the Coulomb logarithm approximatids)

can account for the simulation result only up Z&'3?~1. . _

Then the friction is underestimated due to theYsing the same cutoff wavelength we have used to derive the

In(1+a/Z2I'3) behavior. TheT-matrix result(12) can ac- Bethe-type formuld9) the result reads

(28)

count for much higher densitigadl'¥?~3—5, which is un- A2
derstandable because we account for much higher order cor- ok :ZVZW(D( mv ) (29
relations due to ladder summation than the Born RPA™ 3 h2i?

approximation(16). But for the very strongly coupled case ] ]
this fails as well. To compare with the Brooks-Herring result of transport

theory[26] one gets in screened Born approximation

Connection to transport properties ﬂ_\/ﬂ (12mzvt2
(30)

*

The stopping power at small velocities yields direct ac- PBH™ 16 h2 K2
cess to the conductivity as a transport property. Therefore we
imagine the projectile as a moving currgnivhich causes This result is obtained considering the momentum relaxation

Joule heat due to friction and a conductivity as the dominant process. In comparison with Thenatrix
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Using (32) the following expression for the compressibility
_ @ is obtained 29]:
1

K(B.1) pﬂﬁo{g fo(1=fp)

FIG. 12. The next order of the cluster expansion of the polar-

izati i = dE p?
ization function. - _
+4;y —w T g E+ 4m
result and the RPA result we see the differences in the pref- p2
actor as well as the cutoff wavelength. This is due to the x| 1+g| E+ -—] D p(E)!, (35)
energy relaxation which was treated here as the main process 4m “

in heavy ion stopping.
with D, given by
VI. EXTENSION TO STRONG COUPLING
DaP(E)ZCa

d
A. Higher order correlations Em: mo(E— EamP)"‘E%P(E)}- (36)

The problem of including higher order correlations in the ) o
stopping power of strongly coupled plasma is solved by dt contains the contribution of bound stateS ) and of

cluster decomposition ol'[((i,z) in the dielectric function Scattering states with the scatterlng phase s‘:f_y,ﬁ(E). Here
3 a denotes the channel of two-particle stateésts total mo-

mentum, andn the internal quantum number for the bound
11(q, ) =113(d,0) +113(q, @) + - - -, (31) Statesg(E) is the two-particle(Bose distribution function
including the chemical potentials of both particles, and
0,2 \ - . L represents the degeneracy factor of the channel
wherell;(q,2) is the one-particle contribution to the polar- - “this expression coincides with the compressibility one
ization function(3) and Hg(q,z) is the two-particle contri-  finds from the Beth-Uhlenbeck formula vig3)
bution to the polarization functiof27], whose graph is given
in Fig. 12. The evaluation of this graph can be found in

1 2 = dE 2
[27-29 with the following expression for the two-particle n(B,u)= Q_o% fot Q_OE fﬁx79

P
E+ R)DQP(E)

o L9 ! P,
contribution to the polarization function: “ (37)
0, = g(EﬁtF’,) - g(Eﬁ?PJrq) 5 Therefore the inclusion of next order cluster expansion in the
5(g, w) = 2 o B2 _pgab M (9)] polarization leads to a consistent equation of state on the
nn.,P nP - Tn".P+q level of Beth-Uhlenbeck virial correctiorf29].
a b a b
g(Epl+Ep2)_g(Ep1+q+Ep2) ) . . .
- 2 B . B. Contribution of ions to the stopping power
P1.P2 w+Ep —Ep g

Now we evaluate explicitly the influence of the target ions
(32 the stopping power. Thus we concentrate on the bound state
part of (36) and(37). Following the same steps as presented
This result for the two-particle polarization function is before we obtain for nondegenerate plasmas
formally similar to the single-particle polarization function
I1° in (3). The single-particléFermi distributionf(E,) has
been replaced by the two-particl¢éBose distribution
9(E3R)=[exp(E3B— wap)—1] 1. The summations over
n,n’ include bound states as well as scattering stdiks, Additionally to the free one-particle polarization function we
is the structure factor of the correlated plasma ang the  get a bound and a scattering contribution. The part resulting

3:1_% Vbb(HO+Hgound+chatt)' (39)

chemical potential of the bound pair. from the bound state contribution has a structure similar to
The compressibility as an equation of state on the twothe free part except for interchanging the mass of the single
particle level can be obtained (g0] particle with the mass of the bound state particles and an
additional structure factor. From this term follows the well
1/4dn B (= known Saha equation for the relation between free and
= p(@) = —lim wde(q,w), (33 bound densities in equilibrium,
T a—0
Nakp|® —Eg /T
wheren is the density andu the chemical potential. The 2Ng+p=NaNp Noro) © BT (39)

dynamical structure fact®(q, w) is linked to the imaginary

part of the dielectric function via Now we give the contribution of the ions with an effective

chargeZ to the stopping power. For simplicity we choose the
1 1 approximated RPA result for the polarization functi®)

- = R
S(q,w)= V() eﬁw_llms (q,@). (34) and obtain the stopping power
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where (Ecom =((p?/2my)l cory and the nonideal correction
to the stopping power becomes

