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Nonlinear analysis of coupled gravitational and capillary thermoconvention in thin fluid layers

P. M. Parmentier, V. C. Regnier, and G. Lebon
University of Lige, Institute of Physics, B5, Sart-Tilman, B-4000gsieBelgium

J. C. Legros
UniversiteLibre de Bruxelles, Microgravity Research Center, Postal Box 165, 1050 Brussels, Belgium
(Received 20 January 1995; revised manuscript received 12 February 1996

A weakly nonlinear analysis of coupled surface-tension- and gravitational-driven instability in thin fluid
layers is presented. The fluid is assumed to be Newtonian and incompressible and is heated from below.
Newton'’s law of cooling is used to model the heat exchange at the upper surface. Ginzburg-Landau amplitude
equations are established and the preferred mode of convection is obtained. The influence of the Prandtl and
Biot numbers is emphasized. It is shown that hexagonal cells are the only stable configurations just above the
threshold. Rolls are stable in a nonlinear regime at sufficiently large values of the thickness of the layer. A
subcritical domain is also displayed. By increasing surface-tension effects one promotes the hexagonal pattern.
In the limiting case of a negligible temperature dependence of the surface tension, only rolls are stable. Another
interesting result is that, at small Prandtl numb@s<0.23), the direction of the flow may be downward at the
center of the hexagonal cell, whatever the value of the buoyancy f@t663-651X96)06006-0

PACS numbes): 47.20—k, 47.27—i

I. INTRODUCTION is much lower than the value predicted by Scanlon and Se-
gel. A nonlinear analysis on the coupled Rayleighm&el-
Our objective is to study thermoconvective instability in Marangoni problem based on Sctdy Lortz, and Busse's
an infinite horizontal fluid layer heated from below. It is well techniqud 2] is that of Cloot and Lebof8]. Although Cloot
known that two mechanisms are responsible for the onset aind Lebon consider the influence of several parameters such
convection: the variation of the surface tension with tem-as the Biot and the Prandtl numbers, their approach is not
perature(thermocapillary Marangoni effecand the varia- adequate for treating situations rather far from the conductive
tion of the mass density with temperatui@uoyancy threshold and characterized by large val(Re>669 of the
Rayleigh-Bmard effect. The linear stability problem has Rayleigh numbef9]. Another nonlinear approach was due to
been studied by Nielfll]. This author determines the tem- Kraska and Sanji10], but their results were not very con-
perature threshold above which the heat conductive rest staténcing and were criticized by Rosenblat, Davis, and Homsy
becomes unstable. The linear approach is not able to detdrt1], who studied nonlinear Marangoni convection in cylin-
mine the shape of the convective pattern appearing above thiical and rectangular containers of finite extent.
threshold. Several methods can be used to study the weakly nonlin-
A complete and systematic nonlinear study of the puresar thermoconvective problem. The present analysis is based
buoyancy instability was performed by Sctdy Lortz, and on a technique introduced by Eckhali?]. It consists of
Busse{2], who showed that the roll pattern is the only stableexpanding the field variables in series of eigenfunctions of
configuration. This work amplifies earlier interesting contri- the linear stability problem with time-dependent amplitudes.
butions by Segel and StudB8-5]. However, very few works A similar way was followed by Crosl3] to study the pure
on nonlinear Marangoni convection aadortiori on nonlin-  Rayleigh-B@ard instability and afterward by Rosenblat,
ear Rayleigh-Beard-Marangoni coupled problem have beenDavis, and Homsy11] and Daubyet al. [14] to solve the
done in the past. A nonlinear analysis of the pure thermocaphermocapillary instability problem. The main problem
illary problem was proposed by Scanlon and Seffl raised by the approaches of Rosenblat, Davis, and Homsy
These authors consider the nonrealistic hypotheses of amnd Daubyet al. is that they introduce a fictitious Rayleigh
infinite-depth layer and an infinite Prandtl number. They usenumber as the eigenvalue of the problem, although the physi-
a successive approximation technique based on Stuarttal system is characterized by a vanishing gravity accelera-
method[3] and predict the emergence of stable hexagonalion, which means a zero Rayleigh number. Furthermore,
cells at the onset of convection. Stable cells are also exhilthere are some difficulties with regard to the completeness
ited in a small subcritical region. Recently, Bragard and Lerequirement of the selected basis of eigenfunctions. Re-
bon[7] have extended Scanlon and Segel’s work to the caseently, a study of the coupled Rayleigh-Marangoni instabil-
of a finite-depth layer. Bragard and Lebon obtain qualitativeity for a fluid with an infinite Prandtl number was performed
agreement with Scanlon and Segel’s results, but find that thiey Bestehorri15], who used a projection technigue based on
critical temperature above which hexagons become unstabbn integral formulation. Thess and Bestehf] have real-
ized a study similar to the present one, but without buoyancy
effects; these authors study the planform selection in pure
*Also at UniversiteCatholique de Louvain, Unitderm, 1348  Marangoni convection and, in particular, the influence of the
Louvain-la-Neuve, Belgium. Prandtl number on the direction of fluid motion in hexagonal
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patterns. In the present work, we circumvent the difficultiesand a flat upper free surface; the layer is heated from below.
raised by the approaches of Rosenblat, Davis, and Homsyhe fluid is Newtonian and incompressible with density
[11] and Daubyet al.[14] and investigate the general prob- given by
lem of coupled capillary and gravitational instabilities for a
finite Prandtl number: p=poll—an(T—Ty], (1)

A crucial problem is that of the heat transfer through the

upper free surface. In most Papers omB&el-Marangoni in- whereinp, is the density at a reference temperatlige say,
stability [1,5-11,14-18 Newton's law of cooling with a  he room temperature, andy; the constant coefficient of

constant heat transfer coefficient is taken for granted. I{,q umic expansion. The free upper surface is submitted to a
should, however, be realized that this assumption is strictly rf5ce tensiomr, whose equation of state is given by
satisfied only when the temperature at the upper surface is
uniform. Such a condition is met in pure buoyancy-driven
convection, i.e., when the upper surface is rigid; if we except
the reference heat conductive case, this is no longer true in

