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Kinetics of a Gaussian random copolymer as a prototype for protein folding
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We develop the Gaussian self-consistent method for studying kinetics of random copolymers. For a fixed
complexion of disorder the system is described by time- and disorder-dependent effective potentials. The
self-consistent equations are then directly averaged over the quenched disorder, yielding a chain of differential
equations with an enforced closure. This procedure allows us to avoid the use of the replica trick. Our method
naturally incorporates the phase separation and glass order parameters and thus permits study of the complete
phase diagram of the model. We believe that our approach may shed light on the kinetical aspects of the
protein folding puzzle[S1063-651X96)09710-3

PACS numbdrs): 87.15.By, 36.20.Ey

[. INTRODUCTION nentially with the chain length and is therefore extremely
large. Nevertheless, it is known experimentally that proteins
One of the important challenges in the statistical-do fold into a unique native state in just a matter of seconds.
mechanical treatment of biopolymers is to understand th&he Levinthal paradox is that the chain is somehow able to
underlying mechanism of the highly unusual behavior offind its native configuration without extensively exploring all
proteins[1,2]. It is well established that the one-dimensional possible conformations.
sequence of amino acid residues, also called the primary The mechanism responsible for this restriction of acces-
structure, encodes the information about the unique threesible conformations during folding is probably also related to
dimensional conformation of a folded proté®]. The native the kinetics of spin-glass-like systeni8]. However, in
state in which a protein exhibits such properties is thermotheory this connection has not as yet been really explained.
dynamically preferable under normal conditions within a liv- Several approaches have been proposed to explain the
ing cell. The compactness of the globule in the native state ikevinthal paradox dealing with folding kinetics along the
predominantly maintained by the hydrophobic effettthat  so-called “preferred pathways” on the free-energy land-
forces the hydrophobic units to be mainly located inside thescape[8—12. These approaches share some common fea-
globule and the hydrophilic ones on the surface. tures in that they explain the tendency of folding towards the
It has been recognized that the free-energy profile of pronative conformation, but they differ in many details. Al-
teins has an analogy with other disordered systems similar tdhhough much understanding has been achieved in the above-
spin glasse$5]. These frustrated systems have been muclyuoted models, there is still uncertainty remaining in the de-
studied in the past decad®,7]. As the relaxation times of tailed laws for realistic protein sizes. The final resolution of
glasses are typically very large, the system is trapped in ¢he protein folding puzzle and elucidation of the kinetic laws
low-energy state separated from others by high-potential bathat govern this process would shed some light on the ques-
riers. Similarly, the low-energy states of proteins correspondions related to the origin of life in the prebiotic and early
to minima of the free energy and the protein may be considbiotic environments and might have implications for the
ered as “kinetically arrested” in one of its dominant confor- theory of evolution. Practical consequences could also
mations. Thisfreezing transitionoccurs upon reducing the emerge for protein engineering.
“effective temperature” of the polymer system. Finally, the  The statistical-mechanical approait8] to protein fold-
protein reaches the unigue global minimum of the free ening is based on the investigation of the properties of simple
ergy. models of heteropolymers. The simplest approximation for a
Another intriguing problem appears in considering the ki-protein is a random heteropolymer. In teequence model
netics of protein folding. There are several different characf14] monomer types are represented by random variables
teristic kinetic folding pathways for the globular proteins {A,}, with a given distribution of disordefe.g., binary or
studied at present. For example, in R} the authors con- Gaussialy that determine the excluded-volume interactions
sider proteins for which folding starts by a rapid collapsebetween pairs of amino acids.
from a random coil state to a semicompact molten globule There have been extensive studies of the equilibrium
and then proceeds by a slow search to a state from which th@operties of the model carried out using the replica trick of
chain will eventually access the native state. The number othe spin-glass theorfl4—18. The success of these studies
available conformations of a polypeptide chain grows expowas significant in two respects. First, it has been established
that even a simple Gaussian random copolymer undergoes
the freezing transition and thus this property is probably typi-

“Electronic address: timosh@fiachra.ucd.ie cal for all random heteropolymers. Second, an understanding
TAlso at the Institute of Theoretical and Experimental Biophysics,of the role of microphase separatifit®] and its competition
Russian Academy of Sciences, Pushchino, 142292, Russia. with freezing has been achieved. It was shown in Refs.
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[14,16 that for a stiff chain freezing prevents microphaseto compliment these Monte Carlo simulations by an analyti-
separation. If the chain is flexible enough the freezing occursal theory as well.
at a lower temperature with a background of phase separa- In this work we study the kinetics of a random sequence
tion. model using the Gaussian self-consistent approach. This ap-
As a limitation of these works we note that they wereproach[27,28, which resembles the time-dependent Hartree
based only upon a special form of the interaction matrix,@PProximation and reduces to the variational Gibbs-
corresponding to the so-called symmetric “charged” model.Bogoliubov variational estimate at equilibrium, has the merit
Another disadvantage of these approaches lies in their valic2! Peing precisely defined, flexible, and of general applica-
ity only for a globular state, where it is possible to use thePility 1o many classes of problems. A strong argument in
ground-state dominance and constant density approxim;;@vor of our method is the good agreement with Monte Carlo

tions. We would like to emphasize that to really understanf.imUIation for the homopolymer kinetics performed on a lat-
[

the protein folding problem of kinetics one needs a metho ce [29].

. 7 . Our approach leads to a set of nonlinear and highly
that is equally reliable for both the extended coil and Com'coupled differential equations for the main observables of
pact globular states.

It has b | h Kineti liabili fthe system. Although their detailed analytical study is a
t has become clear that to ensure kinetic reliability of . complicated technical task, it is relatively simple to

folding sequences should be more special than simply rangg|ye these equations numerically. The qualitative behavior
dom. This is important in order to make the native confor-s ihe solution that we find appears very encouraging.

mation stable even in a model with noisy distorted potentials | this paper we will present our thinking about the prob-
[20]. The interactions of a kinetically foldable protein should |em in the language of statistical mechanics. These ideas are

obey the “minimal frustration principle’[8] requiring mini-  further discussed and explained using more physically ap-
mization of frustration or, in other words, the ratio of glass topealing language elsewhefi@1].

folding temperatures. One of the possibilities to satisfy this

principle is to consider “selected[21], “designed” [22], or Il. METHOD

“imprinted” [23] sequences. The principles of the energy ) o )

landscape analysis have been studied and confirmed in many TO avoid confusion in this paper we shall denote the
simulations of simple mode@—11]. It was found that for Monomer spatial positions by capital charactéfsand their
fast folding sequences there should be a special interpla?our'er transforms by the lowercase ongs and similarly
between the energy frustration and entropic barriers. or other distributions along the chain. The Fourier transfor-

