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We develop the Gaussian self-consistent method for studying kinetics of random copolymers. For a fixed
complexion of disorder the system is described by time- and disorder-dependent effective potentials. The
self-consistent equations are then directly averaged over the quenched disorder, yielding a chain of differential
equations with an enforced closure. This procedure allows us to avoid the use of the replica trick. Our method
naturally incorporates the phase separation and glass order parameters and thus permits study of the complete
phase diagram of the model. We believe that our approach may shed light on the kinetical aspects of the
protein folding puzzle.@S1063-651X~96!09710-3#
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I. INTRODUCTION

One of the important challenges in the statistical-
mechanical treatment of biopolymers is to understand the
underlying mechanism of the highly unusual behavior of
proteins@1,2#. It is well established that the one-dimensional
sequence of amino acid residues, also called the primary
structure, encodes the information about the unique three-
dimensional conformation of a folded protein@3#. The native
state in which a protein exhibits such properties is thermo-
dynamically preferable under normal conditions within a liv-
ing cell. The compactness of the globule in the native state is
predominantly maintained by the hydrophobic effect@4# that
forces the hydrophobic units to be mainly located inside the
globule and the hydrophilic ones on the surface.

It has been recognized that the free-energy profile of pro-
teins has an analogy with other disordered systems similar to
spin glasses@5#. These frustrated systems have been much
studied in the past decade@6,7#. As the relaxation times of
glasses are typically very large, the system is trapped in a
low-energy state separated from others by high-potential bar-
riers. Similarly, the low-energy states of proteins correspond
to minima of the free energy and the protein may be consid-
ered as ‘‘kinetically arrested’’ in one of its dominant confor-
mations. Thisfreezing transitionoccurs upon reducing the
‘‘effective temperature’’ of the polymer system. Finally, the
protein reaches the unique global minimum of the free en-
ergy.

Another intriguing problem appears in considering the ki-
netics of protein folding. There are several different charac-
teristic kinetic folding pathways for the globular proteins
studied at present. For example, in Ref.@3# the authors con-
sider proteins for which folding starts by a rapid collapse
from a random coil state to a semicompact molten globule
and then proceeds by a slow search to a state from which the
chain will eventually access the native state. The number of
available conformations of a polypeptide chain grows expo-

nentially with the chain length and is therefore extremely
large. Nevertheless, it is known experimentally that proteins
do fold into a unique native state in just a matter of seconds.
The Levinthal paradox is that the chain is somehow able to
find its native configuration without extensively exploring all
possible conformations.

The mechanism responsible for this restriction of acces-
sible conformations during folding is probably also related to
the kinetics of spin-glass-like systems@3#. However, in
theory this connection has not as yet been really explained.
Several approaches have been proposed to explain the
Levinthal paradox dealing with folding kinetics along the
so-called ‘‘preferred pathways’’ on the free-energy land-
scape@8–12#. These approaches share some common fea-
tures in that they explain the tendency of folding towards the
native conformation, but they differ in many details. Al-
though much understanding has been achieved in the above-
quoted models, there is still uncertainty remaining in the de-
tailed laws for realistic protein sizes. The final resolution of
the protein folding puzzle and elucidation of the kinetic laws
that govern this process would shed some light on the ques-
tions related to the origin of life in the prebiotic and early
biotic environments and might have implications for the
theory of evolution. Practical consequences could also
emerge for protein engineering.

The statistical-mechanical approach@13# to protein fold-
ing is based on the investigation of the properties of simple
models of heteropolymers. The simplest approximation for a
protein is a random heteropolymer. In thesequence model
@14# monomer types are represented by random variables
$Lm%, with a given distribution of disorder~e.g., binary or
Gaussian!, that determine the excluded-volume interactions
between pairs of amino acids.

There have been extensive studies of the equilibrium
properties of the model carried out using the replica trick of
the spin-glass theory@14–18#. The success of these studies
was significant in two respects. First, it has been established
that even a simple Gaussian random copolymer undergoes
the freezing transition and thus this property is probably typi-
cal for all random heteropolymers. Second, an understanding
of the role of microphase separation@19# and its competition
with freezing has been achieved. It was shown in Refs.
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@14,16# that for a stiff chain freezing prevents microphase
separation. If the chain is flexible enough the freezing occurs
at a lower temperature with a background of phase separa-
tion.

As a limitation of these works we note that they were
based only upon a special form of the interaction matrix,
corresponding to the so-called symmetric ‘‘charged’’ model.
Another disadvantage of these approaches lies in their valid-
ity only for a globular state, where it is possible to use the
ground-state dominance and constant density approxima-
tions. We would like to emphasize that to really understand
the protein folding problem of kinetics one needs a method
that is equally reliable for both the extended coil and com-
pact globular states.

It has become clear that to ensure kinetic reliability of
folding sequences should be more special than simply ran-
dom. This is important in order to make the native confor-
mation stable even in a model with noisy distorted potentials
@20#. The interactions of a kinetically foldable protein should
obey the ‘‘minimal frustration principle’’@8# requiring mini-
mization of frustration or, in other words, the ratio of glass to
folding temperatures. One of the possibilities to satisfy this
principle is to consider ‘‘selected’’@21#, ‘‘designed’’ @22#, or
‘‘imprinted’’ @23# sequences. The principles of the energy
landscape analysis have been studied and confirmed in many
simulations of simple models@9–11#. It was found that for
fast folding sequences there should be a special interplay
between the energy frustration and entropic barriers.

These suggestions are certainly interesting and perhaps
quite important for explaining the role of evolutionary selec-
tion within the ‘‘primordial soup.’’ However, they deal with
the next level of complexity in models of proteins. Our belief
is that, first of all, it would be interesting to construct an
analytic theory of kinetics of protein folding for a random
sequence model and study the kinetic laws there. Later on
the knowledge about the sequences distribution discovered in
other approaches may be used in such a theory, thereby mak-
ing it more realistic for proteins.

It is well established that the frozen phase exists for ran-
dom copolymers. Thus the spin-glass mechanisms restricting
the available conformations of the chain do help it search
~whether kinetically or quasistatically! for a state with quite
few conformations left. Whether an arbitrary random se-
quence would be able to fold from this prior state, which
probably might be interpreted as the molten globule, to the
true native state, i.e., undergorenaturation, remains an open
question. In this paper we find evidence for the affirmative
answer of this question. We also discover that this transition
is accompanied by a decrease of the globule size and a pro-
found restructuring of the microdomain structure exhibited in
the phase-separation order parameter. In other words, rena-
turation may be considered as a rather complex transition
described by the glassy order parameter and manifested in
the change of many observable characteristics of the globule.

Our method is essentially designed to make feasible the
study the kinetics of protein folding at a later point. There
are numerous analytical works on the equilibrium aspects of
the problem@14–18#. However, the knowledge about kinet-
ics of the process is restricted to Monte Carlo simulations on
a lattice@9,10,24–26#. Evidently one would hope to be able

to compliment these Monte Carlo simulations by an analyti-
cal theory as well.

In this work we study the kinetics of a random sequence
model using the Gaussian self-consistent approach. This ap-
proach@27,28#, which resembles the time-dependent Hartree
approximation and reduces to the variational Gibbs-
Bogoliubov variational estimate at equilibrium, has the merit
of being precisely defined, flexible, and of general applica-
bility to many classes of problems. A strong argument in
favor of our method is the good agreement with Monte Carlo
simulation for the homopolymer kinetics performed on a lat-
tice @29#.

