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A weakly nonlinear analysis of coupled surface-tension- and gravitational-driven instability in thin fluid
layers is presented. The fluid is assumed to be Newtonian and incompressible and is heated from below.
Newton’s law of cooling is used to model the heat exchange at the upper surface. Ginzburg-Landau amplitude
equations are established and the preferred mode of convection is obtained. The influence of the Prandtl and
Biot numbers is emphasized. It is shown that hexagonal cells are the only stable configurations just above the
threshold. Rolls are stable in a nonlinear regime at sufficiently large values of the thickness of the layer. A
subcritical domain is also displayed. By increasing surface-tension effects one promotes the hexagonal pattern.
In the limiting case of a negligible temperature dependence of the surface tension, only rolls are stable. Another
interesting result is that, at small Prandtl numbers~Pr,0.23!, the direction of the flow may be downward at the
center of the hexagonal cell, whatever the value of the buoyancy force.@S1063-651X~96!06006-0#

PACS number~s!: 47.20.2k, 47.27.2i

I. INTRODUCTION

Our objective is to study thermoconvective instability in
an infinite horizontal fluid layer heated from below. It is well
known that two mechanisms are responsible for the onset of
convection: the variation of the surface tension with tem-
perature~thermocapillary Marangoni effect! and the varia-
tion of the mass density with temperature~buoyancy
Rayleigh-Bénard effect!. The linear stability problem has
been studied by Nield@1#. This author determines the tem-
perature threshold above which the heat conductive rest state
becomes unstable. The linear approach is not able to deter-
mine the shape of the convective pattern appearing above the
threshold.

A complete and systematic nonlinear study of the pure
buoyancy instability was performed by Schlu¨ter, Lortz, and
Busse@2#, who showed that the roll pattern is the only stable
configuration. This work amplifies earlier interesting contri-
butions by Segel and Stuart@3–5#. However, very few works
on nonlinear Marangoni convection anda fortiori on nonlin-
ear Rayleigh-Be´nard-Marangoni coupled problem have been
done in the past. A nonlinear analysis of the pure thermocap-
illary problem was proposed by Scanlon and Segel@6#.
These authors consider the nonrealistic hypotheses of an
infinite-depth layer and an infinite Prandtl number. They use
a successive approximation technique based on Stuart’s
method@3# and predict the emergence of stable hexagonal
cells at the onset of convection. Stable cells are also exhib-
ited in a small subcritical region. Recently, Bragard and Le-
bon @7# have extended Scanlon and Segel’s work to the case
of a finite-depth layer. Bragard and Lebon obtain qualitative
agreement with Scanlon and Segel’s results, but find that the
critical temperature above which hexagons become unstable

is much lower than the value predicted by Scanlon and Se-
gel. A nonlinear analysis on the coupled Rayleigh-Be´nard-
Marangoni problem based on Schlu¨ter, Lortz, and Busse’s
technique@2# is that of Cloot and Lebon@8#. Although Cloot
and Lebon consider the influence of several parameters such
as the Biot and the Prandtl numbers, their approach is not
adequate for treating situations rather far from the conductive
threshold and characterized by large values~Ra@669! of the
Rayleigh number@9#. Another nonlinear approach was due to
Kraska and Sani@10#, but their results were not very con-
vincing and were criticized by Rosenblat, Davis, and Homsy
@11#, who studied nonlinear Marangoni convection in cylin-
drical and rectangular containers of finite extent.

Several methods can be used to study the weakly nonlin-
ear thermoconvective problem. The present analysis is based
on a technique introduced by Eckhaus@12#. It consists of
expanding the field variables in series of eigenfunctions of
the linear stability problem with time-dependent amplitudes.
A similar way was followed by Cross@13# to study the pure
Rayleigh-Bénard instability and afterward by Rosenblat,
Davis, and Homsy@11# and Daubyet al. @14# to solve the
thermocapillary instability problem. The main problem
raised by the approaches of Rosenblat, Davis, and Homsy
and Daubyet al. is that they introduce a fictitious Rayleigh
number as the eigenvalue of the problem, although the physi-
cal system is characterized by a vanishing gravity accelera-
tion, which means a zero Rayleigh number. Furthermore,
there are some difficulties with regard to the completeness
requirement of the selected basis of eigenfunctions. Re-
cently, a study of the coupled Rayleigh-Marangoni instabil-
ity for a fluid with an infinite Prandtl number was performed
by Bestehorn@15#, who used a projection technique based on
an integral formulation. Thess and Bestehorn@16# have real-
ized a study similar to the present one, but without buoyancy
effects; these authors study the planform selection in pure
Marangoni convection and, in particular, the influence of the
Prandtl number on the direction of fluid motion in hexagonal
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patterns. In the present work, we circumvent the difficulties
raised by the approaches of Rosenblat, Davis, and Homsy
@11# and Daubyet al. @14# and investigate the general prob-
lem of coupled capillary and gravitational instabilities for a
finite Prandtl number.

A crucial problem is that of the heat transfer through the
upper free surface. In most papers on Be´nard-Marangoni in-
stability @1,5–11,14–18#, Newton’s law of cooling with a
constant heat transfer coefficient is taken for granted. It
should, however, be realized that this assumption is strictly
satisfied only when the temperature at the upper surface is
uniform. Such a condition is met in pure buoyancy-driven
convection, i.e., when the upper surface is rigid; if we except
the reference heat conductive case, this is no longer true in
Marangoni’s instability as the temperature at the upper sur-
face varies from point to point. The heat transfer coefficient
or its dimensionless expression, the so-called Biot number, is
then not a constant but depends on the surface properties of
the fluid, the unknown motion of the ambient gas and also
the spatiotemporal structure of the temperature field. There
exists, however, one specific situation for which a constant
expression of the Biot number can be derived: it is the case
of a free surface at which heat is released by pure radiation to
an ambient vacuum@18#. It was proved by Thess and Orszag
@18# that the Biot number Bi is then given by Bi54SdTc