These suggestions are certainly interesting and perhaﬂgat'ons for ring polymer are defined as

quite important for explaining the role of evolutionary selec- N-1 1 N2
tion within the “primordial soup.” However, they deal with Xm= >, fﬁn—q)xq, Xq= > flaX, (1
the next level of complexity in models of proteins. Our belief q=0 N m=

is that, first of all, it would be interesting to construct an )
analytic theory of kinetics of protein folding for a random f“‘)zex;{ 2miqm
sequence model and study the kinetic laws there. Later on m
the knowledge about the sequences distribution discovered in
other approaches may be used in such a theory, thereby maghereN is the degree of polymerization. In the absence of
ing it more realistic for proteins. hydrodynamic effec{32] the exact Langevin equation for

It is well established that the frozen phase exists for ranthe sequence model of a random copolymer may be written
dom copolymers. Thus the spin-glass mechanisms restrictin§ terms of the Fourier modes #33],
the available conformations of the chain do help it search
(whether kinetically or quasistatica)lyor a state with quite
few conformations left. Whether an arbitrary random se-
guence would be able to fold from this prior state, which
probably might be interpreted as the molten globule, to the (ng(t)n;’,,(t’)>=2kBT§5q+qr,05‘“’"5(t—t’), (4)
true native state, i.e., undergenaturation remains an open
question. In this paper we find evidence for the affirmativewhere ;=N¢, and ¢, Is the bare friction constant. The in-

answer of this question. We also discover that this transitiongaction potentiaH =H + H consists of the homopolymeric
is accompanied by a decrease of the globule size and a pro; . ot .
found restructuring of the microdomain structure exhibited inﬂ_and the disordereti parts, respectively,

the phase-separation order parameter. In other words, rena- « L-1

turation may be considered as a rather complex transiton = —>" (X, ;—X)2+ >, u > 1] 6(Xm—Xm ),

described by the glassy order parameter and manifested in 2% L>2  {m} i=1 ' 1

the change of many observable characteristics of the globule. )
Our method is essentially designed to make feasible the

study the kinetics of protein folding at a later point. There

are numerous analytical works on the equilibrium aspects of

the problem[14-18. However, the knowledge about kinet- o

ics of the process is restricted to Monte Carlo simulations onwhere x is the spring constant), are the virial coefficients

a lattice[9,10,24—-28. Evidently one would hope to be able of the excluded-volume interactions, and the summation over

: @

d oM
§axq(t)——r_q+ 7y(t), ©)

ﬁ:

N| =

> (At Am) 8(Xim = Xmm,), (6)



54 KINETICS OF A GAUSSIAN RANDOM COPOLYMER AS ... 4073

{m} includes all values of indicesm;, ... ,m_ with Bogoliubov-like equations. This, of course, could be avoided
m; #m;, .. Here A, are independent random variab[@]  at the level of the Gaussian theory, but at the price of dealing
with the Gaussian distribution of disorder with extremely complicated integro-differential equations in-
stead of simple differential ones. Indeed, the higher-order
1 Arzn correlation functions may be explicitly calculated order by
P({A}):l;[ (2mA?)T2 eXP ~oA2) @ order in {A} applying the formal integration of the linear

ensembldg10). Naturally, both approaches lead to equivalent

The Fourier transformg\} are also independent random results, although the proof is not straightforward for the gen-
Gaussian variables with zero mean value and dispersiogral case. The most satisfactory procedure is to construct the
A2, Bogoliubov chain and close it at some order, either by a
. o nonperturbative ansatz or just in a given order of the disper-

Aghgr =A25q+q,’0, A%2=AZ?/N. (8) sion A2 of the self-consistent perturbative scheme. Although

similar methods have proved to be effective in statistical me-

Henceforth we use the brackeia) to denote the statistical chanics, for random copolymers, due to the connectivity and
averages over the noise and initial ensemble of monomértigher-order virial terms, one finds a rather complicated set
positions{X (t=0)} and the barA to denote averages over Of equations. In the present paper we pursue the least ambi-
the quenched distribution of disordg}. tious route; that is, we shall study the effects of randomness

We start by noting that for a given complexion of disorderin lowest order A?) and leave more complicated higher-
Eq. (3) is exactly identical to the Langevin equations for order calculations for future consideration. Since we apply a
arbitrary heteropolymer, with the two-body virial coefficients self-consistent treatment and deal with “fully dressed”
that are given by the formula gquantities we may expect to be able to probe relatively large
dispersions of disorder.

At first order several fortunate simplifications appear that
make our analysis much easier. In fact, one will see later that
some of the observations that follow trivially in this order
In our earlier work{35] we have shown that such a system persist in higher orders as well. We shall emphasize such
could be successfully studied in the framework of the Gausspoints and also indicate the physical reasons for them in the
ian self-consistent method with a nondiagonal self-consisten€onclusion.
potential. Since there are rep priori symmetry properties First, let us discuss the equal-time correlation functions
along the chain, when we use the Fourier varialflgsthe  (x,4(t)x,(t)). These must be considered to be nondiagonal
self-consistent potential is nondiagonal and denoted byor a given complexion of disorder. However, after averaging
Vgp(t). Thus we replace the exact Langevin equati@nby  over{\} they become diagonabee the Appendix for more
a linear stochastic ensemble detail), reflecting the translational invariance along the chain
after integrating out the disorder. Thus we introduce one of
the observables of interest

u =u_+1(A +An) 9)
m;m, 2 2 my m,/

d
Cata= % Vap({A DX+ 76(1), (10)

—_— 1
= _ - 2
where the potentiaV/,,, is to be determined self-consistently Fa(O=Fq(1),  Fqt) 3<|Xq| (0). (13

from the exact equations. The potential has a homopolymeric

diagonal part and a nondiagonal part describing the disorder Integration of the linear equatio{i0) yields a result that
that, according to Eq(6), should be taken as an arbitrary may be presented in matrix notation

linear combination of the disorder variables

X(t)=F({7\}:t,0)-X(0)+%ftdt’r({?\}:t,t’)- nt'),
0

vqp({x},t)zvq(t)squrZ Ugpr(DA; . (1) 14

Finally, having derived as many self-consistent equations as NN 1t

there are unknown functions, one has to average over the F({ALLY)= T-ex _Z t,dTV({A}'T) - (19

guenched disorder. This can be accomplished for the Gauss-

ian disorder perturbatively by application of the Wick theo-Thys, sincex,(t) is linear in the initial condition,(0) and

rem the noise, the correlation functiori&,(t) can be expressed
via the kerneld"({A};t,t"). Similarly, multiplying Eq.(3) by

A({AY). (12) X_q4(t) and performing e\_/aluations analogous to those of
Refs.[27,28, one can derive

A({A})ZGXF{ 72

v 9A?

