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Tortuous flow in porous media
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The concept of tortuosity of fluid flow in porous media is discussed. A lattice-gas cellular automaton method
is applied to solve the flow of a Newtonian uncompressible fluid in a two-dimensional porous substance
constructed by randomly placed rectangles of equal size and with unrestricted overlap. A clear correlation
between the average tortuosity of the flow paths and the porosity of the substance has beefSi6®}.
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PACS numbd(s): 47.15—x, 47.55-t

[. INTRODUCTION cy’s law which states that the average figof fluid is pro-
portional to the gradient of the phase averaged fluid pressure
A common characteristic of any material transport in po-p,
rous media, such as fluid flow or electric current, is that the
actual path followed by the transported material is micro- k
scopically very complicated, or “tortuous[1—4] (“micro- q=——Vp. (1)
scopic” here means the size scale of the average pore size of #
the substange The concept of tortuosity is often introduced ) L ) ) :
in the context of solving the closure problem for transport inHere,u is the dynamic viscosity of the fluid aridis the flow
porous media, i.e., in deriving the macroscopic transporper_m_e_ab'“ty- In this paper, we shall f|rst_d|scu_ss_ the possible
equations in terms of averaged quantities alone. A usudfefinitions of tortuosity which appear in deriving Darcy’s
method of deducing, e.g., the appropriate form of the drag®WV N the fra_mework of capillary models. _The definition is
force between fluid and the solid matrix, is to use some simi"€n generalized to random porous media. We then use a
plified model of the porous material, such as the capillan/attice-gas cellular automaton methid-g] to find a numeri-
model, and to generalize the results for more realistic matec@l correlation between the tortuosity and the porosity for a
rials. This generalization may be attempted by introducing afWo-dimensional porous material which consists of randomly
additional parameter which is supposed to take care of thBOSitioned freely overlapping rectangles. The advantage of
more complicated transport paths neglected in the model. IHSING the lattice-gas methods for this purpose is their geo-
fact tortuosity is an example of such a parameter. As a physi_r_netrlc vers.at|.I|ty, which makes _them very useful in simulat-
cal quantity, it can be defined in various ways. Perhaps thi'd flows in irregular geometrief9—11]. The results ob-
most intuitive and straightforward definition is that of the f@ined can be applied, e.g., in inferring correlations between
ratio of the average length of true flow paths to the length ofh® Permeability coefficient and the relevant macroscopic
the system in the direction of the macroscopic flux. Noticeduantities that characterize the porous substah2g Find-
that by this definition, tortuosity depends not only on the!N9 such correlations is especufally important in thg case of
microscopic geometry of the pores, but also on the transpoftoW through soft porous materials when flow can induce a
mechanism under consideration. strain to the solid matrix, and thereby locally affect the value
Tortuosity could also be defined without reference to a°f the permeability coefficierk [13].
specific transport mechanism. This could be done, for ex-
ample, by c_onsid(_aring the shortest continuous paths between |, toRTUOSITY OF ELOW IN POROUS MEDIA
any two points within the pore spa¢B]. The advantage of
this definition is that the tortuosity parameter thus defined Darcy’'s law Eq.(1) can easily be derived within the
will exclusively characterize the porous substance itselfsimple capillary theory by Kozeny, in which the porous me-
When considering tortuosity in the context of transport phe-dium is envisaged as a layer of solid material with straight
nomena, it seems quite more natural, however, to utilize thearallel tubes of a fixed cross-sectional shape intersecting the
flux associated with the actual transport mechanism in theample. Within this model, the permeability is explicitly
definition of tortuosity. given ask= ¢>/cs?, whered is the porositys is the specific
Moreover, it is possible to define tortuosity even without asurface area, i.e., the pore surface area per unit volume of
direct reference to the lengths of the transport paths by corporous material, and is a structural parameter that depends
sidering the local deviations in the direction of the micro-on the cross section of the capillaries, for cylindrical capil-
scopic flux from the direction of the mean flukThis ap- lariesc=2. The simplest way to introduce tortuosity in the
proach will be discussed in some detail belpw. capillary model is to allow the tubes to be inclined in such a
In what follows, we shall concentrate on the concept ofway that the axes of the capillaries form a fixed angleith
tortuosity associated with the flow of a Newtonian fluid the normal of the surface of the materaihile the azimuthal
through a random porous medium at a low Reynolds numangle of the tubes is randomly distribujeth this case per-
ber. In macroscopic terms, such a flow is governed by Darmeability becomes
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$° Notice first that, within the capillary model, the product of
k=252 (2) A, the area of the intersection of i tube with plane,
and the average flow velocity in théh capillaryv; is inde-
where the tortuosity factor=1/cog can be given in terms Pendent of (v;A;= wR*|Vp|/8u). Using this result we find
of the tube length_, and the thickness of the mediumas  that

