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The autocorrelation function for the electric field at an impurity ion in a plasma is considered. A simple
model is constructed that preserves the exact short time dynamics and the long time global constraint of a given
self-diffusion coefficient. The input required is the initial value of the autocorrelation function and its deriva-
tives, and the self-diffusion coefficient. These are calculated from the hypernetted chain equations for corre-
lation functions and a “disconnected” approximation for the self-diffusion coefficient. A comparison of the
predictions of the model for the electric field autocorrelation function with results from molecular dynamics
simulation shows good agreement over a wide range of plasma coupling, impurity ion charge, and impurity ion
mass. This provides justification for a simple interpretation of electric field dynamics in terms of three collec-
tive modes[S1063-651X96)00309-1]

PACS numbes): 52.25.Vy, 52.25.Gj, 52.65.y, 05.40+ |

[. INTRODUCTION the total force on the ion. For similar reasons, there is a
simple exact relationship to the ion velocity autocorrelation
An impurity ion embedded in a plasma serves as an imfunction, D(t)=(vo(t)-Vo)/(V3), and consequently to the
portant probe of charged particle dynamics through both itself-diffusion coefficienD through an exact Green-Kubo re-
radiative and transport properties. The dominant couplindation. Finally, effects of the induced charge distortion near
between the impurity ion and the surrounding plasma ighe impurity ion are incorporated through the exact initial
through the total electric field of the plasni&(t), at the ion  condition and first two time derivatives @(t) att=0.
(force on a charged ion, dipolar coupling to both neutral and The model is constructed from a formally exact equation
charged ions Determination of the probability distribution for D(t). This equation describes the linear response of the
for a chosen field value in an equilibrium plasitthe ‘“mi- ion to an initial perturbation of its velocity, and provides a
crofield distribution”) is a well-studied problem with accu- clear interpretation of the dynamics as damped oscillatory
rate and practical means for calculatid]. In contrast, the motion in a viscoelastic medium. The complex many-body
dynamics of the electric field is not well understood even aidynamics is hidden in a “memory” function which is ap-
a qualitative or phenomenological level. Recently, someroximated here by simple exponential relaxation. The time
progress has been made for the case of electric fields atsztale for this relaxation is fixed by the above-mentioned ex-
neutral poinf2-5]. Detailed calculations and simulations of act relationship betweeB(t) and the self-diffusion coeffi-
the electric field dynamics as a function of time and initial cient D. The resulting equation can be solved to determine
field value at a neutral poirfts] show a number of unex- bothD(t) andC(t) as a function of the self-diffusion coef-
pected features: long time algebraic decay, a possible irficient and the initial data. The latter are expressed as inte-
crease at short times, and qualitative failure of the stochastigrals of the time independent correlation functions for the
model microfield methodl7]. These results show that some charge distribution around the ion and are computed here
care must be used in the representation of field dynamics insing the HNC integral equatiof8]. The self-diffusion co-
more complex analyses such as spectral line broadening cadfficient is calculated using the “disconnected” approxima-
culations. tion [9]. None of these approximations impliaspriori any
The objective here is to extend these studies of electritimitations with respect to plasma coupling strength, ion
field dynamics to the case of charged impurity ions. Thecharge, ion mass, or time scale. Consequently, the model is a
physics is quite different from that for the neutral case sincegood candidate for the description of electric field dynamics
the presence of the charged ion significantly changes thever a wide range of conditions.
charge distribution of the plasma in the vicinity of the ion.  The time dependence of this model can be expressed as a
As a first study, we limit attention to the simplest dynamicallinear combination of three exponentials, or modes, allowing
property, the electric field autocorrelation function a simple interpretation of the relevant plasma excitations re-
C(t)=(E(t)- E)/(E?), where the brackets denote an equilib- sponsible for electric field dynamics. At weak coupling all
rium ensemble average. A simple model is constructed tthree modes represent purely damped excitations, while at
incorporate the most important symmetries of the correlatiorstrong coupling there is one damped mode and a complex
function and its relationship to structural and transport prop€onjugate pair of damped propagating modes. The conditions
erties. For example, the time integral 6{t) must vanish of “weak” or “strong” coupling depend on plasma cou-
exactly as a consequence of the field being proportional tpling, charge, and mass. To limit the parameter space, we
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consider the simplest case of a one component pld€6#® mas. A closely related function relevant for transport prop-

with ions of the same sign charge in the classical limit. Theerties is the velocity autocorrelation function

relevant parameters are then the OCP coupling constant

I'=pBq%/a, the charge ratiogy/g, and the mass ratio D(t) = (Vo(t) - Vo)/{V3), 3

my/m, wherea is the ion sphere radiug=1/kgT, and pa-

rameters with subscript O refer to the impurity ion. Also, weWherevy is the impurity ion velocity. The correlation func-