Marangoni's instability as the temperature at the upper surVhereinoy is the surface tension at temperatiigeand y the

face varies from point to point. The heat transfer coefficienCONStant rate of change of surface tension with temperature,
or its dimensionless expression, the so-called Biot number, igenerally a positive quantity. In the reference state, the fluid
then not a constant but depends on the surface properties ?fat rest with a steady temperature d|ﬁere|2k:'é petween

the fluid, the unknown motion of the ambient gas and alsd € bottqm and top surfaces. A Qarte5|an coordinate system
the spatiotemporal structure of the temperature field. Ther@”th. honzqntal axex, & Iocated' n the lower plate and a
exists, however, one specific situation for which a constanYertical axise, pointing upward is introduced. For conve-
expression of the Biot number can be derived: it is the casBi€NCce. the variables are expressed in dimensionless form:
of a free surface at which heat is released by pure radiation t]G'SFanceS are spaled by the thicknelsef Fhe layer, the ve-

an ambient vacuurfL8]. It was proved by Thess and Orszag |CCity vectoru with componentsi,v,w), timet, pressurep,

[18] that the Biot number Bi is then given by B4SdTa\, te_r?pfratureT_,zand surface tensiomr "?“el scalﬁd bykd he
where'S is the Stefan-Boltzmann constart, the uniform < 9 «vpod % fBrd, and oy, respectively, wherex is the
temperature of the lower surfaag the thickness of the fluid t_hermal d|ffus_|V|ty a?”d” the k”?ema“c viscosity. The quan-
layer, and\ its heat conductivity: all these quantities are tity ﬁT (>0) is defined as minus the vertical temperature
constant and directly accessible to experiments. Howevepr_ad'er.1t that would appear In a purely conductive state.
except for this rather particular case, it is not possible tooCe in the pure heat conducting state, the temperature at
describe heat transfer through the upper surface without irF—h.e upper sur'face is uniform, there is no amb|gu!ty in deter-
troducing simplifying assumptions such as a constant hed!NiNg experimentallys;d. As shown by Koschmieder and
transfer coefficient and this is the attitude followed in theF ran![20], this temperature difference is related to the dif-
present work; this is justified as we are only concerned witr{erence between the temperature at t_he Iower ”9'0‘ plate and
a weakly nonlinear analysis. Quoting Josefii9], “This the temperature of the gas surmounting the liquid by
specious procedur@ uniform Biot numberfor solving the

exterior problem is clearly a concession to the untractable Tt~ Tgas 3)
character of the coupled problem.” Although the general T K/h+d "’

problem of the validity of Newton’s law of cooling is of the

highest interest, it is outside the scope of the present workyherein T, is the temperature of the fluid in contact with
Here our main ObjeCtive is to Study the transition betweerlower p|ate,Tgas the mean temperature of the passive gas
pattern configurations and it appears that our results are ifinderlying the upper fluid surfack the thermal surface con-
qualitative agreement with experimental observationsgjuctance, and the thermal conductivity of the fluid layer;
[9,20,21. Finally, it should also be stressed that besidesor more details, the reader is referred to Koschmieder and
Newton’s cooling law, other approximations have been in-prahI's work[20]. When the fluid is set in motiong; is no
troduced in the present model: as a matter of fact, we havgnger the temperature gradient in the fluid layer since con-
assumed that the Navier-Stokes equation is valid, that Bousgection induces a nonzero mean perturbative temperature at
inesq’s approximation is satisfied, and that the upper surfacge upper fluid surface. As a consequence, the dimensionless
is not deformed. In future works these restrictions will be numbers of Marangoni and Rayleigksee definitions @)

O':O'O_’)/(T_To), (2)

successively relaxed. and 4c)] must be experimentally evaluated with as given
The paper is organized as follows. We next introduce thegyy Eq. (3).

physical system and establish the basic equati&es. I). It is usual to introduce the dimensionless numbers

The linear problem is treated in Sec. lll, while the nonlinear

amplitude equations are derived in Sec. IV. The competition Pr=yx L, (43)

between roll and hexagonal patterns is discussed in Sec. V

using a Ginzburg-Landau model adapted to the present prob- 4 1 -1

lem. Conclusion and prospectives are drawn in Sec. VI. Ra=garfrdin v, (4b)
Il. PROBLEM FORMULATION Ma=yBd?x v~ 1py L, (40)

Consider a fluid layer of infinite horizontal extent con-
fined between a lower rigid plane, perfectly heat conducting, Bi=hdK™ L. (4d)
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Pr is the Prandtl number, Ra the Rayleigh number, Ma the ﬁZT:_Bi(T_?gas)a (11b
Marangoni humber, and Bi the Biot number, wighthe ac-

celeration due to the gravity. As an alternative to the Ma-whereT andTgaSare the dimensionless temperature of the
rangoni and Rayleigh numbers, we define two new dimentower plate and the dimensionless temperature of the passive

sionless numbera and\ by the relations gas underlying the fluid layer, respectively. Equati¢fig)
and 9b) express that the lower plane is rigid and perfectly
(1-a) E:aﬁ (58 heat conducting, while the heat transfer at the upper surface
Ra ~ May is characterized by the Biot conditiqiilb). Equations(10)
express the dependence of the surface tension with respect to
)\:E N Ma (5b) the temperature, whilél1g is a consequence of the flatness
Ra, May of the upper interface.
Ra and Ma are related i@ and\ by means of IIl. LINEAR STABILITY
Ra=RaaN\, (50) Below a critical temperature gradient the fluid remains at
rest. The corresponding velocity and temperature fields are
Ma=Mag(1— a)A\. (50 given by

