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The analysis of networks of time-summating binary neural networks is relevant to the study of coherent
oscillatory behavior in neuronal populations. A class of networks based on a discrete-time version of leaky
integrator networks has recently been extended to include the effects of hyperpolarization-activated inward
currents@S. Coombes and S. H. Doole, Dyn. Stability Syst.11, 193, ~1996!#. Such rebound currentsare
important for central pattern generation in neuronal circuits with reciprocal inhibition. In this paper, we
incorporate models of intrinsic synaptic and threshold noise into the above neural system. The macroscopic
behavior of time-summating networks with rebound currents and random thresholds is analyzed in the ther-
modynamic limit. Mean field equations are derived for the average network activity in a homogeneous network
with inhibitory synaptic connections. Periodic and chaotic solutions are shown to exist, together with hysteretic
transitions between periodic orbits. This hysteresis is observed between particular periodic orbit branches, as
well as more globally with respect to variations in external input or threshold noise. Moreover, rebound
currents are shown to suppress chaotic network response to external input, in favor of low order periodic
responses, which in turn define well ordered coherent macroscopic oscillatory states for the system. The
response characteristic of a single neuron in the presence of synaptic multiplicative noise is also considered and
compared to its zero noise limit. In this latter case, the dynamics is reduced to a piecewise linear discontinuous
circle map, while the former is expressed in terms of a random iterated function system.
@S1063-651X~96!04810-6#

PACS number~s!: 87.101e, 02.50.Ey, 84.35.1i

I. INTRODUCTION

The analysis of reciprocally connected neurons has re-
ceived much attention in an attempt to understand the
mechanisms whereby rhythm generation is produced by a
neuronal central pattern generator~CPG! in the absence of
endogenous pacemaking cells@1–6#. In particular, Brown
@7,8# has proposed the half-center oscillator model to account
for the rhythmic motor activity for stepping movements ob-
served in spinal cats. Two pools of interneurons, the half-
centers, are envisaged to control flexor and extensor muscles
communicating via reciprocally inhibitory synapses. To gen-
erate oscillations from two such pools requires additional
physiological factors such as fatigue, adaptation, or post-
inhibitory rebound. Post-inhibitory rebound~PIR! is a non-
linear phenomenon encountered in a variety of nerve cells. It
is an active process in which the excitability of a neuron is
enhanced temporarily following a period of hyperpolariza-
tion. Biological CPGs with half-center architectures that
have been shown to depend on the presence of such ‘‘re-
bound currents’’ include the heartbeat control circuit in the
medicinal leech@9#, the swimming circuit for the mollusc
Clione @10#, respiratory control in the pond snail@11#, and
gastric rhythms in crustaceans@12#. Typically, such CPG
circuits are built from relatively few neurons. A much larger
network, found in the brain, that generates rhythmic activity
is the nuclear reticular thalamus~NRT!. This is a thin neu-
ronal sheet composed of coupled inhibitory neurons. In com-
mon with the circuits underlying rhythm generation in the
simple invertebrates mentioned above, NRT neurons can re-

bound from hyperpolarization to fire. The NRT is thought to
serve as a pacemaker for synchronous spindle oscillations
seen during drowsiness, sleep, or anaesthesia@13#.

Previous models of simple CPGs for heartbeat, swim-
ming, respiration, gastric rhythms and also the rhythmic ac-
tivity in thalamocortical systems have combined the generic
reciprocally inhibitory architecture with Hodgkin-Huxley
equations utilizing hyperpolarization-activated inward ionic
currents@14,15#. To avoid the difficulties of analyzing such
complex systems, a much simpler neuronal population dy-
namics incorporating the effects of PIR within the time-
summating binary neuron model@16# has been proposed
@17#. This model is a discrete-time approximation of the bio-
logically realistic leaky-integrator equations that describe
cell membrane potential dynamics. Both firing events and the
triggering of the injection of rebound currents at the cell
body are signaled by the crossing of thresholds. Hence there
is a threshold for firing and a threshold for rebounding. In
this paper, we examine the asymptotic states for this popu-
lation dynamics and concentrate on the following issues.

~i! How do PIR currents affect the dynamical attractors in
large populations of globally reciprocally inhibitory neural
networks?

~ii ! How does this system respond to perturbation with an
external input?

~iii ! How robust is the system to the stochastic noise that
is present in all neuronal systems?

In the first instance we present the dynamics for the stan-
dard time-summating binary network with rebound currents.
Noise at the axon hillock is modeled via a random modula-
tion of the thresholds for firing and rebounding. Mean field
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equations for the average membrane potential and mean net-
work activity are derived by averaging the dynamical popu-
lation equations with respect to the random thresholds, and
taking the thermodynamic limit. The range of possible re-
sponses is investigated numerically. Attention is concen-
trated upon bifurcation parameters representing the levels of
threshold noise, and global external input. The presence of
rebound currents is seen to suppress chaotic behavior. In
particular, these currents can lead to low order periodic orbits
for the average activity of the network. Interestingly, the ac-
tive population number is thought to control the CPG fre-
quency of the half-center swimming circuit in the tadpole
Xenopus@18#. Hence intrinsic neuromodulation of such cur-
rents in reciprocally inhibitory circuits may serve to alter the
frequency of rhythmic pattern generation. Furthermore, the
presence of PIR currents allows hysteretic transitions be-
tween periodic orbits. Therefore, neuronal population re-
sponses to external input will depend upon whether this
stimulation is increasing or decreasing. Similar hysteresis ef-
fects are observed with variation in the threshold noise.