r=Le/L. 3 N
© @ N 2 TviA; ~
(Some authors prefer to define tortuosityras(L/L)? or as E > 7 =t - Jatv dA (6)
the inverses of these two definitiof3,4]. In this paper, we N JavdA
shall use definitions analogous to E8). Thus for the tor- 2 viA

tuosity defined here=1.)

For flow in random porous media, one can replace thedere,v =|v(r)| is the tangential velocity of the fluid at point
“tube length” L by the average length of the flow paths of r| and7=7(r) is the ratio of the length of the flow line
a fluid particle through the sample. At least two possiblepassing through the point to the thickness of the sample
alternatives for taking this average can be consid¢Bdd [7(r) andv are defined to be zero inside the solid page
One may average over the actual lengths of ftbes lines  similar result is valid for the sum containing7l/ This sug-
themselvesdisregarding thereby the fact that fluid particles gests the following definitions,
move along these flow lines at different velocities. Another _ _
way of averaging is over the lengths of tfiew lines of all JarvdA  [ymodV

fluid particlespassing through a given cross section during a = favdA  fywdV’ @
given period of time. This leads to flux weighted averaging.

The first alternative is suitable at least for pistonlike flows,

such as molecular diffusion and electric currgsit The lat- Ia =vdA Jv =vdV

ter alternative appears more natural when fluid flow in po- Ur_q= = , (8)
rous media is considered. SavdA JyvdVv

In order to gain more insight into the definitidqor defi-
nitions) of tortuosity of flow in porous media, we shall also
consider a solid material of thickness intersected byN
cylindrical capillaries per unit transverse area. We assum
the capillaries are straight and of equal radRysbut allow
for a randomly varying angle between them and xhaxis,
which is perpendicular to the surfaces of the material. For th
ith capillary of lengthL; we define, in accordance with Eq.

E)S)’ i :ILJ/L' Next, flow tgrf(;UQh (tzt;e capillariei is indu?ed the average of inverse lengths of the same flow lines. The
y applying a pressure differenckp across the sample. i, qsity factor(5) appearing in Darcy’s law Eq4) can

Solving the Navier-Stokes equation for each capillary sepaq ., pe expressed in a generalized form which is applicable
rately, we can determine the average flux through thq-n random porous materials,

sample, with the result

whereV is the volume of the porous sample. The latter forms
of Egs.(7) and(8) follow from the fact that surface integrals
do not depend on the positiox coordinate of surfaceA
fhside the sample. The tortuosity factor as determined from
Eq. (7) can be interpreted as the average of the relative
lengths of the flow lines of all fluid elementsvith a fixed
§olume passing through a given cross section during a given
period of time. The latter definition Eq48) corresponds to

L N P=1T_q. 9
#% Vp N & E Equations(7) through(9) do not, however, provide the only
g=— 53— —F~N > 4) way of generalizing the results of the capillary model to the
28" p i z random media. For example, in the case of capillary systems,
N & the tortuosity factor_, of Eq. (8) is in fact equal to the ratio
whereVp=(Ap/L)g, is the phase averaged pressure gradi- (|v])

(10

ent. ™=

v
Comparison of Eq(4) with Egs. (1) and (2) suggests a o
definition for the tortuosity within this capillary model in the Where|v| is the absolute value of the local flow velocity,
form is thex component of that velocity, and) denotes the spa-
tial average over the pore space. Notice that(&6f) is remi-