Our approach leads to a set of nonlinear and highly
coupled differential equations for the main observables of
the system. Although their detailed analytical study is a
rather complicated technical task, it is relatively simple to
solve these equations numerically. The qualitative behavior
of the solution that we find appears very encouraging.

In this paper we will present our thinking about the prob-
lem in the language of statistical mechanics. These ideas are
further discussed and explained using more physically ap-
pealing language elsewhere@31#.

II. METHOD

To avoid confusion in this paper we shall denote the
monomer spatial positions by capital charactersXm and their
Fourier transforms by the lowercase onesxq , and similarly
for other distributions along the chain. The Fourier transfor-
mations for ring polymer are defined as

Xm5 (
q50

N21

f m
~2q!xq , xq5

1

N (
m50

N21

f m
~q!Xm , ~1!

f m
~q![expS 2p iqm

N D , ~2!

whereN is the degree of polymerization. In the absence of
hydrodynamic effect@32# the exact Langevin equation for
the sequence model of a random copolymer may be written
in terms of the Fourier modes as@33#,

z
d

dt
xq~ t !52

]H

]x2q
1hq~ t !, ~3!

^hq
a~ t !hq8

a8~ t8!&52kBTzdq1q8,0d
aa8d~ t2t8!, ~4!

wherez5Nzb and zb is the bare friction constant. The in-
teraction potentialH5H̄1H̃ consists of the homopolymeric
H̄ and the disorderedH̃ parts, respectively,

H̄5
k

2(n ~Xn112Xn!
21 (

L.2
ūL(

$m%
)
i51

L21

d~Xmi
2Xmi11

!,

~5!

H̃5
1

2 (
m1,m2

~Lm1
1Lm2

!d~Xm1
2Xm2

!, ~6!

wherek is the spring constant,ūL are the virial coefficients
of the excluded-volume interactions, and the summation over
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$m% includes all values of indicesm1 , . . . ,mL with
miÞmi11. HereLm are independent random variables@34#
with the Gaussian distribution of disorder

P~$L%!5)
m

1

~2pD2!1/2
expS 2

Lm
2

2D2D . ~7!

The Fourier transforms$l% are also independent random
Gaussian variables with zero mean value and dispersion
D̄2,

lqlq85D̄2dq1q8,0 , D̄2[D2/N. ~8!

Henceforth we use the brackets^A& to denote the statistical
averages over the noise and initial ensemble of monomer
positions$X(t50)% and the barĀ to denote averages over
the quenched distribution of disorder$L%.

We start by noting that for a given complexion of disorder
Eq. ~3! is exactly identical to the Langevin equations for
arbitrary heteropolymer, with the two-body virial coefficients
that are given by the formula

um1m2

~2! 5ū21
1

2
~Lm1

1Lm2
!. ~9!

In our earlier work@35# we have shown that such a system
could be successfully studied in the framework of the Gauss-
ian self-consistent method with a nondiagonal self-consistent
potential. Since there are noa priori symmetry properties
along the chain, when we use the Fourier variables~1! the
self-consistent potential is nondiagonal and denoted by
Vqp(t). Thus we replace the exact Langevin equation~3! by
a linear stochastic ensemble

z
d

dt
xq52(

p
Vqp~$l%,t !xp1hq~ t !, ~10!

where the potentialVqp is to be determined self-consistently
from the exact equations. The potential has a homopolymeric
diagonal part and a nondiagonal part describing the disorder
that, according to Eq.~6!, should be taken as an arbitrary
linear combination of the disorder variables

Vqp~$l%,t ![Vq~ t !dqp1(
r
Uqpr~ t !l r . ~11!

Finally, having derived as many self-consistent equations as
there are unknown functions, one has to average over the
quenched disorder. This can be accomplished for the Gauss-
ian disorder perturbatively by application of the Wick theo-
rem

A~$L%!5expS D2

2 (
n

]2

]Ln
2D U

$L%50

A~$L%!. ~12!

Evidently, such a program, although feasible, would be
rather difficult to realize in practice. On one hand, the poten-
tial with three indices would give rise to very cumbersome
expressions, making analysis complicated. On the other
hand, there is a serious problem in that the self-consistency
equations are not closed, but constitute an infinite chain of

Bogoliubov-like equations. This, of course, could be avoided
at the level of the Gaussian theory, but at the price of dealing
with extremely complicated integro-differential equations in-
stead of simple differential ones. Indeed, the higher-order
correlation functions may be explicitly calculated order by
order in $L% applying the formal integration of the linear
ensemble~10!. Naturally, both approaches lead to equivalent
results, although the proof is not straightforward for the gen-
eral case. The most satisfactory procedure is to construct the
Bogoliubov chain and close it at some order, either by a
nonperturbative ansatz or just in a given order of the disper-
sionD2 of the self-consistent perturbative scheme. Although
similar methods have proved to be effective in statistical me-
chanics, for random copolymers, due to the connectivity and
higher-order virial terms, one finds a rather complicated set
of equations. In the present paper we pursue the least ambi-
tious route; that is, we shall study the effects of randomness
in lowest order (D2) and leave more complicated higher-
order calculations for future consideration. Since we apply a
self-consistent treatment and deal with ‘‘fully dressed’’
quantities we may expect to be able to probe relatively large
dispersions of disorder.

At first order several fortunate simplifications appear that
make our analysis much easier. In fact, one will see later that
some of the observations that follow trivially in this order
persist in higher orders as well. We shall emphasize such
points and also indicate the physical reasons for them in the
Conclusion.

First, let us discuss the equal-time correlation functions
^xq(t)xp(t)&. These must be considered to be nondiagonal
for a given complexion of disorder. However, after averaging
over $l% they become diagonal~see the Appendix for more
detail!, reflecting the translational invariance along the chain
after integrating out the disorder. Thus we introduce one of
the observables of interest

Fq~ t ![Fq~ t !, Fq~ t !5
1

3
^uxqu2~ t !&. ~13!

Integration of the linear equation~10! yields a result that
may be presented in matrix notation

x~ t !5G~$l%;t,0!•x~0!1
1

zE0
t

dt8G~$l%;t,t8!•h~ t8!,

~14!

G~$l%;t,t8![ T-expS 2
1

zEt8
t

dt V~$l%,t! D . ~15!

Thus, sincexq(t) is linear in the initial conditionxq(0) and
the noise, the correlation functionsFq(t) can be expressed
via the kernelsG($l%;t,t8). Similarly, multiplying Eq.~3! by
x2q(t) and performing evaluations analogous to those of
Refs.@27,28#, one can derive

z

2

d

dt
Fq~ t !5kBT2

1

3 K x2q

]H

]x2q
L , ~16!

where the latter average may be recovered by a differentia-
tion of the mean energy with respect to a set of parameters
$g%:
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K x2q

]H

]x2q
L 5

]^H&
]g2q

U
1

. ~17!

By averaging the energy per sample we obtain

^H&5
3k

2 (
m

Dm,m211
1

2~2p!3/2(m,m8
~Lm1Lm8!Dmm8

23/2

1
ū2

~2p!3/2(m,m8
Dmm8

23/2
1

ū3
~2p!3

3 (
m,m8,m9

~Dmm8Dm9m82Dmm8m9
2

!23/2

1~ four-body terms!1•••. ~18!