Another biologically significant source of noise in the
single neuron arises from the quantal release of chemical
transmitters into synapses. Such neurotransmitter release
provides a mechanism for converting presynaptic axonal sig-
nals into changes in the membrane potential of post-synaptic
neurons. This multiplicative noise is modeled by indepen-
dently updating synaptic connection strengths at every time
step according to some probability distribution, as originally
proposed by Bressloff@19#. Since the nature of synaptic neu-
rotransmitter release is quantal, each random connection
strength only has a finite number of possible values. In con-
junction with the fact that the number of output states of a
binary network is itself finite, the stochastic dynamics of
time-summating networks with PIR currents and synaptic
noise may be formulated as a random iterated function sys-
tem @20# on the space of membrane potentials. We illustrate
such a stochastic dynamics by concentrating on a single neu-
ron for which the limiting behavior is described by an invari-
ant probability measure on the space of membrane potentials.
The invariant measure is seen to have a fractal-like structure.
To highlight the response characteristic of this stochastic
single neuron, we make a comparison with the same system
in the limit of zero noise. In this case, the single neuron
dynamics can be reduced to a piecewise linear map with two
discontinuities and the response characteristics follow a self-
similar ~nonmonotonic! devil’s staircase. Hysteresis persists
for the single neuron and the piecewise linear structure of the
map can be exploited to allow a quite explicit analysis of this
feature.

II. DYNAMICS

Single neuron equations that reproduce all the behavior of
a biological neuron can be used as the basic elements for a
study of neuronal population dynamics. In particular, Bress-
loff and Taylor @16# developed a dynamical model of a bi-
nary neural network that incorporates certain important neu-
rophysiological features. This is achieved by constructing a
discrete-time approximation of a leaky-integrator model with
cell membrane potential decay. However, one feature of a
single neuron that their model does not describe is that of

post-inhibitory rebound. With this in mind, we define the
following model ofN leaky integrators with post-inhibitory
rebound@17#. Let Vi(t) be the membrane potential of the
i th neuron at timet with respect to some resting potential.
ThenVi(t) satisfies the differential equation

dVi~ t !

dt
52

Vi~ t !

t i
1(

j51

N

Dgi j ~ t !1Dgi~ t !, ~1!

where t i is the i th cell membrane time constant and
Dgi j (t), iÞ j , is a measure of the synaptic conductance
change at thej th synapse of neuroni . Excitatory synapses
have positivegi j , while inhibitory ones are negative. The
term Dgi(t) is taken to be positive in sign. It describes an
excitatory feedback current representing the effect of post-
inhibitory rebound and does not involve synaptic processing.

A discrete-time approximation of the neuronal dynamics
may be obtained by first formally integrating Eq.~1! @with
Vi(0)50# to obtain

Vi~ t !5E
0

t

dt8e2~ t2t8!/t iS (
k51

N

Dgik~ t8!1Dgi~ t8!D . ~2!

A simple model of neuronal input that allows evaluation of
Eq. ~2! is to assume that neuroni receives an impulse of size
wi j each time that neuronj fires. Thus

Dgi j ~ t1td!5wi j (
n>1

d~ t2Aj
n!, ~3!

whereAj
n is the time at which thej th neuron fires for the

nth time sincet50, andd(x) denotes the Dirac delta func-
tion. The synaptic delay timetd is included to account for the
time between the arrival of a signal at a synapse and the
resulting change in resting potential of the neuron. In a simi-
lar fashion, we write the post-inhibitory rebound current in
the form

Dgi~ t1tp!5wi (
n>1

d~ t2Bi
n!, ~4!

whereBi
n represents the time at which thei th neuron re-

bounds for thenth occasion, andtp is the delay time for
post-inhibitory rebound to take effect. Thenth firing and
rebounding times are defined by

Aj
n5 inf$tuVj~ t !>hj ;t>Aj

n21%, ~5!

Bj
n5 inf$tuVj~ t !<k j ;t>Bj

n21%, ~6!

respectively. The quantitieshj andk j measure the thresholds
for firing and rebounding respectively. In general,Aj

n and
Bj
n lie on a lattice generated bytd andtp , and the first times

that firing and rebounding occur.
For simplicity, we settp5td and proceed by breaking the

integral in Eq.~2! into @0,td# and @ td ,t#. The more general
case of distinct delays is considered in@21#. The integral
over@0,td# is treated as a boundary term which is determined
by the state of the network over the interval@2td,0#. We
choose initial conditions such that the first firing and re-
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bounding times are multiples oftd . In this case, all subse-
quent firing and rebounding times are multiples oftd . For
any functionf , we may write

(
n>1

f ~Aj
n!5 (

m50

`

f ~mtd!aj~m!, ~7!

(
n>1

f ~Bj
n!5 (

m50

`

f ~mtd!bj~m!, ~8!

whereaj (m) andbj (m) are thefiring and reboundingfunc-
tions defined by

aj~m!5H 1 Aj
n5mtd

0 otherwise, bj~m!5H 1 Bj
n5mtd

0 otherwise. ~9!