consider both a OCP with Coulomb interactions and ondion C(t) measures fluctuations in a collective property of

with screened interactions. Density and temperature condthe OCP, whileD(t) measures fluctuations in a single par-

tions are limited to the experimentally interesting case ofticle property. However, they are related directly by New-

screening by nondegenerate, weakly coupled elecirbpls  ton’s first law,

The case of a quantum plasma with charges of opposite sign )

from that of the impurity, and its connection to the problem 9°D(1)

of stopping powef11], will be discussed elsewhere. at?
The approximation described here fG(t) is a special

case of a more comprehensive approximation constructed for The interpretation of our model is more direct in terms of

calculating general functions dE(t) that cannot be ex- D(t). First, a formally exact equation is derived using the

pressed in terms dE(t) alone[12]. An important objective  projection operator techniqusee Appendix A

and emphasis of that work was to calculate the effects of ion

=—wiC(1), wi=(BAs3m)(E?).  (4)

. R . 2
motion on spectral line broadening by plasmas. Subsequent a°D(t) f‘ ~ . 9D(7) _
applications have demonstrated the importance of ion motion at? TogD (D) + odTM(t g ar =0, ®
effects and the good agreement between that model and com-
puter simulations of spectral lin¢$3]. The objective of the M(0)= wi_ w% aﬁ:(Ez)/(EZ} (6)

present work is to isolate the simplest features of electric

field dynamics from the complexities of that general contextyhere B=kgT. Equation(5) describes the impurity ion dy-

for a clear interpretation, analysis, and comparison withygmics as oscillations in a viscoelastic medium, where the

computer 5|mulgt|ons asa function of the al_)ove parametergnaracteristic frequency s, and a frequency dependent

Details of the simulation method are described in the neXHamping given by the Fourier transform M(t). All many-

section. . , ) , . body effects of the medium on the impurity ion that are not
In the next section, the model is described briefly and 'tseXpIicit in (5) are contained in the detailed form ®f(t)

predictions analyzed for the case @f/q=mo/m=1. The  [15] Our fundamental assumption here is that it is sufficient
three modes of excitation are studied as a functiol’of 4 include only the magnitude of this function through its

Comparison with computer simulation results shows goodyyact injtial valueM (0) and a characteristic time scale for its

agreement even at strong plasma coupling for both C°“|°mBecay[16]. ConsequentlyM (t) is approximated by
and screened interaction. In Sec. lll the dependence of the

modes ongy/q and mg/m is considered. The results are M(t)—M(0)e M, )

summarized in the final section and a practical means for

estimating the diffusion coefficient from simulation data us-The precise form foi is fixed by the Green-Kubo expres-

ing this model is proposed. sion for the self-diffusion coefficiend in terms of the ve-
locity autocorrelation functiofl5],

Il. A SIMPLE MODEL "
The system considered is an impurity ion of magsand BmeD = fo dtD(t). ©)]
chargeq, at equilibrium with a fully ionized plasma of point
(structurelessions. The electric field at the impurity ion due yse of(5) with (7) to determine the right side ¢8) gives the

to the plasma consitutents is given by identification[see Eq.(D3) of Appendix D],
Na A= (w?lwi—1)/(BmD). 9
EIZ 21 ea(ri_ro)+Eb, (1)

Equations(5)—(7) and(9) define the approximate model for
) ) ) . D(t) and, through4), the electric field autocorrelation func-
whereN, is the number of ions of species €,(ri—ro) IS tion. By constructionP(t) andC(t) determined in this way
the field due to the plasma ion at a distamcery from the 516 exact through orderé and t2, respectively, at short
impurity ion, andE, is the field from the uniform neutraliz- jmes. Furthermore, the exact time integrals ®ft) and
ing background charge. The equilibrium autocorrelationp 1) are assured througt#) and (8). The input datawo,

function is defined by w1, andD might be taken directly from computer simulation.
) Alternatively, as discussed below, additional independent ap-
C(t)=(E(t)-E)/(E?), (2)  proximations may be introduced to allow practical calcula-

tion of these parameters.
where the brackets) denote an equilibrium Gibbs ensemble  To interpret these parameters, consider conditions such
average. As noted in the Introduction, this function plays ahat\/wy>1. ThenM(t) decays rapidly in Eq(5) and the
central role in many theories of radiative processes in plasequation simplifies to
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3°D(t) aD(t) TABLE I. T dependence abg, w;, andD, for Coulomb inter-
oz +w3D(t)+y o 0, (100  action and screened interactioka=1); qo=0q andmo— m. Diffu-
sion coefficientD,, and D™ are given in units ofv,a’.

