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Simple model for deep bed filtration
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We present a simple model for deep bed filtration, where particles suspended in a fluid are trapped while
passing through a porous filter. A steady state of the model is reached when the filter cannot trap additional
particles. We find the model has two qualitatively different steady states depending on the fraction of traps, and
the steady states can be described by directed percolation. We study, in detail, the evolution of the distribution
of trapped particles, as the number of trapped particles increases. To understand the evolution, we formulate a
mean field equation for the model, whose numerical solution is consistent with the behavior of the model. We
find the trapped particle distribution is insensitive to details of the formulation of the model.
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[. INTRODUCTION the movement of a particle can be calculated from micro-
scopic equations with a reasonable geometry. The disadvan-

Deep bed. flltrat|p nisa well-estaphshed_ process used t?age, however, is large computational efforts necessary even
separate solid particles suspended in a f[did4]. A dilute for the simulations of a moderate size system

suspension is injected into a filter made of porous material.
Instead, we propose a cellular automata model for deep

Particles, while flowing through the filter, are trapped InSIdebed filtration. The main advantage of the model is, due to its

by various m(‘a‘chanl'smjc,,. The' trapped particles can later béalmplicity, that one can study the detailed behavior of sys-
recovered by “cleaning” the filter.

The quantities of main interest are the filter efficieltihe temsf of a fairly large size. Only geometric properties can be
. .- . . : obtained from the model. Also, the rules for the movement
fraction of injected particles trapped in the filkeand the

S L of particles are too simple to capture the detailed interactions
pressure drop across the filter in order to maintain a constan

. . . . of real particles. For example, the actual flow field in a filter
fluid flow. As more particles are trapped in the filter, the . :
. . constantly changes with the movement of particles. Such
filter efficiency usually decreases, and the pressure drop usus . .
. o Changes are mostly ignored in the present model. We thus
ally increases. The theory of deep bed filtration should pre- .
: e expect that only those aspects of the behavior of the model
dict these quantities in terms of parameters of the system. I’ o .
) . which are not sensitive to the details of the rules can be
order to build such a theory, one needs certain knowledge . : .
N . .~ compared with experiments. Such comparisons are necessary
about the dynamics inside a filter, e.g., the spatial distribu- . - S
. . . : to establish the validity and the limitations of the model.
tion of trapped particles. Unfortunately, such information has . .
L As the number of trapped particles increases, the model
been very limited5,6]. . ) " .
reaches a steady state in which no additional particle can be

Recently, Ghidaglieet al. carried out a series of experi- 4 Th q hall be d ibed
ments on deep bed filtratidi@—9]. Instead of a conventional aPPed. The steady state can, as we shall see, be describe

porous materiale.g., sandstongthey used a random pack- by directed pgrcolgtio(DP). The qgalitative behavior of the
ing of glass spheres as the filter medium. The transparency §f€ady state is different depending on a paramptethe
glass and the index matched fluid used for the suspensidif@ction of trapping bonds. Ip is less than threshold., a
allow direct visual observation inside the whole filter. The newly injected particle simply pass through the filter without
movements of particles can be followed in great detail. Théoeing trapped. On the other hand,gf>p., all the paths
setup can be used to gain valuable information inside théeading to an exit are blocked. We study in detail the evolu-
filter, such as the interaction of particles with a porous medtion of the distribution of trapped particles for various values
dium, and the distribution of trapped particles. It also be-of p. To understand the behavior of the model, we construct
comes a challenge to understand these newly available quaa-mean field differential equation for the evolution of the
tities. distribution. The numerical solutions of the equation are in
Network models can be used to study the behavior ofjood agreement with the simulations of the model. We also
particles and a fluid in a filtgrl0—13. In a network model, find that the behavior of the model is not sensitive to various
the inner structure of the filter is modeled by pores intercon<hanges of the rules for the dynamics.
nected by narrow channels. A microscopic pressure-flow re- The paper is organized as follows. In Sec. Il, we define
lation, e.g., Darcy’s law, is assumed across each channehe model, and study the model without blocking. We form a
Such relations and the external boundary conditions providdifferential equation, and its solution is compared with the
equations for the flow field, which can be solved numeri-simulations of the model. In Sec. lll, we study the steady
cally. The motion of a particle is determined by both thestate of the full model with blocking, and compare it with
local flow field and the interaction between particles. TheDP. We also study the evolution of the distribution of
main advantage of a network model is that it is a good aptrapped particles. In Sec. IV, a few modification of the rules
proximation to a real system. For example, the flow field andare introduced to check the stability of the behavior of the
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FIG. 1. A schematic view of the model filter: nodes and bonds
in the square lattice represent pores and channels in filter, respe,
tively. S bonds are shown with thin lines, whereas thick lines are
used forB bonds. A moving particle is shown with an empty circle,
and a trapped particle with a filled circle. The arrows next to bond
show possible movement of a particle. For example, the particl
cannot move to th& bond with a trapped patrticle.

model. A brief summary of the results and limitations of the
model are given in Sec. V.