{A}=0

Evidently, such a program, although feasible, would be ¢d _ dH
rather difficult to realize in practice. On one hand, the poten- 2 &Fq(t)_kBT_§ X*qm ' (16)
tial with three indices would give rise to very cumbersome
expressions, making analysis complicated. On the othewhere the latter average may be recovered by a differentia-
hand, there is a serious problem in that the self-consistendjon of the mean energy with respect to a set of parameters
equations are not closed, but constitute an infinite chain ofy}:
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JH d(H) @ 27g(m—m’)

g | = = S————
<x qaxq> 77l (17) d,w=21—co N (22

By averaging the energy per sample we obtain Finally, the three-body correlatiori3,,,y» are defined ac-
3 1 cording to
K _
<H>:7% Dmm-1t WE (At Am)Dp 37 1

_ Dmmr m= 5% ’yq'}/pciggnrcmu <qup> (23)

—3/2
“ammE, Or oy

and the higher-order terms may be found in R86]. Note

) that for y,=1 there are simple reduction relations

—-3/2
X 2 (Dmw D =D )

m,m’,m” 1
D ! m E_ X X X " X ’
+ (four-body terms+ - - - . (18 marm(7q=1 3<( ) K= Xim))
Here we have used the notation _ (@)
‘% dd Fq. (24)
1 @ (P
Do = 52 7aYpCmny Conm {XaXp) (19 (@ @ _ 4@ (@
ap dmm’m” (dmm’+dm”m’ dmn'{') (25)
(@ _— (- (—q)
Cmmr=f|(~n q)_fmrq y (20)
I1l. WEAK FLUCTUATIONS OF DISORDER
where we have introduced the auxiliary parametggs o o .
which are set equal to unity at the end of our calculations. A. Derivation of the kinetic equations
Then the quantitie$l9) acquire a transparent meaning In this section we shall calculate the quenched disorder

1 average of Eq(18) to orderA?. Using the Wick theorem
(ye=1)= = (X=X )2y = d9 F (21 (12) and keeping only the lowest order it is possible to derive
mr(79=1)= 3 (X~ X)) =2 di Fa, (@) D8O

(H)=Eo+E;+E,, (26)

:_2 Dmm 1+U22 Dm?r;:/z

+03 X (Dnm Py — Doy )~ 2+ (four-body terms+ - - -, (27
m,m’,m”
~3 Dy
E,=— A21E — (29
m,m’ Dmm’
E —AZG 15 (Dmm/;r) Azu 15 2 (Dmm’Dm"m’;r+Dm”m’Dmm’;r_2Dmm’m”Dmm'm";r)2
27 2°q _7/2_ 3 q 2
8 m,m’,r Dmm/ 8 mm’,m’,r (Dmm’Dm”m’_Dmm/mu)w2
.3 Doverv -t Do -t — (Pt mvrr) %)
_Azugi 2 ( mm ;r P m'm’;r 2mmmé;2 . (29)
m'mr’mrr’r (Dmm’Dm”m'_Dmm’m”)

Here the termE, represents the homopolymerlike contribu-
tion, E; is the main interaction part, anl, describes the Dmm':Dmm'(OHZ ADmm;r(0)
dispersion along the chain. We have also introduced the res-
caled virial coefficients 0, =(27) "D and
1=(2m) 32

In the derivation above we have utilized the Taylor ex-
pansion The Taylor coefficients are simply related to the averages

+ 2 ArA Dy (0)+ - - - (30)

rr
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- A In the Appendix we prove that such a form of the effective
D =Dmm =Dmmr (0) + 72 Dmm:r(0), (31  potential ensures the diagonality propet84) at arbitrary
' order of the disorder dispersion.
From the trial Hamiltonian37) we immediately get the

Danryr=A"2A Dot =Diny(0) (32 equation of motion

We can also express the termskf as cumulants, ¢ d
> aFq(t)szT—quq—Ep Ugpbap- (42

22 Dmm’ m’m’;r Dmm’Dm”m’(C)EDmm’Dm”m’
This can be directly averaged over the disorder. As for the
~Dy Dy (33 equation fore, (1), it is, strictly speaking, not closed due to
the second term in the trial Hamiltonian. Meanwhile, ignor-
and so forth. ing higher-order terms in\?, it is straightforward to write
It is important to stress that after the integration over thedown a system of two closed equations of motion
disorder, averages of the Fourier modes become diagonal,
d

1— > —Fq(O)=kgT=VoFq— 2 Ugp®qp: 43

3 {(X-¢Xp) = dqpFy- (34) 2 dt P

o d —
This implies thatDp,,y =Dy, wherek=m—m’, and hence — o ()= —(V.+V AU (F+F). (44
the translational invariance along the chain is restored. In gdt(’qu( : (Vo Vo) eqp ar(Fat Fp)- (49

view of this we may rewrite the interaction terly in an- _ ) _ )
Note also that the different-time correlation functions

other form
1
E1=‘2(§—7T)3r . 1%, (35 Ga(t1) = 5 (Xt xg(1), 49
k
e — 1
:_E A Dmm+k_2 d qp>¢qp, (36) Xap(tt") = 3 Mg p(X_q(t")Xp(1)) (46)

where the new variable is defined by satisfy similar equations far <t,

Pap()=dbap(t),  Bap(t)= 3 hq—p(X—q(DXp(1)) (37) €dt9q<tt> ValG4(t) = 2 Ugp(Dxap(tit'),
(47)

and the coefficients

d _
ganp(tvt,): _Vp(t)qu(trt,)_AZqu(t)gq(tat,)-

d(QP (d(Q)+d(P) d(q p)) (39
(48)
andd{?®) are similarly expressed vi&” by (25). The initial conditions are simplyg,(t’,t")=F,(t') and

In the variational principle one should add to the trial Xqp(t':t') = ¢qp(t"). Therefore, integration of the second
Hamiltonian the structures that appear in the interact®n  €quation gives
Thus we take the trial HamiltoniaH, as a combination of —
two observable$13) and (37), Yot 1) = @op(t )Gyt ) ?
1 1
HOZE% VqX,qu'f- qu;) quhq,pX,qXp. (39) t .
» Xft,dTEp Gp(t,t)G, M (1,1 ) Ugp(T)Gy( 7)),

Note that in the coordinate space the Hamiltonian may be

written in the form 107
Gp(rt')= exp( - Zf dt"Vvp(t") |.
t!

