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Neuronal populations with reciprocal inhibition and rebound currents:
Effects of synaptic and threshold noise
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The analysis of networks of time-summating binary neural networks is relevant to the study of coherent
oscillatory behavior in neuronal populations. A class of networks based on a discrete-time version of leaky
integrator networks has recently been extended to include the effects of hyperpolarization-activated inward
currents[S. Coombes and S. H. Doole, Dyn. Stability Sykt, 193, (1996]. Suchrebound currentsare
important for central pattern generation in neuronal circuits with reciprocal inhibition. In this paper, we
incorporate models of intrinsic synaptic and threshold noise into the above neural system. The macroscopic
behavior of time-summating networks with rebound currents and random thresholds is analyzed in the ther-
modynamic limit. Mean field equations are derived for the average network activity in a homogeneous network
with inhibitory synaptic connections. Periodic and chaotic solutions are shown to exist, together with hysteretic
transitions between periodic orbits. This hysteresis is observed between particular periodic orbit branches, as
well as more globally with respect to variations in external input or threshold noise. Moreover, rebound
currents are shown to suppress chaotic network response to external input, in favor of low order periodic
responses, which in turn define well ordered coherent macroscopic oscillatory states for the system. The
response characteristic of a single neuron in the presence of synaptic multiplicative noise is also considered and
compared to its zero noise limit. In this latter case, the dynamics is reduced to a piecewise linear discontinuous
circle map, while the former is expressed in terms of a random iterated function system.
[S1063-651%96)04810-9
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[. INTRODUCTION bound from hyperpolarization to fire. The NRT is thought to
serve as a pacemaker for synchronous spindle oscillations
The analysis of reciprocally connected neurons has reseen during drowsiness, sleep, or anaesthési
ceived much attention in an attempt to understand the Previous models of simple CPGs for heartbeat, swim-
mechanisms whereby rhythm generation is produced by ENNg, respiration, gastric rhythms and also the rhythmic ac-
neuronal central pattern generat@PQ in the absence of tivity in thalamocortical systems have combined the generic
endogenous pacemaking cells—6]. In particular, Brown recipr_ocally _inhibitory archite_cture with Hodg_kin-HuxIey_
[7,8] has proposed the half-center oscillator model to accourgduations utilizing hyperpolarization-activated inward ionic
for the rhythmic motor activity for stepping movements ob- currents[14,15. To avoid the difficulties of analyzing such

served in spinal cats. Two pools of interneurons, the halfSOMPIex systems, a much simpler neuronal population dy-

centers, are envisaged to control flexor and extensor muscl&&Mmics incorporating the effects of PIR within the time-

communicating via reciprocally inhibitory synapses. To gen_summatlng binary neuron modél6] has been proposed

erate oscillations from two such pools requires additionaPﬂ' This model is a discrete-time approximation of the bio-

. ! . . ogically realistic leaky-integrator equations that describe
physiological factors such as fatigue, adaptation, or post: gically y 9 ;.

co S ) cell membrane potential dynamics. Both firing events and the
inhibitory rebound. Post-inhibitory rebour@IR) is a non-  yjgaering of the injection of rebound currents at the cell

linear phenomenon encountered in a variety of nerve cells. 4y are signaled by the crossing of thresholds. Hence there
is an active process in which the excitability of a neuron isis 4" threshold for firing and a threshold for rebounding. In

enhanced temporarily following a period of hyperpolariza-ihis paper, we examine the asymptotic states for this popu-
tion. BiOlOgical CPGs with half-center architectures that|ation dynamics and concentrate on the fo”owing issues.
have been shown to depend on the presence of such “re- (i) How do PIR currents affect the dynamical attractors in
bound currents” include the heartbeat control circuit in thejarge populations of globally reciprocally inhibitory neural
medicinal leech9], the swimming circuit for the mollusc networks?

Clione [10], respiratory control in the pond snail1], and (i) How does this system respond to perturbation with an
gastric rhythms in crustacean$2]. Typically, such CPG external input?

circuits are built from relatively few neurons. A much larger  (iii) How robust is the system to the stochastic noise that
network, found in the brain, that generates rhythmic activityis present in all neuronal systems?

is the nuclear reticular thalamBlRT). This is a thin neu- In the first instance we present the dynamics for the stan-
ronal sheet composed of coupled inhibitory neurons. In comdard time-summating binary network with rebound currents.
mon with the circuits underlying rhythm generation in the Noise at the axon hillock is modeled via a random modula-
simple invertebrates mentioned above, NRT neurons can réion of the thresholds for firing and rebounding. Mean field
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equations for the average membrane potential and mean ngtest-inhibitory rebound. With this in mind, we define the
work activity are derived by averaging the dynamical popu-following model of N leaky integrators with post-inhibitory

lation equations with respect to the random thresholds, antkbound[17]. Let V;(t) be the membrane potential of the
taking the thermodynamic limit. The range of possible re-ith neuron at time with respect to some resting potential.
sponses is investigated numerically. Attention is concenThenV,(t) satisfies the differential equation

trated upon bifurcation parameters representing the levels of

threshold noise, and global external input. The presence of dv;(t) V;i(t)
rebound currents is seen to suppress chaotic behavior. In TZ——,+;1 Agij(t)+Agi(1), 1)
particular, these currents can lead to low order periodic orbits