Here we have used the notation

Dmm85
1

3(q,p gqgpcmm8
~q! cmm8

~p! ^xqxp&, ~19!

cmm8
~q! [ f m

~2q!2 f m8
~2q! , ~20!

where we have introduced the auxiliary parametersgq ,
which are set equal to unity at the end of our calculations.
Then the quantities~19! acquire a transparent meaning

Dmm8~gq51![
1

3
^~Xm2Xm8!

2&5(
q

dmm8
~q! Fq , ~21!

dmm8
~q!

52S 12cos
2pq~m2m8!

N D . ~22!

Finally, the three-body correlationsDmm8m9 are defined ac-
cording to

Dmm8m95
1

3(q,p gqgpcmm8
~q! cm9m8

~p! ^xqxp& ~23!

and the higher-order terms may be found in Ref.@36#. Note
that forgq51 there are simple reduction relations

Dmm8m9~gq51![
1

3
^~Xm2Xm8!~Xm92Xm8!&

5(
q

dmm8m9
~q! Fq , ~24!

dmm8m9
~q!

5
1

2
~dmm8

~q!
1dm9m8

~q!
2dmm9

~q!
!. ~25!

III. WEAK FLUCTUATIONS OF DISORDER

A. Derivation of the kinetic equations

In this section we shall calculate the quenched disorder
average of Eq.~18! to orderD2. Using the Wick theorem
~12! and keeping only the lowest order it is possible to derive
the relations

^H&5E01E11E2 , ~26!

E05
3k

2 (
m
Dm,m211û2 (

m,m8
Dmm8

23/2

1û3 (
m,m8,m9

~Dmm8Dm9m82Dmm8m9
2

!23/21~ four-body terms!1•••, ~27!

E152D21̂
3

2 (
m,m8

Dmm8;m

Dmm8
5/2 , ~28!

E25D2û2
15

8 (
m,m8,r

~Dmm8;r !
2

Dmm8
7/2 1D2û3

15

8 (
m,m8,m9,r

~Dmm8Dm9m8;r1Dm9m8Dmm8;r22Dmm8m9Dmm8m9;r !
2

~Dmm8Dm9m82Dmm8m9
2

!7/2

2D2û3
3

2 (
m,m8,m9,r

~Dmm8;rDm9m8;r2~Dmm8m9;r !
2!

~Dmm8Dm9m82Dmm8m9
2

!5/2
1•••. ~29!

Here the termE0 represents the homopolymerlike contribu-
tion, E1 is the main interaction part, andE2 describes the
dispersion along the chain. We have also introduced the res-
caled virial coefficients ûL5(2p)23(L21)/2ūL and
1̂[(2p)23/2.

In the derivation above we have utilized the Taylor ex-
pansion

Dmm85Dmm8~0!1(
r

L rDmm8;r~0!

1
1

2(r ,r 8
L rL r 8Dmm8;rr 8~0!1•••. ~30!

The Taylor coefficients are simply related to the averages
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Dmm8[Dmm85Dmm8~0!1
D2

2 (
r
Dmm8;rr ~0!, ~31!

Dmm8;r[D22L rDmm95Dmm8;r~0!. ~32!

We can also express the terms ofE2 as cumulants,

D2(
r
Dmm8;rDm9m8;r5Dmm8Dm9m8

~c![Dmm8Dm9m8

2Dmm8Dm9m8, ~33!

and so forth.
It is important to stress that after the integration over the

disorder, averages of the Fourier modes become diagonal,

1

3
^x2qxp&5dqpFq . ~34!

This implies thatDmm85Dk , wherek5m2m8, and hence
the translational invariance along the chain is restored. In
view of this we may rewrite the interaction termE1 in an-
other form

E152
3N

2~2p!3/2(k
Fk

Dk
5/2, ~35!

Fk5
1

N(
m

LmDmm1k5(
q,p

dk
~q,p!wqp , ~36!

where the new variable is defined by

wqp~ t ![fqp~ t !, fqp~ t !5
1

3
lq2p^x2q~ t !xp~ t !& ~37!

and the coefficients

dk
~q,p!5

1

2
~dk

~q!1dk
~p!2dk

~q2p!! ~38!

anddk1k2
(q,p) are similarly expressed viadk

(q,p) by ~25!.

In the variational principle one should add to the trial
Hamiltonian the structures that appear in the interaction~6!.
Thus we take the trial HamiltonianH0 as a combination of
two observables~13! and ~37!,

H05
1

2(q Vqx2qxq1
1

2(q,p Uqplq2px2qxp . ~39!

Note that in the coordinate space the Hamiltonian may be
written in the form

H05
1

2 (
m,m8

S Vm2m81(
n
Um2n,m82nLnD ~Xm2Xm8!

2,

~40!

whereV andU are obtained by Fourier transformation from
V andU. This structure corresponds to a restricted form of
the interaction matrix~11!,

Uqpr~ t !5Uqp~ t !d r ,q2p . ~41!

In the Appendix we prove that such a form of the effective
potential ensures the diagonality property~34! at arbitrary
order of the disorder dispersion.

From the trial Hamiltonian~37! we immediately get the
equation of motion

z

2

d

dt
Fq~ t !5kBT2VqFq2(

p
Uqpfqp . ~42!

This can be directly averaged over the disorder. As for the
equation forwqp(t), it is, strictly speaking, not closed due to
the second term in the trial Hamiltonian. Meanwhile, ignor-
ing higher-order terms inD̄2, it is straightforward to write
down a system of two closed equations of motion

z

2

d

dt
Fq~ t !5kBT2VqFq2(

p
Uqpwqp , ~43!

z
d

dt
wqp~ t !52~Vq1Vp!wqp2D̄2Uqp~Fq1Fp!. ~44!

Note also that the different-time correlation functions

Gq~ t,t8!5
1

3
^x2q~ t8!xq~ t !&, ~45!

xqp~ t,t8!5
1

3
lq2p^x2q~ t8!xp~ t !& ~46!

satisfy similar equations fort8,t,

z
d

dt
Gq~ t,t8!52Vq~ t !Gq~ t,t8!2(

p
Uqp~ t !xqp~ t,t8!,

~47!

z
d

dt
xqp~ t,t8!52Vp~ t !xqp~ t,t8!2D̄2Uqp~ t !Gq~ t,t8!.

~48!

The initial conditions are simplyGq(t8,t8)5Fq(t8) and
xqp(t8,t8)5wqp(t8). Therefore, integration of the second
equation gives

xqp~ t8,t !5wqp~ t8!Gp~ t,t8!2
D̄2

z

3E
t8

t

dt(
p
Gp~ t,t8!Gp

21~t,t8!Uqp~t!Gq~t,t8!,

Gp~t,t8!5expS 2
1

zEt8
t

dt9Vp~ t9! D . ~49!

Then Eq.~47! may be rewritten as a non-Markovian equation

z
d

dt
Gq~ t,t8!52Vq~ t !Gq~ t,t8!1E

t8

t

dtJq~ t,t;t8!Gq~t,t8!