The quantities Rpand Mg are two arbitrary constants. Here
we have choosen Raas the critical Rayleigh number for

pure buoyancy and Mas the critical Marangoni number for \yherein the subindex refers to the unperturbated rest state.

pure thermocapillarity. In physical situations, the only con- 14 study the stability of this reference state, we introduce
trol parameter is neither Ma nor Ra, but the temperaturgne perturbationsi, ¢=T—T,, and m=p—p, . After linear-

gradientB; . On the other hand, for a given fluid with a given izing Egs.(6)—(8), one obtains
depth the ratio Ra/Ma is a constant independengsf The

u=0, T,=—z+Tiy, (12)

use ofa and\ rather than Ra and Ma is motivated by the V.-u=0, (13
fact thata is a combination of the relevant physical param-

eters, while\ is the quantity directly proportional to the con- d,u=Pr(— Vr+Ra\ abe,+V2u), (14)
trol temperature difference. It follows from E¢ba) that «

can be considered as the percentage of buoyancy effect with 3,0=w+V?29. (15)

regard to thermocapillary effect; it takes values between zero
and one:a=0 corresponds to pure thermocapillarity and The corresponding boundary conditions are
a=1 to pure buoyancy. Equatiofbb) shows that\ is di-

rectly proportional to the temperature gradient; in weakly u=sv=w=6=0 atz=0, (16)
nonlinear problema remains close to one. _
Within Boussinesq's approximation, the governing di- w=d,0+Big=0 atz=1, 17
mensionless equations are as follows: the continuity equation
is du+Ma\ (1—a)dy0=dv + Magh (1—a)dy6=0.
(18)
V.u=0, (6)
_ o According to the normal mode technique, we seek solutions
the Navier-Stokes equation is of the form
- 2
dutu-VUu=Pr=Vp+RaraTe, Vo), (7) (uv.w,m,6)=[U(2),V(2),W(2),P(2),0(2)]
and the energy equation is Xexdi(kex+kyy—st)], (19
—yv2
HT+u-VT=V?T, ®  whereinU(2), V(2), W(2), P(2), and ©(z) denote thez

dependence of the relevant physical quantitéeis, the com-

whereinV(4,,d, ,d,) is the nabla operator. The correspond- s
(9, y,72) P P plex stability parameter

ing boundary conditions are at the lower uniformly heated

rigid planez=0, s=s, +is;, (20)
u=0, (%3 with s, ands; the real and imaginary parts sf respectively,
T-F (9b) and k, and k, are the components of the horizontal wave
inf vectork in thex andy directions, respectively. At marginal
and at the upper free surfage-1, stability, not only is the growth rats; of the perturbation
zero, buts, is also equal to zero; indeed in the present prob-
d,u=—Mag\ (1— a)d,T, (109 lem the principle of exchange of stability has been shown to
be satisfied22]. Substitution of Eq(19) in the sef(13)—(18)
dp=—Mag\(1—a)d,T, (10p)  results in the following set of ordinary differential equations

for the disturbance amplitudes, after elimination of the pres-
w=0, (119 sure and the horizontal components of velocity:
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(D?-k?)6+W=0, (22) infinite horizontal extent, one ha&=10,[; it is only for
laterally bounded systems thdt takes discrete values
(D2—k?)?W— R\ ak?0 =0. (220 [11,17.
At the boundary conditions, it is found that IV. NONLINEAR ANALYSIS
W=DW=6=0 atz=0, (23 The linear approach allows us to determine the critical
) ) 5 values\., k., and @;).. The latter vanishes here as the
W=DO +Bi6=D*W+Ma\(1-a)k’©O=0 atz=1, principle of exchange of stability holds. From the knowledge

(24) of these critical values, we can determine the critical tem-
whereinD stands ford/dz and k2= k 2+ k 2 perature gradient above which the conductive state becomes
The eigenvalue probler(le)—(24)xwasy'solved by Nield unstable as well as the characteristic wave number of the
[1] by using a series expansion method. The dispersion rela{l_ow_pattern. Byt the d‘?f'“"e shapg of the pattern can be
obtained only via a nonlinear analysis. The nonlinear stabil-

tion between the parametexs, k, and Bi can formally be ity problem is solved by using a modified Galerkin method

written as introduced by Eckhaufl2] and applied to thermocapillary
N=M\p(@,Bik), p=012..., (25)  problems by Rosenblat, Davis, and Honjdyl] and Dauby
et al.[14]. The method consists of expressing the solution of
wherein\, has been ordered accordingXg<\;<A,=<-:-.  the nonlinear problem by means of a series expansion in

In the limiting casea=0, \ is identical to Ma/Mg and the  terms of the eigenfunctions of the linear problem. This ex-

problem is characterized by a unique valge It follows that  pansion is then introduced in the nonlinear equations and
\ cannot be taken as an eigenvalue as confirmed by an earliprojected onto the eigenfunctions of the adjoint linear prob-
analysis of Rosenblat, Homsy, and Dal28], who showed lem. This procedure results in an infinite set of ordinary dif-

that Ma is not an eigenvalue of the Marangoni problem. Fofferential equations, which afterward is truncated by consid-
a given fluid and a given deptly, and Bi are fixed and one ering only a few sets of eigenfunctions. The selection of the
defines the critical lambdxy, by relevant set of eigenfunctions will be discussed later on.