13 niscent of the hypothesis made by Carman in R&f.that
N 2 LJ/L=V/u,, whereV is the average tangential velocity in a
= (5)  tortuous capillaryl . is the length of that capillary, is the
1 E mean value of the projection of flow velocity on the straight
N < line connecting the two ends of the capillary, ands the

length of that line. According to Eq10), 7, is solely deter-
This definition can be expressed in a form that is more suitmined by fluctuations of the local flow field around the di-
able for generalization for random porous media by convertrection of the average flux, and has no direct connection with
ing the sums into integrals over an arbitrary pl@&nwhich is  the length of the actual flow paths. In deriving the above
perpendicular to thex axis (direction of the average flux results, we have assumed that the radius of the capil-
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laries is fixed while their lengths may vary. The results are,
however, valid also in the case of varying capillary radii,
provided that these and the lengths of the capillaries are un-
correlated.

Yet another possibility, which may be encountered in
other kinds of models, is to define the tortuosity as an aver-
age of the lengths of flow lines squargj4]. Analogously to
Egs.(7) and(8), we may then define

11

! dv
fvvﬂﬁ

r 2?2 Jwdv 12

At this point, we shall not try to select a preferred defini-
tion of tortuosity among the ones discussed above. Instead, . : .
. . FIG. 1. Flow lines through a two-dimensional random porous
we will use the lattice-gas word-cellular automaton method

. . ; - dium.
to find numerical correlations between these tortuosity fact oo

tors and the porosity of a two-dimensional random porous N

medium. In a forthcoming publication, these results will be S Fru(r)

used to find correlations between the flow permeability and = : :

the macroscopic characteristics of the mediurg). N~ N (13

N
E v(ry)
i=1

lll. LATTICE-GAS SIMULATIONS

We solved numerically the two-dimensional flow in a ran- Here, N=1000 is the number of flow lines found for each
dom porous medium using the FHP-III lattice-gas md@ée!  configuration;7(r;) =L(r;)/L, is the tortuosity of théth flow
in a discrete triangular mesh of 1800 lattice sites. The line, L, is the length of the lattice in th& direction, and
two-dimensional porous medium was constructed by randon(r;) is the averaged tangential velocity of the fluid at the
positioning of rectangles of an equal size of<XlID lattice  starting point. Tortuosities_;, 7, and 7_, were determined
sites and with unrestricted overlap. The porosjtyof the  using expressions similar to E@L3), while 7, was deter-
medium was defined as the ratio of the number of unoccumined directly from the averaged velocity field according to
pied sites to the number of all lattice sites. The number oEg. (10).
rectangleX in the lattice varied between 10 and 68, which  In Fig. 1 we show an example of the flow line fields for a
corresponds to porosities ranging from 0.9 to 0B.is  configuration of 30 rectangles corresponding to a porosity
straightforward to show that, with the numbers given above$=0.74. The vertical distances between the flow lines of this
the expectation value of the porosity for a givéh is  figure are determined such that the flux between neighboring
(¢)=0.99.) The number of fluid particles per lattice site flow lines is constant. The tortuosity as determined from
was 3.5 which provides the best approximation for the soluEg. (9), is 7=1.2 for this particular configuration. The values
tion of the linearized Navier-Stokes equati@neeping flowy  of tortuositiesr; and7_; [see Eqs(7) and(8)] were found to
within the present methdd]. The fluid was forced to move be very close to each othésee Fig. 3. In Fig. 2 we show
in the positivex direction by applying an external force on the calculated tortuosity= \/7,7_, as a function of porosity
the particleg7]. Periodic boundary conditions were imposed ¢. The small dots give the values ¢f and r for the 1080
on the lattice in both directions. individual configurations. The large dots with error bars
Simulations were carried out for about 35 configurationsshow the mean value and the standard deviationasfd ¢ at
for eachK, and the total number of different configurations each value oK. Within the porosity range covered by these
was 1080. A single configuration used about 2.2 hours CPWimulations, the dependence on porosity of tortuositig
time on a Dec 3000 workstation. For each configuration theapproximately linear. The solid line shown in Fig. 2 is a fit
system was first allowed to saturate for 40 000 time stepdgy
which was found to yield a stationary flow pattern. The local
velocities of particles were then averaged over 400 000 time =0.81—¢)+1. (19
steps in order to ensure an undisturbed and smooth flow
velocity field. Flow lines starting from randomly chosen In Fig. 3 we compare the simulated values of the tortuosi-
placesr; in the pore space were found by interpolating theties defined by Eqe.7)—(12). The curves shown in this fig-
time-averaged flow velocity field. The length(r;) of each ure are fits to the determined points which are not shown.
flow line (within one length period in the directiox) was  For 7, the fit is parabolic while for the other tortuosities it is
then computed and the tortuosity, e.g., was calculated linear. It is evident that the different definitions give approxi-
using the following approximation for the volume integral of mately the same qualitative dependence on porosity, and that
Eq. (7), the numerical values do not dramatically differ from each
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FIG. 2. The calculated tortuosity[see Eq(9)] as a function of FIG. 3. Comparison of tortuosity factors defined by EGS—
porosity ¢. Small dots are the results of numerical solutions for 12.