1
HOZ_E Vm—m’+2 um—n,m’—nAn (Xm_xm’)za
Zm’mr n
(40)

(49

Then Eq.(47) may be rewritten as a non-Markovian equation

t
whereV and/ are obtained by Fourier transformation from & gq(t t')=—Vq(t)Gq(t,t') + f,drEq(t,T;t’)gq(T,t’)
V and U. This structure corresponds to a restricted form of t

the interaction matrix11),

- Ugo(1)G(t,t' t’), 50
U= U5, oo @1 % ap(DGp(t,t ) @qp(t’) (50)



4076 E. G. TIMOSHENKO, YU. A. KUZNETSOV, AND K. A. DAWSON 54

®qq=NoFq- (60)

Eq(t,mt)=—2 Gy(t,t" )Gy (7,1 ) Uqp()U g 7),

A2
£
(51) The cumulants of the spatial correlatiofas) [and the quan-
tities (56)] are more nontrivial because they contain contri-
with a memory kernel given b i(t, 7;t’). butions nondiagonal in the Fourier indices. Once again, the
Now let us consider the cumulant terms in E20). Since  quantity Y is a typical “glass” order parameter. By defini-
they are of higher than quadratic order we should not addion it is equal to the fluctuation of the squared radius of
them to the trial Hamiltonian at the level of the GaUSSiangyration over different sequences. Such a fluctuation is b|g
theory. This permits us to wuse the restrictioninside the “glassy” phase due to strong correlations of dif-
(1/3X(X_gXp)N =& q—pPqp in the calculation. Performing ferent copies of the system in the standard replica trick lan-
the Fourier transformation and some simple algebra, we caguage[6,7].
prove that the cumulant83) depend only on the differences  Another order parameter of interest
of their indicesk;=m-m’ andk,=m"—-m’,

1
D Dy ¥ =Dy Dy, Dy =Do. (52 V=522 (At Am—2X0)D i, (61)
mm’

Moreover, they may be related to the order paramefs
P T = 62
Dlekz(c)_ -2 E d<qq )d<p PHI8) g 0npeq - qip;Eq’pio ®ap (62

a.a’.p
(53

is actually related to the phase separation. Thus let us con-
Therefore, these variables describe sample to sample fluctusider the limit of only two types of monomers: hydrophobic
tions and are typical glass order paramefé&ils A, with Ay=—1, and hydrophilicB, with \g=1. Suppose
There are other similar order parameters that can be cathat there arédN, monomers of typé andNg of type B, so
culated. For example, it is instructive to study the cumulantghat the compositiom\g=(1/N)Z,A,, may be expressed
of the Fourier mode& Fp(c) Using the equation of motion through the concentrationg,=N,/N and ng=Ng/N, with
(42), we obtain the dlfferentlal equation na+ng=1, simply ashg=ng—n4. Then it is easy to show
Ld— that ¥ is reduced to the quantity
S — 4 EE (©
2 thqF ~ Vet VeIFqFy W =4nng{ng[R%(B) —R%(A,B)]

—(Uqq®qaFpt Upp@ppFa)- (54 —nA[Ré(A)—RS(A,B)]}, (63

The latter can be immediately integrated and expressed
throughe,q. In fact, due to the equation of moti¢a4) and where we have introduced the partial radii of gyration
the zero initial condition there is a remarkable relation

Y A 2
Fq(t)Fp(t)(c):A 29"qq(t)ﬁ"pp(t)' (59 (A)_ 2NA mmEeA O, Ryl Ng m, mzeB P
This result may be easily generalized in a similar fashion, (64)
§<quq’><xpxp’>(c):A_Z‘P—pp"»"—qw q+q’+p+p’, 0 Ré(A,B)= Dy - (65)

(56) NANB mEA,m’EB

If we recall that the squared radius of gyration is just the sunfor equal concentrations,=ng=1/2 this reduces just to
¥ =[R:(B)—R;(A)]/2.

R3= 2} Fq. (57)
q+0 B. Effective potentials
from (55) one derives the sample to sample fluctuation of the  Now having introduced the basic observables and derived
squared radius of gyration the equations of motion, we only have to self-consistently
3530 _ o 2v2 determine the effective potentials. These are to be found
RgRg™'=A""Y%, (58 from the equation
where JH dHo
X’q_ax,q 0= X’q_ﬁx,q o' (66)
— 2
Y=NoR= 2 ¢qq- (59
+0
q

where( ), designates the average over the trial distribution.
Note that the cumulantEqu(c) are only connected to the A somewhat lengthy calculation using Eg&l7) and
fluctuations of the composition, (26)—(29) finally leads us to the closure relatiof&7]
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Vv Y1(q;kq,ky)
~a_ 1 1,82
—Uu u S L L 5P
N 22 7 3k§<2 Yo(ky,kz)>
d(Q)(Dk 52 d(CI)pk ‘
7/2_ D92
4 3_52 Yo(Ky,Kz) Y1(q;Kg,Kp)
3 8 Ky .k YO(k11k2)g/2
) Y3(Ky,K2)Y1(a;ke, ko) + Ye(a;ky ko)

+03§E

Ky .ko YO( klak2)7/2 ,
(67)

and for the nondiagonal effective potential

U d(q p) A zp q-p)
W=—12 W+u222 ﬁz—
5 Y4(a,p; k11k2) Ys(4,p; kl,kz)
+U322 Ya(ks Kk 2 32 k, k 52
Kk, Yo(Ky.Kp) Kk Yo(Ky,Kp)
(68)
Here we have used the set of definitions
Yo(Ky,Kz) =D, Di,~ Did (69)

Y1(aiky ko) =di D, + A Dy — 2di &k Dy, (70

_ 72 2 2
Ya(k1,k2) =Dy Py, k, T D, Pk, k, 4Dk i, Pryk, ok,
+ 2Dy, D, Py, k,~ 4Dk k,( Dk, Pk, kik,

+ Dy, P, kyk,) (71
Y3(Ki,Ka) =Py k, = Piiy kg (72)