] ) We define the eigenvalue problem as
Ne=min A («,Bi k), (26)
keE Lfk=akMfs, p=012..., keR?, (27

whereE is the set of admissible vqlues of the Wave.rllumberwherein the following notation has been used:
k. The wave numbek corresponding ta\. is the critical

wave numbelk;. Since in the present study the layer is of fT=(u,7,6,6|,-1), (28
|
V2 -V  Raalg, Prti,
LC: ez e Vz , M= e N 1 e . (29)
_az(.).ex|2:1 e _Mao(l_a,))\cﬁx e e e
_&z(')‘ey|z:l _Mao(l_a”\cay

An upper indexT means transpositiorig is the unit 3x3  The determination of the dependencé& L‘,(z) of the eigen-
matrix, andL is the operator of the linear problefd3)—  functions is given in Appendix A. In contrast with the pro-
(15) calculated at the threshold; it is worth noticing that thecedure followed by other authofd1,14,17, wherein the
eigenvaluea(';°=o is the solution of(27), while the corre- Rayleigh number is taken as the elgenvalue of the linear

; ; L ; ; ... problem, the eigenvalue &=0, i.e., a, is now finite in-
sponding eigenfunction is the solution of the linear stab|I|typ U A ' LY o
problem. It should also be observed that the Marangon tead of being infinite; it is equal teﬂ&(erZ) for Bi=0.

- ) . S a consequence, the eigenfunctidr’j,scan be directly in-
boundary conditiong18) have been introduced in operator : : - : :
L. through the last two lines. By doing so, the eigenfunction troduced in the expansia1) given below without separat

i ; > - " S1ng arbitrarily the temperature field into a mean horizontal
fp do not have to verifia priori these boundary conditions, nart plus a departure from the mefdr, 17. The reasons for
which are considered to be natural boundary conditions. Thorking with the eigenfunctions calculatedkat0 are two-

a"‘) are the eigenvalues of. ordered in such a way fold: first, each self-quadratic interaction of an eigenfunction

that Re(agq)>--->Re(a:§‘11)>Re(a:flq)>--- , Where Rex) f';, will contribute tofg; second,fg is the single eigenfunc-
stands for the real part of k, denotes any arbitrary value of tion that accounts for a nonzero horizontal mean value of the
the wave vector. The eigenfunction have the form temperature.

Without loss of generality, we can express the solufion
C ) of the nonlinear probleni6)—(8) in terms of the eigenfunc-
fo=Fp(2)exlik-(xe+yey)]. (30 tions f¥; accordingly
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p=0,12..., keR?, (31

f=2> > Ak,
p=0 k

whereinAX is the amplitudeof the mode t The wave vec-

415

V. GINZBURG-LANDAU EQUATIONS AND HEXAGONAL
AND ROLL PATTERNS

Three horizontal wave vectors, oriented with an angle
273 between them, are sufficient to generate hexagons and

tor k can take all possible directions and moduli in the caseolls: their components are respectively given by=k.e,,
of a fluid layer of infinite horizontal extent. Truly, the sum- ky=k.(—e3/2—¢,1/2), and ky=K.(—&v3/2—¢1/2). The
mation overk should be replaced by a double Fourier inte-three corresponding eigenfunctions are given by

gral representation; however, since our objective is to con-

sider only a discrete set of wave vectors, expres§gin is

adequate. For the sake of clarity, the justification of the trun-

cation procedure of expansidBl) is reported in Appendix

B.
Writing the set(13)—(15) of basic equations in the form
(LetLa)f=N(), (32

with L, and N(f ) defined in Appendix Bsee Eqs(B11)

and(B12)] and projecting32) onto the eigenfunctions of the

adjoint problem, one obtains

(FE Lo+ L) f)=(FXN(f ), p=0,12..., ke R?,
(33

wherein () denotes the scalar product operator defined by
Eqg. (B8). Denoting byk the space of eigenfunctions and

substituting the truncated expansionfoés given by

Np—1
f= pgo ; Akl fheK (34)

[see(B18)] in the orthogonality relatiori33) [or more con-

veniently in (B14)] and noticing in addition that the eigen-

functionst are biorthogonal, one obtains the setamihpli-
tude equationsnamely,

Al{ak( o5 0% -+ Prtul. u k) + ex(aRay( g5wh )

—(1—a)Mag( 0;k3|z=1‘92W;k|z=1>)}
A
P _
TS (O50% ¥+ Prtus- ux)

Np—1

+ > X

ki ak k Kk k
Ao KBk ASAP(u-V 62 655)

+Pri((u- Vu?) upky),  fiek, (35)

whereing is the relative distance from the threshold

(36)

fra=exliky: (xe,+yey)JF5(2,k2),

(37)
9=1,2,3; p=0,1,...N,— 1,

whereinN,, is the number of modes associated to a given
wave number. Let us define B¢,
Ke={f5L, f2 f53, (39)
the set of critical eigenfunctions. As explained in Appendix
B, we must complemeni. by a setK, of eigenfunctions

resulting from the quadratic interactions (87) and (38),
namely,

Ks={fs1q=0,4,5,6,7,8U{f9|p#0; q=0.....8,

(39

wherein
ko=0, ky4=v3ki(el1/2+¢V3/2), (40
ks=v3Kk.(g1/2—eV31/2), kg=—V3Kce, k7=2k%‘elyl,)

kg=2k(—6v3/2—e1/2), kg=2k. (ev3/2—e1/2).