— 2
y=(BmeD)wg. 1D r g oy w1 i D, Bhg

The damping constant relative to the characteristic freq o 0577 0559 34.00 36.97 3351 53.90
quency,y/ g, determines whether the solutions are a pair ofg 5 0577 0544 9767 1107 5932 8.713

oscillatory functiongunderdamped or two real exponential 0577 0530 4.436 5.137 1.893  2.645
functions (overdampell This is controlled by the depen- , 0577 0517 2443 2760 0681 0904
dence omgy/qg, mp/m, andl" as illustrated in the following. ¢ 0577 0502 1528 1568 0216 0.267

More generally, if\/wq is not large the medium exhibits ;. 0577 0493 1268 1202 0115 0.131
“memory” and the damping is modified on time scales of
the order of\ ~1. Thus there are only three parametérs-
quencie$ that completely characterize the dynamics of thept the strong coupling conditions are a compensating fea-
model, wo, 7, andX. ture. For example, the local changes induced by the test par-

It is straightforward to calculate the solution 6) by ticle for go/q>1 lead to more rapid convergence of the
Laplace transform, yielding(t) and C(t) as the sum of ejectric field correlation function than fay,/q<1.

three exponentials, The analysis to this point applies for arbitrary plasma
3 composition. To illustrate the physical content of the model
elit _ aZit we consider the special case of a one component plasma with
)= D C=2 Cet', (12 consicer
i=1 i=1 an impurity ion of the same mass and charge as those for the

o _ plasma ions. In this case there is only one dimensionless
where the coefficient®; andC; are given by parameter characterizing the plasma state condition,
I'=q?Bla, wherea=(3n/4m)? is the average interparticle
= 2C.
Di (w0/Z)°Ci, (13 distance(ion sphere radiys and n is the plasma density.
Table | shows thd” dependence ob,, wl (in units of the

Ci=(N+2Z1)Z1(Z3—2Z,)IA,
1= 1V21(Z5=2) OCP plasma frequenay,, defined bywy 2= 47ng?/m), and

Co=(N+2Z,)Z5(Z1—Z3)IA, D, =D/(a?w,) for both Coulomb and screened interactions.
The calculation and approximations used are described in
Ci=(\N+2Z3)Z5(Z,—Z,)/A, Appendix B. From these results it follows thatw, varies
inversely with". Consequently, we expect underdamped os-
A=(Z,—2,)(Z,—Z3) (23— Z,), (14)  cillatory motion at strong coupling and purely damped
modes at small’.
and the{Z;} are solutions to the cubic equation, Consider first the case of Coulomb interactions. Figure 1
shows the real and imaginary parts of the three solutions to
Z3+\Z2+ 05Z+ N w§=0. (15  (15) as a function off’. For smalll" all three are real and

) , negative, representing purely damped excitations. The modes
Depending on the values &f g, andw4, the solutions may

be real or complex.

To evaluate the quality of the predictions from this model
we have performed corresponding molecular dynamics simu-
lations for comparisons. Such simulations have been used
recently to provide statistical information about static as well
as dynamic properties of electric fields for both charpet
and neutral point$6]. As for standard molecular dynamics
simulations for neutral particles, a few hundred particles in-
teracting via a screened Coulomb potential move in a cubic
box with periodic boundary conditions, maintaining the sys- Reots
tem in a stationary state of fixed temperature and density.
The results referred to as the “screened case” correspond to
a Debye screening lengfi0] . The results referred to as the
“Coulomb case” are represented as the limit of a very large
screening lengtlitypically one-half the system sizeThese
latter results have been checked against those for the pure
Coulomb casd&no screeningusing Ewald sums instead of
the simple periodic boundary conditions, for both the pair
correlation function and the electric field autocorrelation
function. There are specific problems arising from the calcu-
lation of the field at a single impurity ion whey#q and FIG. 1. Solutions to Eq(15) for the model of Coulomb inter-
mg#m due to the poor statistics of a single test particleaction withqy=q andmy=m. Curves 1-3—real parts of solution;
history for each simulation. This increases the computer timeurves 4—6—imaginary parts.
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FIG. 2. Time dependence of the electric field correlation func-  FIG. 3. Same as Fig. 2 for the screened interaction with screen-
tion (curve J and the velocity autocorrelation functiécurve 2 for ing parameterk=1 (x is given in units of inverse ion spacing,
the case of Coulomb interaction wilh=5. Time is given in units  a~1). Points: MD simulation results.
of wgl. Points: MD simulation results.