3l,
whereS is the Stefan-Boltzmann constant,Tc the uniform
temperature of the lower surface,d the thickness of the fluid
layer, andl its heat conductivity: all these quantities are
constant and directly accessible to experiments. However,
except for this rather particular case, it is not possible to
describe heat transfer through the upper surface without in-
troducing simplifying assumptions such as a constant heat
transfer coefficient and this is the attitude followed in the
present work; this is justified as we are only concerned with
a weakly nonlinear analysis. Quoting Joseph@19#, ‘‘This
specious procedure~a uniform Biot number! for solving the
exterior problem is clearly a concession to the untractable
character of the coupled problem.’’ Although the general
problem of the validity of Newton’s law of cooling is of the
highest interest, it is outside the scope of the present work.
Here our main objective is to study the transition between
pattern configurations and it appears that our results are in
qualitative agreement with experimental observations
@9,20,21#. Finally, it should also be stressed that besides
Newton’s cooling law, other approximations have been in-
troduced in the present model: as a matter of fact, we have
assumed that the Navier-Stokes equation is valid, that Bouss-
inesq’s approximation is satisfied, and that the upper surface
is not deformed. In future works these restrictions will be
successively relaxed.

The paper is organized as follows. We next introduce the
physical system and establish the basic equations~Sec. II!.
The linear problem is treated in Sec. III, while the nonlinear
amplitude equations are derived in Sec. IV. The competition
between roll and hexagonal patterns is discussed in Sec. V
using a Ginzburg-Landau model adapted to the present prob-
lem. Conclusion and prospectives are drawn in Sec. VI.

II. PROBLEM FORMULATION

Consider a fluid layer of infinite horizontal extent con-
fined between a lower rigid plane, perfectly heat conducting,

and a flat upper free surface; the layer is heated from below.
The fluid is Newtonian and incompressible with density
given by

r5r0@12aT~T2T0!#, ~1!

whereinr0 is the density at a reference temperatureT0, say,
the room temperature, andaT the constant coefficient of
volumic expansion. The free upper surface is submitted to a
surface tensions, whose equation of state is given by

s5s02g~T2T0!, ~2!

whereins0 is the surface tension at temperatureT0 andg the
constant rate of change of surface tension with temperature,
generally a positive quantity. In the reference state, the fluid
is at rest with a steady temperature differenceDT between
the bottom and top surfaces. A Cartesian coordinate system
with horizontal axesex ,ey located in the lower plate and a
vertical axisez pointing upward is introduced. For conve-
nience, the variables are expressed in dimensionless form:
distances are scaled by the thicknessd of the layer, the ve-
locity vectoru with components (u,v,w), time t, pressurep,
temperatureT, and surface tensions are scaled bykd21,
k21d2, knr0d

22, bTd, ands0, respectively, wherek is the
thermal diffusivity andn the kinematic viscosity. The quan-
tity bT ~.0! is defined as minus the vertical temperature
gradient that would appear in a purely conductive state.
Since in the pure heat conducting state, the temperature at
the upper surface is uniform, there is no ambiguity in deter-
mining experimentallybTd. As shown by Koschmieder and
Prahl @20#, this temperature difference is related to the dif-
ference between the temperature at the lower rigid plate and
the temperature of the gas surmounting the liquid by

bT5
Tinf2Tgas
K/h1d

, ~3!

whereinTinf is the temperature of the fluid in contact with
lower plate,Tgas the mean temperature of the passive gas
underlying the upper fluid surface,h the thermal surface con-
ductance, andK the thermal conductivity of the fluid layer;
for more details, the reader is referred to Koschmieder and
Prahl’s work@20#. When the fluid is set in motion,bT is no
longer the temperature gradient in the fluid layer since con-
vection induces a nonzero mean perturbative temperature at
the upper fluid surface. As a consequence, the dimensionless
numbers of Marangoni and Rayleigh@see definitions 4~b!
and 4~c!# must be experimentally evaluated withbT as given
by Eq. ~3!.

It is usual to introduce the dimensionless numbers

Pr[nk21, ~4a!

Ra[gaTbTd
4k21n21, ~4b!

Ma[gbTd
2k21n21r0

21, ~4c!

Bi[hdK21. ~4d!
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Pr is the Prandtl number, Ra the Rayleigh number, Ma the
Marangoni number, and Bi the Biot number, withg the ac-
celeration due to the gravity. As an alternative to the Ma-
rangoni and Rayleigh numbers, we define two new dimen-
sionless numbersa andl by the relations

~12a!
Ra

Ra0
5a

Ma

Ma0
, ~5a!

l5
Ra

Ra0
1
Ma

Ma0
. ~5b!

Ra and Ma are related toa andl by means of

Ra5Ra0al, ~5c!

Ma5Ma0~12a!l. ~5d!

The quantities Ra0 and Ma0 are two arbitrary constants. Here
we have choosen Ra0 as the critical Rayleigh number for
pure buoyancy and Ma0 as the critical Marangoni number for
pure thermocapillarity. In physical situations, the only con-
trol parameter is neither Ma nor Ra, but the temperature
gradientbT . On the other hand, for a given fluid with a given
depth the ratio Ra/Ma is a constant independent ofbT . The
use ofa andl rather than Ra and Ma is motivated by the
fact thata is a combination of the relevant physical param-
eters, whilel is the quantity directly proportional to the con-
trol temperature difference. It follows from Eq.~5a! that a
can be considered as the percentage of buoyancy effect with
regard to thermocapillary effect; it takes values between zero
and one:a50 corresponds to pure thermocapillarity and
a51 to pure buoyancy. Equation~5b! shows thatl is di-
rectly proportional to the temperature gradient; in weakly
nonlinear problemsl remains close to one.

Within Boussinesq’s approximation, the governing di-
mensionless equations are as follows: the continuity equation
is

“•u50, ~6!

the Navier-Stokes equation is

] tu1u•“u5Pr~2“p1Ra0laTez1¹2u!, ~7!

and the energy equation is

] tT1u•“T5¹2T, ~8!

wherein¹(]x ,]y ,]z) is the nabla operator. The correspond-
ing boundary conditions are at the lower uniformly heated
rigid planez50,

u50, ~9a!