Ea_ z2¢? s
na_ gqu() B

1% I(max)

2
wp(b)h’l(wp(b)
d 1 p? o
| 40) _F[U]_—dX<E>_— —I +;av<Ecorr[v]>'

vk
+wl2)(Zmb)In($) o\ 2m,

wp(Z mb)

(44)

where the sum runs over different electron and ion specie§yere we have abbreviated for the correlated term beyond
Here we signed the mass dependence of the correspondigba

plasma frequencyw(ma)2=4we§na/mago explicitly. We
arrive at the result which is intuitively understandable. The 262 1 (=dK [u(tk+rk22m,
stopping power is given by the sum of electron and ion con- <Ecorr>:hg WL ?f

0

) A . . _ 2
tributions. One sees that for big mass differences between v(Ok+Ak/2mg

electrons and ions in a plasma only the electron contribution IRee (K, w)l dw
counts remarkably. Xdwowng(w) e (k. @)] . (45)
C. Memory effects In contrast ta(7) we have here instead of the imaginary part

An alternative way to consider correlations is due to the0f & the frequency derivative of the real part. Equatids)
concept of memory and retardation on the level of the onel@s therefore the same form @& but with an additional
particle distribution. There the evolution of the distribution factor under the integrand which is the inverse of Landau
becomes retarded due to correlations in the systerfidglh ~ damping%/TI'=ARes’ (wp)/Ime(wp), which can be found
an additional collision integral was derived which accountsPy linearization of the dispersion relatiof82]. In other

for the memory in first order gradient approximation words, near a collective pole where the Landau damping
becomes small the expressi6tb) can be large and the lin-

d B cor earization of memory effects fails.
ﬁfazzb lal F1+ ﬁ% ab Lf1, (41) The differential equation for the projectile velocity reads
then in generalization t(22) from (44)

wherelfIb is the quantum mechanical Boltzmann collision Flo e (1/muo){(p2/2my)1B)
term (1) and15)" comes from the retardation expansion, v=— : :1+(1/v)?c9/ﬂv)<E a:[v]>/m . (49
a cor a
corr_ dpadppdpy . We see that the effective stopping power becomes renormal-
ab _ZJ (27h)8 d(Pat Po~Pa~Po) ized due to the memory effects, or equivalently nonideality
of the plasma. Here we would like to stress that the charge
X |( 7R p. 2P 1 dependence of the stopping power is modified additionally
PaPol “ablPaPo E.t+E,—E.—E] due to the memory effects i@6). A rough estimation can be

found choosing the momentum of the Landau damping equal
X{fafp(1+F)(1Ffp) = (LFF)(1Ffp)fafp}, (42 to the thermal one. Then we can write the Landau damping
out of the integral. This is in analogy with the Coulomb
where P is the derivative of the principal value. The analo- logarithm approximation, which was performed(ir6) from
gous formula holds for the RPA expression. It was shown if(12), and results here in
[31] that this additional collision integral leads to the same
Beth-Uhlenbeck virial correction as given by the cluster de- o F
composition in(37). It accounts for nonideality of the plasma e 1+ (7/mu) (9l v)(vF)’
and results in a slower relaxatigd6]. We have shown in
this way that the memory effect represents higher order corwith r=#/T" the lifetime of plasmons. This formula is the
relations which can be alternatively described by cluster demain result of this section. It shows that the stopping power
composition in equilibrium. of the weak coupling theory becomes renormalized by plas-
mon lifetime effects. Due to the mass of the projectile this
renormalization becomes significant only for very dense
plasmas.

Besides the generalization of the stopping power due t0 gjng the small momentum expansion the Landau damp-
cluster decomposition in the dielectric functi¢8), which  jng can be calculated 482]

leads to the same equilibrium virial corrections as the

(47

D. Stopping power in nonequilibrium

memory effects, there are nonequilibrium effects included in 1 Ime(w,)
the generalized kinetic equation. We will show that this leads —=y(p)=*# — P
T : ! Ree(w,)
to a renormalization of stopping power. From the generalized P
kinetic equation(41) we find the energy transfer in the form
q ¥ M(e—(plzmbvoz_ e (~PI2meu?)

) AL

J _/pT g\ 9
E<E(U)>_ 2_ma| +5<Econ{v(t)]>’ (43) (48)
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FIG. 13. The Landau damping in dependency on the wave vec- FIG. 14. The enhanced Bethe formyRPA) from (20) and the
tor for two different temperatures. The density is ¥ B%%cm 2 Coulomb logarithm formula €-log) from (16) with (solid) and
corresponding to a Bruckner parameterrgf 1.5 in units of the  without (dashedl lifetime effects from retardation.