results at the extreme coupling f=10. While there are
are W|de|y separated in magnitude (e} that at times |0ng Con‘ﬁigniﬁcant differences relative to the simulation results at
pared to the inverse plasma frequency the dynamics dPnger times, the model is still accurate uptte3w,* and
C(t) andD(t) is governed by a single exponential in time, preserves the qualitative effects of screening at all times.
with a relaxation time~5/w,. The amplitude of this mode
in C(t) is negative, to ensure that the time integral of the IIl. CHARGE AND MASS DEPENDENCE
correlation function vanishes. At very short times all three i ) ) .
modes contribute, as is required in order to fit the exact ini- . 1he analysis of the preceding section suggests that this
tial t2 behavior of both correlation functions. Thus the elec-Simple model captures the dominant mechanisms responsible
tric field autocorrelation function decreases from unity ac-for electric field dynamics. In this section we consider effects
cording to Gaussian-like decay for very short times, followeddUe to variation of the impurity ion charge and mass relative
by two exponentials with the positive amplitude dominatingto that of the OCP ions. Attention is restricted to the more
at intermediate times and the negative amplitude dominating
at long times. This qualitative behavior persists Iasn- ! ' ' ' ' ' ' '
creases until a critical valué,~ 1.5, is reached at which the
two most strongly damped modes coalesce to form a com-  os} .
plex conjugate pair of damped propagating modes. The fre-
guency of oscillation increases withrapidly to a saturation
value at the plasma frequency. The damping of these propa-
gating modes decreases to become comparable with that of
the third purely damped mode. Thus fior-1.5 the dynam- 04 .
ics of C(t) andD(t) is qualitatively different from that at
smallT", except for asymptotically small times. This is illus- ¢y 2} i
trated in Fig. 2 for the strong coupling value B&5. Also
shown are the results from computer simulation. The agree-
ment is excellent at short times and quite reasonable at
longer times. Generally, the agreement is bettdi-atl with
significant differences apparent fér>10. In spite of the 02
direct relationship ofC(t) to D(t), these figures show that
the dynamical features at stronger coupling are displayed
more directly through the electric field autocorrelation func-
tion. ForI'< 1.5 these differences are not so strong.

The results are qualitatively similar for screened interac- %, N 2 s 2
tions. Figure 3 shows the results for the same strong coupling t
Condlt_lons asin Fig. 2 except now for Debye screened in- FIG. 4. Time dependence of electric field correlation function
teractions. Finally, Fig. 4 compares the Coulomb an<_jf0r

! ; the model of Coulomb interactiofturve 1) and Debye screen-
screened cases with the corresponding molecular dynamlgﬁg (k=1, curve 3 at '=10. Points: MD simulation results

0.6 T=10 7

04 F
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FIG. 5. Solutions to E¢(15) as a function ofj,/q for the model FIG. 6. Same as Fig. 5 &t=0.2 andx=1.

of screened interaction &t=1 and«=1; my=m. tween the model and computer simulation results are ex-

pected in this case since the coupling is comparable to that of
realistic case of screened interactions. This dependence c#iy. 4.

be understood in terms of the model through the correspond- The above variations with respect Foand g,/q reflect
ing dependence of the three parametegs y, and\. From  different degrees of coupling between the impurity ion and
the results of Appendix B it is seen that the dominant depenthe OCP. The mass dependence is somewhat different. It
dence(in units of the plasma frequengys given by w, appears in the same way as fq§/q in both y/wy and
x(May/Meq) 2, yYwox(Mmamyqe) ¥ %, and Nw, Moo butwith an inverse relationship fas,. It is instructive
oc('y/wo)r'fslz_ This dimensional analysis confirms the re- to consider first the limitmy/m— <. The analysis is given in
sults of the preceding section, that the damping is weakest &Ppendix D. First, the self-diffusion coefficient approaches a
Strong Coup"ngl“>1' S|m||ar|y' the dampn’]g is expected to f|n|te. limit given by a:n'eXaCt Green-Kubo relation that is
decrease with increasingy/m, and increasingg/qo, al-  @pplicable only for infinitem,,
though it is via a weaker square root dependence. w0

Consider first the variation with charge @t /m=1. For D‘laﬁzqf)(EZ)f dt lim C(t). (16)
large " only small values ofg, are required to span the 0
domain from weak to strong damping; conversely, for small
values ofl" large values ofjy/q are required to reach strong % ' ' ' ‘ ' ' '
coupling. In the former casa;g remains small and plays
little role in the qualitative features of the modes. In this case
the dependence of the modes ayVq at fixedI" should be
similar to their dependence dn at fixed qq¢/q in Fig. 1.
Figure 5 confirms this expectation for the casd'ef5. As
expected for this value df the modes show the strong cou-
pling oscillatory behavior for algy,/g=0.2. However, for
smallT" it is necessary to consider large valuesjgfq and
the effects of variation o&)S with the charge become impor- ¢®
tant. This is illustrated in Fig. 6 foF =0.2. Sincel is de-
creased by a factor of 25 relative to Fig a corresponding
scale change of the charge is required to show the transition
to strong coupling. Note that now is large and there are
qualitative differences between Figs. 5 and 6. For example,
in Fig. 6 the smaller two modes combine to form a propa-
gating pair for increasingly/q, while it is the larger two
modes that combine in Fig. 5. Figure 7 shows the field cor-
relation function forl’=5 and the two cases a@f,/q=0.2
and 2. The former corresponds to weak couplitigee real
mode$ with monotonic crossover from a short time positive
domain to a larger long time negative domain, as discussed FIG. 7. Time dependence of the electric field correlation func-
in Sec. Il above. The latter corresponds to strong couplingion for the case of screened interaction witk 5 andx=1. Curve
with two oscillatory and one damped mode. Differences bed1—q,=2q; curve 2—g,=0.2q. Points: MD simulation results.