2(
p
Uqp~ t !Gp~ t,t8!wqp~ t8!, ~50!
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Jq~ t,t;t8![
D̄2

z (
p
Gp~ t,t8!Gp

21~t,t8!Uqp~ t !Uqp~t!,

~51!

with a memory kernel given byJq(t,t;t8).
Now let us consider the cumulant terms in Eq.~29!. Since

they are of higher than quadratic order we should not add
them to the trial Hamiltonian at the level of the Gaussian
theory. This permits us to use the restriction
(1/3)^x2qxp&l r5d r ,q2pwqp in the calculation. Performing
the Fourier transformation and some simple algebra, we can
prove that the cumulants~33! depend only on the differences
of their indicesk15m2m8 andk25m92m8,

Dmm8Dm9m8
~c!5Dk1

Dk2
~c!, Dk[D0 k . ~52!

Moreover, they may be related to the order parameters~37!

Dk1
Dk2

~c!5D̄22 (
q,q8,p

dk1
~q,q8!dk2

~p,p1q2q8!wqq8wpp1q2q8.

~53!

Therefore, these variables describe sample to sample fluctua-
tions and are typical glass order parameters@7#.

There are other similar order parameters that can be cal-
culated. For example, it is instructive to study the cumulants
of the Fourier modesFqFp

(c). Using the equation of motion
~42!, we obtain the differential equation

z

2

d

dt
FqFp

~c!52~Vq1Vp!FqFp
~c!

2~UqqwqqFp1UppwppFq!. ~54!

The latter can be immediately integrated and expressed
throughwqq . In fact, due to the equation of motion~44! and
the zero initial condition there is a remarkable relation

Fq~ t !Fp~ t !
~c!5D̄22wqq~ t !wpp~ t !. ~55!

This result may be easily generalized in a similar fashion,

1

9
^xqxq8&^xpxp8&

~c!5D̄22w2pp8w2qq8dq1q81p1p8, 0 .

~56!

If we recall that the squared radius of gyration is just the sum

Rg
25 (

q5” 0
Fq , ~57!

from ~55! one derives the sample to sample fluctuation of the
squared radius of gyration

Rg
2Rg

2~c!5D̄22Y2, ~58!

where

Y[l0Rg
25 (

q5” 0
wqq . ~59!

Note that the cumulantsFqFp
(c) are only connected to the

fluctuations of the compositionl0,

wqq5l0Fq . ~60!

The cumulants of the spatial correlations~53! @and the quan-
tities ~56!# are more nontrivial because they contain contri-
butions nondiagonal in the Fourier indices. Once again, the
quantityY is a typical ‘‘glass’’ order parameter. By defini-
tion it is equal to the fluctuation of the squared radius of
gyration over different sequences. Such a fluctuation is big
inside the ‘‘glassy’’ phase due to strong correlations of dif-
ferent copies of the system in the standard replica trick lan-
guage@6,7#.

Another order parameter of interest

C5
1

6N2(
mm8

~Lm1Lm822l0!Dmm8, ~61!

C5 (
q5” p;q,p5” 0

wqp ~62!

is actually related to the phase separation. Thus let us con-
sider the limit of only two types of monomers: hydrophobic
A, with lA521, and hydrophilicB, with lB51. Suppose
that there areNA monomers of typeA andNB of typeB, so
that the compositionl05(1/N)(mLm may be expressed
through the concentrationsnA[NA /N andnB[NB /N, with
nA1nB51, simply asl05nB2nA . Then it is easy to show
thatC is reduced to the quantity

C54nAnB$nB@Rg
2~B!2Rg

2~A,B!#

2nA@Rg
2~A!2Rg

2~A,B!#%, ~63!

where we have introduced the partial radii of gyration

Rg
2~A!5

1

2NA
2 (
m,m8PA

Dmm8, Rg
2~B!5

1

2NB
2 (
m,m8PB

Dmm8,

~64!

Rg
2~A,B!5

1

NANB
(

mPA,m8PB

Dmm8. ~65!

For equal concentrationsnA5nB51/2 this reduces just to
C5@Rg

2(B)2Rg
2(A)#/2.

B. Effective potentials

Now having introduced the basic observables and derived
the equations of motion, we only have to self-consistently
determine the effective potentials. These are to be found
from the equation

K x2q

]H

]x2q
L
0

5 K x2q

]H0

]x2q
L
0

, ~66!

where^ &0 designates the average over the trial distribution.
A somewhat lengthy calculation using Eqs.~17! and

~26!–~29! finally leads us to the closure relations@37#
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Vq

N
5kd1

~q!2û2(
k

dk
~q!

Dk
5/22û3 (

k1 ,k2

Y1~q;k1 ,k2!

Y0~k1 ,k2!
5/2

1
5

2
1̂(

k

dk
~q!Fk

Dk
7/2 2û2

35

8 (
k

dk
~q!Pk,k

Dk
9/2

2û3
35

8 (
k1 ,k2

Y2~k1 ,k2!Y1~q;k1 ,k2!

Y0~k1 ,k2!
9/2

1û3
5

2 (
k1 ,k2

Y3~k1 ,k2!Y1~q;k1 ,k2!1Y6~q;k1 ,k2!

Y0~k1 ,k2!
7/2 ,

~67!

and for the nondiagonal effective potential

Uqp

N
521̂(

k

dk
~q,p!

Dk
5/2 1û2

5

2(k
dk

~q,p!D̄22Pk
~q2p!

Dk
7/2

1û3
5

2 (
k1 ,k2

Y4~q,p;k1 ,k2!

Y0~k1 ,k2!
7/2 2û3 (

k1 ,k2

Y5~q,p;k1 ,k2!

Y0~k1 ,k2!
5/2 .

~68!

Here we have used the set of definitions

Y0~k1 ,k2!5Dk1
Dk2

2Dk1k2
2 , ~69!

Y1~q;k1 ,k2!5dk1
~q!Dk2

1dk2
~q!Dk1

22dk1k2
~q! Dk1k2

, ~70!

Y2~k1 ,k2!5Dk1
2 Pk2 ,k2

1Dk2
2 Pk1 ,k1

14Dk1k2
2 Pk1k2 ,k1k2

12Dk1
Dk2

Pk1 ,k2
24Dk1k2

~Dk2
Pk1 ,k1k2

1Dk1
Pk2 ,k1k2

!, ~71!

Y3~k1 ,k2!5Pk1 ,k2
2Pk1k2 ,k1k2

, ~72!

Y4~q,p;k1 ,k2!5D̄22@Dk1
2 dk2

~q,p!Pk2
~q2p!1Dk2

2 dk1
~q,p!Pk1

~q2p!

14Dk1k2
2 dk1k2

~q,p!Pk1k2
~q2p!

1Dk1
Dk2

~dk1
~q,p!Pk2

~q2p!1dk2
~q,p!Pk1

~q2p!!

22Dk1k2
Dk2

~dk1
~q,p!Pk1k2

~q2p!1dk1k2
~q,p!Pk1

~q2p!!

22Dk1k2
Dk1

~dk2
~q,p!Pk1k2

~q2p!1dk1k2
~q,p!Pk2

~q2p!!#,

~73!

Y5~q,p;k1 ,k2!5D̄22~dk1
~q,p!Pk2

~q2p!1dk2
~q,p!Pk1

~q2p!

22dk1k2
~q,p!Pk1k2

~q2p!!, ~74!