7
for the average activity of the network. Interestingly, the ac-ynere r is the ith cell membrane time constant and
tive population number is thought to control the CPG fre'Agi-(t), i+#j, is a measure of the synaptic conductance
quency of the half-center swimming circuit in the tadpolechajnge at théth synapse of neuron Excitatory synapses
Xenopus[18]. Hence intrinsic neuromodulation of such cur- oo positiveg;; , while inhibitory ones are negative. The
rents in reciprocally inhibitory circuits may serve to alter the oA g (1) s taken to be positive in sign. It describes an

frequency of rhythmic pattern generation. Furthermore, the,, citatory feedback current representing the effect of post-
presence of PIR currents allows hysteretic transitions bephinitory rebound and does not involve synaptic processing.
tween periodic orbits. Therefore, neuronal population re-

; . -~ A discrete-time approximation of the neuronal dynamics
sponses to external input will depend upon whether thi

ay be obtained by first formally integratin with
stimulation is increasing or decreasing. Similar hysteresis eV-(g):O] to obtainy y ¢ 9Ed [
I

fects are observed with variation in the threshold noise.

Another biologically significant source of noise in the ; N
single neuron arises from the quantal release of chemical Vi(t):f dtfe(tt’)/fi( > Ag(t)+Agi(t) . (2
transmitters into synapses. Such neurotransmitter release 0 k=1
provides a mechanism for converting presynaptic axonal sig- . . _
nals into changes in the membrane potential of post-synaptic SIMple model of neuronal input that allows evaluation of
neurons. This multiplicative noise is modeled by indepen-Ed: (2) IS to assume that neurarreceives an impulse of size
dently updating synaptic connection strengths at every tim&ij €ach time that neuropfires. Thus
step according to some probability distribution, as originally
proposed by Bressloffl9]. Since the nature of synaptic neu- Ag; (t+tg) =w;; 2 S(t—AD), (3)
rotransmitter release is quantal, each random connection : =1 !
strength only has a finite number of possible values. In con-
junction with the fact that the number of output states of awhere Al is the time at which thgth neuron fires for the
binary network is itself finite, the stochastic dynamics ofnth time sincet=0, and&§(x) denotes the Dirac delta func-
time-summating networks with PIR currents and synaptidion. The synaptic delay timig is included to account for the
noise may be formulated as a random iterated function sygime between the arrival of a signal at a synapse and the
tem[20] on the space of membrane potentials. We illustrateresulting change in resting potential of the neuron. In a simi-
such a stochastic dynamics by concentrating on a single nelgr fashion, we write the post-inhibitory rebound current in
ron for which the limiting behavior is described by an invari- the form
ant probability measure on the space of membrane potentials.
The invariant measure is seen to have a fractal-like structure.
To highlight the response characteristic of this stochastic
single neuron, we make a comparison with the same system
in the limit of zero noise. In this case, the single neuronwhere B! represents the time at which thith neuron re-
dynamics can be reduced to a piecewise linear map with tWgounds for thenth occasion, and, is the delay time for

discontinuities and the response characteristics follow a selfost-inhibitory rebound to take effect. Theth firing and
similar (nonmonotonig devil's staircase. Hysteresis persists rebounding times are defined by

for the single neuron and the piecewise linear structure of the
map can be exploited to allow a quite explicit analysis of this AJ”= inf{t|V;(t)=h; ;tZAF_l}, (5)
feature.

N

Agi<t+tp>=win§l s(t—B}), (4)

BJ'=inf{t|V;(t)<x;;t=B] "1}, (6)

lIl. DYNAMICS respectively. The quantitidg and«; measure the thresholds

Single neuron equations that reproduce all the behavior dpr firing and rebounding respectively. In generaf and
a biological neuron can be used as the basic elements forBy' lie on a lattice generated kiy andt,,, and the first times
study of neuronal population dynamics. In particular, Bressthat firing and rebounding occur.
loff and Taylor[16] developed a dynamical model of a bi-  For simplicity, we set,=t4 and proceed by breaking the
nary neural network that incorporates certain important neuintegral in Eq.(2) into [Oty] and[tq,t]. The more general
rophysiological features. This is achieved by constructing &ase of distinct delays is considered [@1]. The integral
discrete-time approximation of a leaky-integrator model withover[0.t4] is treated as a boundary term which is determined
cell membrane potential decay. However, one feature of &y the state of the network over the interyatty,0]. We
single neuron that their model does not describe is that ofhoose initial conditions such that the first firing and re-
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bounding times are multiples ¢f. In this case, all subse- The effect of noise at the axon hillock is introduced by
guent firing and rebounding times are multiplestgf For  reinterpreting the thresholds for firing and rebounding as ran-
any functionf, we may write dom variables. This is achieved by generating a random ex-

ternal field %; from some distributiorp;(#;). This field can

n - be considered as a random modulation of the deterministic
nZ:l f(A; ):mZ:O f(mtg)a;(m), (") thresholdsh; and «; . In this case, the probability of thigh
neuron firing when the membrane potential is equaVtas

n=1

S f(8)=3 f(miby(m), ® s#v= [ dmpcmevi-ntn). 03

wherea;(m) andb;(m) are thefiring andreboundingfunc- 414 the probability of reboundj?(V), is constructed in an
tions defined by analogous fashion. A common choice for the distribution of

thresholds is one that reproduces the Little mdas]