mp/m— oo
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2 : : , : . TABLE II. Diffusion coefficients found from the disconnected
approximation DEA) and molecular dynamicéMD) simulations
(DMP) for the plasma condition§ =5 and k=1. Impurity mass

m0: o,

Qo/q DA D}

0.2 1.143 1.19

0.5 0.463 0.448
Roots 1 0.277 0.248

2 0.202 0.157

oI r= 2‘2 tric field autocorrelation function follows directly as the sec-
sl :Jq:m ond derivative and therefore is governed by the same three
modes. The qualitative behavior of these modes and the elec-
-7 - tric field autocorrelation function is as follows. When the
viscous relaxation time- is small (small I" and gqq/q) the
s ) , ) . . , correlation function is dominated by two exponentials ac-
mo/m cording to(10). Under these same conditiongw, can be

large and the two exponentials give real positive decay at
_ FIG_. 8. Solutions to Eq(15) for the mod_el (_Jf screened interac- short times crossing over to real negative decay at larger
tion with F:Q.Z, k=1, and.qo/q.:ZO..Solld lines represent real times. At the opposite extreme of larde and qo/q, the
parts of solutions, dashed lines, imaginary parts. damping is weak and two of the modes are complex conju-
gate pairs leading to oscillatory behavior@t).

Since this model appears to provide a semiquantitative
description of the electric field dynamics, it can be used to
- . o .~ interpret and extract information from computer simulation
wo—0. The electrlcf!eld auto_correlatlon function is obtained o For example, it is possible to treat the self-diffusion
from (12) and(13), with the simpler results, coefficient as a free parameter to fit the model to the data,

C)=(Z,—Z_) H(N+Z,)e?+'—(\+Z_)e? Y, ar?d.hence determing the diffusiqn coefficient. In princip_le,
(17) this is better done using the velocity autocorrelation function
and the Green-Kubo relatidB). However, as seen in Figs. 2
1 and 3, the velocity autocorrelation function is slowly decay-
Zi:E)\_{li[l_4(w1/)\)2]l/2}' (18 ing and its time integral requires long simulation times. Al-
ternatively,D can be determinedpproximatelyas a fitting

This analysis suggests that for,/m~1 the mass depen- Parameter to match the model to the shorter time simulation
dence is dominated bw,, proceeding from oscillatory at data for C(t). Since the model is not exact, the diffusion
small mass ratioﬂarge wO) to overdamped at |arger mass CoefﬁCient' deter'miHEd in this way is Only an estimat'e. We
ratios (small ). However, the infinite mass limit can be have applied this approach for conditions under which we
either oscillatory or purely damped depending on the couexpect the disconnected approximation to be accurate and
pling parameter§ andq,/q, as indicated ir{18). This com- found goqd agreement. As .the interval over which the best fit
plex behavior of the modes is illustrated in Fig. 8 for iS de_termmed is not prescr!bed, we have also considered de-
I'=0.2 andg,/q=20. These values correspond to strongtérmination ofD from the timet, at which C(t) first van-
coupling @oI'/q=4) and largew, whenm,/m=1. Thus at  ishes. Sl_Jch a point always exists since the time integral of
smallmy/m there are two complex conjugate modes and oné=(t) vanishes. The analytic expression &fto,D) =0 from
real mode. Asmy/m increases the modes become over-Our model is solved foD usingt, from simulation data.
damped with three real modes. Finally, because of the stron@ble Il (see also Fig. Pshows a comparison of results
coupling the large mass limit crosses over again to a pair ofPtained in this way with those from the disconnected ap-

complex conjugate modes; the third real mode vanishes iRroximation for several values af/q, atI'=5. The agree-
this limit. ment is quite reasonable. The value of this approach lies in

conditions for which the disconnected approximation cannot
be trusted and for which simulation times would be prohibi-
tively large. In many applicationé.g., spectral line broad-

The simple model for electric field dynamics presentedening by complex atomgl7]) only estimates of field relax-
here is based on the exact representairior impurity ion  ation times are important. It is tempting to chodgeas the
velocity responseD(t), as that for a viscoelastic medium. characteristic time fo€(t). However, it is seen fronB) that
The approximation(7) provides a practical expression in BmyD is the characteristic time fdD(t), and consequently
terms of the oscillation frequenayy, the effective damping gives a correlation time fo€(t) as well. When it is signifi-
constanty, and the viscoelastic relaxation time=\"1.  cantly larger thart, (e.g., strong coupling Bm,D provides
These parameters are fixed by the first four time derivativeshe proper time scale and our model provides a simple means
of D(t) and its time integraldiffusion constant The elec- for its calculation from simulation data.