Y6~q;k1 ,k2!5Dk1
dk1

~q!Pk2 ,k2
1Dk2

dk2
~q!Pk1 ,k1

14Dk1k2
dk1k2

~q! Pk1k2 ,k1k2

1~Dk1
dk2

~q!1Dk2
dk1

~q!!Pk1 ,k2

22~Dk2
dk1k2

~q! 1Dk1k2
dk2

~q!!Pk1 ,k1k2

22~Dk1
dk1k2

~q! 1Dk1k2
dk1

~q!!Pk2 ,k1k2
. ~75!

We have also denoted

Pk
~s!5(

p
dk

~p,p1s!wp,p1s , ~76!

Pk1 ,k2
5D̄22(

s
Pk1

~s!Pk2
~s!5Dk1

Dk2
~c!. ~77!

Here each index, e.g.,k1, can actually be a pairk18k28 , in
which casedk

18k28
(q,p)

is assumed to be used instead ofdk1
(q,p) .

The latter is a linear combination of the former@see Eq.
~25!#.

Finally, we would like to rewrite the mean energy in these
notations

^H&
N

5
3k

2
D011û2(

k

1

Dk
3/21û3 (

k1 ,k2

1

Y0~k1 ,k2!
3/2

2
3

2
1̂(

k

Fk

Dk
5/21û2

15

8 (
k

Pk,k

Dk
7/2

1û3
15

8 (
k1 ,k2

Y2~k1 ,k2!

Y0~k1 ,k2!
7/22û3

3

2 (
k1 ,k2

Y3~k1 ,k2!

Y0~k1 ,k2!
5/2.

~78!

C. Equilibrium distributions

Here we shall show that at equilibrium and to orderD̄2

our nonequilibrium method generates the same set of equa-
tions as the variational Gibbs-Bogoliubov approach for equi-
librium. This is not obvious because we perform averaging
over the quenched disorder. This derivation will also help to
explain why the use of the replica trick may be avoided in
our method.

Now, given the trial Hamiltonian~37!, the free energy
estimate will be

A5A01^~H2H0!&0 , A05
3b21

2
Tr lnV~$l%!,

~79!

whereA0 is the free energy associated withH0 and the ma-
trix V($l%) is given by Eqs.~11! and ~41!. If one can per-
form the disorder averages directly, as we do by applying the
perturbation theory inD̄2, there is no need to introducen
copies of the system and take the limitn→0. First, we cal-
culate the main observables
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Fq5b21@V~$l%!21#qq5
b21

Vq
S 11D̄2(

p

Uqp
2

VqVp
D 1O~D̄4!,

~80!

wqp5b21@V~$l%!21#qplq2p52b21D̄2
Uqp

VqVp
1O~D̄4!.

~81!

Now let us set the time derivatives to zero in the equations of
motion ~43! and~44!. Resolving those equations up to order
D̄2, one immediately recovers Eqs.~80! and~81!. In a similar
manner we obtain for the entropic contribution

S52kB
3

2
Tr lnV~$l%!

52kB
3

2(q lnVq1kB
3D̄2

4 (
q,p

Uqp
2

VqVp
1O~D̄4!. ~82!

Calculation of the mean energyE5^H& gives the same result
as that of Sec. III B@see Eq.~78!, where it is assumed that
Fq andwqp are expressed via the effective potentialsVq and
Uqp by Eqs.~80! and~81!#. Minimization of the free energy
A@Vq ,Uqp#5E2TS with respect to these variational param-
eters yields the self-consistent equations

Fq52
2

3

]E
]Vq

, wqp52
2

3

]E
]Uqp

. ~83!

These equations, however, seem to be different from the
ones we have obtained in Sec. III B. To bring them into an
equivalent form let us invert Eqs.~80! and ~81!,

Vq5
b21

Fq S 11D̄22(
p

wqp
2

FqFpD 1O~D̄4!, ~84!

Uqp52b21D̄22
wqp

FqFp
1O~D̄2!, ~85!

where we have discarded theD̄2-order term inUqp since it
always appears in the equations multiplied byD̄2. This al-
lows us to reexpress the entropy

S5kB
3

2(q lnFq2kB
3D̄22

4 (
q,p

wqp
2

FqFp
1O~D̄4!. ~86!

Minimization of the free energyA@Fq ,wqp# over its varia-
tional parameters now gives the self-consistent equations

Vq5
2

3

]E
]Fq

, Uqp5
2

3

]E
]wqp

, ~87!

which do indeed coincide with the formulas for these effec-
tive potentials obtained from kinetics~67! and~68!. Thus we
have proved that at the first order of the perturbation expan-
sion the fixed point of our kinetic equations precisely agrees
with the extremal point of the free energy obtained in the
Gibbs-Bogoliubov method.

Finally, the kinetic equations themselves~43! and ~44!
now may be rewritten in terms of the derivatives of the free
energyA with respect to the dynamical variables as

z

2

d

dt
Fq~ t !52

2

3 SFq ]A
]Fq

1(
p

wqp

]A
]wqp

D , ~88!

z
d

dt
wqp~ t !52

2

3 S wqpS ]A
]Fq

1
]A
]FpD1D̄2~Fq1Fp!

]A
]wqp

D .
~89!

This form of the kinetic equations has a transparent meaning.
Indeed, the folding kinetics could be understood as a motion
on the surface of the free energy parametrized by dynamical
variablesFq ,wqp . The motion is determined by gradients
and is directed towards the global energy minimum. Here the
free-energy landscape determining the kinetics represents the
flow of the whole statistical ensemble. individual

IV. NUMERICAL RESULTS

In this section we present our results from numerical so-
lution of the self-consistency equations~43! and ~44!. We
shall be interested in the kinetics of folding caused by an
abrupt quench from the extended Flory coil~positive ū2,
D50) to the region of the phase diagram corresponding to
negative second virial coefficientū2 and nonzero dispersion
of disorderD. Then, after the quench, the self-consistent
equations are solved using the modified Runge-Kutta scheme
@38# analogous to that of Refs.@36,35#. We account for the
excluded-volume effect only up to the three-body interac-
tion. Inclusion of the four-body interaction is required for
sufficiently largeD, but it is unnecessary for the dispersions
considered in this paper.

Our present analysis is still far from exhaustive. A com-
plete numerical study of the problem would require a sepa-
rate and rather lengthy work. Thus our purpose here is just to
make an initial reconnaissance into the variety of complex
phenomena embodied in the set of equations~43! and ~44!
together with Eqs.~67! and~68!. Our understanding of their
solution in analytical terms is still rather limited apart from a
few simple limiting regimes. Implementation of the code for
numerical integration of these equation in itself presented a
technical challenge in comparison to a relatively trivial ho-
mopolymer @36# and apparently more complicated ‘‘ab’’
block copolymer@35#. It is worthwhile mentioning also that
the computational time required for the solution of this prob-
lem is aboutN times longer than for those simpler problems
mentioned above. Even this has been achieved by extensive
accounting of all possible symmetries and summation reduc-
tion techniques. Thus we have managed to study chains of up
to 50 monomers and in principle one can reach up to hun-
dreds of units given the best computational resources avail-
able. Every effort has been made to control precision of in-
tegration and ensure stability of solution. There are other
minor technicalities that are irrelevant for this theoretical pa-
per and we hope to address them elsewhere.