[ 1 Al=my [ 1 Bi=my
ay(m)= ise, Dj(m)= ise. (9 J
j 0 otherwise, Vi 0 otherwise. pi( ;)= a_”f( 7), (14

Hence we deduce that where f(6)=(1+exp—B6) ! is a sigmoid function with a

m “temperature” parameter@ =T, measuring the noise
Vi(m)= >, 7{1(2 Wi (m—r)+w;b;(m—r) level. The probabilities for firing and rebounding then take
r=1 K the simple form
(10)
_ , PVD=F(Vi—h), $(V)=f(x—V). (19
for t=mty. In Eqg. (10), we have setq to unity for clarity
and introducedy,=e~'7i. At noninteger multiples of the We now consider a homogeneous network in the thermody-
fundamental time delaty, the neuron does not receive any namic limit N—oo with inhibitory couplings such that
input, and the neuronal dynamics are given simply by Wij=—W,/N, wij=w,, hj=h, kj=« and y;=7y for all i .
The dynamics for such a system arising from Etp) are
Vi(t)=e "™nvi(m), m<t<(m+1). (11
Vi(m+1)=F{(V(m))

We write Eq.(10) as the first-order iterative equation \

w
Vi(m)=F(V(m—1)) = Vi) =g 2 O Vj(m)—h+ 7;(m))
='yiVi(m—1)+; Wikak(m_1)+Wibi(m_1), +Wb®(K_Vi(m)+77i(m))+|1 (16)
(12) where we have additionally included a global external input

whereV is a vector with componenté; , and the firing and To derive mean field equations for a homogeneous net-
rebounding functions take the fora(m)=©(V;(m)—h;,),  Work, consider a fixed vectoy and define the associated

and b;(m) =0 (x;— V;(m)). Here ® denotes the step func- random variable¥; =F/(V), with mean and variance
tion, ®(x)=1 if x=0 and is 0 otherwise. The first term on

the righthand side of Eq12) represents simple voltage de- Vi =(F(V)),, 17
cay at the cell membrane. The second term is interpreted as ) —
synaptic input, and the third represents the effect of a re- (AV)“=((F"(V)=V{)%),. (18

bound current. _ _
Here (), denotes averaging with respect to the random

. MEAN FIELD THEORY thresholds. Using the distributiaii4), we obtain

N
. . . . o W
The macroscopic behavior of time-summating networks V-'=7Vi—ﬁa D FV,— )+ Wof (k—V)+1 (19)
i=1

with PIR currents in the thermodynamic limit is relevant to '
the discussion of systems such as the swimming circuit of

the Xenopus tadpole. A large population of neurons withand
inhibitory couplings relies on rebound to support a self-

sustained rhythmic behavior. The active number of neurons 2 Wi N )

in this population has been linked to the control of swim- (AVi) N2 Zl {f(Vi—h)—f5(V;—h)}

ming frequency{18]. A mean field theory allows one to fol- :

low the average activity of a population as a well defined +W2{f(k— V) —f2(k—V))}. (20

macroscopic dynamical quantity. To derive mean field equa-
tions for a homogeneous inhibitory network, we proceed in é&Each term in the mean and variance is finite. In the thermo-
similar fashion tq22]. dynamic limit, fluctuations depend upon the size of the re-
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FIG. 1. Graph of the map ;. The dashed rectangular region "o 012 0.4 016 018 1
denotes the restriction &, to the invariant interval determined by I
the critical points, with8=25,h=0, y=0.5,1=0.2,w,=1.0, and

Wy =0.5. The dotted line shows the graph fe;=0. FIG. 2. Average voltage bifurcation diagram,= 1.0, w,=0,

. 6=0.5, y=0.7, andB=25.0.
bound current sinceAV;)—w/2. For small rebound cur-
rents, the probability tha¥{ =V/ in a given trial approaches sponse diagrams. To show this, we introdugg=X,,—h
unity. Now setV to beV(m). ThenV/(m)=V;(m+1) and andA=I1—h(1—y)>0, and write the ma§23) in the pa-
we obtain, for largeN, the dynamical mean field equations rametrized form

a X+ 1= FaXm) = VX~ Waf (X) TA. - (26)
Vi(m+1)= 5V, (m)— g S F(Vj(m)—h) R

We form the relations

Fa(—Xm)= —FalXm) + 2A—w,, (27)
Similarly, the mean activity of the network,
M,=N"1Z;a;(m), satisfies Fa(Xm) = F- a(Xm) + 2A, (28)
N . .
M, =N"13 £(V;(m)—h). 22) from which we can establish
=1

Far(Xm)=—F_pr(—Xm) (29
long term macroscopic behavior of the network is effectivelyfor a shifted bifurcation parametex’ =A—w,/2. Thus the

governed by the single mean field equation bifurcation diagram of 4(X,,) is symmetric about the point
I=w,/2+h(1—1v) (for w,=0). SinceM ,, 1=FOFa(Xm),
X+ 1= F g(Xm) = ¥Xim=Waf (Xin—=h) + Wy f (k= X) +1, the fiing map Ma=M,,,; obeys the relation

(23 Mpa=1-M_,,, and is also symmetric about
with Xm=N‘1EjVj(m), provided y+w,/2<1. The mean I=Wa(2+ h(1—v). For nonzerow,, the full dynamical
output activity is now given by equations take the form