T5T̃inf ~9b!

and at the upper free surfacez51,

]zu52Ma0l~12a!]xT, ~10a!

]zv52Ma0l~12a!]yT, ~10b!

w50, ~11a!

]zT52Bi~T2T̃gas!, ~11b!

whereT̃inf andT̃gasare the dimensionless temperature of the
lower plate and the dimensionless temperature of the passive
gas underlying the fluid layer, respectively. Equations~9a!
and 9~b! express that the lower plane is rigid and perfectly
heat conducting, while the heat transfer at the upper surface
is characterized by the Biot condition~11b!. Equations~10!
express the dependence of the surface tension with respect to
the temperature, while~11a! is a consequence of the flatness
of the upper interface.

III. LINEAR STABILITY

Below a critical temperature gradient the fluid remains at
rest. The corresponding velocity and temperature fields are
given by

ur50, Tr52z1T̃inf , ~12!

wherein the subindexr refers to the unperturbated rest state.
To study the stability of this reference state, we introduce

the perturbationsu, u5T2Tr , andp5p2pr . After linear-
izing Eqs.~6!–~8!, one obtains

“•u50, ~13!

] tu5Pr~2“p1Ra0lauez1¹2u!, ~14!

] tu5w1¹2u. ~15!

The corresponding boundary conditions are

u5v5w5u50 at z50, ~16!

w5]zu1Biu50 at z51, ~17!

]zu1Ma0l~12a!]xu5]zv1Ma0l~12a!]yu50.
~18!

According to the normal mode technique, we seek solutions
of the form

~u,v,w,p,u!5@U~z!,V~z!,W~z!,P~z!,U~z!#

3exp@ i ~kxx1kyy2st!#, ~19!

whereinU(z), V(z), W(z), P(z), andU(z) denote thez
dependence of the relevant physical quantities,s is the com-
plex stability parameter

s5sr1 isi , ~20!

with sr andsi the real and imaginary parts ofs, respectively,
and kx and ky are the components of the horizontal wave
vectork in the x andy directions, respectively. At marginal
stability, not only is the growth ratesi of the perturbation
zero, butsr is also equal to zero; indeed in the present prob-
lem the principle of exchange of stability has been shown to
be satisfied@22#. Substitution of Eq.~19! in the set~13!–~18!
results in the following set of ordinary differential equations
for the disturbance amplitudes, after elimination of the pres-
sure and the horizontal components of velocity:
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~D22k2!U1W50, ~21!

~D22k2!2W2Ra0lak2U50. ~22!

At the boundary conditions, it is found that

W5DW5U50 at z50, ~23!

W5DU1BiU5D2W1Ma0l~12a!k2U50 at z51,
~24!

whereinD stands ford/dz andk25k x
21k y

2.
The eigenvalue problem~21!–~24! was solved by Nield

@1# by using a series expansion method. The dispersion rela-
tion between the parametersl, a, k, and Bi can formally be
written as

l5lp~a,Bi,k!, p50,1,2,..., ~25!

whereinlp has been ordered according tol0<l1<l2<••• .
In the limiting casea50, l is identical to Ma/Ma0 and the
problem is characterized by a unique valuel0. It follows that
l cannot be taken as an eigenvalue as confirmed by an earlier
analysis of Rosenblat, Homsy, and Davis@23#, who showed
that Ma is not an eigenvalue of the Marangoni problem. For
a given fluid and a given depth,a and Bi are fixed and one
defines the critical lambdalc by

lc5min
kPE

l~a,Bi,k!, ~26!

whereE is the set of admissible values of the wave number
k. The wave numberk corresponding tolc is the critical
wave numberkc . Since in the present study the layer is of

infinite horizontal extent, one hasE5#0,̀ @; it is only for
laterally bounded systems thatk takes discrete values
@11,17#.

IV. NONLINEAR ANALYSIS

The linear approach allows us to determine the critical
valueslc , kc , and (sr)c . The latter vanishes here as the
principle of exchange of stability holds. From the knowledge
of these critical values, we can determine the critical tem-
perature gradient above which the conductive state becomes
unstable as well as the characteristic wave number of the
flow pattern. But the definite shape of the pattern can be
obtained only via a nonlinear analysis. The nonlinear stabil-
ity problem is solved by using a modified Galerkin method
introduced by Eckhaus@12# and applied to thermocapillary
problems by Rosenblat, Davis, and Homsy@11# and Dauby
et al. @14#. The method consists of expressing the solution of
the nonlinear problem by means of a series expansion in
terms of the eigenfunctions of the linear problem. This ex-
pansion is then introduced in the nonlinear equations and
projected onto the eigenfunctions of the adjoint linear prob-
lem. This procedure results in an infinite set of ordinary dif-
ferential equations, which afterward is truncated by consid-
ering only a few sets of eigenfunctions. The selection of the
relevant set of eigenfunctions will be discussed later on.

We define the eigenvalue problem as

Lcf p
k5ap

kM f p
k , p50,1,2,..., kPR2, ~27!

wherein the following notation has been used:

f T5~u,p,u,uuz51!, ~28!

Lc5S ¹2

“•

ez
2]z~• !•exuz51

2]z~• !•eyuz51

2¹
•••
•••
•••
•••

Ra0alcez
•••
¹2

•••
•••

•••
•••
•••

2Ma0~12a!lc]x
2Ma0~12a!lc]y

D , M5S Pr21I3
•••
•••
•••
•••

•••
•••
•••
•••
•••

•••
•••
1

•••
•••

•••
•••
•••
•••
•••

D . ~29!