It is natural to work with the combinations
L5(kBT/k)

1/2 andT5zb /k as the units of size and time in
the system. In the following we have used the following
particular choice of parameters:kBT51, k51, andzb51,
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which fix L andT to be equal to unity.
Note thatq50 corresponds to the diffusive mode. It does

not affect the intramolecular conformational modes and
therefore will not be considered. There are many interesting
observables that may be calculated, but we shall concentrate
only on a few global ones giving most important informa-
tion.

In Fig. 1 we draw the time evolution of the mean-squared
radius of gyrationRg

2 for different dispersions of disorder
D. The solid line (a) corresponds to a homopolymer
(D50) and serves as a reference line for recognizing the
effect of randomness. The first kinetic stage appears to be
universal in accord with our theoretical expectations@35# and
the chain is an effective homopolymer. Here the effect of
randomness is negligible and all curves nearly coincide. Dur-
ing this stage the spinodal decomposition in the internal met-
ric of the chain@39# leads to a necklace of small locally
collapsed clusters@29,28,36#, and for not too deep quenches
the radius of gyration falls according to the power law
Rg
2(t)5Rg

2(0)2At7/11. Although the overall spinodal picture
of the first stage is correct, the local structure of the clusters
that are forming is different from those in the homopolymer.

The deviation between differentD curves signifies the
onset of the second or ‘‘coarsening’’ kinetic stage. There the
random copolymer behaves very much like the periodic het-
eropolymer of Ref.@35# as the memory effects are still rather
small. We see that the collapse proceeds faster than that of
the homopolymer because now the rate of collapse is pre-
dominantly determined by hydrophobic units@35#. Further
behavior depends on the value of the dispersion. For weak
disorder@curves (b) and (c)# Rg

2(t) reaches eventually its
final value, which is greater than for the homopolymer, again
in agreement with the periodicab heteropolymer. However,
for a dispersion larger than some critical value, denoted by
D r @curve (d)#, we observe that after a long plateau, where
Rg
2(t) decreases very slowly, at some momentt it undergoes

a rapid final shrinking towards the state more compact than
the homopolymeric globule. This picture has an interesting
resemblance to the protein folding kinetics observed experi-
mentally. However, to feel more confident with such an anal-
ogy, let us proceed and consider other observables.

In Fig. 2 we exhibit the time dependence of the phase
separation order parameterC, defined by Eq.~62! for differ-
ent dispersions of disorder. This quantity is identically zero
for a homopolymer and remains small for very weak disor-
der. For early timesC(t) rapidly grows reaching its maxi-
mum near the end of the spinodal stage. This reflects the
formation of the microphase structure of growing clusters,
which tend to have a hydrophilic exterior and hydrophobic
core @40#. During most of the coarsening stageC changes
only slightly. Indeed, the microdomain structure of the coa-
lescing globule has already been formed. It is represented by
the original clusters, which essentially preserve their integ-
rity within the macroglobule. IfD is insufficiently large, the
folding ends up after optimization of the relative positions of
these subclusters and the surface area. However, for stronger
disorderD.D r ~two upper curves!, at some moment around
t the system undergoes further and abrupt phase separation
on larger scales. This phenomenon has an obvious similarity
to that of the phase separation order parameterZ in periodic
heteropolymers~see Fig. 4 of Ref.@35#!.

Now let us compare these observations with the behavior
of the glass order parameterRg

2Rg
2(c) presented in Fig. 3. The

latter can behave in a rather diverse manner depending on the
value ofD. We can distinguish at least four different regimes
listed in order of increasingD and designated by the curves
labeled below as in the figure: the quantity (a) is almost zero
during the first stage and then grows during the second, but
after reaching the maximum falls down to zero; (b) is very
similar to case (a), but after the maximum and certain de-
crease, it starts to grow once again and finally tends to a
nonzero value; the regime of (c) and (d) is similar to(a! and

FIG. 1. Plots of the mean-
squared radius of gyrationRg

2 ~in
units L2) vs time t ~in units T).
Lines (a) – (d) correspond respec-
tively to the values of the disper-
sion of disorderD50 ~homopoly-
mer!, 16, 32, and 40~in units
kBTL3). In this figure and Figs.
2–5 the values of the parameters
are the following: the degree of
polymerizationN540, the third
virial coefficient ū3510 ~in units
kBTL6), the initial and final sec-
ond virial coefficients ū2

( i )515
and ū2

( f )5225 ~in units kBTL3),
and the initial dispersion of disor-
derD ( i )50.
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(b) first, but after reaching its maximum decreases slightly
and remains at a high level, where it finally remains; the
regime of (e) and (f ) is the same as above, but after the
critical dispersionD r it falls rapidly to a level very close to
zero. Comparing this with Fig. 2, we find that the critical
dispersion is, in fact, the same for glassy and phase separa-
tion order parameters.

Thus to resume, other the system is strongly frustrated
during the coarsening stage and forms a sort of glass. The
frustration is induced by the hydrophilic shells of the sub-

clusters and by the polymeric bonds. Thus the system is ki-
netically arrested and possesses, as we shall see below, a
long relaxation time due to the height of potential barrier.
The existence of such a glassy structure is clearly manifested
in the glass order parameterRg

2Rg
2(c). Thus Fig. 3 tells us that

there are at least three different final phases of the system
distinguished by the glass order parameter: for smallD there
is a liquidlike globule~LG!, which is akin to an ordinary
homopolymer globule with zero glass order parameter, and a
glassy phase (G) with nonzeroRg

2Rg
2(c); for D.D r there is a

FIG. 2. Plots of the phase
separation order parameterC ~in
units kBTL5) vs time t ~in units
T) for different values of the dis-
persion of disorder~from bottom
to top!: D 5 4, 8, 16, 32, 38, and
40 ~in units kBTL3).

FIG. 3. Plots of the sample to sample fluctuation of the squared radius of gyrationRg
2Rg

2(c) ~in unitsL4) vs time t ~in units T). Lines
(a) –(f ) correspond respectively to the values of the dispersion of disorderD 5 4, 8, 16, 32, 38, 40~in units kBTL3).
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folded phase (F) characterized by~almost! vanishing glass
order parameter and a large-phase-separation order param-
eter. As is already becoming clear and will be shown more
convincingly below, the glassiness is destroyed by the final
larger-scale phase separation. The globule acquires a more
organized internal structure and becomes more compact.
These observations are quite striking. globule, and In broad
terms the states predicted here are very close to those that
have been discussed for real proteins@2#.

Now, then, it would be of great interest to check the au-
tocorrelation function~45! for further evidence in favor of
glassy behaviour. The functionG1(t,0) is drawn in Fig. 4.
The homopolymer~solid line! possesses only two character-
istic relaxations:G1(t,0);e2V1t for very early times~the
Einstein regime! and then another exponential relaxation re-
gime G1(t,0);e2(V1 /z)t for late times@27#. The relaxation
towards theF phase~diamonds! first also has the Einstein
regime for very short times and then it could be described by
the fastb relaxationG1(t,0);Q1Cbt

2b, t&tb , and then
by a slow a relaxationG1(t,0);Q2Cat

a, t&ta , which
finally turns into an exponential~or perhaps stretched expo-
nential! decay. As the dispersion of disorder becomes
smaller and we approach the glassyG phase~crosses in Fig.
4!, the characteristic scale ofa relaxation becomes very
long.