M = f(Xm—h). (24) Xm+1=9as(Xm) = Fa(Xm) +Wpf(5—Xp), (30

The dynamical equation®3) and(24) are exact for a single Wwhereds=x—h. One can also establish the relation
neuron with PIR in the presence of threshold noise of the

Little type. In fact, Eq(23) may be regarded as a systematic Gars(Xm) = —G_ar (= 5(—Xm)» (32)
extension of the postulated single-neuron model of Aihara,

Takabe, and Toyodg24] to include the effects of a rebound where A’=A+(w,—w,)/2. Hence the introduction of re-
current. bound currents will lead to a destruction of symmetry in any
To study the dynamics of the madpg(X), we must first bifurcation diagrams with fixed nonzer® and this loss of
determine any invariant intervals. These intervals are deteSymmetry is first observed close to the point of symmetry for

mined by the critical points which solve w,=0.
To see how the invariant interval can affect dynamical
dFs(Xm) behavior, it is instructive first to consider the case with zero
W: (29 rebound. We introduce=w,83/2y—1 so that the function

Fa has critical points ak_ andx, where
In the absence of any rebound currents, m@3 and (24)
possess certain symmetries which give structure to the re- Bx.=In(c*Jo?—1). (32
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FIG. 3. Local hysteresis in average voltage,=1.0,

Wy=0.28,5=0.6, y=0.8, andB=300. FIG. 5. Global hysteresis in average voltagedecreasing.

w,=1.0,w,=0.5, §=0.5, y=0.7, andB=25.

There is also a unique fixed poirg, which lies in the inter- We now examine some simulation results to illustrate the
val[x_ ,x, ]. For fixedB, y, andw,, varying the bifurcation €ffects of introducing rebound currents into the neuronal
parameter simply shifts the graph ofF, up or down. For ~ Population dynamics. In all of these, we have takenrO,
B>1 (low temperaturg there exists an interval and moreover ensured that+w,/2<1 in order that the
Q=[w_,w,], with 0<w_<w,<w,, such that for allA mean field theory is valid. As a benchmark, we first examine
e the fixed point is unstable. All trajectories then con-the casen,=0 in Fig. 2. The averaged voltage respects the
verge to the closed interval =[ Fa(x_),Fa(x.)]. There is syn;metry described abov(eefIQCt first in XfQ and then
also the possibility of chaotic dynamics since a positive Li-I =3). Without rebound, there is only nontrivial output for
apunov exponent can occur. K¢, the fixed point is ~ €xcitation (>0). We note the existence of four bands of
stable and all trajectories convergexig Note the invariant chaos, and the collapse to trivial fixed point dynamics out-
interval 3 is contained withif A—w,,A] (the invariant in- side the regime shown. The existence of this chaos has been
terval in the limit B—). For nonzerow,, the invariant confirmed n_umerically by calculation of the Liapunov expo-
interval for nontrivial dynamics will also be determined by nent according to

the critical points ofG, s and the stability of the fixed point 1 1 dx

(see Fig. 1. Simple analytic expressions like E@2) for the A)=lim = > In’ mtl (33)
critical points are cumbersome since they are now the roots n—w N M=0 dXm

of a quartic inf. However, it is a simple matter to bound the ) o

invariant interval byl A—w, ,A+w,], for example. Now, as Oncew,, is honzero, hysteresis is observable, both locally
A is decreased, the stable fixed pokgtcan destabilize and Pe&tween particular periodic orbit branches, as well as more
restabilize twice in turn. globally with respect to variations of the external input over

relatively wide parameter windows. In addition, suppression
of chaotic dynamics in favour of low order periodic re-
0.8 — . . . . . . . sponses can occur. In Fig. 3, we see the multiplicity of solu-
tions that gives rise to the possibility docal) hysteresis.
0.6 Between the vertical dividers the second and fifth lines cor-
04 ) 7 respond to the response with increasing average voltage,
’ while the others correspond to the output with decreasing
r\‘/ ltage. Later on, when we look at the ¢ f a single neu-
02 | /i voltage er on, when we look at the case of a single neu
~ ron in the absence of threshold noidég. 12, we will be
o 0 Ve able to identify the multiplicity in the center of Fig. 3 as the
o2l \ \ |  coexistence of “noisy” versions of period 3 and period 2
’ ’ orbits of a certain piecewise linear map. We have termed this
04 N ‘ { local hysteresis, since we are able to recognize the orbits
/ - / involved over the small parameter window. This particular

0.6 / Ne / 1 example of hysteresis is extinguished when the spreading fan
‘ ) . ) . . . . of periodic points hits the origin at values Bfbelow about
06 04 02 0 02 04 06 08 1 270.
I In Figs. 4 and 5, we have decreasgdo 25, to expose
global hysteresis with increasing vs decreasing external in-
FIG. 4. Global hysteresis in average voltadeincreasing. put. The breakup of the symmetry of the response is also
w,=1.0,w,=0.5, §=0.5, y=0.7, andB=25. clear. With the introduction of PIR, it is possible to obtain
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FIG. 6. Demonstration that PIR currents can lead to ordered F|G. 7. Global hysteresis in mean activity: temperature increas-
macroscopic states| (increasing. w,=1.0, wy=0.5, §=0.5,  jng. w,=1.0,w,=0.4, §=0.5, y=0.75, and =0.2.
v=0.7, andB=25.