(42

To each wave vectok; correspond$N, modesfXi with an

amplitudeAip. The complete set of eigenfunctions used in
the projection technique is the union Kf andK:

K=K.UKs. (43

After computation of thez component of the direct
and adjoint eigenfunctions F ,(z,0) F% (2,0),F(z.K),
Fr(z,k2),Fp(z,3K2),F} (2,3k2)  Fo(2,4K2) F} (z,4k%), one
obtains from(35) the equations for the YN, amplitudes
ADAL,... A5, p=0,...N,—1. This set is then reduced by
noticing that the amplitudes whose eigenfunctions belong to
K, are damped with regard to the modes pertainind{o
ie.,

k k
ap|fEEKS<aO|fSE Ke* (44)

ConsequentlyK appears as the set “slaved” . and it is

Expression(35) is the key relation of the present work. legitimate to assume that, “near the threshold,”

Equation(35) constitute a set of nonlinear coupled ordinary

differential equations for the unknowds;, f5e K. The pur-
pose of the next section is, starting frail35), to study the

competition between hexagonal and roll patterns, which ard)
the most current patterns observed near the threshold. It
assumed, as confirmed by experimental observations, that t

Al e <IAlF ek, - (45

general K. is defined as the set of eigenfunctions whose
gorresponding modes are critical at the threshold or “near”

ftlae threshold, i.e.,a‘5|f(k)EKczO. Of course, the wording

occurrence of other configurations, such as squares and petrear the threshold” is rather vague and depends on the size

tagons, is negligible in normal situations.

of the nonlinear domain that is investigated. In a weakly



416 PARMENTIER, REGNIER, LEBON, AND LEGROS 54

TABLE |. Stable configurations.

e=(N—Ng) /N Solution Corresponding region in Fig. 1

e<gg conductive stat¢C) below thick line

£.<e<0 conductive state, hexagofSH) not represented in Fig. (see Fig. 2
(subcritical region, hysteresis

0<e<egy hexagongH) between the thick and the dashed line

g1<e<e, hexagons, roll§HR) (hysteresis between the dashed and the thin upper line

e>g, rolls (R) above the thin upper line

H*: fluid moves upward at the center of the hexag(®is>0.23

H™: fluid moves downward at the center of the hexag@s<0.23

nonlinear analysis, it is sufficient to take into account thehorizontal axis for which M&0. Furthermore, the distance
modes that are critical at the linear threshold. between a given point on the straight line and the origin is
After assuming thak<1 and neglecting their temporal measured byx as shown by Eq(5). The thin line corre-
variation, the slaved mode‘ﬁg are given by relatioriB15),  sponds to the linear threshold~1 and was obtained by
wherein f;e Ks. Introducing the resultB15) into the set Nield [1]. As a conseqguence, can be viewed as a measure
(35 for the critical modes, one obtains the following of the distance between a point located on the straight line
Ginzburg-Landau equatioig4] for the three amplituded;,  (a=cons) and Nield’s line(\;~1); &, ande, are represented
A,, andAg: by the dashed line and by the thick upper line, respectively;
B . s 5 ) ) g. is not reported in Fig. 1 because its values are too small.
70 A=A+ aA; A3 —bAL(| Aol +[Ag]®) — CALf A", Five regions are identified according to the values takea by
(46 as explained in Table (regions C, CH, H, HR, and RThe
variation of ¢; with respect toa for Bi=0 and various
A= e AT ARG AT — DAL (|Ag * 1 Agl?) — A Ayl Prandtl numbers is founpd in Fig. 2, while the variations of

(47) the parameters,;, &;, ande, as a function of Pr are dis-
_ ,pk 9 2 2 played in Fig. 3 for B0 anda=0.5.
T0As= A3+ AATA; —DAG(|A1|"+[Ao]®) —cAgAg (,48) If we except the particular case of pure buoyancy insta-

bility («=1), the convective pattern that appears at the linear
threshold is always formed with hexagons; below this thresh-
old, a subcritical region where hexagons can be stable is also
found. The absolute values of the parametgrse,, ande,

in several paperée.g.,[13,24); here we recall only the es- decrease while the ratia increases and they vanish for

sential points. We must distinguish between four sets of so@= L+ In agreement with Schier, Lortz, and Bussf2], hex-
lutions, but only three of them are relevant: agonal patterns are unstable when buoyancy is the only fac-

tor of instability. When the temperature gradient is increased,
A;=A,=A;=0 (conductive state (49 a region where rolls and hexagons coexist is displayed. The
observed planform, either roll or hexagon, depends on the
A#0, A,1=Ai.,=0 (i=i mod3 (rolls), (50) initial conditions; in practice, the pattern observed in the re-
gion HR will be hexagonal if the system was previously in
A;=A,=A;#0 (hexagons (51)  the Hregion and formed by rolls if the system was initially
in the R region. At still higher temperature gradients, rolls
The results of the analysis are summarized in Table lare expected.
wherein the stable configurations are represented as a func- The Prandtl number has significant influence in the range
tion of the values taken by. The quantitye, stands for the Pre]lO‘z,lq. From P10 to Pr-co, the results remain
subcritical transition point, while; ande, are the first and practically unchanged, which justifies that it is appropriate to
second supercritical transition points, respectively. They ar@ssume that Pscc as long as Pr is larger than 10. Within this

wherein the coefficients, a, b, andc depend generally on
the Prandtl number, the Biot number, and the ratio
A detailed analysis of the syste#6)—(48) can be found

related to the coefficients, b, andc through range, the resolution of Eq&16)—(48) shows that for stable
hexagons, the fluid moves upward at the center of the hexa-
-a’ a’c a’(b+2c) gon, in agreement with experimerd™). Values ofs; and
®cTa2b+c)’ 1 (b—0)2' °2 (b—c)? - (52 &, have also been calculated by Bestehfts] for a fluid

with an infinite Prandtl number. In agreement with Beste-
The influence of the ratier on the values of the two super- horn, we observe that the regions C and CH have practically
critical parameters; ande, is shown in the Ra-Ma plane of the same relative importance. Indeed, it follows from Fig. 1
Fig. 1. Biot's number is assumed to vanidi=0) and sev- and Ref.[15] that the ratioe,/e;~3.5 remains almost un-
eral Prandtl numbers running from zero to infinity are inves-changed whatever the Prandtl number and the atim the
tigated. In the Ra-Ma planey=const represents a straight range Pe]10,0.23, the area of the regions CH, H, and HR
line crossing the originia=0 corresponds to the vertical decreases as Pr tends to 0.23. When the coeffieiaitthe
axis, i.e., R&0, while =1 describes situations along the quadratic term of the Ginzburg-Landau equations vanishes, it
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FIG. 1. Stability diagrams in the Ra-Ma plane for various Prandtl numbers an@.Bihe thick line represents the linear threshold, the
dashed line corresponds g, and the thin continuous line corresponds$oThe straight line in the top left figure corresponds to a constant
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and given value of the parameter See Table | for the definitions of C,"HH~, H'R, HR, and R.