II. MODEL WITHOUT BLOCKING
A. Definition of the model

Consider a square lattice, rotated by 45° to the flow axis
of width W and lengthL, which is an idealized network
model of the filter pore spadgig. 1). The nodes and bonds
of the lattice represent pores and channels, respectively.

periodic boundary condition is applied in the transverse di-fi

rection. Fluid containing suspended particles is injected o
the left side of the filter X=1 line), and exits the right side
(x=L line). Suspended particles, if not trapped, move alon
the local direction of the fluid flow. We consider particles of
a radiusR, and assign a channel radiusto bondj, where
the radius is drawn from some distributi@@(r). A bond
with r;>R is called aB (big) bond, and other bonds
(rj=R) are S (smal) bonds. Particles can move through a
B bond without difficulty, while they would be trapped in an
S bond. Let the fraction of bonds bep.

The rules for the movement of a particle are defined a
follows. A particle is inserted at a randomly chosen node a
the left end. We require that the particle always tries to mov
to the right, the direction of the fluid flow. At a node, the
particle has to choose a bond out of the two bonds on it
right for a movement. We first consider the case that n
particle is trapped in the bonds. Here, the particle randoml
chooses a bond with equal probability. If the chosen bond i
a B bond, the particle moves through the bond to the ne
node. If it is aS bond, the particle is trapped in the bond. The
movement of the particle is repeated until either the particl
is trapped or comes out of the filter. We then insert anothe
particle to the filter, and the whole process is repeated.

We still have to define the rules involving bonds which

contain a trapped particle. A reasonable rule is that if a par-

ticle is trapped inside a bond, the entrance to the bond i
blocked by the particle. Note that onfy bonds can trap a

particle. There are two possibilities involving blocked bonds.
If only one of the two bonds for the movement is blocked,

S
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we always move the particle to the bond which is not
blocked. If both bonds are blocked, the situation becomes a
little complicated. The particle can not continue to move,
when it reaches such a dead end. We solve the problem by
blocking all the paths leadingnly to dead ends. The details

of the procedure will be discussed in Sec. Ill.

The system with the rules defined so far is the main
model, which will be studied extensively for the most of the
paper. In this section, however, we want to start with a sim-
pler case of no blocking. In this case, a particle can move
through anS bond with a trapped particle, and it will not be
trapped. In a sense, & bond with a trapped particle is
treated like aB bond. Thus the effect of blocking by a
trapped particle is ignored. The model without blocking is
fiot realistic, and its behavior is very different from that with
blocking. However, ignoring the effect of blocking makes
the analysis of the model tractable, and the method devel-
oped here will later be extended to the full model with

%Iocking.

B. Simulation of the model

We present results of numerical simulations of the model
without blocking. The primary quantity of interest is the den-
sity field p(x,t) of trapped particles. Hergy(x,t)dx is de-
fined as the number of trapped particle$xnx+ dx] divided
by 2W. Also, t is the total number of injected particles,
which can be used as a timelike variable. In Figa)2we
show p(x,t) for several values of and p. For smallt, the
density field forms a characteristic shape—two flat regions
joined by a transition region. For lardethe field seems to
anslate without much change of shape. If the shape of the
eld remains constant, one can show that the curve should

Tove with constant velocity (p) =1/2Wp. The velocity is

defined as the amount of translation per injected particle. We

Yranslate the fields of Fig.(@ according to the velocity as

shown in Fig. 2Zb). The fields for differentt all seem to
collapse in a narrow region. A closer inspection shows, how-
ever, the shape changes slowly, but systematically, with
The width of the transition region slowly increases with

A further point is that the shapes p{x,t) for different
values ofp seem to look the same. One can roughly scale
these curves to a single curve as shown in Fig).ZThe

urves agree very well with each other for smalThen, the

fvidth of the transition region grows faster for larger values

f p, and systematic deviations from the collapse are visible

ast increases. In scaling the curve, we scale the width of the

Yransition region by 3. The argument for the choice fol-
Jows. For a giverp, the penetration depth of a particle is of
Yrder 1p. The width of the transition region, which is the

luctuation of the penetration depth, is expected to be similar

XTO the penetration depth. In the next section, we show that the

simulational results discussed here can be understood in

Yerms of a mean field differential equation for the evolution

bf p(x,1).