Note that while the time integral dE(t) vanishes for any
finite my/m, it is nonvanishing in the ordered limit ¢1.6).
The frequenciesn; and\ also approach finite limits, while

IV. DISCUSSION
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10 | : —_— - straightforward manngr The projection operator method
] then leads to the following exact equations @y(t):

Jd t
ECaﬁ(t) +QMCUﬁ(t) + fodTM wolt— T)CU.B( 7)=0,

(A5)
Qaﬁz<ya|—y(r>g;‘é! Maﬁ(t) =<(Lya)eQLQtLyo'>g;t:)L!
1
(AB)
D.
with Q=1-P in the last equality.
These results simplify considerably for the choi@el)
made here,
ga,B: 5aﬁgaa1 911:<Ug>a 922:<E2>1 (A7)
0.1 .
] 011=Q2=0, Qq5=—qo/Mg,
L ] (A8)
0.1 1 921:(QO/mo)<E2>/<Ug>,
90/q
M14(t) =M (1) =My (1)=0. (A9)

FIG. 9. Diffusion coefficient as a function af,/q for plasma

coupling I'=5 and screening parameter=1. Points: values of  The proof of these results is straightforward and will not be
D, found from MD simulations. given here. The formal equatioid5) now become
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APPENDIX A: DERIVATION OF THE MODEL s o 5 o ] )
wherew§=qg(E2)/mg(v§). Substituting the first equation of
Formally exact equations for the correlation matrix con-(a10) into the second leads to
structed from the impurity ion velocity, and the electric
field E can be derived by the projection operator method. 32 )
This method is described in detail elsewhEt8,15 so only Wﬂvo
the features relevant for the present application are given
here.
Let y, denote the matrix whose components ggeand

t P
D(t)+ deTM(t—T)&—TD(T)zo. (A11)

This is the equation used in Sec. Il, with the definitions
D(t)=(Vv(t)-vo)/{(va) andM(t)=My(t). The initial value,

E, M(0), given in(6) follows directly from the definitior(A6).
Ya=(Vo,E). (A1)
APPENDIX B: EVALUATION OF @y AND w;
A projection operatorP is defined for arbitrary phase ) ) )
function X by Consider firstw, defined by(6),

PX=Y,0,5(YsX),  Gup=(YaYp): (A2) w5=(B95/3mp)(E2) = — (Bdo/3mp)(E- VU), (B1)

where a summation over repeated Greek labels is assumedhere U is the potential energy of interaction between the
and the brackets denote an equilibrium Gibbs ensemble awmpurity ion and the surrounding plasma. This same poten-
erage. The matrix of correlation functions is defined by tial energy also occurs in the Gibbs distribution so the po-
tential energy term iiB1) can be represented by the gradient

Cap()=(Ya()yp)- (A3) operating on the Gibbs distribution. Then an integration by

The dot in(A3) denotes a vector product of the associateo‘Oarts gives

elements ofy,. The dynamics of,(t) is generated by the
Liouville opZ?atorL / Vel 150 g wo= " (dof3Mo) (Vo ). (B2)
y.(t)=e'ly LX={X,H}. (A4)  Atthis point a distinction must be made between the cases of

Coulomb and screened Coulomb interactions. For the Cou-
HereH is the Hamiltonian and,} denotes Poisson brackets lomb case there is a contribution t®82) from the back-
(the corresponding quantum generalization is obtained in ground field whereas this is zero for the screened case,
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Consider next the frequenay, defined by(6),
Vo -E,=—2, 4mn,q, (Coulomb, (B3) !