is seen in Egs(52) that the values of the critical points,
€,, ande, vanish, from which it follows that only rolls will
be observed above the linear threshold. For given values afherein Pg does not depend onx. It is found that
Bi, a critical value of the Prandtl number can be found byPr|g—o=0.233 and Pig_..=0.255. The same value

solving

a(Pr.,Bi,a)=0—Pr.=Pr,(Bi),

1000

417

(53

Pr.=0.23 was already obtained by Daubyal. [14] in the
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FIG. 2. Subcritical domair, as a function ofx for various Prandtl numbers and=80. See Table | for the definitions of C, CHand
CH™.

particular case of pure thermocapillary convectien=0); Fig. 1. It is worth noticing that in contrast with high Pr
Thess and Bestehorfil6] found Pg~0.22 by using the values, the fluid moves now downward at the center of the
method of the amplitude equations and~P0.29 by direct hexagongH™).

numerical simulation. As Pr becomes smaller thap, fine In the limiting case PrO0, ¢, is slightly larger than for
areas of the regions CH, H, and R are increased, as shown Rr—o, while for small Prandtl numbers,; ande, take very
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FIG. 3. Values of the critical parametesg, &1, ande, as a
function of Prandtl number for Bi0 and «=0.5. (a) ¢, is repre-

sented by the dashed line asglby the continuous line. See Table

| for the definitions of C, CH, CH™, H", H", H'R, H' R, and R.

sianalytical methods, except for those of Thess and Orszag
[18], who used a three-dimensional pseudospectral numerical
method.

Our values ofe;=0.71 ande,=2.37 are in good agree-
ment with recent results obtained by Bragard and Lelydn
and Dauby[17]. These authors have used only one eigen-
function per wave numbeiN,=1; see Appendix B values
of &, ande, obtained by takindN,=1 are also given in Table
Il. It is seen that these values are very close to Bragard and
Lebon’s and Dauby’s values. The very large values given by
Scanlon and Seg¢E] can be explained by their unrealistic
assumption of a layer of infinite depth. Furthermore, Bragard
and Lebon[7] have repeated Scanlon and Segel’s calcula-
tions and have found smaller values of the critical points
(e,=—0.0216,¢,=7.8, ande,=25). The subcritical value
g.=—0.0058 predicted in the present analysis is also in sat-
isfactory agreement with other authors. The smaller value
found by Cloot and Lebof8] can be interpreted by the fact
that their results are given for 7 and it is seen in Fig. 3
that 8c| Pr=7<8c|Prﬁoc .

The behavior of the parametets, 1, ande, as a func-
tion of the modified Biot number Bi=Bi/(1+Bi) is reported
in Fig. 4. For high values of Biot's numbeBi—»> or
Bi*—1), the temperature at the upper surface is almost fixed
and the Marangoni effect does not act any more. As a con-
sequence, the quadratic coefficiandf the Ginzburg-Landau
equations is zero, from which it follows that, ¢;, ande,
vanish, as seen in Fig. 4.

VI. CONCLUSION

The aim of the present work is to propose a theoretical
approach of the nonlinear thermoconvective problem; the
coupling between buoyancy and surface tension effects is
investigated. The numerical analysis is based on a modified

large values(see Figs. 1 and)3However, such results are Galerkin method introduced by Eckhali]. Our approach

not quantitatively significant as our analysis is limited to adiffers from that of other authors by the definition of the
weakly nonlinear range; the only conclusion that can bdinear eigenproblem. Here the eigenvalue appears naturally
drawn is that rolls will be preferred when buoyancy forcesffom the definition of the linear operator. A frequent diffi-
are dominant{a~1). It is important to recall that the above Culty in the construction of a complete basis of eigenfunc-

results have been established under the hypothesis so

that for large values of, ande,, only qualitative informa-

tions is to incorporate a mode with a zero wave number in
the nonlinear developments. Here this problem is given a

tion is expected. This restriction does not apply to the result§imple solution and the mode with a zero wave number is

for g, as the latter remains very small.

directly introduced in the nonlinear expansion without using

Table Il presents values @f., ;, ande, as obtained by Particular artifacts such as the decomposition of the tempera-

various authors for pure capillary driven instability. All these ture field into a mean horizontal value plus additional fluc-
results have been derived from different approximative quatuations.

TABLE Il. Comparison between the values £f, €1, ande, in
pure thermocapillary convectiofa=0), with Pr=c and Bi=0.

Work &¢ (%) €1 &
Scanlon and Segé6] -2.3 64 196
Cloot and Lebori8] (Pr=7) -0.3
Bragard and Leboh7] —0.56 0.53 1.8
Daubyet al.[14] -0.62 0.53 1.82
Thess and Orszad 8] -0.75
This Work(Np=1) —-0.78 0.54 1.92
(Np=5) —-0.58 0.71 2.37

The mathematical problem solved in this article rests on
several assumptions such as Boussinesq’'s approximation, a
nondeflecting upper free surface, and Newton'’s law of cool-
ing with a constant heat transfer coefficient. The validity of
these approximations, in particular the last two, may be ques-
tioned, but a quantitative and accurate description of these
effects require specific and lengthy treatments, which are
outside the scope of the present analysis.