Y4(0,p;ky ko) = A2 DF didPPIP + DF didPPiaP
+4Dk Ky o 1Ky P(i Zp)
+Dk1Dk2(d(k?"’)Pf<g_p)+dffg'p)Pf(‘i‘ 2
—2D, . D (d(qvp)p(Q*p)_,_d(%p)p(Q*p))

klk2 k2 k]_ k1k2 k1k2 kl

_2Dk1kzpk1(dg,mpg@p)+df(tii(r;)pl((gfp))],

(73

Ys(0,piky ko) = A2 (dP PP 4+ did PRI P

—2ddPPIEP), (74)

4077

Yo(0iKe,ka) =Dy APy, 1, + Di i P, i,
+ 4’Dk1k2d(kcﬁ<zpklk2 Kk,

+ (Dkld(k‘j) + Dkzd(kj)) Pk, k,

= 2(Di, Ak, T Dicg, I Pi gk,

= 2(Dy, A%+ Dicg, I Pi, ey (75)

We have also denoted

(kS):Ep: d&p’erS)(Pp,ers, (76)

Piq i, =A722 PISPI=Dy, Dy, (77)

Here each index, e.gk,, can actually be a paik;k;, in

which cased(qkp,) is assumed to be used insteaddyf” .

The latter is a linear combination of the formjsee Eq.
(25)].

Finally, we would like to rewrite the mean energy in these
notations

(HY 3k 1
N 21701+U22 wz+u32 W

1 Pk k

12 ﬁz Tl g = DIP

Lol Yalak) 3§ Yalkak)
3 8k1,k2 YO(klvk2)72 32k1,k2 YO(kllkZ)Sz.

(78

C. Equilibrium distributions

Here we shall show that at equilibrium and to order
our nonequilibrium method generates the same set of equa-
tions as the variational Gibbs-Bogoliubov approach for equi-
librium. This is not obvious because we perform averaging
over the quenched disorder. This derivation will also help to
explain why the use of the replica trick may be avoided in
our method.

Now, given the trial Hamiltonian(37), the free energy
estimate will be

-1

3 -
Ap= 32 Tr InV({A}),

(79

A=Ag+{((H=Hy))o,

where A, is the free energy associated whty and the ma-
trix V({\}) is given by Eqs(11) and (41). If one can per-
form the disorder averages directly, as we do by applying the
perturbation theory im?, there is no need to introduae
copies of the system and take the limit-0. First, we cal-
culate the main observables
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2

g1 _ Uz, _ Finally, the kinetic equations themselvé$3) and (44)
Fo=BTVUND) Moo= VA 1+4A2 YAVA +0(A%,  now may be rewritten in terms of the derivatives of the free
4 P rate (80) energy.A with respect to the dynamical variables as
u gd}'(t)— 2<fM+2 M) (88)
‘Pquﬂil[v({x})il]qp)\q—p:_BilAZV_illp +0O(A%). 2dt" 1 3 qa}-q p (Pqpaﬁoqp ’
aVp
®1) Ao 2( (aA+aA +P(f+f)a“4)
Now let us set the time derivatives to zero in the equations of dt Papt) ™ 7 3| ap aFq 0F, TP g,

motion (43) and(44). Resolving those equations up to order (89)

A?, one immediately recovers Eq80) and(81). In a similar

manner we obtain for the entropic contribution This form of the kinetic equations has a transparent meaning.

Indeed, the folding kinetics could be understood as a motion
3 on the surface of the free energy parametrized by dynamical
S=—kg= TrInV({\}) variables 7, ¢q,. The motion is determined by gradients
2 and is directed towards the global energy minimum. Here the
3 3A2 U2 o free-energy landscape determining the kinetics represents the
=—kg=> INVq+keg—— P Lo(a%. (82  flow of the whole statistical ensemble. individual
2% 4 ap VoV

. —_— . IV. NUMERICAL RESULTS
Calculation of the mean enerd}=(H) gives the same result

as that of Sec. Ill Bsee Eq.78), where it is assumed that In this section we present our results from numerical so-
Fq and g, are expressed via the effective potentidjsand lution of the self-consistency equatio43) and (44). We
Ugqp by Egs.(80) and(81)]. Minimization of the free energy shall be interested in the kinetics of folding caused by an
A[Vq,Ugp]=E—TS with respect to these variational param- abrupt quench from the extended Flory cgjiositive u,,

eters yields the self-consistent equations A=0) to the region of the phase diagram corresponding to
negative second virial coefficient, and nonzero dispersion
2 9E 2 9E of disorderA. Then, after the quench, the self-consistent
Fq=— 3 07_\/(17 Pap~ T 3 qu' (83 equations are solved using the modified Runge-Kutta scheme

[38] analogous to that of Ref§36,35. We account for the
These equations, however, seem to be different from th&xcluded-volume effect only up to the three-body interac-
ones we have obtained in Sec. Il B. To bring them into antion. Inclusion of the four-body interaction is required for

equivalent form let us invert Eq$80) and (81), sufficiently largeA, but it is unnecessary for the dispersions
considered in this paper.

gt _ @2 _ Our present analysis is still far from exhaustive. A com-
Vq=7 1+A*22 % +0(A%Y), (84) plete numerical study of the problem would require a sepa-
q P Yalp rate and rather lengthy work. Thus our purpose here is just to
make an initial reconnaissance into the variety of complex
_ 152 %ap " phenomena embodied in the set of equatiet® and (44)
Ugp=—8""A FoFo +0O(A%, (85 together with Eqs(67) and (68). Our understanding of their

solution in analytical terms is still rather limited apart from a

where we have discarded tié-order term inUg, since it few simple limiting regimes. Implementation of the code for

always appears in the equations multiplied &% This al- numerical integration of these equation in itself presented a
lows us to reexpress the entropy technical challenge in comparison to a relatively trivial ho-

mopolymer [36] and apparently more complicatedali’
3 372 2 o block copolymen35]. It is worthwhile mentioning also that
S= kB_E InFy— kB—E ar_ 4 O(A%. (86  the computational time required for the solution of this prob-
27q 4 4 Folp lem is aboutN times longer than for those simpler problems
mentioned above. Even this has been achieved by extensive
Minimization of the free energyA[ 7, ¢q,] Over its varia-  accounting of all possible symmetries and summation reduc-
tional parameters now gives the self-consistent equations tjon techniques. Thus we have managed to study chains of up
to 50 monomers and in principle one can reach up to hun-
v _2 9 Y _2 9& (g7  dreds of units given the best computational resources avail
4 395 P 3 deqp’ able. Every effort has been made to control precision of in-
tegration and ensure stability of solution. There are other
which do indeed coincide with the formulas for these effec-minor technicalities that are irrelevant for this theoretical pa-
tive potentials obtained from kineti¢67) and(68). Thus we per and we hope to address them elsewhere.
have proved that at the first order of the perturbation expan- It is natural to work with the combinations
sion the fixed point of our kinetic equations precisely agree< = (kgT/«)Y? and 7= ¢,/ as the units of size and time in
with the extremal point of the free energy obtained in thethe system. In the following we have used the following
Gibbs-Bogoliubov method. particular choice of parameterkgT=1, k=1, and{,=1,