An upper indexT means transposition,I3 is the unit 333
matrix, andLc is the operator of the linear problem~13!–
~15! calculated at the threshold; it is worth noticing that the
eigenvaluea0

kc50 is the solution of~27!, while the corre-
sponding eigenfunction is the solution of the linear stability
problem. It should also be observed that the Marangoni
boundary conditions~18! have been introduced in operator
Lc through the last two lines. By doing so, the eigenfunctions
f p
k do not have to verifya priori these boundary conditions,
which are considered to be natural boundary conditions. The
ap
k are the eigenvalues ofLc ordered in such a way
that Re(a0

kq).•••.Re(an21
kq ).Re(an

kq).••• , where Re(x)
stands for the real part ofx; kq denotes any arbitrary value of
the wave vector. The eigenfunctionsf p

k have the form

f p
k5Fp

k~z!exp@ ik•~xex1yey!#. ~30!

The determination of thez dependenceF p
k(z) of the eigen-

functions is given in Appendix A. In contrast with the pro-
cedure followed by other authors@11,14,17#, wherein the
Rayleigh number is taken as the eigenvalue of the linear
problem, the eigenvalue atk50, i.e., a p

0, is now finite in-
stead of being infinite; it is equal to2p2~p11

2!
2 for Bi50.

As a consequence, the eigenfunctionsf p
0 can be directly in-

troduced in the expansion~31! given below without separat-
ing arbitrarily the temperature field into a mean horizontal
part plus a departure from the mean@11,17#. The reasons for
working with the eigenfunctions calculated atk50 are two-
fold: first, each self-quadratic interaction of an eigenfunction
f p
k will contribute to f p

0; second,f p
0 is the single eigenfunc-

tion that accounts for a nonzero horizontal mean value of the
temperature.

Without loss of generality, we can express the solutionf
of the nonlinear problem~6!–~8! in terms of the eigenfunc-
tions f p

k ; accordingly
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f5 (
p50

`

(
k
Ap
k f p

k , p50,1,2,..., kPR2, ~31!

whereinAp
k is theamplitudeof themode fp

k . The wave vec-
tor k can take all possible directions and moduli in the case
of a fluid layer of infinite horizontal extent. Truly, the sum-
mation overk should be replaced by a double Fourier inte-
gral representation; however, since our objective is to con-
sider only a discrete set of wave vectors, expression~31! is
adequate. For the sake of clarity, the justification of the trun-
cation procedure of expansion~31! is reported in Appendix
B.

Writing the set~13!–~15! of basic equations in the form

~Lc1LD! f5N~ f !, ~32!

with LD andN( f ) defined in Appendix B@see Eqs.~B11!
and~B12!# and projecting~32! onto the eigenfunctions of the
adjoint problem, one obtains

^ f p*
k~Lc1LD! f &5^ f p*

kN~ f !&, p50,1,2,..., kPR2,
~33!

wherein ^ & denotes the scalar product operator defined by
Eq. ~B8!. Denoting byk the space of eigenfunctions and
substituting the truncated expansion off as given by

f5 (
p50

Np21

(
k
Ap
k f p

k , f p
kPK ~34!

@see~B18!# in the orthogonality relation~33! @or more con-
veniently in ~B14!# and noticing in addition that the eigen-
functions f p

k are biorthogonal, one obtains the set ofampli-
tude equations, namely,

Ap
k$ap

k^up
kup*

k1Pr21up
k
•up*

k&1«lc~aRa0^up
kwp*

k&

2~12a!Ma0^up
kuz51]zwp*

kuz51&!%

5
dAp

k

dt
^up

kup*
k1Pr21up

k
•up*

k&

1 (
q50,l50

Np21

(
k1 ,k2PK

Aq
k1Al

k2~^~uq
k1
•“u l

k2!up*
k&

1Pr21^~uq
k1
•“ul

k2!•up*
k&!, f p

kPK, ~35!

wherein« is the relative distance from the threshold

«5
l2lc

lc
. ~36!

Expression~35! is the key relation of the present work.
Equation~35! constitute a set of nonlinear coupled ordinary
differential equations for the unknownsAp

k , f p
kPK. The pur-

pose of the next section is, starting from~35!, to study the
competition between hexagonal and roll patterns, which are
the most current patterns observed near the threshold. It is
assumed, as confirmed by experimental observations, that the
occurrence of other configurations, such as squares and pen-
tagons, is negligible in normal situations.

V. GINZBURG-LANDAU EQUATIONS AND HEXAGONAL
AND ROLL PATTERNS

Three horizontal wave vectors, oriented with an angle
2p/3 between them, are sufficient to generate hexagons and
rolls: their components are respectively given byk15kcey ,
k25kc~2ex)/22ey1/2!, and k35kc~2ex)/22ey1/2!. The
three corresponding eigenfunctions are given by

f p
kq5exp@ ikq•~xex1yey!#Fp~z,kc

2!,

~37!
q51,2,3; p50,1,...,Np21,

whereinNp is the number of modes associated to a given
wave number. Let us define byKc

Kc5$ f 0
k1, f 0

k2, f 0
k3%, ~38!

the set of critical eigenfunctions. As explained in Appendix
B, we must complementKc by a setKs of eigenfunctions
resulting from the quadratic interactions of~37! and ~38!,
namely,

Ks5$ f 0
kquq50,4,5,6,7,8,9%ø$ f p

kqupÞ0; q50,...,9%,
~39!

wherein

k050, k45)kc~ex1/21ey)/2!, ~40!

k55)kc~ex1/22ey)1/2!, k652)kcex , k752kcey ,
~41!

k852kc~2ex)/22ey1/2!, k952kc~ex)/22ey1/2!.
~42!

To each wave vectork i correspondsNp modesf p
ki with an

amplitudeA p
i . The complete set of eigenfunctions used in

the projection technique is the union ofKc andKs :

K5KcøKs . ~43!

After computation of thez component of the direct
and adjoint eigenfunctionsFp(z,0),Fp* (z,0),Fp(z,kc

2),
Fp* (z,kc

2),Fp(z,3kc
2),Fp* (z,3kc

2),Fp(z,4kc
2),Fp* (z,4kc

2), one
obtains from~35! the equations for the 73Np amplitudes
A p

0 ,A p
1 ,...,A p

6, p50,...,Np21. This set is then reduced by
noticing that the amplitudes whose eigenfunctions belong to
Ks are damped with regard to the modes pertaining toKc ,
i.e.,

ap
ku f

p
kPKs

!a0
ku f

0
kPKc

. ~44!