C. Evolution equation of the density field

S We derive an approximate equation for the evolution of
the density fieldp(x,t). Consider the motion of a particle

injected into the filter. Whenever the particle moves, there is
a certain probability that the particle is trapped. The average
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14 . , . . . . i : . direction. LetP(x,t) be the probability that the particle ar-
, rives at positionx without being trapped. Under the above
12} g:?;?,, A assumption, the probability of the particle to be trapped in

[xX,x+dx] is[p— p(X,t)]P(x,t)dXx. We thus arrive at

J
- S P O==[p=p(x.n]P(X.1), (1)
s whose solution with conditio®(0t)=1 is
X
P(x,t)=ex;{—f p—p(x',t)dx’|. 2
0
\ S ) N Since the density field increases by \W2or every new par-
@ 60 70 8 9 100 ticle trapped, the evolution equation for the density is
v ' ' 7 p(x) = — t)]P(x,t
P =55 [p=p(X.HIP(X.)
1 _
1 X
o | | = Wv[p—p(x,t)]exp[— fo p—p(x’,t)dx’|.
2 ©)
2 06y 1
a The derivation of(3) involves another approximation. The
04 | . change of the density field per injected patrticle is assumed to
be proportional to the trapping probability whichaseraged
oo ) over all possible trapping sitggnean field approximation
' On the other hand, the relevant density field, and the one we
have considered, is obtained by injecting certain number par-
0_30 30 ticles (e.g., 10 000) without taking an average after each in-
(®) x-v(p)t jection. The average is taken ordfter the whole injectioif
12 . ‘ . . particles. The two procedures are, in general, not equal. The
validity of the approximations in deriving3) will be
checked with simulations of the model.

The evolution equatio3) contains an integral in the ex-
ponent, which makes further analysis less convenient. The
integral can be eliminated by simple manipulations. Motived

& by the wavelike behavior of the density field found in the
2 simulations, we search for a traveling wave solution—
= p(x,t)=f[x—v(p)t]. Inserting it into(3),

i f t)= i f t

= (x—vt)= v (x—uvt)

1
4 2 o 4 = swlP~f(x—v)]
(c) [x-v(p
X
FIG. 2. (a) The density fielg(x,t) for p=0.2 and 1.0 is shown Xex;{ - Jo p—f(x'—vt)dx"|. (4

for several values of. The difference ot between the successive
fields is 1@p. (b) The fields in(a), translated by (p)t, are shown. Differentiating the equation with respect g and after a
(c) The scaled fields fop=0.1, 0.5, and 1.0 are shown. The scaled little rearrangement
fields collapse very well for smatl, but deviations from the col- '
lapse are apparent for largeHere, we usaV=500 andL =100, 92 1

2
d
and all the fields are averaged over 100 samples. —f=——|—f
g P ax? p—f (ax

~(p-Hyf 6

fraction of unoccupied bonds, which act as traps, at posi- which is a nonlinear differential equation.

tion x is p—p(x,t). We assume that the probability that the ~ We cannot obtain the analytic solution of the equation,
particle is trapped, while moving fronx to x+dx, is and we numerically solve it using a Runge-Kutta routine
[p—p(x,t)]dx. Here, an approximation is made which ig- [14]. The solution is calculated in the intervigd,10]. We
nores the variation of the density field in the transverge ( choosef=p at x=0. The boundary condition at the other



4014 JYSOO LEE AND JOEL KOPLIK 54

ticles injected in a column ia=t/W. The fluctuation ofn

1 should be order of/n. Consider a column in the filter. Since
091 the average position of the transition region in the column is
08 r S x=n/2p, the fluctuation ol is dx= \x/2p. Therefore, the
07 b -g; [ . width of the transition region of thevholefilter is affected
P10 | not only by the widthw, of the transition region of a single
o 067 ; . 4
£ column, but also byx. A rough estimate is that the resulting
z 97 l width » becomes/w2+ ()2, which implies that the ratio
04y 1 wlwg is Y1+2px. Thus the effective width increases with
03 . t (x), and the rate of the increase is larger for langewhich
o2 b are consistent with the results of the simulatidRgy. 2).
0.1+
0 , Ill. FULL MODEL WITH BLOCKING
(a) 4 2 (x-g)p g 4 A. Steady state behavior
12 : . . : Having obtained reasonable understanding of the model
without blocking, we proceed to a more interesting case
1 Bq.(5):p=10 o where blocking is present. We first discuss the steady state of
Simulation: p=0.1° - the model. It will later become clear that the information of
Simulation: p=0.5" -~ . . .
g b *Simulation: p = 1.0 the steady state plays a crucial role in describing the evolu-
tion of p(x,t). A steady state is reached when there are no
< more emptyS bonds which can be reached by an injected
g 00 particle, thus the density field(x,t) will remain constant.
Let the steady state density field pg(x). We consider the
041 steady state in the limit of the infinite system size. In the
steady state, ip<<p., all injected particles pass through the
02 filter without being trapped. On the other handpif p., all
the paths leading to an exit from the filter are blocked. Here,
0 : p. is a threshold. We start to see the similarity of the present
(b) 4 2 aevtle 4 model to directed bond percolati¢BP) [15]. By comparing