1= (Bab/3mwd)(E?) = (q5/3miwd){([ JE; 1ro;1%)}
Vo-Ep=0 (screenef (B4) N,
X _ 72
Then(B1) leads to the two results +Z¢ kzl (Mo/Me)([7€4i(Ni=To) i) (BD)

(B5) To evaluate the first term on the right side(8f7) write the
field asE=E’+E, and note that the uniform background is
isotropic, dEp; /dr ;=36 Vo Ep, SO

wi= 32 47n,q,q0/my (Coulomb,

1
wg: - 52 (naqO/mO)f drVv. ea(r)ga(r) (Screene\’i <[5E| /arOj]2>:<[0Ei,/&r0j]2>+(VO' Eb)z

(B6) +2(Vo-Ep)(Vo-E').

whereg,(r) is the radial distribution function for the prob-

ability to find a plasma ion of speciesat a distance from Use of (B2) for the Coulomb case then gives

the impurity ion. This contribution vanishes for the Coulomb

case sinc&-e,(r) is proportional to a function at r=0 in ([IE; 191012 =([IE] 131 ;1) + 3(Mow§/do)%.  (BS)
the Coulomb case angl,(0)=0. The above results hold in

the thermodynamic limit. With this result(B7) becomes

w? w0+(q0/3m0w0)2 (N, Mo/ 1) fdr[aea,(r)/ar 129, (r)+(q0/3m0w0)2 2 n,n fdrdr [9€,i10r [ deyilor]

X{g@(r,r')—ga(r)gy(r’)}, (B9)

where u,=mgm,/(my+m,) is the reduced mass.
Repeating this analysis for the screened Coulomb case leads to

2
=(93/3m3w3) >, (NyMo/p,) f dr[aeamr)/arj]Zga(rH(9w%>-1‘2 (N4Go /M) f drV-eau)ga(r)}

+(Q0/3mowe)* > X g, J drdr [ 7€, /91 1[0€4i /T HG(r,r) ~ 0a()Gu(r )}
The second term can be simplified usifR6) to give the final result,
wi= 0§+ (AG/3mGwE) 2 (NaMo/ i,) f dr[de,i(r)/ 97 17ga(r) +(ag/3mGw) 2 2 nan, f drdr’[deq /rj1[de,i/dr]

X{g3(r,r")—g.(rg,(r')} (screeneg (B10)

Thus the functional dependencewf on the fields andgis  which applies for both the CoulomlxE 0) and the screened

the same for Coulomb and screened Coulomb cases. (k#0) cases. Similarly(B9) and (B10) become
These results are still exact. The calculations of the text
are based on two approximations. The first is neglect of the w2= {1+ (my/uld)l 4}, (B13

last term in(B9) and (B10). The second is the use of the

HNC integral equation to evaluate the radial distribution

function. Furthermore, attention is limited to a one compo- _ f” —4 =2k 2 3
. ) I,=] drr % 6+ 12«r +10(kr)“+4(«r

nent plasma. In this ca€®5) and(B6) can be written ! [ * Oxr) ()

1/ mag +(xr)*]g(r). (B14)
wi= 3(m q>w lo, (B11)
It is understood that the integration variables and screening
o] _l . . .
lo=1+ | drre2e T g(r)—1], 2 Arno?/m, length«™* of (B12) and(B14) are in units of the ion sphere
0 fo “ lo(n—1],  wp=4amng radius,a=(3/47n)3. With these results, the expressith
(B12)  for A becomes
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A=1 1/([%,uDI§). (B15) generated from polynomials i, using the Schmidt process.
The first few are given explicitly by
APPENDIX C: EVALUATION OF D Pi(Vo) =1, (Vo) = 61/2[Bmovg_ 3],

The self-diffusion coefficient is given in terms of the ve- N _
locity autocorrelation functior{8). The model described in $i(Vo)=(Bmo) Y (1=3,4,5. (C7)

Sec. |l for D(t) cannot be used to calculate since (8) If only these first five functions of,} are retained in the

yields an identity in that case, by construction. Instead, a . .
approximate kinetic theory is used to obtain the self—?ﬁgtr?p%r;git;%gﬁg)ﬁ }2%] (C4) and(C5) lead directly to the

diffusion coefficient independently.
The kinetic theory is introduced by representing the ve- mD—Kol K= K0 cs
locity autocorrelation function as AMo 3 Kea=(s.K(0)95). €8
An improvement is obtained by retaining the first eight func-
D)= | dv Vo F(Vg 1), C1 tions, but the analysis here has been limited to this simplest
® f 0¢(vo)Vo- F(Vo.t) €D first approximation(C8).
__ Our second approximation refers to the collision operator
K(0). Here we use the "disconnected approximatiof8]
known to be quite accurate for both neutral and charged flu-
ids even under conditions of strong coupling. In this approxi-
¥nation K sz is given by

where ¢o(vo) is the Maxwell-Boltzmann distribution and
F(vp,t) obeys the first Bogoliubov-Born-Green-Kirkwood-
Yuon (BBGKY) hierarchy equation with(v,0)=v,. The
projection operator method can be used to obtain a formall
exact kinetic equation fofF in the form

~ Kss=(6 -1 [k Ty colk
%F(VO:U:f;dTK(t—T)F(VO,T)ZO. (C2) 2~ (67Mo) fo volk)eolk)