54 KINETICS OF A GAUSSIAN RANDOM COPOLYMER AS ... 4079

FIG. 1. Plots of the mean-
squared radius of gyratioﬁs (in
units £2) vs timet (in units 7).
Lines (@)—(d) correspond respec-
tively to the values of the disper-
sion of disordeA =0 (homopoly-
men, 16, 32, and 40(in units
ksTL3). In this figure and Figs.
2-5 the values of the parameters
are the following: the degree of
polymerization N=40, the third
virial coefficientuz=10 (in units
kgTL®), the initial and final sec-
ond virial coefficients uy’=15
and u%=—25 (in units kgTL%),
and the initial dispersion of disor-
derAM=0,

which fix £ and 7 to be equal to unity. a rapid final shrinking towards the state more compact than

Note thatq=0 corresponds to the diffusive mode. It doesthe homopolymeric globule. This picture has an interesting
not affect the intramolecular conformational modes andesemblance to the protein folding kinetics observed experi-
therefore will not be considered. There are many interestingnentally. However, to feel more confident with such an anal-
observables that may be calculated, but we shall concentratay, let us proceed and consider other observables.
only on a few global ones giving most important informa- In Fig. 2 we exhibit the time dependence of the phase
tion. separation order parametér, defined by Eq(62) for differ-

In Fig. 1 we draw the time evolution of the mean-squaredent dispersions of disorder. This quantity is identically zero
radius of gyrationRS for different dispersions of disorder for a homopolymer and remains small for very weak disor-
A. The solid line @) corresponds to a homopolymer der. For early timesb (t) rapidly grows reaching its maxi-
(A=0) and serves as a reference line for recognizing thenum near the end of the spinodal stage. This reflects the
effect of randomness. The first kinetic stage appears to bfrmation of the microphase structure of growing clusters,
universal in accord with our theoretical expectatif8s| and  which tend to have a hydrophilic exterior and hydrophobic
the chain is an effective homopolymer. Here the effect ofcore [40]. During most of the coarsening stage changes
randomness is negllglble and all curves nearly coincide. Duron|y S||ght|y Indeed, the microdomain structure of the coa-
ing this stage the spinodal decomposition in the internal mettescing globule has already been formed. It is represented by
ric of the chain[39] leads to a necklace of small locally the original clusters, which essentially preserve their integ-
collapsed clusterf29,28,36, and for not too deep quenches ity within the macroglobule. IAA is insufficiently large, the
the radius of gyration falls according to the power law fo|ding ends up after optimization of the relative positions of
R3(1)=R3(0)—At"%. Although the overall spinodal picture these subclusters and the surface area. However, for stronger
of the first stage is correct, the local structure of the clusterslisorderA> A, (two upper curves at some moment around
that are forming is different from those in the homopolymer.r the system undergoes further and abrupt phase separation

The deviation between differemt curves signifies the on larger scales. This phenomenon has an obvious similarity
onset of the second or “coarsening” kinetic stage. There thao that of the phase separation order paramater periodic
random copolymer behaves very much like the periodic hetheteropolymergsee Fig. 4 of Ref[35]).
eropolymer of Ref[35] as the memory effects are still rather ~ Now let us compare these observations with the behavior
small. We see that the collapse proceeds faster than that gf the glass order parameﬂééRs(C) presented in Fig. 3. The
the homopolymer because now the rate of collapse is praatter can behave in a rather diverse manner depending on the
dominantly determined by hydrophobic unit35]. Further  yajue ofA. We can distinguish at least four different regimes
behavior depends on the value of the dispersion. For weajsted in order of increasing and designated by the curves
disorder[curves p) and ()] R5(t) reaches eventually its |abeled below as in the figure: the quantis) (s almost zero
final value, which is greater than for the homopolymer, agairduring the first stage and then grows during the second, but
in agreement with the periodieb heteropolymer. However, after reaching the maximum falls down to zerb) (is very
for a dispersion larger than some critical value, denoted byimilar to case ), but after the maximum and certain de-
A, [curve d)], we observe that after a long plateau, wherecrease, it starts to grow once again and finally tends to a
Rg(t) decreases very slowly, at some momeittundergoes nonzero value; the regime of) and (d) is similar to(a) and
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40 T T T T T

FIG. 2. Plots of the phase
separation order parametd# (in
units kgT£%) vs timet (in units
7) for different values of the dis-
persion of disordeffrom bottom
to top: A = 4, 8, 16, 32, 38, and
40 (in unitskgTL3).

(b) first, but after reaching its maximum decreases slightlyclusters and by the polymeric bonds. Thus the system is ki-
and remains at a high level, where it finally remains; thenetically arrested and possesses, as we shall see below, a
regime of @) and (f) is the same as above, but after thelong relaxation time due to the height of potential barrier.
critical dispersionA, it falls rapidly to a level very close to The existence of such a glassy structure is clearly manifested
zero. Comparing this with Fig. 2, we find that the critical in the glass order parameﬂéng(C). Thus Fig. 3 tells us that
dispersion is, in fact, the same for glassy and phase separthere are at least three difterent final phases of the system
tion order parameters. distinguished by the glass order parameter: for sthathere

Thus to resume, other the system is strongly frustrateds a liquidlike globule(LG), which is akin to an ordinary
during the coarsening stage and forms a sort of glass. Theomopolymer globule with zero glass order parameter, and a
frustration is induced by the hydrophilic shells of the sub-glassy phaseG) with nonzeroRgRs(C); for A>A, thereis a

3.5 T T T T T

NG
Ry R

25

FIG. 3. Plots of the sample to sample fluctuation of the squared radius of gy@Rﬁﬁ") (in units £% vs timet (in units 7). Lines
(a)—(f) correspond respectively to the values of the dispersion of disdrder4, 8, 16, 32, 38, 4@in units kgTL3).
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FIG. 4. Plots of the autocorre-
lation functionsG,(t,0) (in units
£?) for q=1,2 vs timet (in units
7) during kinetics after the quench
for different values of the disper-
sion of disorder: A=0 (solid
lineg), A=16 (crossey and
A =40 (diamonds.