Consequently,Ks appears as the set ‘‘slaved’’ toKc and it is
legitimate to assume that, ‘‘near the threshold,’’

uAi u f iPKs
!uAi u f iPKc

. ~45!

In general,Kc is defined as the set of eigenfunctions whose
corresponding modes are critical at the threshold or ‘‘near’’
the threshold, i.e.,a0

ku f
0
kPKc

>0. Of course, the wording

‘‘near the threshold’’ is rather vague and depends on the size
of the nonlinear domain that is investigated. In a weakly
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nonlinear analysis, it is sufficient to take into account the
modes that are critical at the linear threshold.

After assuming that«!1 and neglecting their temporal
variation, the slaved modesAp

k are given by relation~B15!,
wherein f p

kPKs . Introducing the result~B15! into the set
~35! for the critical modes, one obtains the following
Ginzburg-Landau equations@24# for the three amplitudesA1,
A2, andA3:

t] tA15«A11aA2*A3*2bA1~ uA2u21uA3u2!2cA1uA1u2,
~46!

t] tA25«A21aA3*A1*2bA2~ uA3u21uA1u2!2cA2uA2u2,
~47!

t] tA35«A31aA1*A2*2bA3~ uA1u21uA2u2!2cA3uA3u2,
~48!

wherein the coefficientst, a, b, andc depend generally on
the Prandtl number, the Biot number, and the ratioa.

A detailed analysis of the system~46!–~48! can be found
in several papers~e.g., @13,24#!; here we recall only the es-
sential points. We must distinguish between four sets of so-
lutions, but only three of them are relevant:

A15A25A350 ~conductive state!, ~49!

AiÞ0, Ai115Ai1250 ~ i5 i mod3! ~rolls!, ~50!

A15A25A3Þ0 ~hexagons!. ~51!

The results of the analysis are summarized in Table I,
wherein the stable configurations are represented as a func-
tion of the values taken by«. The quantity«c stands for the
subcritical transition point, while«1 and«2 are the first and
second supercritical transition points, respectively. They are
related to the coefficientsa, b, andc through

«c5
2a2

4~2b1c!
, «15

a2c

~b2c!2
, «25

a2~b12c!

~b2c!2
. ~52!

The influence of the ratioa on the values of the two super-
critical parameters«1 and«2 is shown in the Ra-Ma plane of
Fig. 1. Biot’s number is assumed to vanish~Bi50! and sev-
eral Prandtl numbers running from zero to infinity are inves-
tigated. In the Ra-Ma plane,a5const represents a straight
line crossing the origin:a50 corresponds to the vertical
axis, i.e., Ra50, while a51 describes situations along the

horizontal axis for which Ma50. Furthermore, the distance
between a given point on the straight line and the origin is
measured byl as shown by Eq.~5!. The thin line corre-
sponds to the linear thresholdlc'1 and was obtained by
Nield @1#. As a consequence,« can be viewed as a measure
of the distance between a point located on the straight line
~a5const! and Nield’s line~lc'1!; «1 and«2 are represented
by the dashed line and by the thick upper line, respectively;
«c is not reported in Fig. 1 because its values are too small.
Five regions are identified according to the values taken by«
as explained in Table I~regions C, CH, H, HR, and R!. The
variation of «c with respect toa for Bi50 and various
Prandtl numbers is found in Fig. 2, while the variations of
the parameters«c , «1, and «2 as a function of Pr are dis-
played in Fig. 3 for Bi50 anda50.5.

If we except the particular case of pure buoyancy insta-
bility ~a51!, the convective pattern that appears at the linear
threshold is always formed with hexagons; below this thresh-
old, a subcritical region where hexagons can be stable is also
found. The absolute values of the parameters«c , «1, and«2
decrease while the ratioa increases and they vanish for
a51. In agreement with Schlu¨ter, Lortz, and Busse@2#, hex-
agonal patterns are unstable when buoyancy is the only fac-
tor of instability. When the temperature gradient is increased,
a region where rolls and hexagons coexist is displayed. The
observed planform, either roll or hexagon, depends on the
initial conditions; in practice, the pattern observed in the re-
gion HR will be hexagonal if the system was previously in
the H region and formed by rolls if the system was initially
in the R region. At still higher temperature gradients, rolls
are expected.

The Prandtl number has significant influence in the range
PrP#1022,10@. From Pr510 to Pr→`, the results remain
practically unchanged, which justifies that it is appropriate to
assume that Pr→` as long as Pr is larger than 10. Within this
range, the resolution of Eqs.~46!–~48! shows that for stable
hexagons, the fluid moves upward at the center of the hexa-
gon, in agreement with experiments~H1!. Values of«1 and
«2 have also been calculated by Bestehorn@15# for a fluid
with an infinite Prandtl number. In agreement with Beste-
horn, we observe that the regions C and CH have practically
the same relative importance. Indeed, it follows from Fig. 1
and Ref.@15# that the ratio«2/«1'3.5 remains almost un-
changed whatever the Prandtl number and the ratioa. In the
range PrP#10,0.23@, the area of the regions CH, H, and HR
decreases as Pr tends to 0.23. When the coefficienta of the
quadratic term of the Ginzburg-Landau equations vanishes, it

TABLE I. Stable configurations.

«5(l2lc)/lc Solution Corresponding region in Fig. 1

«,«c conductive state~C! below thick line
«c,«,0 conductive state, hexagons~CH!

~subcritical region, hysteresis!
not represented in Fig. 1~see Fig. 2!