the rules of the present model with those of DP on a square

FIG. 3. (@) The solution of(5) for p=1,5,10 is shown. The lattice, one can notice that the positions of trapped particles
scaling used for the fields is the one used for the simulational datl) the steady state are identical to those of the blocked bonds
[Fig. 2(c)]. The fields exhibit excellent scaling behavior. Here, theconnected to a cluster in a DP. We thus expect the steady
fields are translated b§ so that the centers of the transition regions State density fielghs(x) to be described by DP.
coincide.(b) The solution forp=1 is shown with the density fields We briefly review predictions of DP. First, there is a per-
from the simulations. There are good agreements at ¢arly colation thresholdp.. The exact value op. is not known,

and the best estimate for bond percolation on a square lattice

end is a bit subtle. We choogeto be close to, but not equal is 0.355299(1)[16]. Note thatp represents the blocking
to, 0 atx=10. Note thatf can not be 0 due to the nonzero probability, not the conducting probability commonly used
probability that a particle passes through the interval. Wedor percolation. We discuss the behavior in three separate
have triedf=10"2,10"4,10 % with no essential difference regimes.
in the result. The value of is chosen to reveal the whole ~ p=pc: There exists a spanning cluster of unblocked
shape of the field in the interval. The value bfat x=10  bonds. The mass of a spanning cluster can be calculated as
changes the amount by which the curve is translated, not tH@llows. The probability that a bond belongs to a spanning
shape of the curve. In Fig.(®, we show the numerical so- cluster P.(p) scales as|p—p.|?. Since the correlation
lutions of the equation for several valuesmpfThe shape of length in the longitudinal directiod scales asp—p.| "I,
the field is very similar to that in Fig. 2. Furthermore, the Bl
solutions satisfy the same scaling as the simulations. Here, P.(p)~¢ . (6)
the scaling is almost perfect without any visible deviation.
We also show both the numerical solution and the densit)ﬁ_h total m f nning cluster s times th
fields obtained by the simulations in Figb3. There is good e total mass of a spanning cluste (P‘)B/"H es the
agreement, especially at eatlyf the simulation. However, Width 2W and the lengtig) of the cluster V¢, - Then,
the width of the transition region of the field from the simu- the mass of a spanning cluster [m,x+dx] divided by
lations gradually increases, asincreases. Equatiof3) 2W, which behaves the same agx)dx, is
seems to provide a good overall description of the results of
the simulations, except the broadening of the interfaces. —Blv

What is the possible origin of the broadening? Think of ps(x)dx~x"Fldx. ™
the filter bed as a set & columns perturbed by the trans-
verse coupling between them. The average number of pakising the best estimates far; and g [1.7334(10) and
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0.27711), respectively, B/v| is determined to be 0.1598 10 . ; : : .
[16]. The steady state density field at the threshmldiecays
as a power law.

p<p.: There also exists a spanning cluster. Following
the formalism in DP, we propose a scaling ansatz

ps(X)~|p—pclPg(x/€), (8 ‘f ) Fog,
whereg(z) is a scaling function to be determined. The scal-
ing is, as in DP, expected to be valid ngar. The function = 03103 o
g(2) has to satisfy certain properties. Consider the limit of D=03367 -+
p— P, , which results irg;>x. Since the density field has to ot oA
approach7), g(z) should behave as 7'l for z<1. On the
other hand, the density field has to appro&h asz>1, . . \ X . .
which impliesg(z)~1. In sum, le05 00001 0001 0.01 0.1 1 10
(a) x/E
z P if z< 1, 10 — : . . . ,
92~ if 2> 1. ©
1
p>p.: There is no spanning cluster. In the regime, we 1

propose a scaling ansatz

ps(X)~X"PMIh(x/ &), (19  z
e 01

whereh(z) is another scaling function. If we take the limit of %
p—p. the density field has to approa¢h, which requires 03602 ©
h(z)~1 asz<1. No new information aboutj(z) can be 001 £ ’32013649' + 1
obtained in the other limit og>1. _ bty ol

We present results of the numerical simulations to com- Sl
pare with the above predictions. In order to obtain a steady o, . . . . . . %
state, one can inject particles one by one, until no particle(b) 0 02 04 06 o)s& 1 12 14 16