folded phase F) characterized byalmos} vanishing glass plateau in the autocorrelation function, as well as in the mean
order parameter and a large-phase-separation order paragnergy in Fig. 5. These laws are reminiscent of other spin-
eter. As is already becoming clear and will be shown moreglass systemp41,42 and hence justify our interpretation of
convincingly below, the glassiness is destroyed by the finathe glassy phase. If the system has been quenched 6 the
larger-scale phase separation. The globule acquires a mopdase, the autocorrelation function does not decay to zero for
organized internal structure and becomes more compack macroscopically long times, but remains at some constant
These observations are quite striking. globule, and In broadnalogous to the Edwards-Anderson order parameter in the
terms the states predicted here are very close to those thspin-glass theory.
have been discussed for real proteig Having discussed the kinetics of folding, let us turn our
Now, then, it would be of great interest to check the au-attention to the final state of kinetics, i.e., the equilibrium
tocorrelation function(45) for further evidence in favor of phase structure of the model. We should note that the final
glassy behaviour. The functio@,(t,0) is drawn in Fig. 4. state of kinetics may only correspond to one of all possible
The homopolymersolid line) possesses only two character- fixed points of the self-consistent equations. A more general
istic relaxations:G(t,0)~e~ 1! for very early times(the  analysis of the equilibrium phase diagram would be of inter-
Einstein regimgand then another exponential relaxation re-est. However, what we shall examine below is important
gime G,(t,0)~e~ V1’9t for late times[27]. The relaxation Pprimarily because it matches the notion of renaturation as a
towards theF phase(diamonds first also has the Einstein kinetic phenomenon. In Fig. 6 we draw the final value of the
regime for very short times and then it could be described bylassy order paramet&sz(C) vs the dispersion of disorder
the fastg relaxationG, (t,0)~Q+Cpzt™ P t< 75, and then A for different values of the third virial coefficient. There we
by a slow « relaxation G;(t,00~Q—C t" t=r,, which indeed observe the two phase transitions discovered above.
finally turns into an exponentidbr perhaps stretched expo- When the dispersion of disorder reaches the critical value
nentia) decay. As the dispersion of disorder becomesA;, which scales as a positive power wf, the system un-
smaller and we approach the glagdyphase(crosses in Fig.
4), the characteristic scale af relaxation becomes very  TABLE I. Values of the paramete&, A,, andy in the delay
long. time r=A(A—A,)~” for polymers with different degrees of poly-
The delay time near the transition line may be estimatednerizationN. These parameters have been obtained from the analy-

with good prec|s|on as a power |a,N:A(A A ) Y and the sis of the kinetics for different quench depths witk= A, . Values

parametersA, A,, and y from the fitting are presented in g the second and third virial coefficient _areZ:—ZS _and
10. From these data one can obtain the scaling law

Table 1. For quenches to the folded state but close to théji:Nl.ém.lz
renaturation transition line the delay time diverges as ‘
power law with the exponent approximately equal to

y=1/2+0.04. This delay timer also grows with the degree A Ar Y

of polymerization N since the prefactor scales as 20 5.3 17.82 0.54
A~N53=012 The critical dispersion of this transitiok, in- 30 9.1 25.96 0.50
creases significantly wittN as well, but to determine the 40 16.7 35.44 0.54
concrete form of this law one would need data for biggersg 23.6 77.43 0.47

systems. Thus, in th& phase there is a very pronounced
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dergoes thdreezingtransition accompanied by an abrupt related to the renaturation becomes clear from Fig. 8. The
increase of the glass order parameter. Our data are in qualiomopolymer correlations of monomer positiohsurve
tative agreement with the earlier res[d@] that A~ \/s/p,  (a)] Dy satisfy the scaling lawD,~k for [k|<N?? and
wheres is the chain flexibility andp is the globule density. D,~N?? otherwise[36,44). This law is preserved as one
At this phase transition the phase-separation order parametswitches on the dispersion of disorder, and it is still fulfilled
presented in Fig. 7 changes quite regularly. In fdctgrows  in the glassy phasgurves p)—(d)]. The renaturation tran-
linearly until the secondrenaturation transition, atA,, sition, however, leads to a striking modification of this law:
where it has a rapid jump and then further grows linearly.D,~ const for any but very smak [see curve €)].
Remarkably, the glass order parameter quickly drops to al- Thus the correlations of monomer coordinates do not de-
most zero at the poink, . In Table Il we present the values pend on their chain indices after we have integrated over all
of A, for different second virial coefficientl,|. Note that  possible complexions of disorder. They are equal to a uni-
the critical dispersion changes only slightly s grows. versal constant entirely determined by the excluded-volume
The reason why we may conjecture this transition to benteraction structure. Let us leave this idealized random co-

FIG. 6. Plots of the sample to
sample fluctuation of the squared
radius of gyration R3RZ( (in
units £4) vs the dispersion of dis-
order A (in units kgT£3). Lines
(a)—(c) correspond respectively
to the values of the third virial co-
efficient u;=5, 10, and 20(in
unitskg T£L8). The degree of poly-
merization and the second virial
coefficient are N=30 and
U,=—25 (in units kg TL3).
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FIG. 7. Plots of the phase-
separation order parametd# (in
units kg TL5) vs the dispersion of
disorder A (in units kgT£3) for
different values of the third virial
coefficient (from bottom to top:
u; = 5, 10, and 20(in units
ksTL8). The degree of polymer-
ization and the second virial coef-
ficient are N=30 andu,=—25
(in unitskgTL%).

40 50

A —

polymer for a moment and consider a real protein in theFig. 5 becomes smaller in the native state as well. This may
native state. There one should have a unique structure dfe interpreted by arguinf3] that the system occupies the
D, €ncoded in the primary structure, i.e., the sequence ajround state separated by a gap from higher-energy levels,
A.,. As we lose the information about a particular sequencavhile it is trapped in some higher, but relatively low-energy,

by averaging over the quenched disorder, cled®ly,,y can

level in the glassy phase.

only become a constant. This phenomenon, so conspicuous
in our approach, is intuitively natural for real proteins in the
native state.