Hence we deduce that

Vi~m!5(
r51

m

g i
r21S (

k
wikak~m2r !1wibi~m2r ! D

~10!

for t5mtd . In Eq. ~10!, we have settd to unity for clarity
and introducedg i5e21/t i. At noninteger multiples of the
fundamental time delaytd , the neuron does not receive any
input, and the neuronal dynamics are given simply by

Vi~ t !5e2~ t2m!/t iVi~m!, m,t,~m11!. ~11!

We write Eq.~10! as the first-order iterative equation

Vi~m!5Fi„VI ~m21!…

5g iVi~m21!1(
k
wikak~m21!1wibi~m21!,

~12!

whereVI is a vector with componentsVj , and the firing and
rebounding functions take the formai(m)5Q„Vi(m)2hi…,
and bi(m)5Q„k i2Vi(m)…. HereQ denotes the step func-
tion, Q(x)51 if x>0 and is 0 otherwise. The first term on
the righthand side of Eq.~12! represents simple voltage de-
cay at the cell membrane. The second term is interpreted as
synaptic input, and the third represents the effect of a re-
bound current.

III. MEAN FIELD THEORY

The macroscopic behavior of time-summating networks
with PIR currents in the thermodynamic limit is relevant to
the discussion of systems such as the swimming circuit of
the Xenopus tadpole. A large population of neurons with
inhibitory couplings relies on rebound to support a self-
sustained rhythmic behavior. The active number of neurons
in this population has been linked to the control of swim-
ming frequency@18#. A mean field theory allows one to fol-
low the average activity of a population as a well defined
macroscopic dynamical quantity. To derive mean field equa-
tions for a homogeneous inhibitory network, we proceed in a
similar fashion to@22#.

The effect of noise at the axon hillock is introduced by
reinterpreting the thresholds for firing and rebounding as ran-
dom variables. This is achieved by generating a random ex-
ternal fieldh i from some distributionr i(h i). This field can
be considered as a random modulation of the deterministic
thresholdshi andk i . In this case, the probability of thei th
neuron firing when the membrane potential is equal toVi is

c i
a~Vi !5E

2`

`

dh ir i~h i !Q~Vi2hi1h i !, ~13!

and the probability of rebound,c i
b(Vi), is constructed in an

analogous fashion. A common choice for the distribution of
thresholds is one that reproduces the Little model@23#

r i~h i !5
]

]h i
f ~h i !, ~14!

where f (u)5„11exp2bu…21 is a sigmoid function with a
‘‘temperature’’ parameterb21[T, measuring the noise
level. The probabilities for firing and rebounding then take
the simple form

c i
a~Vi !5 f ~Vi2hi !, c i

b~Vi !5 f ~k i2Vi !. ~15!

We now consider a homogeneous network in the thermody-
namic limit N→` with inhibitory couplings such that
wi j52wa /N, wi5wb , hi5h, k i5k and g i5g for all i .
The dynamics for such a system arising from Eq.~12! are

Vi~m11!5Fi
h
„VI ~m!…

5gVi~m!2
wa

N (
j51

N

Q„Vj~m!2h1h j~m!…

1wbQ„k2Vi~m!1h i~m!…1I , ~16!

where we have additionally included a global external input
I .

To derive mean field equations for a homogeneous net-
work, consider a fixed vectorVI and define the associated
random variablesVi85Fi

h(VI ), with mean and variance

V̄i85^Fi
h~VI !&r , ~17!

~DVi8!25^~Fi
h~VI !2V̄i8!2&r . ~18!

Here ^&r denotes averaging with respect to the random
thresholds. Using the distribution~14!, we obtain

V̄i85gVi2
wa

N (
j51

N

f ~Vj2h!1wbf ~k2Vi !1I ~19!

and

~DVi8!25
wa
2

N2 (
j51

N

$ f ~Vj2h!2 f 2~Vj2h!%

1wb
2$ f ~k2Vi !2 f 2~k2Vi !%. ~20!

Each term in the mean and variance is finite. In the thermo-
dynamic limit, fluctuations depend upon the size of the re-
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bound current since (DVi8)→wb/2. For small rebound cur-
rents, the probability thatVi85V̄i8 in a given trial approaches
unity. Now setVI to beVI (m). ThenVi8(m)5Vi(m11) and
we obtain, for largeN, the dynamical mean field equations

Vi~m11!5gVi~m!2
wa

N (
j51

N

f „Vj~m!2h…

1wbf „k2Vi~m!…1I . ~21!

Similarly, the mean activity of the network,
Mm5N21( jaj (m), satisfies

Mm5N21(
j51

N

f ~Vj~m!2h!. ~22!

As „Vi(m11)2Vj (m11)…/„Vi(m)2Vj (m)…,g1wb/2, the
long term macroscopic behavior of the network is effectively
governed by the single mean field equation

Xm115Fb~Xm!5gXm2waf ~Xm2h!1wbf ~k2Xm!1I ,
~23!

with Xm5N21( jVj (m), provided g1wb/2<1. The mean
output activity is now given by

Mm5 f ~Xm2h!. ~24!

The dynamical equations~23! and~24! are exact for a single
neuron with PIR in the presence of threshold noise of the
Little type. In fact, Eq.~23! may be regarded as a systematic
extension of the postulated single-neuron model of Aihara,
Takabe, and Toyoda@24# to include the effects of a rebound
current.

To study the dynamics of the mapFb(X), we must first
determine any invariant intervals. These intervals are deter-
mined by the critical points which solve

dFb~Xm!

dXm
50 . ~25!