The main results that have been obtained can be summa-
rized as follows. When buoyancy is the single responsibility
of the convection, only rolls will be observed. As soon as
capillary effects are present, the situation is more complex. A
general tendency is, however, observed and it appears that a
hexagonal structure is preferred at the linear threshold. The
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5 The method proposed in this paper has been applied to a
rather simple system involving only three amplitudes equa-
tions. It is worth emphasizing that the present work provides
the theoretical framework for studying more complex situa-
tions. Three extensions will be examined in the future.

(i) First is to include more modes in order to eliminate the
limitations of a weakly nonlinear regime. Preliminary tests
involving more than 100 modes have been performed and
seem to indicate that the conclusions reached in the present
work remain qualitatively valid.

(i) Next is to include oscillatory instabilities into the
analysis by considering unstable modes with complex eigen-
values.

(i) Finally, some hypotheses underlying the present
analysis should be relaxed. In particular it would be interest-
ing to examine the role played by the presence of lateral
5 walls, the influence of the surface deformation, the dynamic
of the upper gas in contact with the liquid, and the viscoelas-
tic properties of the liquid.

0 0.25 0.5 0.75 1

ACKNOWLEDGMENTS
3 4
o The authors wish to thank Professor C. Perez-Garcia
= (Pamplona Universityand Dr. P. C. DaubyLiege Univer-
21 sity) for constructive discussions. This text presents research
results of the Belgian Interuniversity Poles of Attraction
| (PAI No. 21) initiated by the Belgium State, Prime Minis-
ter's Office, Science Policy Programming. Partial support
from European Program “Human Capital and Mobility”” un-
0 : | : der Contract No. ERBCHRXTC940481 is also acknowl-
0 025 05 0.75 1 edged.
Bi*
APPENDIX A: THE z DEPENDENCE
FIG. 4. Values of the critical points., £;, ande, as a function OF THE EIGENEUNCTIONS fX
of the modified Biot number Bi=Bi/(Bi+1) for Pr=10 and P
a=0.5. In (a) ¢, is represented by the dashed line andby the The z dependence
continuous line. See Table I for the definitions of C},HH R, and . . . . . . }
R. FE=[UK(2),V5(2), WE(2),IT5(2),05(2),0K(1) T

of the eigenfunctions‘g is determined by introducing ex-

more the thermocapillary forces are d.ominant with respect t‘Eression(SO) in the relation(27). After elimination of the
e e e eerzonal components of h vl ad e pressire, oe
. S : k k.
Bbtains the following system foV; and O ;:

ments performed by Cerisiet al. [9] and with Bestehorn’s
theoretical approachl5]. The influence of the Prandtl num- (D2—k2)OK+WK=akoX, (A1)

ber has received particular attention. It is shown that the L

direction of the motion inside the hexagons is directly linked (D2—k2)2WK— Ray\ k20X =aX(D2— K2 )WK. (A2)

to the value of the Prandtl number: for0.23, the fluid P ¢ P P

moves upward at the center of the hexagons, in accord witlfhe corresponding boundary conditions are similar to Egs.

experiments20,21. But for Pr<0.23, the fluid motion is (23) and (24) with A\=\.. The remaining unknowns are
inverted. To our knowledge, up to now, no experiment hagjiven by

confirmed or denied this property as most experiments are
performed with fluids at high Prandtl numbers; a fluid with L T Ky " - .
Pr~0.23 would correspond to liquid metals. The value of the Yp=i 1z Wp.  Vp=ijz Wy, Hp=(D"=k)DW,.
critical Prandtl number R#=0.23 has been confirmed by (A3)
other authorg14,16. A subcritical region where hexagons

are stable has also been displayed. The region is the largest In the particular case of the zero wave numker0, the
when buoyancy does not act. In this case, the value found fag@igenfunctions cannot be calculated by settiigO in the
the subcritical parameter is in excellent agreement with disystem(A1)—(A3). In this case the eigenproblei®7) will be
rect numerical simulations performed by Thess and Orszagiven the form

[18]. Finally, the influence of the heat transfer property of 90 0v 0

the upper surface is also examined. D°6,+(-ay)0,=0 (A4)
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and APPENDIX B: DERIVATION OF THE AMPLITUDE

EQUATIONS AND TRUNCATION OF EXPRESSION (31)

Up=Vp=Wi=I13=0 (A5) _ _ o
The general solution of the nonlinear problem is given

associated with the thermal boundary condm@%(O) 0 under the form

andDO p(1)+B|9|D(1) 0. The solution offA4) is simply

09=C sin(y/—al2), (AB) f=20 2 Apfp p=012.., keR?  (BD
p=

wherein C is an arbitrary constant. The thermal boundary _ . .
condition at the upper surface yields the eigenvaifp ~ Wherein thef,, verify the eigenvalue problem
namely,

Lfs=agMfs, p=01.2..., keR? (B2)

V—aj cog\/—apy)=—Bi sin(y—ap). (A7)
For Bi=0, ag is determined analytically and given by
al=—(p+1)%n?. (A8) (FLf)y=(fLEf), (B3)

It appears clearly from the previous analysis that thewhere
eigenfunctionsf'; are not the eigenfunctions of the linear

The adjoint operator of ., denoted.? , is defined by

analysis expressed by Eq81)—(24). Here\ is frozen to its f*T=(u* o* 6* u*l,.; v¥|,-1)  (BY
critical value\, or, in other words, Ra and Ma are given the
fixed values Raand Ma . and
|
A -V e
L V. a5
C a)\CRa)eZ e A eos . ( )

—(Bi+d)( )z=1 (1= a)Magdy (1_a))\cMaO‘9y

The corresponding adjoint boundary conditions are The adjoint eigenfunctionf;;k verify the relations

u*=p*=w*=0*=0 atz=0, (BG) L:f;k *kMTf*k, pzoll,z_”, k e R2 (Bg)