tion of increasingT, only low order periodic responses are

nontrivial responses in the presence of external inhibitiorP0Ssible, whereas a wide band of chaos is possible for the
(1<0). The simple periodic structure observed for such in-OPPOSIte variation.
put is typical of the dynamics due to PIR. If we examine the
mean activity, rather than the average voltage, then the sig- IV. REDUCTION TO A PIECEWISE LINEAR
moidal form of M maps these negative valued orbits(éd- DISCONTINUOUS CIRCLE MAP
fectively) zero. These low order periodic orbits due wg
#0 are also those which break up the symmetric structure .
for 1>0. If one looks at the graphs &% andF*, it becomes
clear why periods 2 and 4 are so robustly stable to variation
in 1. The “quartic” nature of the graphs of those higher
iterates means that the fixed points are both stable and |
within the invariant interval. Moreover, the shallow slope at
the fixed points requires large perturbations to the map fo
destabilization. In comparison, the “quadratic” form with
w,=0 has unstable fixed points within the invariant interval. VXt A—W,, X5;=0
Finally, note that depending on whethkeiis increasing or
decreasing, either one or two bands of chaos are suppressed, Xm+1=F(Xm) =] YXmFtA, = 6<Xn<0
respectively. VXt A+W,, Xp<—6. (39

We have established that PIR currents can lead to low
order periodic orbits and hence the suppression of chaos for This is a particular case of the maps studiefllifi, where
a range of external input. Comparing Figs. 4 and 6, we carEd. (34) is considered as a lift of a degree one circle map,
see how low order orbits iiX lead to corresponding low and hence we provide only a summary of results in this sec-
order orbits in the mean activityl. The existence of such tion. We suppose/,>A>0 and henc€=A—w,<0 (since
orbits for M implies that the system as a whole is in a mac-otherwise trivial fixed point dynamics resulBounded dy-
roscopically ordered state sindé,,~0, 1. That is, in the namics are confined to an invariant inter2al For definite-
regime where PIR currents suppress chaos, the network c&ss, we scalev,=1. Moreover, as the map is piecewise
be bistable(or even tristablg with the mean output activity linear, the Liapunov exponerftEq. (33)] can be readily
oscillating, say, between the ordered state with nearly alevaluated to be constant and equal te<i®, and chaos is
neuronsoff and the opposite ordered states of nearly all neunot possible.
ronson together. In contrast, when the dynamics is chaotic, Before we can discuss the dynamics described by Eg.
both ordered and disordered macroscopic states coexist af@4), we must first know when an appropriate invariant in-
there is no coherent oscillatory behavior. terval exists, and what are suitable ranges for the variation of

We close this section by looking at bifurcation diagramsthe bifurcation parametek. The map has a stable fixed point
in temperaturel. The variation ofT is interesting because at x=(1—A)/(y—1) and nontrivial dynamics only occur
many neuronal CPGs alter their rhythmic behavior via intrin-while this point remains outside the invariant interdalas
sic, as opposed to extrinsic, neuromodulation. In our modelA varies. Moreover, whe>— § (that is,A>1—6), then
the global external input is a source of extrinsic input, F reduces to a bilinear map on the invariant interval. We
while modulation of the thresholds for firing and reboundingintroduceE andD as the heights ofF on either side of the
is intrinsic. In Figs. 7 and 8, we see that hysteresis remaingiscontinuity at— 6 (see Fig. 9. It is straightforward to show
possible. It is particularly striking since in the direc- that 3 is either [C,A] or [C,E]. Note that if D<C

It is instructive to consider the case of a single neuron
h rebound currents in the absence of noise. This may be
achieved by taking the limiB—o with N=1 in Eq. (21).
ﬁlternatively, for a single neuron, consider E42) and de-
fine X,:=V(m)—h. Now introduce the five parameters

a= —W11>0, w,=w;>0, =h—«, A=1—-h(1-17v), and
0<y<1. The dynamics of a single PIR neuron is then gov-
Erned by the magsee Fig. 9
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FIG. 9. Graph of the piecewise linear m#&p The dashed rect-

o - angle indicates region of convergence.
FIG. 8. Global hysteresis in mean activity: temperature decreas-

ing. wy;=1.0,w,=0.4, 6=0.5, y=0.75, and =0.2. . s . . . . ..
g-Wa b Y discontinuities determine bifurcation dynamics. In addition,

(v6>1) then the discontinuity at § is not included in the after colliding with a discontinuity (O or- ), a primary
invariant interval and hence the map is bilinear for all rel-periodic orbit typically undergoes a Farey-tree-type bifurca-
evant variation ofA. Biologically, this means that PIR does tion [25] which thus generates perigdsolutions, where is
not affect the neuron and so this case is of little interest. Weimited mathematically by the resolution of the bifurcation
distinguish two cases. diagram, and biologically by minimum feasible curreffts

Case I.If A>E andC<D, thenX is [C,A]=[A—1A]  example, see Fig. 10This sort of feature can also be found
and w,<yé<1. Hence, nontrivial dynamics occur for in earlier neuron map mode(26]. The novelty with two
A<min(1,1/y). On the left of a bifurcation diagram iA, discontinuities is that the discontinuity até can also trigger
the dynamics on the invariant interval behaves according t@uch behavior aé varies, and the two discontinuities com-
the full trilinear map. OnceA increases beyond-15, the  pete with each other to create additional features—for in-
dynamics on the invariant interval is bilinear. stance, hysteresis.