0,«,«1 hexagons~H! between the thick and the dashed line
«1,«,«2 hexagons, rolls~HR! ~hysteresis! between the dashed and the thin upper line
«.«2 rolls ~R! above the thin upper line

H1: fluid moves upward at the center of the hexagons~Pr.0.23!
H2: fluid moves downward at the center of the hexagons~Pr,0.23!
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is seen in Eqs.~52! that the values of the critical points«c ,
«1, and«2 vanish, from which it follows that only rolls will
be observed above the linear threshold. For given values of
Bi, a critical value of the Prandtl number can be found by
solving

a~Prc ,Bi,a!50→Prc5Prc~Bi!, ~53!

wherein Prc does not depend ona. It is found that
PrcuBi5050.233 and PrcuBi→`50.255. The same value
Prc50.23 was already obtained by Daubyet al. @14# in the

FIG. 1. Stability diagrams in the Ra-Ma plane for various Prandtl numbers and Bi50. The thick line represents the linear threshold, the
dashed line corresponds to«1, and the thin continuous line corresponds to«2. The straight line in the top left figure corresponds to a constant
and given value of the parametera. See Table I for the definitions of C, H1, H2, H1R, H2R, and R.
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particular case of pure thermocapillary convection~a50!;
Thess and Bestehorn@16# found Prc'0.22 by using the
method of the amplitude equations and Prc'0.29 by direct
numerical simulation. As Pr becomes smaller than Prc , the
areas of the regions CH, H, and R are increased, as shown in

Fig. 1. It is worth noticing that in contrast with high Pr
values, the fluid moves now downward at the center of the
hexagons~H2!.

In the limiting case Pr→0, «c is slightly larger than for
Pr→`, while for small Prandtl numbers,«1 and«2 take very

FIG. 2. Subcritical domain«c as a function ofa for various Prandtl numbers and Bi50. See Table I for the definitions of C, CH1, and
CH2.
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large values~see Figs. 1 and 3!. However, such results are
not quantitatively significant as our analysis is limited to a
weakly nonlinear range; the only conclusion that can be
drawn is that rolls will be preferred when buoyancy forces
are dominant~a'1!. It is important to recall that the above
results have been established under the hypothesis«,1, so
that for large values of«1 and«2, only qualitative informa-
tion is expected. This restriction does not apply to the results
for «c as the latter remains very small.

Table II presents values of«c , «1, and«2 as obtained by
various authors for pure capillary driven instability. All these
results have been derived from different approximative qua-

sianalytical methods, except for those of Thess and Orszag
@18#, who used a three-dimensional pseudospectral numerical
method.

Our values of«150.71 and«252.37 are in good agree-
ment with recent results obtained by Bragard and Lebon@7#
and Dauby@17#. These authors have used only one eigen-
function per wave number~Np51; see Appendix B!; values
of «1 and«2 obtained by takingNp51 are also given in Table
II. It is seen that these values are very close to Bragard and
Lebon’s and Dauby’s values. The very large values given by
Scanlon and Segel@6# can be explained by their unrealistic
assumption of a layer of infinite depth. Furthermore, Bragard
and Lebon@7# have repeated Scanlon and Segel’s calcula-
tions and have found smaller values of the critical points
~«c520.0216, «157.8, and«2525!. The subcritical value
«c520.0058 predicted in the present analysis is also in sat-
isfactory agreement with other authors. The smaller value
found by Cloot and Lebon@8# can be interpreted by the fact
that their results are given for Pr57 and it is seen in Fig. 3
that «cuPr57,«cuPr→` .

The behavior of the parameters«c , «1, and«2 as a func-
tion of the modified Biot number Bi*[Bi/~11Bi! is reported
in Fig. 4. For high values of Biot’s number~Bi→` or
Bi*→1!, the temperature at the upper surface is almost fixed
and the Marangoni effect does not act any more. As a con-
sequence, the quadratic coefficienta of the Ginzburg-Landau
equations is zero, from which it follows that«c , «1, and«2
vanish, as seen in Fig. 4.

VI. CONCLUSION

The aim of the present work is to propose a theoretical
approach of the nonlinear thermoconvective problem; the
coupling between buoyancy and surface tension effects is
investigated. The numerical analysis is based on a modified
Galerkin method introduced by Eckhaus@12#. Our approach
differs from that of other authors by the definition of the
linear eigenproblem. Here the eigenvalue appears naturally
from the definition of the linear operator. A frequent diffi-
culty in the construction of a complete basis of eigenfunc-
tions is to incorporate a mode with a zero wave number in
the nonlinear developments. Here this problem is given a
simple solution and the mode with a zero wave number is
directly introduced in the nonlinear expansion without using
particular artifacts such as the decomposition of the tempera-
ture field into a mean horizontal value plus additional fluc-
tuations.

The mathematical problem solved in this article rests on
several assumptions such as Boussinesq’s approximation, a
nondeflecting upper free surface, and Newton’s law of cool-
ing with a constant heat transfer coefficient. The validity of
these approximations, in particular the last two, may be ques-
tioned, but a quantitative and accurate description of these
effects require specific and lengthy treatments, which are
outside the scope of the present analysis.

The main results that have been obtained can be summa-
rized as follows. When buoyancy is the single responsibility
of the convection, only rolls will be observed. As soon as
capillary effects are present, the situation is more complex. A
general tendency is, however, observed and it appears that a
hexagonal structure is preferred at the linear threshold. The

FIG. 3. Values of the critical parameters«c , «1, and «2 as a
function of Prandtl number for Bi50 anda50.5. ~a! «1 is repre-
sented by the dashed line and«2 by the continuous line. See Table
I for the definitions of C, CH1, CH2, H1, H2, H1R, H2R, and R.

TABLE II. Comparison between the values of«c , «1, and«2 in
pure thermocapillary convection~a50!, with Pr5` and Bi50.