* * * —

0" =dp=w"=0 atz=1. BD " herein the elgenvalu k are identical to the conjugate
In relation (B3) the angular brackets denote the averagedilgenvaluea of operatorL . It was proved by Morse and
integral over the whole volume of the fluid for the “volu- Feshbacli25] that, in the particular case of a square operator
mic” quantities (i.e., u,m,0,u* ,7*,6*) plus the averaged in- L andM=I, the set of eigenvalueaﬁg is equivalent to the set
tegral over the upper surface for the quantities defined adf conjugate e|genvalue_*"_ Their demonstration can
z=1(i.e., 0],—1,u*|,—1,0*|,—1); explicitly, if a, andas de-  straightforwardly be repeated for relatio(®?) and (B9).
note quantities defined inside the volume and on the upper The nonlinear probleni6)—(8) can be rewritten in terms
surface, respectively, one has of the perturbated variables as

1 +L [+L 1
(a,+ag)=lim sz f dx dy(aswa a,dz|.
Lo -LJ-L 0

(B8  whereinN(f ) andL, are defined through

(LetLa)f=N(f), (B10)

TABLE lll. Eigenvalues ofL for Pr=1, Bi=0, and various values af.

a Kc Ac ag° ag aékc aic a;° al;f azc
0 1.993 1.000 0 —2.467 —5.560 —26.8+i6.8 —63.9+i4.6
0.25 1.996 1.015 0 —2.467 —5.466 —26.7+i5.3 —64.0+i3.8
0.5 2.012 1.020 0 —2.467 —5.602 —26.7+i3.3 —64.1+i2.8
0.75 2.042 1.015 0 —2.467 —5.985 —24.7 —28.8 —64.3ti1.3
1 2.086 1.000 0 —2.467 —6.633 —-22.8 —30.9 —62.6 —66.6
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(B11)

Raya(A—Ac)e,

After projection of the nonlinear séB10) on the eigenfunc-
tions of the adjoint problem, i.e.,

(FEM(Le+Ly)f)y=(f*N(f)), p=012..., keR?
(B13)
one obtains, after integrations by parts,
Np—l
>

2 {a(Pr tut - u+ 6% *0) + e[ Rayan (W3 6)

_MaO(l_a))\c<azW;k|z:10|z:l>]}
N,—1
= pz,o {(Prtutk.u+ 6% ko) +PrXur (u-Vu))

+(5(u-V o)} (B14)

Np—1 ki a k
p 1
—o0 Sk ek AgA

quo,

—Mag(1—a)(A—N\¢)dy
—Mag(1—a)(N—A¢)dy

Equation(B14) clearly indicates that in the weakly nonlinear
regime(e<l), a,‘g measures the linear damping of the mode
fX.

’ The next problem is to show that the summation in ex-
pansion(31) can be limited to a few relevant modes, namely,
the modes with the largest eigenvalues. The truncation is
performed in two steps. First, for a given wave number, only
the modes with the largest eigenvalues are taken into consid-
eration; the summation over in (B14) is limited toN,. To
justify our attitude consider two arbitrary wave vectors, say,
k, and k,, whose absolute values are not too large, say,
smaller than R., such that Re€1)>Re(a§2); the Biot num-
ber is taken to be equal to zero. Table Il shows that the real

. k .
part of the eigenvaluea,, , are larger in absolute value

than the reaIaEC’s. The elimination of the stable modes
(a,‘f,<0) is performed by starting from relatio{B14)

k_
Ap=

Biorthogonal relations are obtained from the definition of the

eigenprobleni17] and are given by

L((ug- V2 05 ) +Pri((ust- Vuy?) - uf)]

k ~1, .k k¥ K ok*
an(Prug-us + 6365 )

(B15)

TABLE IV. Values of the critical pointg,, &,, ande, for Pr=1
and Bi=0 when the summation dB14) is limited to N, modes.

ki _ ko exky ekoy a Critical N,=1 N,=3 N,=5
(apl apz)<fpl chp2> 0 (B16) Dot P P P
or 0.00 & —0.30x1072  -0.25x10°2 —0.25x10°2
1Ky kKo kg gxko ) &1 0.22 0.24 0.24
(Prvupi-up 2+0,26, 2)=0 if py#p, or ky#kz, & 0.78 0.82 0.80
(B17) 425 &c —-0.24x1072  —0.18<1072 —0.18x10°2
from which it results that the summations oyeandk in the zl 8'28 8'22 8'2?
linear term of (B14) can be dropped. It follows then from 2 ' ' '
(B15) that the modes with high eigenvalua% can be ne- 0.50 & —-0.151072 -0.10x1072 —0.10x1072
glected. To illustrate the role of the modps-0, we have &1 0.11 0.11 0.11
reported in Table IV the critical numbess, ¢,, ande, when €7 0.38 0.37 0.36
Np is increased. It is observed that qualitatively, the value%.75 . _0.05¢102 —0.03x102 —0.03x102
of &4, &,, ande, remain of the same order of magnitude as . 0.05 0.04 0.04
the number of modes is increased from 1 to 5; more impor- o 016 013 013

tant, it is seen that very good convergence is achieved even
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by using only three modes in the developments. Numericainore, the wave vectors must satisfy relations such as
calculations have been performed until a relative converk,*k,==*ks in order to allow for nonlinear couplings in
gence of 102 on the transition points was achieved. (B14) (for more details, see, for instance, Segel's widk.

The next step of the procedure consists of reducing thén particular,K must also includé&=0.
wave vector continuum to a finite set of wave vectors. We Summarizing the considerations, expressi®h will take
note K the set of corresponding eigenfunctions. The choicehe form
of K depends on several elements, but the siz¢ f mainly

limited by the computational time. For layers of infinite hori- Np-1
zontal extentK must at least contain eigenfunctio’r@with f 2 2 Akgk gk (B18)
lk|=k. because these modes are the most unstable. Further- p=0 * PP P
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