Case |Il. Suppose E>A and C<D, so that In Fig. 10, we show an example of case Il dynamics. With
min(1wp)>yé. For smallA, % is[C,E] but asA increases, §=0.5, the left-hand region is dominated by trilinear dynam-
there are two possibilities. E hits x whenA=Ag, say, and ics: note how the quasiperiodic regime loses the symmetry of
Ag<1-4, then the dynamics collapse wheh=Ag and the bilinear map. Note too that the invariant interval is
there are no nontrivial bilinear dynamics. Alternatively, if [A,E]=[A—1,A+0.1] until the transition ah=1—6=0.5
Ag>1- 6, then atA=1—- 6, the map becomes bilinear and to [A—1,A]. In Fig. 11, we show the average firifigppe)
the invariant interval jumps discontinuously [tG,A]. and rebounding ratedower) for this parameter set, defined

The piecewise linear nature of the map also allows simplén general by
periodic orbits to be explicitly described. A (q, r) orbit on
[C,A] is a periodic orbit of periogh+q+r which visits the M

three parts of the domaipC,—6), [ —6,0) and[0A), p, pa=lim i O (V(m)—h), (36)

g, andr times, respectively, and is stable if it exists. For Moo Mm=1

example, it is straightforward to calculate that the leftmost

points of primary orbits of the form (0,4) and (1,0n) are 1M

given by pp=lim — X O(xk—V(m)), (37)
M— o0 Mm=1

n n—1
RS | .
m=1 m=1 respectively. The two rates coincide until= 0.2 before the
1— "t ' rebound rate necessarily decreases to zero as the map be-
comes bilinear wherA=0.5. The effect of PIR is clear:

1)_

X(

é m nil m n jumps and lack of monotonicity in the devil's staircase. The
=, YU A= i~ YO T Y Wy jumps are associated with a periodic orbit hitting the discon-
x? = et , tinuity at — & asA is varied. Typically, the same period orbit
1-vy . . -
(35 of the trilinear map cannot be sustained by the bilinear map.

If the period changes, then so will the firing rate. This jump
respectively. Many detailed features of the bifurcation dia-in period at— 6 can also give rise to hysteresis.

grams can be understood in terms of periodic orbits like The piecewise linear nature of the map allows an explicit
these, and more importantly when they cease to exist: foanalysis of the hysteresis, and it cannot occur when
example, when a point on the orbit coincides with one of thed=w,=0. The period two (1,0,1)-orbit in Fig. 1&ase )

two discontinuities as we var. Such interactions with the hits — 6 when
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_ _ _ . o FIG. 11. Average firing and rebounding rates for the piecewise
FIG. 10. Bifurcation diagram for the piecewise linear map. |inear mapw,=1.0,w,=0.5, §=0.5, andy=0.8.

w,=1.0,w,=0.5, §=0.5, andy=0.8.
V. QUANTAL SYNAPTIC NOISE

-8(1-9y*)+1—yw
AA,— (1-v9) YWp

(39) So far we have only considered the effect of threshold
y+1 ' noise acting at the axon hillock. Another important source of
noise arises from random fluctuations in the number of pack-
ets of chemical neurotransmitter released into the synaptic
cleft upon arrival of an action potential. To illustrate how to
model such a stochastic process, we consider a single neuron
—8(1-93)+1 in which the synaptic connection is treated as a random vari-
= 3:W (39 able. The stochastic dynamics for a single neuron becomes

and the period 3 (0,2,1) orbit when

V(m+1)=yV(m)—wy(m)O (V(m)—h(m))

For the period 3 orbit to be feasible, we requite<O Fwp® (k(m)—V(m))+1. (40)
(A< yd) so that two successive iterates in §,0) are pos-

sible. Now whens=w,=0, we always havé,<Az and N0 The self-inhibitory synaptic weightv, is decomposed as
hysteresis is possible: the usual Farey-tree bifurcation willy_(m)=w,u(m), where u(m) is the random number of
occur. However, once PIR is inClUdEd, there is a window Ofvesic]es released at timm. The WE|ghtWa measures the
y values where hysteresis can occur, nominally bounded byficiency with which neurotransmitters bind to receptors.

values such thah, = As. However, such windows are further For a given membrane state, firing is once again signaled by
restricted by the lociA=vyd (as mentioned aboyeand the threshold event

A= yl/(y?*+ y+1) (the value when the middle point of the

period 3 orbit hits the origin In addition, forA increasing, a(m=060[V(m)—h(m)]=a. 41

the period 3 orbit can be extinguished when fealue at

which the period 2 orbit hits- § overtakes that for the col- A biologically realistic description of stochasticity at the
lision of the midpoint of the period 3 orbit with the discon- Synaptic cleft should capture both the stimulated and sponta-
tinuity at zero. Repeating such an analysis for other pairs ofeous processes of vesicle emission. Both processes are typi-
periodic orbits is time consuming, and we do not pursue itcally modeled with the use of a binomial distribution of size
further here. Thus we have established that locally the rek, whereL is the maximum number of vesicles released
sponse of the PIR neuron to its global input can depend oftypically L~1—10). For simplicity, we ignore the sponta-
whether this activity is increasing or subsiding. This hyster-neous release of neurotransmitter in the absence of an incom-
esis cannot occur in the absence of PIR. As we saw in Sedng signal, and consider the one-vesicle limit 1. The ran-