Work «c ~%! «1 «2

Scanlon and Segel@6# 22.3 64 196
Cloot and Lebon@8# ~Pr57! 20.3
Bragard and Lebon@7# 20.56 0.53 1.8
Daubyet al. @14# 20.62 0.53 1.82
Thess and Orszag@18# 20.75
This work ~Np51! 20.78 0.54 1.92

~Np55! 20.58 0.71 2.37
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more the thermocapillary forces are dominant with respect to
the buoyancy forces the larger the size of the region where
hexagons are stable. This result is in agreement with experi-
ments performed by Cerisieret al. @9# and with Bestehorn’s
theoretical approach@15#. The influence of the Prandtl num-
ber has received particular attention. It is shown that the
direction of the motion inside the hexagons is directly linked
to the value of the Prandtl number: for Pr.0.23, the fluid
moves upward at the center of the hexagons, in accord with
experiments@20,21#. But for Pr,0.23, the fluid motion is
inverted. To our knowledge, up to now, no experiment has
confirmed or denied this property as most experiments are
performed with fluids at high Prandtl numbers; a fluid with
Pr'0.23 would correspond to liquid metals. The value of the
critical Prandtl number Prc'0.23 has been confirmed by
other authors@14,16#. A subcritical region where hexagons
are stable has also been displayed. The region is the largest
when buoyancy does not act. In this case, the value found for
the subcritical parameter is in excellent agreement with di-
rect numerical simulations performed by Thess and Orszag
@18#. Finally, the influence of the heat transfer property of
the upper surface is also examined.

The method proposed in this paper has been applied to a
rather simple system involving only three amplitudes equa-
tions. It is worth emphasizing that the present work provides
the theoretical framework for studying more complex situa-
tions. Three extensions will be examined in the future.

~i! First is to include more modes in order to eliminate the
limitations of a weakly nonlinear regime. Preliminary tests
involving more than 100 modes have been performed and
seem to indicate that the conclusions reached in the present
work remain qualitatively valid.

~ii ! Next is to include oscillatory instabilities into the
analysis by considering unstable modes with complex eigen-
values.

~iii ! Finally, some hypotheses underlying the present
analysis should be relaxed. In particular it would be interest-
ing to examine the role played by the presence of lateral
walls, the influence of the surface deformation, the dynamic
of the upper gas in contact with the liquid, and the viscoelas-
tic properties of the liquid.
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APPENDIX A: THE z DEPENDENCE
OF THE EIGENFUNCTIONS f p

k

The z dependence

Fp
k5@Up

k~z!,Vp
k~z!,Wp

k~z!,Pp
k~z!,Up

k~z!,Up
k~1!#T

of the eigenfunctionsf p
k is determined by introducing ex-

pression~30! in the relation~27!. After elimination of the
horizontal components of the velocity and the pressure, one
obtains the following system forWp

k andU p
k:

~D22k2!Up
k1Wp

k5ap
kUp

k , ~A1!

~D22k2!2Wp
k2Ra0lcak

2Up
k5ap

k~D22k2!Wp
k . ~A2!

The corresponding boundary conditions are similar to Eqs.
~23! and ~24! with l5lc . The remaining unknowns are
given by

Up
k5 i

kx
k2

Wp
k , Vp

k5 i
ky
k2

Wp
k , Pp

k5~D22k2!DWp
k .

~A3!

In the particular case of the zero wave numberk50, the
eigenfunctions cannot be calculated by settingk50 in the
system~A1!–~A3!. In this case the eigenproblem~27! will be
given the form

D2Up
01~2ap

0!Up
050 ~A4!

FIG. 4. Values of the critical points«c , «1, and«2 as a function
of the modified Biot number Bi*5Bi/~Bi11! for Pr510 and
a50.5. In ~a! «1 is represented by the dashed line and«2 by the
continuous line. See Table I for the definitions of C, H1, H1R, and
R.
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and

Up
05Vp

05Wp
05Pp

050 ~A5!

associated with the thermal boundary conditionsU p
0~0!50

andDU p
0~1!1BiU p

0~1!50. The solution of~A4! is simply

Up
05C sin~A2ap

0z!, ~A6!

whereinC is an arbitrary constant. The thermal boundary
condition at the upper surface yields the eigenvaluea p

0,
namely,

A2ap
0 cos~A2ap

0!52Bi sin~A2ap
0!. ~A7!

For Bi50, a p
0 is determined analytically and given by

ap
052~p1 1

2 !2p2. ~A8!

It appears clearly from the previous analysis that the
eigenfunctionsf p

k are not the eigenfunctions of the linear
analysis expressed by Eqs.~21!–~24!. Herel is frozen to its
critical valuelc or, in other words, Ra and Ma are given the
fixed values Rac and Mac .

APPENDIX B: DERIVATION OF THE AMPLITUDE
EQUATIONS AND TRUNCATION OF EXPRESSION „31…

The general solution of the nonlinear problem is given
under the form

f5 (
p50

`

(
k
Ap
k f p

k , p50,1,2,..., kPR2, ~B1!

wherein thef p
k verify the eigenvalue problem

Lcf p
k5ap

kM f p
k , p50,1,2,..., kPR2 ~B2!

The adjoint operator ofLc , denotedLc* , is defined by

^ f * Lcf &5^ f Lc* f * &, ~B3!

where

f * T5~u* p* u* u* uz51 v* uz51! ~B4!

and

Lc*5S D
“•

alcRa0ez
•••

2“

•••
•••
•••

ez
•••
D

2~Bi1]z!~ !z51

•••
•••
•••

~12a!lcMa0]x

•••
•••
•••

~12a!lcMa0]y

D . ~B5!

The corresponding adjoint boundary conditions are

u*5v*5w*5u*50 at z50, ~B6!

]zu*5]zv*5w*50 at z51. ~B7!

In relation ~B3! the angular brackets denote the averaged
integral over the whole volume of the fluid for the ‘‘volu-
mic’’ quantities ~i.e., u,p,u,u* ,p* ,u* ! plus the averaged in-
tegral over the upper surface for the quantities defined at
z51 ~i.e., uuz51,u* uz51,v* uz51!; explicitly, if av andas de-
note quantities defined inside the volume and on the upper
surface, respectively, one has

^av1as&5 lim
L→`

1

4L2 E2L

1LE
2L

1L

dx dyS as1E
0

1

avdzD .
~B8!