In the absence of any rebound currents, maps~23! and ~24!
possess certain symmetries which give structure to the re-

sponse diagrams. To show this, we introducexm5Xm2h
andA5I2h(12g).0, and write the map~23! in the pa-
rametrized form

xm11[FA~xm!5gxm2waf ~xm!1A. ~26!

We form the relations

FA~2xm!52FA~xm!12A2wa , ~27!

FA~xm!5F2A~xm!12A, ~28!

from which we can establish

FA8~xm!52F2A8~2xm! ~29!

for a shifted bifurcation parameterA85A2wa/2. Thus the
bifurcation diagram ofFb(Xm) is symmetric about the point
I5wa/21h(12g) ~for wb50). SinceMm115 fsFA(xm),
the firing map MA[Mm11 obeys the relation
MA8512M2A8, and is also symmetric about
I5wa/21h(12g). For nonzerowb , the full dynamical
equations take the form

xm11[GAd~xm!5FA~xm!1wbf ~d2xm!, ~30!

whered5k2h. One can also establish the relation

GA8d~xm!52G2A8~2d!~2xm!, ~31!

whereA85A1(wb2wa)/2. Hence the introduction of re-
bound currents will lead to a destruction of symmetry in any
bifurcation diagrams with fixed nonzerod, and this loss of
symmetry is first observed close to the point of symmetry for
wb50.

To see how the invariant interval can affect dynamical
behavior, it is instructive first to consider the case with zero
rebound. We introduces5wab/2g21 so that the function
FA has critical points atx2 andx1 where

bx65 ln~s6As221!. ~32!

FIG. 1. Graph of the mapFb . The dashed rectangular region
denotes the restriction ofFb to the invariant interval determined by
the critical points, withb525, h50, g50.5, I50.2,wa51.0, and
wb50.5. The dotted line shows the graph forwb50. FIG. 2. Average voltage bifurcation diagram.wa51.0,wb50,

d50.5,g50.7, andb525.0.
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There is also a unique fixed pointx0, which lies in the inter-
val @x2 ,x1#. For fixedb, g, andwa , varying the bifurcation
parameterA simply shifts the graph ofFA up or down. For
b@1 ~low temperature!, there exists an interval
V5@w2 ,w1#, with 0,w2,w1,wa , such that for allA
PV the fixed point is unstable. All trajectories then con-
verge to the closed intervalS5@FA(x2),FA(x1)#. There is
also the possibility of chaotic dynamics since a positive Li-
apunov exponent can occur. IfA¹V, the fixed point is
stable and all trajectories converge tox0. Note the invariant
intervalS is contained within@A2wa ,A# ~the invariant in-
terval in the limit b→`). For nonzerowb , the invariant
interval for nontrivial dynamics will also be determined by
the critical points ofGAd and the stability of the fixed point
~see Fig. 1!. Simple analytic expressions like Eq.~32! for the
critical points are cumbersome since they are now the roots
of a quartic inf . However, it is a simple matter to bound the
invariant interval by@A2wa ,A1wb#, for example. Now, as
A is decreased, the stable fixed pointx0 can destabilize and
restabilize twice in turn.

We now examine some simulation results to illustrate the
effects of introducing rebound currents into the neuronal
population dynamics. In all of these, we have takenh50,
and moreover ensured thatg1wb/2<1 in order that the
mean field theory is valid. As a benchmark, we first examine
the casewb50 in Fig. 2. The averaged voltage respects the
symmetry described above~reflect first in X50 and then
I5 1

2!. Without rebound, there is only nontrivial output for
excitation (I.0). We note the existence of four bands of
chaos, and the collapse to trivial fixed point dynamics out-
side the regime shown. The existence of this chaos has been
confirmed numerically by calculation of the Liapunov expo-
nent according to

l~x!5 lim
n→`

1

n (
m50

n21

lnI dxm11

dxm
I . ~33!

Oncewb is nonzero, hysteresis is observable, both locally
between particular periodic orbit branches, as well as more
globally with respect to variations of the external input over
relatively wide parameter windows. In addition, suppression
of chaotic dynamics in favour of low order periodic re-
sponses can occur. In Fig. 3, we see the multiplicity of solu-
tions that gives rise to the possibility of~local! hysteresis.
Between the vertical dividers the second and fifth lines cor-
respond to the response with increasing average voltage,
while the others correspond to the output with decreasing
voltage. Later on, when we look at the case of a single neu-
ron in the absence of threshold noise~Fig. 12!, we will be
able to identify the multiplicity in the center of Fig. 3 as the
coexistence of ‘‘noisy’’ versions of period 3 and period 2
orbits of a certain piecewise linear map. We have termed this
local hysteresis, since we are able to recognize the orbits
involved over the small parameter window. This particular
example of hysteresis is extinguished when the spreading fan
of periodic points hits the origin at values ofb below about
270.

In Figs. 4 and 5, we have decreasedb to 25, to expose
global hysteresis with increasing vs decreasing external in-
put. The breakup of the symmetry of the response is also
clear. With the introduction of PIR, it is possible to obtain

FIG. 3. Local hysteresis in average voltage.wa51.0,
wb50.28,d50.6,g50.8, andb5300.

FIG. 4. Global hysteresis in average voltage:I increasing.
wa51.0,wb50.5, d50.5,g50.7, andb525.