1080 individual configurations equivalent to that shown in Fig. 1.\, erical uncertainties was estimated to be below 5%, even
Large symbols with error bars indicate the mean values and stal it the lowest porosities where failing of flow lines was most
dard deviations of porosity and tortuosity for each fixed number o pronounced
solid blocks. It is evident that, as a physical quantity, tortuosity is not
o . L niquely defined. The preferred definition depends on the
other in thls_, porosity range. Notice finally th_at the preser?te_cgontext and on the model being used. Our simulations sug-
results are in full agreement with an approximate upper “m”gest, however, that the model dependence is quite small, at
of tortuosity 1.6 which follows from a model of randomly |east for a two-dimensional flow at relatively high porosities.

oriented connected straight tublel4] in two dimensions.  ysually the purpose of introducing tortuosity, as a parameter
in macroscopic theories dealing with transport in porous me-
IV. DISCUSSION dia, is to add an additional degree of freedom to account for

the rather complex structure of real porous materials. As

We have used the lattice-gas simulation method for solvsuch, tortuosity can hardly be expected to provide more than
ing a low Reynolds number flow in a two-dimensional ma-a qualitative description of the true transport dynamics in
trix formed by randomly placed fully overlapping rectangles.these complex structures. The smallness of the differences
Numerical uncertainties were found to be reasonably smaletween the numerical values of this quantity, arising from
provided that long enough simulation and averaging timests various plausible definitions, seems to indicate that tortu-
were used to ensure stationary states and smooth velocitsity indeed is a useful concept.
profiles. For a given obstacle configuration the tortuosities The determined interrelation E¢L4) of porosity and tor-
calculated with different lattice resolutions were alwaystuosity can be applied, e.g., in inferring relations between
found to be close to each other, and no systematic resolutiopermeability and porositil2]. The basic limitation in doing
effects were seen. this is that the present simulations are two dimensional. For a

In some cases the procedure for finding a flow line passthree-dimensional flow around nonelongated particles, the
ing a given starting point failed since the flow line hit a solid relation between tortuosity and porosity may not be of the
wall. The contribution from such flow lines was neglected.same form as for two-dimensional objects considered here.
(See, e.g., the second flow line from the top in Fig.9uch  Also, two dimensionality restricts the useful configurations
cases were most frequently found in blocked areas where the those with quite a high porosity. This is due to the perco-
residual fluctuating component of the velocity was relativelylation threshold, which is approximately #t=0.33 for ran-
large as compared to the averaged flow velocity. The totalomly placed and freely overlapping obstadietiose length
flux associated with the failed flow lines and thus their totalto width ratio is approximately )lin two dimensiond14].
weight in the tortuosity equations was however small. Mak-Close to this porosity, simulations with the present method
ing a conservative assumption that the true lengths of théail. We therefore expect that the results shown here will be
failed flow lines would differ by at most 30% from those of most directly applicable to flow in fibrous porous media with
the successful flow lines, the error caused by this and othex high porosity.
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