The delay time near the transition line may be estimated
with good precision as a power lawt.A(D2D r)

2g and the
parametersA, D r , and g from the fitting are presented in
Table I. For quenches to the folded state but close to the
renaturation transition line the delay time diverges as a
power law with the exponent approximately equal to
g51/260.04. This delay timet also grows with the degree
of polymerization N since the prefactor scales as
A;N5/360.12. The critical dispersion of this transitionD r in-
creases significantly withN as well, but to determine the
concrete form of this law one would need data for bigger
systems. Thus, in theG phase there is a very pronounced

plateau in the autocorrelation function, as well as in the mean
energy in Fig. 5. These laws are reminiscent of other spin-
glass systems@41,42# and hence justify our interpretation of
the glassy phase. If the system has been quenched to theG
phase, the autocorrelation function does not decay to zero for
a macroscopically long times, but remains at some constant
analogous to the Edwards-Anderson order parameter in the
spin-glass theory.

Having discussed the kinetics of folding, let us turn our
attention to the final state of kinetics, i.e., the equilibrium
phase structure of the model. We should note that the final
state of kinetics may only correspond to one of all possible
fixed points of the self-consistent equations. A more general
analysis of the equilibrium phase diagram would be of inter-
est. However, what we shall examine below is important
primarily because it matches the notion of renaturation as a
kinetic phenomenon. In Fig. 6 we draw the final value of the
glassy order parameterRg

2Rg
2(c) vs the dispersion of disorder

D for different values of the third virial coefficient. There we
indeed observe the two phase transitions discovered above.
When the dispersion of disorder reaches the critical value
D f , which scales as a positive power ofu3, the system un-

FIG. 4. Plots of the autocorre-
lation functionsGq(t,0) ~in units
L2) for q51,2 vs timet ~in units
T) during kinetics after the quench
for different values of the disper-
sion of disorder: D50 ~solid
lines!, D516 ~crosses!, and
D540 ~diamonds!.

TABLE I. Values of the parametersA, D r , andg in the delay
time t5A(D2D r)

2g for polymers with different degrees of poly-
merizationN. These parameters have been obtained from the analy-
sis of the kinetics for different quench depths withD*D r . Values
of the second and third virial coefficient areū25225 and
ū3510. From these data one can obtain the scaling law
A;N1.6760.12.

N A D r g

20 5.3 17.82 0.54
30 9.1 25.96 0.50
40 16.7 35.44 0.54
50 23.6 77.43 0.47
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dergoes thefreezing transition accompanied by an abrupt
increase of the glass order parameter. Our data are in quali-
tative agreement with the earlier result@43# that D f;As/r,
wheres is the chain flexibility andr is the globule density.
At this phase transition the phase-separation order parameter
presented in Fig. 7 changes quite regularly. In fact,C grows
linearly until the secondrenaturation transition, at D r ,
where it has a rapid jump and then further grows linearly.
Remarkably, the glass order parameter quickly drops to al-
most zero at the pointD r . In Table II we present the values
of D r for different second virial coefficientsuū2u. Note that
the critical dispersion changes only slightly asu3 grows.

The reason why we may conjecture this transition to be

related to the renaturation becomes clear from Fig. 8. The
homopolymer correlations of monomer positions@curve
(a)# Dk satisfy the scaling lawDk;k for uku,N2/3 and
Dk;N2/3 otherwise@36,44#. This law is preserved as one
switches on the dispersion of disorder, and it is still fulfilled
in the glassy phase@curves (b) – (d)#. The renaturation tran-
sition, however, leads to a striking modification of this law:
Dk;const for any but very smallk @see curve (e)#.

Thus the correlations of monomer coordinates do not de-
pend on their chain indices after we have integrated over all
possible complexions of disorder. They are equal to a uni-
versal constant entirely determined by the excluded-volume
interaction structure. Let us leave this idealized random co-

FIG. 5. Plots of the mean en-
ergy ^H& ~in units kBT) vs time t
~in unitsT) for different values of
the dispersion of disorder~from
top to bottom!: D50 ~homopoly-
mer!, 8, 16, 32, 38, 40, and 48~in
units kBTL3).

FIG. 6. Plots of the sample to
sample fluctuation of the squared
radius of gyration Rg

2Rg
2(c) ~in

unitsL4) vs the dispersion of dis-
order D ~in units kBTL3). Lines
(a) –(c) correspond respectively
to the values of the third virial co-
efficient ū355, 10, and 20~in
unitskBTL6). The degree of poly-
merization and the second virial
coefficient are N530 and
ū25225 ~in units kBTL3).
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polymer for a moment and consider a real protein in the
native state. There one should have a unique structure of
Dmm8 encoded in the primary structure, i.e., the sequence of
Lm . As we lose the information about a particular sequence
by averaging over the quenched disorder, clearly,Dmm8 can
only become a constant. This phenomenon, so conspicuous
in our approach, is intuitively natural for real proteins in the
nativestate.

Finally, let us discuss the mean-squared radius of gyration
Rg
2 vs the dispersionD drawn in Fig. 9. Generally speaking,

the size of the polymer is almost independent ofD in the LG
phase, becomes larger in the glassy phase, and is much
smaller in theF phase. Thus the globule in the native state is
more compact than the homopolymer one and depends
weakly on the dispersion of disorder. These properties con-
form to the intuitive idea that a glassy globule should be
bigger since parts of the chain are frozen in not completely
compacted locations and that the native globule should be
maximally compacted due to the best possible optimization
of the volume interactions. Moreover, the mean energy~see

Fig. 5! becomes smaller in the native state as well. This may
be interpreted by arguing@3# that the system occupies the
ground state separated by a gap from higher-energy levels,
while it is trapped in some higher, but relatively low-energy,
level in the glassy phase.

V. CONCLUSION

In this work we have developed an approach for studying
kinetics of random copolymer conformational changes and
discussed the potential relations to the protein folding prob-
lem. Our method presents an extension of the Gaussian self-
consistent approach, which has been successfully applied by
us to a homopolymer and periodic heteropolymers. It may be
actually viewed as a version of the method for arbitrary het-
eropolymers with a disorder-dependent effective potential.
The latter, however, is rather awkward in practice, particu-
larly for numerical solution, since all averaged quantities are
nondiagonal in the Fourier variables. The diagonality is re-
covered after the integration over the quenched disorder, but
in a quite nontrivial way. Thus the two-point correlations
~see the Appendix! are strictly diagonal, but any three- and
four-point objects are not. However, they are expressed in a
relatively simple way through the main variablesFq and
wqp . These properties lead eventually to the reduction of one
summation in the mean energy and effective potentials.

Although some of our derivations were performed only up
to orderD2, the properties above are valid at all orders. Be-
cause we have used the fully dressed quantitiesDk and an
enforced closure of the Bogoliubov chain rather than the per-
turbation theory, one may expect that our equations are ac-
tually valid for moderate dispersions~see@37#!.

The richness of the dynamical variables~or variational
parameters for equilibrium! allows us to achieve certain suc-
cess in this complicated problem. Even a preliminary nu-
merical analysis has led to a number of interesting insights.
For example, we have obtained a qualitatively correct picture

FIG. 7. Plots of the phase-
separation order parameterC ~in
units kBTL5) vs the dispersion of
disorderD ~in units kBTL3) for
different values of the third virial
coefficient ~from bottom to top!:
ū3 5 5, 10, and 20~in units
kBTL6). The degree of polymer-
ization and the second virial coef-
ficient are N530 and ū25225
~in units kBTL3).