FIG. 5. Global hysteresis in average voltage:I decreasing.
wa51.0,wb50.5, d50.5,g50.7, andb525.
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nontrivial responses in the presence of external inhibition
(I,0). The simple periodic structure observed for such in-
put is typical of the dynamics due to PIR. If we examine the
mean activity, rather than the average voltage, then the sig-
moidal form ofM maps these negative valued orbits to~ef-
fectively! zero. These low order periodic orbits due towb
Þ0 are also those which break up the symmetric structure
for I.0. If one looks at the graphs ofF2 andF4, it becomes
clear why periods 2 and 4 are so robustly stable to variations
in I . The ‘‘quartic’’ nature of the graphs of those higher
iterates means that the fixed points are both stable and lie
within the invariant interval. Moreover, the shallow slope at
the fixed points requires large perturbations to the map for
destabilization. In comparison, the ‘‘quadratic’’ form with
wb50 has unstable fixed points within the invariant interval.
Finally, note that depending on whetherI is increasing or
decreasing, either one or two bands of chaos are suppressed,
respectively.

We have established that PIR currents can lead to low
order periodic orbits and hence the suppression of chaos for
a range of external input. Comparing Figs. 4 and 6, we can
see how low order orbits inX lead to corresponding low
order orbits in the mean activityM . The existence of such
orbits forM implies that the system as a whole is in a mac-
roscopically ordered state sinceMm'0, 1. That is, in the
regime where PIR currents suppress chaos, the network can
be bistable~or even tristable!, with the mean output activity
oscillating, say, between the ordered state with nearly all
neuronsoff and the opposite ordered states of nearly all neu-
ronson together. In contrast, when the dynamics is chaotic,
both ordered and disordered macroscopic states coexist and
there is no coherent oscillatory behavior.

We close this section by looking at bifurcation diagrams
in temperatureT. The variation ofT is interesting because
many neuronal CPGs alter their rhythmic behavior via intrin-
sic, as opposed to extrinsic, neuromodulation. In our model,
the global external inputI is a source of extrinsic input,
while modulation of the thresholds for firing and rebounding
is intrinsic. In Figs. 7 and 8, we see that hysteresis remains
possible. It is particularly striking since in the direc-

tion of increasingT, only low order periodic responses are
possible, whereas a wide band of chaos is possible for the
opposite variation.

IV. REDUCTION TO A PIECEWISE LINEAR
DISCONTINUOUS CIRCLE MAP

It is instructive to consider the case of a single neuron
with rebound currents in the absence of noise. This may be
achieved by taking the limitb→` with N51 in Eq. ~21!.
Alternatively, for a single neuron, consider Eq.~12! and de-
fine xm :5V(m)2h. Now introduce the five parameters
wa52w11.0, wb5w1.0, d5h2k, A5I2h(12g), and
0,g,1. The dynamics of a single PIR neuron is then gov-
erned by the map~see Fig. 9!

xm115F~xm!5H gxm1A2wa , xm>0

gxm1A, 2d<xm,0

gxm1A1wb , xm,2d . ~34!

This is a particular case of the maps studied in@17#, where
Eq. ~34! is considered as a lift of a degree one circle map,
and hence we provide only a summary of results in this sec-
tion. We supposewa.A.0 and henceC[A2wa,0 ~since
otherwise trivial fixed point dynamics result!. Bounded dy-
namics are confined to an invariant intervalS. For definite-
ness, we scalewa51. Moreover, as the map is piecewise
linear, the Liapunov exponent@Eq. ~33!# can be readily
evaluated to be constant and equal to lng,0, and chaos is
not possible.

Before we can discuss the dynamics described by Eq.
~34!, we must first know when an appropriate invariant in-
terval exists, and what are suitable ranges for the variation of
the bifurcation parameterA. The map has a stable fixed point
at x̄5(12A)/(g21) and nontrivial dynamics only occur
while this point remains outside the invariant intervalS as
A varies. Moreover, whenC.2d ~that is,A.12d), then
F reduces to a bilinear map on the invariant interval. We
introduceE andD as the heights ofF on either side of the
discontinuity at2d ~see Fig. 9!. It is straightforward to show
that S is either @C,A# or @C,E#. Note that if D,C

FIG. 6. Demonstration that PIR currents can lead to ordered
macroscopic states (I increasing!. wa51.0, wb50.5, d50.5,
g50.7, andb525.

FIG. 7. Global hysteresis in mean activity: temperature increas-
ing. wa51.0,wb50.4, d50.5,g50.75, andI50.2.
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(gd.1) then the discontinuity at2d is not included in the
invariant interval and hence the map is bilinear for all rel-
evant variation ofA. Biologically, this means that PIR does
not affect the neuron and so this case is of little interest. We
distinguish two cases.

Case I.If A.E andC,D, thenS is @C,A#5@A21,A#
and wb,gd,1. Hence, nontrivial dynamics occur for
A,min(1,1/g). On the left of a bifurcation diagram inA,
the dynamics on the invariant interval behaves according to
the full trilinear map. OnceA increases beyond 12d, the
dynamics on the invariant interval is bilinear.

Case II. Suppose E.A and C,D, so that
min(1,wb).gd. For smallA, S is @C,E# but asA increases,
there are two possibilities. IfE hits x̄ whenA5AE , say, and
AE,12d, then the dynamics collapse whenA5AE and
there are no nontrivial bilinear dynamics. Alternatively, if
AE.12d, then atA512d, the map becomes bilinear and
the invariant interval jumps discontinuously to@C,A#.