X

can be trapped, literally following the definition. The proce-
dure is quite time consuming, and there is a much faster way

: — .~ FIG. 4. The scaled steady state density figlgx) of the model
to determine the steady state density field. The method '&vith blocking is shown for (@ p<p,: p-03193, 0.3367,

T s o e o o o0 Sl 0345703505 o) pop.: b6, 03645, 0275,
Lo . . . . i o 0.3913. The fields before scaling are shown in the insets. Also, the

density field is deter_mlned ina smgle_: sweep _of the sys- field for p=p, is shown in the inset oftb). Here, W= 100,

ftem. The method will be discussed in Appendix A. In theL=500, and the density fields are averaged over 100 samples.

insets of Fig. 4a) and 4b), we showp4(x) for several values

of p, determined by the method. The density fieldatde- . ) .

cays as a power law with an exponent consistent With filter. If both of_the bonds aval_lable to the particle are

We then scale thesgy(x) according to the predictions of blocked, the particle can not continue to move. What should

DP—(8) and(10). All the curves seem to collapse well into be an appropriate rule for the movement? In a real situation,
two curves, one fop<p, [Fig. 4@] and the other for a particle chooses a channel according to the amount of fluid
p>p [Fig. ,4(b)]. Only small deviations can be seen for the oW in the channel. Since the fluid flow in the channels
values ofp away fromp,.. Note that all the parameters used leadingonly to dead ends will be very small, particles rarely
for the scaling(e.g., p..) are those of DP, and no free 90 1© these channels. In the present simulation, we remove
I (o] 1 . . .
parameters are used. The scaled curves, which are the scalifity ("€ Paths leadingnly to blocked bonds. To identify such

functionsg(z) andh(z), also satisfy the properties discussed® Path, one has to consider more than local geometry, since
before. The scaled curve of Fig(ah which isg(z), decays 2l the paths connected to the bond have to be traced. We

as a power law for smalt, and approaches a constant for have developed a me.‘h."d based on the burning algorithm
largez. Also, the curveh(z) in Fig. 4b) approaches a con- [17]. The method is similar to the one used to remove the

stant for smallz, and seems to decays as an exponentialuqang"ng” ponds of an infinite pe_rcolatipn cl_uster. The_de—
Thus the comparison with the numerical simulations con-ta'le(.j description of the method_wnl be given in A_ppe_ndlx B.
firms that the steady state density field is well described b)lln Fig. 5, we show the evolution of the density f'eld_ for
DP. several values gb. For smallp, the overall shape of the field
is similar to the no blocking casé-ig. 2). There are two
) o small differences, though. The steady state value of the den-
B. Evolution of the density field sity field forx>1 is smaller tham, compared to the value of
Now we will discuss the evolution of the density field for p for the model without blocking. The difference is due to
the full model with blocking. The simulation of the model the fact that some 0% bonds are not accessible to injected

poses a subtle problem. Consider a particle moving in thearticles. Also, the width of the transition region for the
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1 . y ; T FIG. 6. The mean position and the width of the transition region
‘ from the simulation data as in Fig. 5: The width is shoth for
p<p.: p=0.3193, 0.3367, 0.3457, 0.3504, afty) for p>p,:
o1 | | p=0.3602, 0.3649, 0.3739, 0.3913. The mean positions are also
’ shown in the insets.
= inflection point of the fieldo(x,t) is a suitable criterion for
2 oorp X. We numerically calculate the spatial derivative
< p' (x,t)=—0d,p(X,t) using the smoothed data p{x,t). The
results are not sensitive to the exact procedure for the
0.001 L i smoothing. The resulting field’ (x,t) is a bell shaped curve,
; where the position of the maximum is the inflection point.
‘ We definex and 6x as the mearx)y and the standard de-
| viation \/<x2)d—<x)d2 of p'(x,t), respectively. ThugA), is

500 defined as

(©)
I5p" (X, D)A(X,t)dx

FIG. 5. Evolution of the density field with blocking is shown for (A)g= L/ d . (1D
(8 p=0.3193, (b) p=p., and (c) p=0.3913. Here,W=100, Jop' (x,t)dx
L=500, and the fields are averaged over 100 samples. The diffe P St ;
iggg ?;tr (k?;tween the successive fields is 3000 (f@rand(b), and Zr‘\?vﬁgreéziepz?i?gx;zg\?v;hienVl\éligt.kg)(.f%ros;ﬁgg:?r:gv?rlée\?a?f