TABLE II. Values of the critical dispersionD r for the folding
transition vs the second virial coeficientū2 for polymer with the
degree of polymerizationN530. The value of the third virial coef-
ficient is ū3510.

u2 D r

215 14.0
217 14.1
220 17.0
225 25.96
230 32.3
235 38.7
240 45.2
250 59.3
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for kinetics of protein folding. This kinetics yields spin-
glass-like relaxations for the autocorrelation function. Inves-
tigation of the final state of kinetics has given the phase
structure of the system with three globular phases: liquid
globulelike, glassy, and folded. The glassy phase probably
corresponds to the molten globule, while the folded one has
many features suggesting its relation to the native state of
proteins. The most important discovery here is the law
Dk.const for the spatial correlations of monomer coordi-
nates. We have observed what we believe to be correct be-
havior for such observables as the mean-squared radius of
gyration, the mean energy, and the phase-separation order

parameter in all three phases. Renaturation, or the transition
to the native state, has been explained as the large-scale
phase separation that destroys the glassy structure.

We have also proposed a simple explanation of the kinet-
ics of folding based upon thenecklacemechanism of the
early stages. Freezing occurs due to strong frustration after
coalescence of locally phase-separated clusters. On the con-
trary, renaturation is the process of global energy optimiza-
tion proceeding by larger-scale phase separation that de-
stroys the glassiness.

It is encouraging that our conclusion about the existence
of the three different collapsed states, liquid globule, frozen,

FIG. 8. Plots of the equilib-
rium correlations of monomer co-
ordinates@45# Dk ~in unitsL2) vs
the chain indexk for polymer
with the degree of polymerization
N540 and values of the second
and the third virial coefficients
ū25225 ~in units kBTL3) and
ū3510 ~in units kBTL6). Lines
(a) –(e) correspond respectively
to the values of the dispersion of
disorder D50 ~homopolymer!,
16, 32, 8, and 38 ~in units
kBTL3).

FIG. 9. Plots of the equilib-
rium mean squared radius of gyra-
tionRg

2 ~in unitsL2) vs the disper-
sion of disorder D ~in units
kBTL3) for different values of the
third virial coefficient ~from bot-
tom to top!: ū3 5 5, 10, and 20~in
unitskBTL6). The degree of poly-
merization and the second virial
coefficient are N530 and
ū25225 ~in units kBTL3).
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and folded, agrees with that of the Monte Carlo simulations
on a lattice@25# and that in other simulations@10# the kinet-
ics proceeds in several stages with an activated final folding.
The Gaussian distribution of random sequences is perhaps
sufficiently wide to include many good folding sequences
studied in Monte Carlo and their contribution is substantial
enough to exhibit something like the folded state after disor-
der averaging. Clearly, the averaging over disorder is neces-
sary if we are to extract universal, or at least generic, laws.
On the other hand, the Gaussian distribution is really too
large and future works must be directed at averaging over
more refined distribution, appropriate for the protein folding
problem.

Nevertheless, we believe that the results shown here
present an important advance in understanding qualitative
aspects of the kinetics of protein folding using the methods
of nonequilibrium statistical mechanics. We accept that
much remains to be accomplished. First, the scalings of the
various order parameters and universal exponents must be
extracted, a nontrivial task requiring extensive numerical
study and analytical insight. Second, efforts must be made to
establish connection to experiment in these systems and ex-
isting protein data bases, whatever relevant information is
available for typical globular proteins with only between 200
and 500 amino acid residues.

In completing the purely theoretical aspects of this pro-
gram there now appear to be only technical obstacles remain-
ing. Whether the information yielded thereby will affect sub-
stantially the detailed understanding of the folding process of
real proteins is a question that must await later judgements.
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APPENDIX A: PROOF OF THE DIAGONALITY OF Šxq8xq‹

The formal integration of the linear ensemble~10! gives

xq~ t !5
1

zE0
t

dt8~2Vqxq2Wqpxp1hq!~ t8!, ~A1!

whereWqp[( rUq,p,rL r . We remark that, to generate a
well-defined time evolution, the matrixWqp should be real
and symmetric. These properties impose two restrictions
upon the coefficient functions

U2q,p,r5Uq,2p,2r , Uq,p,r5Up,q,2r . ~A2!

Multiplying Eq. ~A1! by itself with a different index and
taking the averages, one can show that the diagonality prop-
erty ~34! extended for the nonequal-time correlations
^xq8(t8)xq(t9)&;d2q,q8 implies the orthogonality relation

(
r
Uq,p,r~ t8!Uq8,2p,2r~ t9!5d2q,q8Cqp~ t8,t9!, ~A3!

with Cqp being some functions. This constraint is really quite
restrictive since the indexr in Uq,p,r turns out to be linearly
dependent on the indicesq,p. By a direct check it is now
trivial to see that the special form~41! indeed satisfies rela-
tions ~A2! and ~A3!.
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the disorder by the scaling variableD2/N(2p)3. The latter is
considerably smaller than the former for the whole range of
considered parameters, justifying the use of the weak-disorder
expansion.

@38# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C~Cambridge University
Press, Cambridge, 1992!.

@39# Here the ‘‘spinodal waves’’ appear along the chain rather than
in the underlying 3d space. They lead to formation of quasi-
periodic small clusters along the chain during the first stage of
kinetics. The internal modesFq(t) exhibit the characteristic
growth exponents similar to the treatments of spinodal decom-
position by Cahnet al., but for specialq’s, not for special
3d momentak. That is why we call this phenomenon the
spinodal decomposition in the internal metric of the chain.
This is discussed in more detail in Refs.@28,36#.

@40# The parameterC actually reflects both the macro- and mi-
crophase separations. The distinction can be made by analyz-
ing the behavior of the internal modesFq similarly to our
heteropolymer work@35#. Thus a change ofC accompanied
by fast changes of large-q modes~small distances along the
chain! corresponds to the microphase separation, while a
change ofC together with the small-q modes describes the
overall restructuring of the hydrophobic and hydrophilic units.
One can have a better feeling about both processes by using
the visualization of individual conformations in the Monte
Carlo method@29#.

@41# H. Sompolinsky and A. Zippelius, Phys. Rev. Lett.45, 359
~1981!; Phys. Rev. B25, 274 ~1982!.

@42# W. Götze and L. Sjo¨gren, Z. Phys. B65, 415 ~1987!; J. Phys.
C 21, 3407~1988!.

@43# A. Moskalenko and K. A. Dawson, J. Chem. Phys.103, 9886
~1995!.

@44# A. Yu. Grosberg and A. R. Khokhlov,Statistical Physics of
Macromolecules~AIP, New York, 1994!.

@45# The quantityAD1 describes the mean distance between two
nearest neighbors along the chain. From Fig. 8 one can see that
in the folded state@curve (e)# this differs only in approxi-
mately 1.3 times compared to the ideal coil, for which that
distance is equal to 1 in our units by definition.

4086 54E. G. TIMOSHENKO, YU. A. KUZNETSOV, AND K. A. DAWSON