The piecewise linear nature of the map also allows simple
periodic orbits to be explicitly described. A (p, q, r ) orbit on
@C,A# is a periodic orbit of periodp1q1r which visits the
three parts of the domain@C,2d), @2d,0) and @0,A), p,
q, and r times, respectively, and is stable if it exists. For
example, it is straightforward to calculate that the leftmost
points of primary orbits of the form (0,1,n) and (1,0,n) are
given by

x~1!5

S (
m51

n

gmDA2S (
m51

n21

gmD
12gn11 ,

x~2!5

S (
m51

n

gmDA2S (
m51

n21

gmD 1gnwb

12gn11 ,

~35!

respectively. Many detailed features of the bifurcation dia-
grams can be understood in terms of periodic orbits like
these, and more importantly when they cease to exist: for
example, when a point on the orbit coincides with one of the
two discontinuities as we varyA. Such interactions with the

discontinuities determine bifurcation dynamics. In addition,
after colliding with a discontinuity (0 or2d), a primary
periodic orbit typically undergoes a Farey-tree-type bifurca-
tion @25# which thus generates periodk solutions, wherek is
limited mathematically by the resolution of the bifurcation
diagram, and biologically by minimum feasible currents~for
example, see Fig. 10!. This sort of feature can also be found
in earlier neuron map models@26#. The novelty with two
discontinuities is that the discontinuity at2d can also trigger
such behavior asA varies, and the two discontinuities com-
pete with each other to create additional features—for in-
stance, hysteresis.

In Fig. 10, we show an example of case II dynamics. With
d50.5, the left-hand region is dominated by trilinear dynam-
ics: note how the quasiperiodic regime loses the symmetry of
the bilinear map. Note too that the invariant interval is
@A,E#5@A21,A10.1# until the transition atA512d50.5
to @A21,A#. In Fig. 11, we show the average firing~upper!
and rebounding rates~lower! for this parameter set, defined
in general by

ra5 lim
M→`

1

M (
m51

M

Q„V~m!2h…, ~36!

rb5 lim
M→`

1

M (
m51

M

Q„k2V~m!…, ~37!

respectively. The two rates coincide untilA50.2 before the
rebound rate necessarily decreases to zero as the map be-
comes bilinear whenA50.5. The effect of PIR is clear:
jumps and lack of monotonicity in the devil’s staircase. The
jumps are associated with a periodic orbit hitting the discon-
tinuity at2d asA is varied. Typically, the same period orbit
of the trilinear map cannot be sustained by the bilinear map.
If the period changes, then so will the firing rate. This jump
in period at2d can also give rise to hysteresis.

The piecewise linear nature of the map allows an explicit
analysis of the hysteresis, and it cannot occur when
d5wb50. The period two (1,0,1)-orbit in Fig. 12~case I!
hits 2d when

FIG. 8. Global hysteresis in mean activity: temperature decreas-
ing. wa51.0,wb50.4, d50.5,g50.75, andI50.2.

FIG. 9. Graph of the piecewise linear mapF. The dashed rect-
angle indicates region of convergence.
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A5A25
2d~12g2!112gwb

g11
, ~38!

and the period 3 (0,2,1) orbit when

A5A35
2d~12g3!11

g21g11
. ~39!

For the period 3 orbit to be feasible, we requireD,0
(A,gd) so that two successive iterates in (2d,0) are pos-
sible. Now whend5wb50, we always haveA2,A3 and no
hysteresis is possible: the usual Farey-tree bifurcation will
occur. However, once PIR is included, there is a window of
g values where hysteresis can occur, nominally bounded by
values such thatA25A3. However, such windows are further
restricted by the lociA5gd ~as mentioned above! and
A5g/(g21g11) ~the value when the middle point of the
period 3 orbit hits the origin!. In addition, forA increasing,
the period 3 orbit can be extinguished when theA value at
which the period 2 orbit hits2d overtakes that for the col-
lision of the midpoint of the period 3 orbit with the discon-
tinuity at zero. Repeating such an analysis for other pairs of
periodic orbits is time consuming, and we do not pursue it
further here. Thus we have established that locally the re-
sponse of the PIR neuron to its global input can depend on
whether this activity is increasing or subsiding. This hyster-
esis cannot occur in the absence of PIR. As we saw in Sec.
III, in the presence of threshold noise, this local hysteresis
persists and, in addition, more extensive hysteresis is pos-
sible.

V. QUANTAL SYNAPTIC NOISE

So far we have only considered the effect of threshold
noise acting at the axon hillock. Another important source of
noise arises from random fluctuations in the number of pack-
ets of chemical neurotransmitter released into the synaptic
cleft upon arrival of an action potential. To illustrate how to
model such a stochastic process, we consider a single neuron
in which the synaptic connection is treated as a random vari-
able. The stochastic dynamics for a single neuron becomes

V~m11!5gV~m!2wa~m!Q„V~m!2h~m!…

1wbQ„k~m!2V~m!…1I . ~40!

The self-inhibitory synaptic weightwa is decomposed as
wa(m)5wau(m), where u(m) is the random number of
vesicles released at timem. The weightwa measures the
efficiency with which neurotransmitters bind to receptors.
For a given membrane state, firing is once again signaled by
the threshold event

a~m![Q@V~m!2h~m!#5a. ~41!