Bohr radius. For lower temperatures the deviation of the classical
result (dashed curvefrom the quantum mechanical one becomes

significant. . i 312
law of the linear theory, which is only dependent 8,

the RPA results show deviations. This can be seen by an
explicit temperature dependence. Thenatrix describes the
behavior well up to plasma parameterzif*?= 3. The joint

The classical limit is ob_vious. In Fig. 13 the Landau dampingexpression betweeh matrix and RPA shows too high values
can be seen for two different temperatures and a density ofs wel| as the RPA itself in comparison with the simulation

6% 10°° cm™* which corresponds to a Bruckner parameter infesylt, The connection to transport coefficients like friction
units of Bohr radiusrs=1.5. The damping is shifted t0 and conductivity is made. The results presented here are an
higher momenta for lower temperatures. Furthermore, thextension of former small' expansions.

discrepancy between classical and quantum results becomesWithin a model of fast heavy projectiles we solve the
significant for lower temperatures. With the help of this Lan-equation of motion with the help of the microscopic energy
dau damping we plotted in Fig. 14 the enhanced Bethe fortransfer. Using the experimental values for density and tem-
mula (20) together with the Coulomb logarithm approxima- perature in a typicaZ-pinch discharge, we are able to repro-
tion (16) with and without lifetime renormalizations. We find duce the experimental values of the stopping8t°3* in a

an enhancement of the stopping power in the region of théot argon plasma after the pinch.

maximum, i.e., around the thermal velocity of the plasma. Further improvement in the calculated stopping power is
We suggest that this stopping power form(#d) may serve expected from the inclusion of correlations. We present two

as a quantitative estimate of the effect of memory or nonide@lternative schemes to incorporate higher order correlations.
ality effects on the stopping power. One treatment improves the dielectric function by a cluster

decomposition. The other approach relies on the inclusion of
retardation and memory effects. Both schemes lead to the
VII. SUMMARY same quantum virial corrections of Beth-Uhlenbeck type in
equilibrium. However, the memory effect results in an addi-
Different approximation schemes have been employed t@ional renormalization of the effective stopping power. This
calculate the stopping power numerically in nonideal densenemory effect is controlled by the plasmon lifetime. We
plasmas. The ladder summation gives more important contrfpund an enhancement of the stopping power in the region of
butions than the RPA for a dilute plasma at high temperathermal velocity of the plasma for very dense and nonideal
tures. This situation is changed at higher densities and lowgjlasmas. This lifetime effect results from the retardation. It

temperature. There coIIeptive effgcts, like plasmon emis_siomenormanzes the charge dependency of the stopping power,
and absorption, are dominant. This means that the RPA is agspecially at small velocities.

appropriate starting point for the calculation of the stopping

power. The derivation presented here yields a RPA expres- ACKNOWLEDGEMENTS

sion for the stopping power that is valid in any degeneracy of . . . . . .
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performed. We found a better agreement of thenatrix

approximation for strongly coupled plasmas than the Born-

Coulomb logarithm approximatiori16). The RPA result

overestimates the data considerably. While the Coulomb Here we briefly sketch the derivation of Ed2) from Eq.

logarithm approximation and the matrix follow the scaling (11). First we introduce convenient coordinates via

APPENDIX A: CALCULATION OF THE
COLLISION INTEGRAL
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) 5 )
p’ =%p{)— %p;, E: nbhbf ddee ﬁe—[p—(mb/M)K]ZIZmbT
M M n, u ) 2ah)°® M
X Ma f do’ A7
K'=p.+p, (A1) u—p M (cosx— cosw )dQ(a P)
N\ [ dpdK pK . 2
such that the momentum distribution function can be written = TJ WPVG [p=(mp MK/ 2m, T
asd(Ap)=4(K'—K) and the energy conservation becomes
S(AE)=2ud8(p?—p’?), wherep is the reduced an¥ the my |\
total mass of colliding particles. Secondly the quantum dif- XS u=p=rK/lo(p), (Ad)

ferential cross section can be found from thenatrix by .
where angular relations are used and the transport cross sec-

tion (13) was introduced. After straightforward algebra and

2 »p’2dp’ K2 p? 2 trivial integrals we end up with Eq12).
—ZM (pz ﬁgaa‘(p’z—pz) <D‘T(K,m+2— p’>’ ? P 442
o tem ® APPENDIX B: SUM RULES
_P d_U Q p_z (A2) The sum rules used can be found easily in the following
2 dQ\ " 2u)” way:

+ o0
n Ime !
Here we neglected the center of mass momentum depen- ffoc downg(w)ime™*(«)

dence of the cross section, which would enter only for in-
medium cross sections. The collision integfal) becomes

+ o
then :fo dwwng(w)lme Y w)

p2

2u

+ o
_ 1 dpp +f0 dwwng(—o)Ime (o)

I'oitz(P) o) (2ah)?

/do- !

X[farfprfafo—Fafpfarfo],

(A3) (B1)

e -1 ™ 2
:_fo dowlme (w)IEwp.
_ _ Here we used the fact that kfw) is an odd function and
with K=p,+py ahdp=(m2(M)2pa—(m1/M.)pb- Multiply-  ng(—w)=—1-ng(w). The sum rule for the last equality
ing this collision integral withp“/2m, and integrating over can be found in any textbook. A related sum rule reads
the momentunp, we derive the energy transfer. Using the analogously
Boltzmann distribution functions for the targét and the
delta distributionf ,(p) = (27%)n,8(p—u(t)) for the pro-

jectile we obtain

+ o0

T
f_ dwwng(w)Ime(w)=— w? (B2)
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