11, in the presence of threshold noise, this local hysteresislom variableu(m) is equal to 1 if a vesicle is released at the
persists and, in addition, more extensive hysteresis is poshscrete timem. If a(m)=0, thenu(m)=0, whereas if
sible. a(m)=1, thenu(m) is generated with probabiliti. In this
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FIG. 12. Multiple solutions yield hysteresis in the piecewise . .
linear map:w,=1.0, w,=0.28, 5=0.6, andy=0.8. The value of FIG. 13. Dynamics of the random IF® Zero threshold noise

— s 'is also plotted. (B—) and stochastic synaptic noisex£€0.5). w,=1.0,
w,=0.5, andh=0.0 k= —0.5, andy=0.8.

case the conditional probability thatu(m)=u is .

P(ula)=a\. The random thresholds(m) and x(m) are The set{(F,,®,)[ae{0...3;} determines a random
generated as before, such that the probabilities for firing an{fS: 9. on the membrane potential space, endowed with, say,
rebounding maintain the forms given in E45). Since the the Euclidean me.tn@ZO]. That is,J consists of a f|_n|te in-
rebound current does not involve synaptic processimg, dexed sgt of continuous mappings on some metric space to-
does not depend upan. The dynamicg40) comprises four gether with a corregpondmg set of probabilities for selecting
mapsF,, F;, F,, andF; with associated probabilitie®,, ~ °N€ such map per iteration. That is,

o,, ,, andd;, where
b ° V(M) =F 41 (V(M—1)), (46)
— _ + — /& _ b
FoV)=WV=watl,  @o(V)=¢HVINL = (V))’(42) whereF ,m_1)=F, with probability ® ,(V(m—1)). Hence
a particular trajectory of the dynamics is specified by a par-
Wt |+ _ a b ticular sequence of events{a(m);m=0,1...|]a(m)
FAV)= AV =Wat Wy, ©4(V) =g (VXY (V)’(43) e{0 ... 3} together with an initial poinV(0). The con-
traction ratio\ , of F, is defined by
Fo(V)=wW+1+w,, D(V)=¢P(V)A—NgAV)), ,
o VNV
V#V

(47)

Fa(V)=yW+I, @3(V)=1- (V)AL -AyA(V)).
(45  and satisfiea <1 for all @ sincey<1. Therefore the IFS is

hyperbolic, and the contraction mapping theorem yields the
In the limit of zero synapticX=1) and zero threshold noise unique fixed pointv® of F, such that

(B— ), the probabilities for firing and rebounding approxi-

mate the step functior®(V—h) and®(«— h) respectively. lim (F,)™(V)=V® (48)

In this circumstance the iterated function syst@fs) J re- m— o

produces the dynamics of the piecewise linear ri@pex-

actly, since for a given staté¢, one of thed , will be equal for all V. The fixed points ofJ determine an interval
to 1. The mapF, is never possible sincd,=0 for allV  Q=[(1-wy)/(1—7),(l +wp)/(1—17)] such that
(rebounding and firing are mutually exclusive in the zeroFy,F;,F,,F5:Q—Q. As an example of the IFS, we
noise limiy. The mapsF,, F; and F, coincide with the present a typical set of orbits in Fig. 13, with nonzero re-
left-hand, middle, and right-hand portions of the trilinearbound currents and pure synaptic noi&ero threshold
piecewise linear mafB4), respectively. noise.
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FIG. 15. The invariant measure of the random [E,Ss shown

FIG. 14. The invariant measure of the random [FSs shown for A\=1 y=0.618, and no rebound currents.

for A=1, andy=0.99. The filled black histogram shows the case
with zero rebound current. The unfilled histogram is the case when

w,=0.05.
° a rebound current can lead to a broadening of the frequency

histogram, yielding a more even sampling of the unit inter-

Figure 13 shows that different parts of the inter¢alare  val. (Similar behavior results with the inclusion of threshold
visited with differing frequency. This suggests that associ-and synaptic noise, with the histograms showing some bias
ated with the random IFS, there is alensityon the attractor ~and losing the symmetry arount= 3)
of 3. This density may be formally discussed with the help of In the presence of a finite temperaturenzerog) the
measure theory20]. For example, in the case of state- IFSJ has state-dependent probabilities. The limiting behav-
independent transition probabilities, a frequency histogranior of the system is still characterized by a unique invariant
of how often an orbit visits a particular subinterval 6f  measure, also exhibiting a fractal structure similar to that
reveals the invariant measuss of an IFSJ. The support of ~seen abovgl9]. One extra nonergodic feature of the analy-
wy is called the attractoA; of the IFS. Both the attractor Sis, in contrast to an analysis with state-independent prob-
A and the invariant measuge typically have a rich fractal ~abilities, is the emergence of absorbing states.
structure. To illustrate these ideas using numerical simula- We saw in Sec. IV that in the absence of noise our model
tions, we rescale the map onto the unit interj@/1], by ~ neuron has a periodic response to external stimuli. Moreover,
settingw,=1 and |=1—y—w,. In the high temperature the average firing rate is independent of initial conditions,
limit (8—0), ¥3(V)— ¢°(V)— 2, and the IFSJ reduces to and forms a devil's staircase structure as a function of the