The adjoint eigenfunctionsf p*
k verify the relations

Lc* f p*
k5ap*

kMTf p*
k , p50,1,2,..., kPR2 ~B9!

wherein the eigenvaluesap*
k are identical to the conjugate

eigenvaluesāp
k of operatorLc . It was proved by Morse and

Feshbach@25# that, in the particular case of a square operator
L andM5I , the set of eigenvaluesap

k is equivalent to the set
of conjugate eigenvaluesāp*

k . Their demonstration can
straightforwardly be repeated for relations~27! and ~B9!.

The nonlinear problem~6!–~8! can be rewritten in terms
of the perturbated variables as

~Lc1LD! f5N~ f !, ~B10!

whereinN( f ) andLD are defined through

TABLE III. Eigenvalues ofLc for Pr51, Bi50, and various values ofa.

a kc lc a0
kc a0

0 a0
2kc a1

kc a2
kc a3

kc a4
kc

0 1.993 1.000 0 22.467 25.560 226.86i6.8 263.96i4.6
0.25 1.996 1.015 0 22.467 25.466 226.76i5.3 264.06i3.8
0.5 2.012 1.020 0 22.467 25.602 226.76i3.3 264.16i2.8
0.75 2.042 1.015 0 22.467 25.985 224.7 228.8 264.36i1.3
1 2.086 1.000 0 22.467 26.633 222.8 230.9 262.6 266.6
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NT~ f !5S 1

Pr
~] tu1u•“u! 0 ] tu1u•“u 0 0D ~B11!

and

LD5S •••
•••
•••
•••
•••

•••
•••
•••
•••
•••

Ra0a~l2lc!ez
•••
•••
•••
•••

•••
•••
•••

2Ma0~12a!~l2lc!]x
2Ma0~12a!~l2lc!]y

D . ~B12!

After projection of the nonlinear set~B10! on the eigenfunc-
tions of the adjoint problem, i.e.,

^ f p*
k~Lc1LD! f &5^ f p*

kN~ f !&, p50,1,2,..., kPR2,
~B13!

one obtains, after integrations by parts,

(
p50

Np21

$ap
k^Pr21up*

k
•u1up*

ku&1«@Ra0alc^wp*
ku&

2Ma0~12a!lc^]zwp*
kuz51uuz51&#%

5 (
p50

Np21

$^Pr21up*
k
•u1up*

ku&1Pr21^up*
k
•~u•“u!&

1^up*
k~u•“u!&%. ~B14!

Equation~B14! clearly indicates that in the weakly nonlinear
regime~«!1!, ap

k measures the linear damping of the mode
f p
k .
The next problem is to show that the summation in ex-

pansion~31! can be limited to a few relevant modes, namely,
the modes with the largest eigenvalues. The truncation is
performed in two steps. First, for a given wave number, only
the modes with the largest eigenvalues are taken into consid-
eration; the summation overp in ~B14! is limited toNp. To
justify our attitude consider two arbitrary wave vectors, say,
k1 and k2, whose absolute values are not too large, say,
smaller than 2kc , such that Re(a0

k1).Re(a1
k2); the Biot num-

ber is taken to be equal to zero. Table III shows that the real
part of the eigenvaluesa1,2,3,...

kc are larger in absolute value

than the reala0
kc’s. The elimination of the stable modes

~a p
k,0! is performed by starting from relation~B14!

Ap
k5

(q50,l50
Np21

(k1 ,k2PKc
Aq
k1Al

k2@^~uq
k1
•“u l

k2!up
k* &1Pr21^~uq

k1
•“ul

k2!•up
k* &#

ap
k^Pr21up

k
•up

k*1up
kup

k* &
. ~B15!

Biorthogonal relations are obtained from the definition of the
eigenproblem@17# and are given by

~ap1
k12ap2

k2!^ f p1
* k1Lcf p2

k2&50 ~B16!

or

^Pr21up1
k1
•up2
* k21up1

k1up2
* k2&50 if p1Þp2 or k1Þk2 ,

~B17!

from which it results that the summations overp andk in the
linear term of~B14! can be dropped. It follows then from
~B15! that the modes with high eigenvaluesa p

k can be ne-
glected. To illustrate the role of the modesp.0, we have
reported in Table IV the critical numbers«1, «2, and«c when
Np is increased. It is observed that qualitatively, the values
of «1, «2, and«c remain of the same order of magnitude as
the number of modes is increased from 1 to 5; more impor-
tant, it is seen that very good convergence is achieved even

TABLE IV. Values of the critical points«1, «2, and«c for Pr51
and Bi50 when the summation of~B14! is limited toNp modes.

a Critical
point

Np51 Np53 Np55

0.00 «c 20.3031022 20.2531022 20.2531022

«1 0.22 0.24 0.24
«2 0.78 0.82 0.80

0.25 «c 20.2431022 20.1831022 20.1831022

«1 0.27 0.18 0.18
«2 0.60 0.62 0.61

0.50 «c 20.1531022 20.1031022 20.1031022

«1 0.11 0.11 0.11
«2 0.38 0.37 0.36

0.75 «c 20.0531022 20.0331022 20.0331022

«1 0.05 0.04 0.04
«2 0.16 0.13 0.13
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by using only three modes in the developments. Numerical
calculations have been performed until a relative conver-
gence of 1023 on the transition points was achieved.

The next step of the procedure consists of reducing the
wave vector continuum to a finite set of wave vectors. We
noteK the set of corresponding eigenfunctions. The choice
of K depends on several elements, but the size ofK is mainly
limited by the computational time. For layers of infinite hori-
zontal extent,K must at least contain eigenfunctionsf 0

k with
uku5kc because these modes are the most unstable. Further-

more, the wave vectors must satisfy relations such as
k16k256k3 in order to allow for nonlinear couplings in
~B14! ~for more details, see, for instance, Segel’s work@5#!.
In particular,K must also includek50.

Summarizing the considerations, expression~31! will take
the form

f5 (
p50

Np21

(
k
Ap
k f p

k , f p
kPK. ~B18!
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