' ues with the density fieldd=ig. 5 confirms that these values

model with blocking is a bit larger. Ap increases, even the are reasonable representations of the transition region.
overall shape of the field becomes different from that without Unfortunately, the above procedure cannot be applied for
blocking. The width of the transition region becomes quitep>p.. Here, the inflection point of the field, if it exists, is
large (comparable to the length of the system in some gasesnot a reasonable representation of the mean position of the
The density field for very small is exponential, in agree- transition region. The density field behaves like a decaying
ment with the previous simulationi8]. exponential. We defing and 5x as the mearx), and the

We quantify the transition region by defining the averagestandard deviation\/<x2)u—<x)u2 of p(x,t), respectively.
positionx and the widthsx of the region. Forp<p., the  Thus(A), is defined as
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_Jop(x, DA Ddx 100
(A),= Too(x.0dx (12

In Fig. 6(b), the values ok and x obtained following the
procedure are shown. Again, the values seem to be reason-
able representations of the transition region. 60
How do we understand the evolution of the field? Is there x
any equation similar t@¢3) which can be used for the situa-
tion? To answer the question, we insp€8t again. In the
equation, the trapping probability of a particle passing
through a channel is assumed togbe p(Xx,t), the fraction of 20 f
empty S bonds. In other words, we assume th#tS bonds
will eventually trap one particle. One of the effects of block-

80

o

LSECECYCy

0
1000 4000 7000 10000
t

ing is, however, to make some of t&donds inaccessible to 1000 2000 3000 2000 5000 6000 7000 8000 9000 10000
the injected particle. For the model with blocking, the frac- (@ t
tion of accessibl& bonds ispg(X) instead ofp. It thus seems
reasonable to replage with p¢(x) in (3), when blocking is 100
allowed. The proposed equation for the model with blocking :g:g;ggggi .
is p=03739 ——
80 | p=0.3913 1

d 1
GiPX D= 5mles(¥)—p(x,1)] 60

8x

X 160 T
Xex;{— f ps(X")—p(x",Hdx"|. (13 a0 S ST Yy o
60 S
We numerically solve the equation, where we use the steady 20 | 0 LZ .
state density fielghg(x) measured in the preceding section. 1000 4000 7000 10000

For quantitative comparisons, we calculate the mean and the 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
width of the transition region of the resulting field using the (®) t

methods discussed before. In Fig. 7, we show these quanti-

ties for several values gb. By comparing them with the FIG. 7. The mean position and the width of the transition region
ones obtained by the simulatioffSig. 6), one can notice the of the density field obtained frorfL3): the width is showr(a) for
overall behavior is essentially identical. Also, even their nu-P<pc: p=0.3193, 0.3367, 0.3457, 0.3504, afio) for p>p.:
merical values are in good agreements. We thus believe th& 0.3602, 0.3649, 0.3739, 0.3913. The mean positions are also
the modified equatiori13) is a good starting point for the Shown in the insets.

description of the model with blocking.

noting the strong correlation between the flow and the mo-
bility of a channel. It also seems reasonable to assume that
they are proportional to each other. Thus we implement FIP

In this section, we study a few variations of the model.by assigning a mobility to channels, and assume the amount
Our objectives are twofold: we want the rules to be moreof flow in a channel is proportional to its mobility. The mo-
realistic, and we want to know how much the resuésy.,  bility of a channel is determined as follows. For a channel,
the density fieldlchange under the variations. Only the quan-one chooses a radiusdrawn from distributionC(r). If one
tities which are not sensitive to the details of the model aréassumes for simplicity that the channel length is on the order
meaningful, and can be compared with experiments. of the channel radius, the mobility of the channel is propor-

The first variation is to introduce the concept of flow in- tional tor3, where we assume Poiseuille flow in a cylindrical
duced probabilityFIP) [18,20,19. Consider a particle mov- tube. How about distributiol©(r) for the radius? We first
ing through filter. As the particle reaches a pore, it has tdry a uniform distribution in the interval1/2,1]. Thus the
choose a channel to continue its movement. The exact rulprobability that the radius is inr,r+dr] is 2dr, if
for the choice is complicated, and is not fully understood.1/2<r<1, and is zero for other values of The new rule
Still, it is a good approximation to assume the particlesignificantly changes local movements. The probability of
chooses a channel proportional to the amount of flow goinghoosing a channel can now differ by a factor of 5 to 6. In
through it, which is called flow induced probability. In the Fig. 8, we show the density field obtained by the numerical
present model, the particle chooses a channel with equaimulations of the uniform distribution for several values of
probability, if it is not blocked. The problem in introducing p. There are small differences between the fields with and
FIP to the model is that the flow field for the whole systemwithout FIP, especially at small values tf The resulting
has to be calculated. The calculation, not only is time condifference is quite small, considering the significant changes
suming, but also goes against our intention of constructing af particle movements.
simple model. We also study the field usin@(r) of the three dimen-

A simple solution for the problem can be obtained bysional random close packinRCP of uniform spheres.