A biologically realistic description of stochasticity at the
synaptic cleft should capture both the stimulated and sponta-
neous processes of vesicle emission. Both processes are typi-
cally modeled with the use of a binomial distribution of size
L, where L is the maximum number of vesicles released
~typically L;1—10). For simplicity, we ignore the sponta-
neous release of neurotransmitter in the absence of an incom-
ing signal, and consider the one-vesicle limitL51. The ran-
dom variableu(m) is equal to 1 if a vesicle is released at the
discrete timem. If a(m)50, then u(m)50, whereas if
a(m)51, thenu(m) is generated with probabilityl. In this

FIG. 10. Bifurcation diagram for the piecewise linear map.
wa51.0,wb50.5, d50.5, andg50.8.

FIG. 11. Average firing and rebounding rates for the piecewise
linear map.wa51.0,wb50.5, d50.5, andg50.8.

54 4061NEURONAL POPULATIONS WITH RECIPROCAL . . .



case the conditional probability thatu(m)5u is
P(uua)5al. The random thresholdsh(m) and k(m) are
generated as before, such that the probabilities for firing and
rebounding maintain the forms given in Eq.~15!. Since the
rebound current does not involve synaptic processing,wb
does not depend uponm. The dynamics~40! comprises four
mapsF0, F1, F2, andF3 with associated probabilitiesF0,
F1, F2, andF3, where

F0~V!5gV2wa1I , F0~V!5ca~V!l„12cb~V!…,
~42!

F1~V!5gV2wa1I1wb , F1~V!5ca~V!lcb~V!,
~43!

F2~V!5gV1I1wb , F2~V!5cb~V!„12lca~V!…,
~44!

F3~V!5gV1I , F3~V!5„12cb~V!…„12lca~V!….
~45!

In the limit of zero synaptic (l51) and zero threshold noise
(b→`), the probabilities for firing and rebounding approxi-
mate the step functionsQ(V2h) andQ(k2h) respectively.
In this circumstance the iterated function system~IFS! I re-
produces the dynamics of the piecewise linear map~9! ex-
actly, since for a given stateV, one of theFa will be equal
to 1. The mapF1 is never possible sinceF150 for all V
~rebounding and firing are mutually exclusive in the zero
noise limit!. The mapsF2, F3 and F0 coincide with the
left-hand, middle, and right-hand portions of the trilinear
piecewise linear map~34!, respectively.

The set $(Fa ,Fa)uaP$0 . . . 3%% determines a random
IFS,I, on the membrane potential space, endowed with, say,
the Euclidean metric@20#. That is,I consists of a finite in-
dexed set of continuous mappings on some metric space to-
gether with a corresponding set of probabilities for selecting
one such map per iteration. That is,

V~m!5Fa~m21!„V~m21!…, ~46!

whereFa(m21)5Fa with probabilityFa„V(m21)…. Hence
a particular trajectory of the dynamics is specified by a par-
ticular sequence of events$a(m);m50,1 . . .ua(m)
P$0 . . . 3%% together with an initial pointV(0). The con-
traction ratiola of Fa is defined by

la5 sup
VÞV8

uFa~V!2Fa~V8!u
uV2V8u

, ~47!

and satisfiesl,1 for all a sinceg,1. Therefore the IFS is
hyperbolic, and the contraction mapping theorem yields the
unique fixed pointVa of Fa such that

lim
m→`

~Fa!m~V!5Va ~48!

for all V. The fixed points ofI determine an interval
V5@(I2wa)/(12g),(I1wb)/(12g)# such that
F0 ,F1 ,F2 ,F3 :V°V. As an example of the IFSI, we
present a typical set of orbits in Fig. 13, with nonzero re-
bound currents and pure synaptic noise~zero threshold
noise!.

FIG. 12. Multiple solutions yield hysteresis in the piecewise
linear map:wa51.0,wb50.28, d50.6, andg50.8. The value of
2d is also plotted.

FIG. 13. Dynamics of the random IFSI. Zero threshold noise
(b→`) and stochastic synaptic noise (l50.5). wa51.0,
wb50.5, andh50.0 k520.5, andg50.8.
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Figure 13 shows that different parts of the intervalV are
visited with differing frequency. This suggests that associ-
ated with the random IFSI, there is adensityon the attractor
of I. This density may be formally discussed with the help of
measure theory@20#. For example, in the case of state-
independent transition probabilities, a frequency histogram
of how often an orbit visits a particular subinterval ofV
reveals the invariant measuremI of an IFSI. The support of
mI is called the attractorAI of the IFS. Both the attractor
AI and the invariant measuremI typically have a rich fractal
structure. To illustrate these ideas using numerical simula-
tions, we rescale the map onto the unit interval@0,1#, by
settingwa5I and I512g2wb . In the high temperature
limit ( b→0), ca(V)→cb(V)→ 1

2, and the IFSI reduces to
Ī given by

F0~V!5gV, F0~V!5l/4, ~49!

F1~V!5gV1wb , F1~V!5l/4, ~50!

F2~V!5gV112g, F2~V!51/22l/4, ~51!

F3~V!5gV112g2wb , F3~V!51/22l/4. ~52!