~ S
Here K(t) is the collision operator, and is an operator xf_wde(k,w)S (ko) (C9
over functions ofvg,
where S(k,w) is the dynamic structure factor for density
fluctuations in the OCFS®(k, ) is the self-structure factor
for the impurity ion,vy(k) is the Fourier transformed pair
potential for interaction of the impurity with an ion of the
The projection operator method provides the form of theOCP, andCy(k) is the corresponding Fourier transformed
function, but it is not required at this point. The self- direct correlation function. The corresponding self-diffusion
diffusion coefficient can be expressed in termskdt) by  coefficient in this approximation is
Laplace transformation diC3) and use ofC1) in (8),

k(t)f(vo)zf dvK (t;Vg,V) (V). (C3)

1 D_1=(,8/67T)_1dek Ko(k)c(k)
D= [ dosvovo Vi), (4 ’

X md S(k,w)S'®(k,w). C10
whereV(vy) is the solution to the integral equation, Jfoo 0S(k@) STk w) (€19

It remains to specify models foB(k,w)and S®(k,w).
The simplest choice foB(k,w) applicable at strong coupling

is the mean field model,
Thus the Laplace transform of the formal collision operators(k )
determines the self-diffusion coefficient. '
These results are still exact. We now introduce two types

K(0)V(Vg) =V, R(z)sf;dte—ztk(t). (C5)

of approximations. The first is an approximate evaluation of _ 2 1" (k)
D in terms of matrix elements of th&(0). To be more Bpw [1- BTkl (k,0)]2+[B~TC(K)I"(K,w]?
explicit consider the expansion ¥f(vg) in terms of a com- (C1)

plete set of functiongy,}, wherel’ (k,w) andl”(k,w) are the real and imaginary parts

o of the function,
V(vo) =2 (Vo) (. V),
7 I(k,w)zlimﬂnJ dvep(v)(—iw+ik-v+e) L.
e—0
(a,b)= f dvob(vg)a* (Vo)b(vo). (Co) (€12
Finally, a Gaussian approximation that interpolates between
The second expression @E6) defines the scalar product in the short time free particle limit and the long time diffusion
the expansion o (v,). The complete set of functions can be limit is used forS®(k, ),
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£ On the other handD2) gives, for the infinite mass limit of
S (k,w)= Jo dtcoq wt) the electric field autocorrelation function,
X ex — Dk2t+ DKy [ 1— e~ ™)), C(a—[z+M(2)] % (D5)

(C13 Comparison of(D4) and (D5) shows an alternative Green-

. _ Kubo relation that is applicable only for infinitay,
wheren=1/BmD. For the conditions considered here results

based onC13) differ very little from those obtained using D~ !=pB2g3(E?)lim lim C(2), (D6)
the ideal gas form foB{° (k,w), 240 my—
i , where the order of the limits is important, since
S (k, ) — \/Ee‘(“”"” : (C14  lim, ,C(2)=0 for any finite mass.

For the approximate model here these results translate to

whereo?=2/gm. a0l
2 o'l1 - 1
wo=0, wi=o—0p, A= 0>, (D7)

APPENDIX D: Mg— LIMIT 3qlo BmDlg

The electric field autocorrelation function simplifies con- The self-diffusion coefficient D7) is obtained from(C10),
siderably in the limit of a very massive iomg/m>1). This ~ Where the self-structure factor becomesasafunction at
is relevant for an impurity ion in a OCP of electrons. Con-@=0 in this limit, giving
sider first some exact results that follow from the projection

operator formalism of Appendix A for finiteny, D‘1=(,8/67T)‘1fwdk Kru(k)e(k)S(k,0). (D8)
0

D(2)=[Z%+zM(2)+ 2] Y z+M(2)], D1
2=l (2)+wp] (2] D The electric field autocorrelation function is obtained

E(Z):Z[ZZ‘FZKA(Z)‘ng]_l. (DZ) from (14) and (15),
~ ~ C(t)=(Z,—-Z_) " Y(N+Z,)e*'—(N+Z_)e? Y,
HereD(z) andC(z) are the Laplace transforms DBf(t) and (O=(2, I +)e7 = ( )e }(D9)
C(t), respectively. The self-diffusion coefficient is related to

D(0) through(®), zi=%>\{—11[1—4(w1/>\)2]1’2}. (D10)

BmeD = limD(2) = limM(z)/ 3, (D3)
2—0 -0 It is easily verified that
while E(O)=0. Now consider the limit ofmy— oo first, fol-

lowed by z—0. In this caseBmywi— (82qa/3)(E?) and
(D3) becomes, instead,

C(0)= J dtC(t)=NZ, Z_=\ w3
0

~ =D 1(3a/goBmw}lo). (D11)
D=lim lim 3M(z2)(B%q3(E?)) ™. (D4)
70 my—o This is consistent with the Green-Kubo relatidno).
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