IV. STABILITY OF THE MODEL
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FIG. 9. The mean positiotinse) and the width of the transition
region for the density fields of Fig.(8&.
0.8 ’nof FIP: p=0.3649° — E
*FIP, uniform: p = 0.3649" —— i i i
"HIP. RCP: p = 03649 ticles. We model this change by removing blockethonds
out of the distribution, and transferring themro R part of
= 0614 the distribution. To be more precise, the effective distribu-
2 " t?on at givent, C(r,t), has to satisfy the following condi-
¢ o4l tions:
R
02 | 1 fO C(r,t)dr=p—p(x,t), (15)
0 S S and
0 50 100 150 200 250 300 350 400 450 500
(b) x .
f C(r,t)dr=1—p+p(x,t). (16
R

FIG. 8. The evolution of the density field with and without FIP
for (@) p=0.3457 andb) p=0.3649. HereW=100 andL =500,
and the averages are taken over 100 samples. The differertce ofV€ choose to remove blocked bonds from tkeR part of

between successive density field<as 3000 and(b) 1000, respec- the distribution, thuC(r,t) =[1—p(x,t)/p]C(r). We then
tively. transfer the removed bonds to the-R part of the distribu-

tion, thusC(r,t)=[1+ p(x,t)/(1—p)]C(r). In other words,

Here, we use the data for the radial distribution of RCP in
Ref. [21]. The exact procedure to calculaB{r) from the
data is discussed in Appendix C. In Fig. 8, the resulting
density field using the distribution of RCP is shown. The
field is again a little different from that without FIP, just like Thus the probability to trap a particle passing through a
the uniform distribution. Flow induced probability does not channel located at at timet is
significantly changes the density field. For later comparisons,
we also calculate the mean and the width of the transition M(x.t)= [1-p(X,1)/p]PL
region, as shown in Fig. 9. " [1=p(x, )/ p]PL+[1+ p(X,t)/(1—p)]PR’

The above implementation of flow induced probability (19
can be included in the framework of the evolution equation.
The effect of FIP is that it modifies the effective trapping where PL=[Ro(r)C(r) and Pg=fgo(r)C(r). The effect
probability of S bonds. For a given distributio®(r), the  of blocking can be added by replacipgwith p(x) in the
probability that a particle to be trappdd while passing above equation. The resulting equation for the evolution is
through a channel is

d 1 X
~ fRa(rC(rydr aPn= NVH(X'”‘”“{ - J oo vox |
1= Foomcmar "

[1—p(x,t)/p]C(r) if r<R,

17

C(r’t):{[1+p(x,t)/(1—p)]C(r) if r>R.

(19

We numerically solve the equation with blocking. In order to
where o(r) is the mobility of a channel with radius. If compare the simulations with FIP, we calculate the mean and
uniform conductance (r) = o is assumedlI returns to the the width of the transition region as shown in Fig. 10. Com-
familiar value of p, the fraction ofS bonds. The effective paring the solution with the numerical simulatioti§g. 9),
distribution of C(r) changes as particles are trappedSn one notice good agreements between them, which gives
bonds, making them inaccessible to further incoming parmore confidence in the evolution equation.



54 SIMPLE MODEL FOR DEEP BED FILTRATION 4019

100 T T T T T T 7 T 12 T T T T T T T T T

90 |

*no FIP: p = 0.3457 ——
80 +  'FIP, uniform: p = 0.3457° -
"FIP, RCP: p=0.3457" —~

70

60

8x
px,H/p

50 1 120

<X>g

80

30 W0

w0E 1000 4ooot7ooo 10000

10 L 1 . 1 L 1 . .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t (a)

FIG. 10. The mean positiotinse) and the width of the transi-
tion region from the numerical solution of the evolution equation
(19) are shown.

Finally, we study the effect of the relaunching observed in
experimen{8]. There, when a particle passes near a trapped =
particle, it occasionally kicks the trapped particle out of its Z
site. The kicked(or “relaunched”) particle can be trapped =
again, or it can move along the fluid flow. The actual mecha-
nism for the relaunching, which is probably due to hydrody-
namic interaction, is not completely understood. Here, we
use a simple rule, which tries to imitate the effect. Consider
a particle at a node. If one of the channels right of the node
has a trapped particle, the trapped particle will be kicked out
of the bond with probabilityq. Once the particle is re-
launched, it moveS.JUSt. like any_other parti@. In Fig. 11, FIG. 11. The evolution of the density field with relaunching is
we show the.denSIty fle.lq obtained fqr Sevgral valuep of shown for several values af and for (a) p=0.1 and(b) p=0.2.
and relaunching probabilitg. In the simulations, flow in- Here,W=100,L =100, and the field is averaged over 100 samples.