In this instance, the IFSĪ has state-independent transition
probabilities, for which it is known that there exists a unique
invariant measure@20#. We approximate this measure nu-
merically by calculating how often an orbit$V(m)% visits a
particular subinterval of@0,1#. From Figs. 14 and 15, it can
be seen that asg→1 the measure becomes progressively
smoother. However, as illustrated by Fig. 14, the inclusion of

a rebound current can lead to a broadening of the frequency
histogram, yielding a more even sampling of the unit inter-
val. ~Similar behavior results with the inclusion of threshold
and synaptic noise, with the histograms showing some bias
and losing the symmetry aroundV5 1

2.!
In the presence of a finite temperature~nonzerob) the

IFS I has state-dependent probabilities. The limiting behav-
ior of the system is still characterized by a unique invariant
measure, also exhibiting a fractal structure similar to that
seen above@19#. One extra nonergodic feature of the analy-
sis, in contrast to an analysis with state-independent prob-
abilities, is the emergence of absorbing states.

We saw in Sec. IV that in the absence of noise our model
neuron has a periodic response to external stimuli. Moreover,
the average firing rate is independent of initial conditions,
and forms a devil’s staircase structure as a function of the
external input. With the introduction of synaptic noise
(l,1,b→`), the dynamics is no longer periodic. However,
as seen in Fig. 16, the steplike nature of the neuron’s re-
sponse characteristics, defined by Eqs.~36! and~37!, tend to
be preserved, even for high values of synaptic noise. How-
ever, the case of pure threshold noise@l51,b O(1)# differs
somewhat. The response characteristic is then smooth as
shown in Fig. 17.

VI. DISCUSSION

In this paper, we introduced an analytically tractable and
computationally simple model of pulse coupled neurons,
with hyperpolarization-activated currents, existing in some
interconnected population. The basic single neuron equation
from which the population is built is based upon the time-
summating single neuron model of Bressloff and Taylor

FIG. 14. The invariant measure of the random IFSI, is shown
for l51, andg50.99. The filled black histogram shows the case
with zero rebound current. The unfilled histogram is the case when
wb50.05.

FIG. 15. The invariant measure of the random IFSĪ, is shown
for l51 g50.618, and no rebound currents.

54 4063NEURONAL POPULATIONS WITH RECIPROCAL . . .



@16#. In common with many discrete-time binary neuron
models, firing is modeled as a threshold event. We have
extended this caricature of a real neuron by modeling the
injection of a rebound current as another threshold event.
Such a model is relevant to the study of neural circuits or
CPGs that are known to rely upon post-inhibitory rebound
for the generation of rhythmic behavior.

In fact, in the absence of noise, the population dynamics
may be formulated in terms of a set of coupled circle maps.
Exploring coherent oscillatory behavior in such a system is
of special interest when one recalls that such systems of
maps have previously been used to simulate the evolution of
temporal correlations and decorrelations in groups of spiking
neurons@27#.

Of course, one may resort to more detailed studies with,
say, the use of coupled Hodgkin-Huxley equations, realistic
post-synaptic responses and detailed equations describing the
kinetics of hyperpolarization-activated inward ionic currents.
The limitations of such an approach include the formidable
number of free parameters that need to be used in a popula-
tion study, together with the loss of analytical tractability. A
reduction to a simpler set of coupled equations, preserving
essential features of the real biological neuron, is clearly de-
sirable. The introduction of a rebound current to the ex-
tended time-summation neuron model has provided such a
reduction from which a mean field theory for large popula-
tions is easily constructed. The effects of noise at the axon
hillock are incorporated with the introduction of a set of
random thresholds and appropriate averaging.

Several predictions from a mean field theory of a popula-
tion of globally inhibitory neurons with rebound currents and
threshold noise have arisen. Bifurcation diagrams for the av-

erage cell membrane potential and number of active mem-
bers of the population both highlight the possibility of hys-
teretic transitions between orbit branches. Therefore, the
attractors of the population dynamics can depend upon
whether the bifurcation parameters representing the external
input and the level of threshold noise are increasing or de-
creasing. Additionally, with the introduction of rebound cur-
rents, the asymptotic dynamical state of the system often
switches from occupying a chaotic attractor to a low order
periodic orbit. In fact, not only do rebound currents suppress
chaotic neuronal response in the above system, but macro-
scopically ordered states are preferred. The system is seen to
exist with almost all neurons firing or quiescent, thus defin-
ing coherent oscillatory states.

The more biologically important source of noise arising
from the random fluctuations in the number of quanta of
chemical transmitter released into the synaptic cleft has also
been considered. For our single neuron model, we have for-
mulated the stochastic dynamics in terms of a random IFS on
the space of membrane potentials. The limiting behavior of
the neuron has been discussed with the aid of numerical
simulations. In particular, we have made comparisons with
the same system in the absence of any noise. In this case, the
single neuron has circle map dynamics with periodic orbits
and an average firing rate that is independent of initial con-
ditions. Moreover, as a function of external input, this firing
rate forms a devil’s staircase. In the presence of noise, the
response characteristic no longer assumes this self-similar
pattern. With pure threshold noise, the response characteris-
tics can be completely smoothed, whereas the firing and re-
bounding rates for pure synaptic noise continue to reflect
quite strongly those in the noise free case.

FIG. 16. Response characteristic for a neuron with pure synaptic
noisel50.5 andb→`. The upper line is the firing rate, the lower
line is the firing rate~other parameters as in Fig. 13!.

FIG. 17. Response characteristic for a neuron with pure thresh-
old noiseb51.0, andl51. The increasing line is the firing rate,
decreasing line is the firing rate~other parameters as in Figure 13!.
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