V. CONCLUSION

___Finally, let us discuss the mean-squared radius of gyration In this work we have developed an approach for studying
RS vs the dispersiors drawn in Fig. 9. Generally speaking, Kinetics of random copolymer conformational changes and

the size of the polymer is almost independenfiah the LG

discussed the potential relations to the protein folding prob-

phase, becomes larger in the glassy phase, and is mud®m. Our method presents an extension of the Gaussian self-
smaller in theF phase. Thus the globule in the native state isconsistent approach, which has been successfully applied by
more compact than the homopolymer one and dependss to @ homopolymer and periodic heteropolymers. It may be
weakly on the dispersion of disorder. These properties conactually viewed as a version of the method for arbitrary het-
form to the intuitive idea that a glassy globule should be€ropolymers with a disorder-dependent effective potential.
bigger since parts of the chain are frozen in not completelyl e latter, however, is rather awkward in practice, particu-
compacted locations and that the native globule should bErly for numerical solution, since all averaged quantities are
maximally compacted due to the best possible optimizatiomondiagonal in the Fourier variables. The diagonality is re-

of the volume interactions. Moreover, the mean endspe

TABLE II. Values of the critical dispersiod, for the folding
transition vs the second virial coeficien for polymer with the
degree of polymerizatiohl=30. The value of the third virial coef-

ficient is uz=10.

uz Ar

-15 14.0
=17 14.1
—20 17.0
—-25 25.96
—30 32.3
—35 38.7
—40 45.2
—50 59.3

covered after the integration over the quenched disorder, but
in a quite nontrivial way. Thus the two-point correlations
(see the Appendjxare strictly diagonal, but any three- and
four-point objects are not. However, they are expressed in a
relatively simple way through the main variablgg and
®qp- These properties lead eventually to the reduction of one
summation in the mean energy and effective potentials.

Although some of our derivations were performed only up
to orderA?, the properties above are valid at all orders. Be-
cause we have used the fully dressed quantifigsand an
enforced closure of the Bogoliubov chain rather than the per-
turbation theory, one may expect that our equations are ac-
tually valid for moderate dispersiorisee[37]).

The richness of the dynamical variabléw variational
parameters for equilibriujrellows us to achieve certain suc-
cess in this complicated problem. Even a preliminary nu-
merical analysis has led to a number of interesting insights.
For example, we have obtained a qualitatively correct picture
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FIG. 8. Plots of the equilib-
rium correlations of monomer co-
ordinateg[45] Dy (in units £?) vs
the chain indexk for polymer
with the degree of polymerization
N=40 and values of the second
and the third virial coefficients
U,=—25 (in units kgT£3) and
Uz=10 (in units kgTL®). Lines
(a)—(e) correspond respectively
to the values of the dispersion of
disorder A=0 (homopolymey,
16, 32, 8, and 38(in units
kg TL3).

for kinetics of protein folding. This kinetics yields spin- parameter in all three phases. Renaturation, or the transition
glass-like relaxations for the autocorrelation function. Investo the native state, has been explained as the large-scale
tigation of the final state of kinetics has given the phasephase separation that destroys the glassy structure.
structure of the system with three globular phases: liquid We have also proposed a simple explanation of the kinet-
globulelike, glassy, and folded. The glassy phase probablics of folding based upon thaecklacemechanism of the
corresponds to the molten globule, while the folded one hasarly stages. Freezing occurs due to strong frustration after
many features suggesting its relation to the native state afoalescence of locally phase-separated clusters. On the con-
proteins. The most important discovery here is the lawtrary, renaturation is the process of global energy optimiza-
D.=const for the spatial correlations of monomer coordi-tion proceeding by larger-scale phase separation that de-
nates. We have observed what we believe to be correct bstroys the glassiness.

havior for such observables as the mean-squared radius of It is encouraging that our conclusion about the existence
gyration, the mean energy, and the phase-separation ordef the three different collapsed states, liquid globule, frozen,

24 T P EEEY - I | T T
= 8
22 | -
R2
g 2y

FIG. 9. Plots of the equilib-
rium mean squared radius of gyra-
tion Ré (in units £2) vs the disper-
sion of disorder A (in units
ksTL3) for different values of the
third virial coefficient (from bot-
tom to top: uz = 5, 10, and 2@in
unitskg TL8). The degree of poly-
merization and the second virial
coefficient are N=30 and
U,=—25 (in unitskgTL3).
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and folded, agrees with that of the Monte Carlo simulationdessor P. Pincus, Professor Y. Rabin, Professor K.
on a lattice[25] and that in other simulatior]4.0] the kinet-  Yoshikawa, and our colleague A. Moskalenko.

ics proceeds in several stages with an activated final folding.

The Gaussian distribution of random sequences is perhaps

sufficiently wide to include many good folding sequencesAPPENDIX A: PROOF OF THE DIAGONALITY OF  (xqXq)
studied in Monte Carlo and their contribution is substantial
enough to exhibit something like the folded state after disor-
der averaging. Clearly, the averaging over disorder is neces-
sary if we are to extract universal, or at least generic, laws.
On the other hand, the Gaussian distribution is really too
large and future works must be directed at averaging over
more refined distribution, appropriate for the protein folding
problem. where Wy, =%,Uq ,A;. We remark that, to generate a

Nevertheless, we believe that the results shown herwell-defined time evolution, the matriw,, should be real
present an important advance in understanding qualitativend symmetric. These properties impose two restrictions
aspects of the kinetics of protein folding using the methodsipon the coefficient functions
of nonequilibrium statistical mechanics. We accept that
much remains to be accomplished. First, the scalings of the
various order parameters and universal exponents must be
extracted, a nontrivial task requiring extensive numerical
study and analytical insight. Second, efforts must be made tMultiplying Eq. (A1) by itself with a different index and
establish connection to experiment in these systems and etaking the averages, one can show that the diagonality prop-
isting protein data bases, whatever relevant information igrty (34) extended for the nonequal-time correlations
available for typical globular proteins with only between 200<><q (t")Xq(t"))~ 8_q,q implies the orthogonality relation
and 500 amino acid residues.

In completing the purely theoretical aspects of this pro-
gram there now appear to be only technical obstacles remain-
ing. Whether the information yielded thereby will affect sub-
stantially the detailed understanding of the folding process of

real proteins is a question that must await later judgements.
with C,, being some functions. This constraint is really quite

restrictive since the indexin U ,, . turns out to be linearly
dependent on the indicagp. By a direct check it is now

The authors acknowledge interesting discussions withrivial to see that the special forid1) indeed satisfies rela-
Professor A. Yu. Grosberg, Professor A. R. Khokhlov, Pro-tions (A2) and (A3).

The formal integration of the linear ensemlyl&) gives

1 [t
Xalt)= Zfodt’(—Vqu—quxp—f— ) (), (AL

U_gpr=Ug-p-r» Ugpr=Upg-r- (A2)

Z Ugpr(tUqgr —p (1) =68_q q:Cqp(t’,t"), (A3)
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