external input. With the introduction of synaptic noise

J given b
J d (A<1,8— ), the dynamics is no longer periodic. However,
Fo(V)=vV, ®&y(V)=\/4, (49 as seen in Fig. 16, the steplike nature of the neuron’s re-
sponse characteristics, defined by H8§) and(37), tend to
FiV)=wW+w,, P (V)=\/4, (50 be preserved, even for high values of synaptic noise. How-

ever, the case of pure threshold ndige=1,8 O(1)] differs
Fo(M)=W+1-y, @y(V)=112-\/4, (51)  somewhat. The response characteristic is then smooth as
shown in Fig. 17.
Fs(V)=W+1—y—w,, ®3(V)=1/2—-N/4. (52
In this instance, the IFS has state-independent transition VI- DISCUSSION
probabilities, for which it is known that there exists a unique In this paper, we introduced an analytically tractable and
invariant measurg¢20]. We approximate this measure nu- computationally simple model of pulse coupled neurons,
merically by calculating how often an orbiv/(m)} visits a  with hyperpolarization-activated currents, existing in some
particular subinterval of0,1]. From Figs. 14 and 15, it can interconnected population. The basic single neuron equation
be seen that ay—1 the measure becomes progressivelyfrom which the population is built is based upon the time-
smoother. However, as illustrated by Fig. 14, the inclusion osummating single neuron model of Bressloff and Taylor



4064 S. COOMBES AND S. H. DOOLE 54

1 T T L ) T T "‘I/‘,’f
fv“""

g 08 | A | £ ]
- L (="
o0 v 80
g & .8
= =
2 06 " 1 3 .
3 / o
g :
.E 0.4 r ‘ = b-_‘ .
o : D)
& Y &
L VA > ]
< 0.2 " 7 a'\‘« J <

:/ S,

i \\\ T,

,' ‘\VMM % )

0 : 1 ' |\‘| 1 1 1 i 0 1 1 1 1 |%\‘\I\k‘ It i
0 010203040506070809 1 0 01020304050.6070809 1
I I

FIG. 16. Response characteristic for a neuron with pure synaptic FIG. 17. Response characteristic for a neuron with pure thresh-
noiseA =0.5 andB—c. The upper line is the firing rate, the lower old noise=1.0, and\=1. The increasing line is the firing rate,
line is the firing rate(other parameters as in Fig.)13 decreasing line is the firing ratether parameters as in Figure)13

[16]. In common with many discrete-time binary neuron erage cell membrane potential and number of active mem-
models, firing is modeled as a threshold event. We havéers of the population both highlight the possibility of hys-
extended this caricature of a real neuron by modeling théeretic transitions between orbit branches. Therefore, the
injection of a rebound current as another threshold eventttractors of the population dynamics can depend upon
Such a model is relevant to the study of neural circuits owhether the bifurcation parameters representing the external
CPGs that are known to rely upon post-inhibitory reboundinput and the level of threshold noise are increasing or de-
for the generation of rhythmic behavior. creasing. Additionally, with the introduction of rebound cur-

In fact, in the absence of noise, the population dynamicsents, the asymptotic dynamical state of the system often
may be formulated in terms of a set of coupled circle mapsswitches from occupying a chaotic attractor to a low order
Exploring coherent oscillatory behavior in such a system igperiodic orbit. In fact, not only do rebound currents suppress
of special interest when one recalls that such systems afhaotic neuronal response in the above system, but macro-
maps have previously been used to simulate the evolution afcopically ordered states are preferred. The system is seen to
temporal correlations and decorrelations in groups of spikingexist with almost all neurons firing or quiescent, thus defin-
neurong 27]. ing coherent oscillatory states.

Of course, one may resort to more detailed studies with, The more biologically important source of noise arising
say, the use of coupled Hodgkin-Huxley equations, realistidrom the random fluctuations in the number of quanta of
post-synaptic responses and detailed equations describing thbemical transmitter released into the synaptic cleft has also
kinetics of hyperpolarization-activated inward ionic currents.been considered. For our single neuron model, we have for-
The limitations of such an approach include the formidablemulated the stochastic dynamics in terms of a random IFS on
number of free parameters that need to be used in a populthe space of membrane potentials. The limiting behavior of
tion study, together with the loss of analytical tractability. A the neuron has been discussed with the aid of numerical
reduction to a simpler set of coupled equations, preservingimulations. In particular, we have made comparisons with
essential features of the real biological neuron, is clearly dethe same system in the absence of any noise. In this case, the
sirable. The introduction of a rebound current to the ex-single neuron has circle map dynamics with periodic orbits
tended time-summation neuron model has provided such and an average firing rate that is independent of initial con-
reduction from which a mean field theory for large popula-ditions. Moreover, as a function of external input, this firing
tions is easily constructed. The effects of noise at the axomate forms a devil's staircase. In the presence of noise, the
hillock are incorporated with the introduction of a set of response characteristic no longer assumes this self-similar
random thresholds and appropriate averaging. pattern. With pure threshold noise, the response characteris-

Several predictions from a mean field theory of a populatics can be completely smoothed, whereas the firing and re-
tion of globally inhibitory neurons with rebound currents and bounding rates for pure synaptic noise continue to reflect
threshold noise have arisen. Bifurcation diagrams for the avguite strongly those in the noise free case.
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