duced probability is included, and the distributi@{r) of  pere we useC(r) of RCP, and flow induced probability is in-
RCP is used. One can see the relaunching changes the defjided.

sity field a little. The density field does not seem to be sen-

(b)

sitive to the details of the rules. able. The crucial next step to check the relevance of the
model to experiments, however, is to compare with network
V. CONCLUSION models[22]. Network models are believed to be a faithful

representation of real porous media. For example, the
In this paper, we have studied a simple model for deeghanges in the flow field due to particle movements are taken
bed filtration. The primary quantity of interest is the densityinto account in these models. If the simple model compares
field of trapped particles. The evolution of the density field iswell with network models, it can be used as a complimentary
significantly different depending on whethpris below or  tool to study deep bed filtration, and, in particular, the large
above a threshold.. The density field and its evolution do scale behaviors of the system.
not seem to depend on the details of the rules. In order to
have some theoretical understanding of the model, we have ACKNOWLEDGMENTS
proposed a mean field equation for the evolution. The equa-
tion seems to describe well both qualitative and quantitative We thank E. Guazzelli, C. Ghidaglia, L. de Arcangelis,
behaviors of the model. and S. Redner for extensive discussions. We also thank E. J.
There are several things one should examine before takinginch for helpful discussions and drawing our attention to
the present model seriously. First of all, one has to checlRef.[14]. This work is supported by the Department of En-
how sensitively the results depend on the details of the rulegrgy under Grant No. DE-FG02-93-ER14327.
The rules we have used for particle movements—choosing a
channel, the effect of blocking and the relaunching of APPENDIX A: DETERMINATION
trapped particle—are too simple to be realistic. Thus only OF THE STEADY STATE
behavior which is not sensitive to the rules can be compared
with experiments. Here, we have studied a few variations of We describe the algorithm we use to find all accessible
the rules, and have found the behavior is not sensitive to th& bonds. Consider the square lattice shown in Fig. 1. We
changes, but more extensive study in this direction is desirassign variablec(x,y) to node &,y), and set its value to
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0. We start by setting(x,y)=1 at all the nodes ox=1 ate B bonds if necessary. We repeat the procedure until
line. We then check the nodes am=1 line. For site (1), x=1 line. After the sweep, all the paths leading only to dead
we check the two bonds connected right to the node. If thends are blocked.

bond is arS bond, we mark it a3 If the bond isB bond, we

setc(x,y)=1 at the node connected to [)l,node through APPENDIX C: CALCULATION OF C(r) OF RCP

the bond. Having checked the nodes>snl line, we pro-
ceed to check the nodes alorg2 line. If c(2,j))=1, we
update the bonds and the nodes connected to th ii@de
as described before. We repeat the procedure xistil line.
After the update, the bonds markedTaare the bonds which
trap a particle in the steady state.

We describe the method we use to calculate the channel
radius distributionC(r) for the three dimensional random
close packing(RCP of monosize spheres. In essence, we
can calculateC(r) from the nearest neighbor distribution
N(r) of RCP, whereN(r)dr is the number of neighbors
whose center liegr,r +dr] away from the center of a ref-
erence particle. We use the data féfr) in Ref. [21]. We
scan the figure oN(r) to obtain a postscript bitmap image

We describe the algorithm we use to remove all the path§ile. Then, we read the coordinates of nonempty pixels from
which leadonly to dead ends. The essential idea is to starthe file. After simple rescalingN(r) can be reconstructed
from a dead end, and trace back all the paths leading to it. Teom the pixel coordinates. From(r), we generate three
be precise, consider a network as shown in Fig. 1. We statengthsrq,, rp; andrg;. Here,rj; is the center-to-center
from the right end of the filterx=L—1 line. We check all distance between spherandj. We take the channel size as
the nodes at the line. For node+{ 1,y), we check if both of  the radius of the sphere which barely fits in the hole formed
the bonds to the right the node are blocked. If both of thenby the three spheres. The present method ignores the corre-
are blocked, we block the entrance to the node. In othelation between the neighbor distancésg., rqi, andr,y).
words, we block an bond left to the node. We do not have However, the comparisons of polygons and polyhedrons
to worry aboutS bonds, since incoming particles will block generated by the present method with those by actual mea-
them. After checking all the dead endsxatL —1 line, we  surements confirm that the method is an excellent approxi-
go tox=L—2 line. We check if both of the bonds to the mation[21]. The channel radius distribution obtained here
right of the node L —2,y) are blocked, and block appropri- agrees well with the one in Ref21].

APPENDIX B: REMOVING THE DEAD ENDS
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