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Dynamics of semiflexible and rigid particles.
[I. Derivation of the stress tensor and transport equations
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In this paper we derive transport equations for a suspension of semiflexible and rigid particles for several
cases of interest. The analysis is based on a mesoscopic description introduced in the preced{i®Rhpsper
Rev. E54, 3955(1996]. The non-Maxwellian contributions to the phase-space probability distribution ob-
tained in the preceding paper give rise to the dissipative fluxes arising in the transport equations for the mass
density and the magnetization as particular cases. In addition, a derivation of the contribution of the particles
to the stress tensor, where the momentum density of the suspended particles as well as that of the carrier fluid
are taken into account, has been developed. An expression for the stress tensor for continuous semiflexible
particles with rigid constraints has been foufil1063-651X96)02910-§

PACS numbes): 61.25.Hq, 83.10.Nn, 83.10.Pp, 05.49.

I. INTRODUCTION ing the dynamics of the degrees of freedom of the suspended
particles alone. However, the cumbersome expressions for
The study of the macroscopic dynamic properties of susthe friction coefficients as found by this method cannot be
pensions is of great fundamental and applied interest. Thiurther carried out and are usually substituted by expressions
macroscopic state of a system can be specified by giving thiaken directly from hydrodynamick7,8]. Other treatments
values that a set of relevant fiel@such as, for instance, the propose equations of motion for the ensemble of suspended
mass density, the velocity field, the temperature, or the pregarticles at the mesoscopic level, in which these friction co-
sure take at each point of space and each instant of timeefficients play the role of phenomenological coefficients by
These macroscopic fields satisfy a set of coupled differentiahemselves since they are not determined by the theory.
equations, here referred to mansport equationswhich are In Ref. [1], referred to hereinafter as paper |, we have
in the basis of any analysis of irreversible phenomena occudeveloped an approach to the dynamics of suspensions of
ring in many fields of physics, chemistry, biology, and engi-semiflexible and rigid particles from mesoscopigoint of
neering. view based on both Landau-Lifshitz fluctuating hydrody-
The transport equations can be phenomenologically deteramics[9] and the induced force method of Mazur and Be-
mined and incorporate the so-called transport coefficientsdeaux[11,12. The system studied in paper | and also in the
The transport coefficients occur as proportionality coeffi-present work consists of an ensemble of noninteracting
cients relating the irreversible fluxes to spatial gradients ofvormlike particles of lengti. and cross sectioa embedded
the macroscopic variables used to specify the state of thim a Newtonian solvent of viscositys at constant tempera-
system[2]. A theory aiming to derive the macroscopic be-ture T. The configuration of the particle can change with
havior from more microscopic grounds starts from the dy-time and is given by the vector field(s,t), where
namics of the constituents of the system, either from thes|<L/2. The treatment of the solvent as a continuum under-
molecules, as in the theory of simple liquifi34], or from  going fluctuations enables us to study the coupling between
the dynamics of the suspended particles, as in the theory alfie dynamics of the solvent and that of the particles. On one
Brownian motion. Magnitudes borne by the particles, ashand, our mesoscopic approach is simpler than the micro-
mass or momentum, are responsible for macroscopic phecopic one based on the Lioville equation for the whole sys-
nomena such as mass diffusion or fluid flow. By means otem([5,6] in that it retains only the hydrodynamic behavior of
averaging and performing the hydrodynamic limit, the long-the solvent but ignores its short-time, short-wavelength mo-
wavelength and long-time behavior of the system can bdion, related to details of the molecule-molecule interactions.
extracted from the microscopic dynamics. Then the resultingdn the other hand, our description still retains information
transport equation, when compared with the phenomenologabout how the perturbations caused by the particles propa-
cal description of the system, permits us to relate the phegate in the solvent, information ignored in other mesoscopic
nomenological transport coefficients with expressions inpoints of view[13], but that is crucial in deriving the proper
volving details of the underlying microscopic nature of thefriction coefficients.
system. Thus, in this paper we apply the main ideas and results
In obtaining the transport equations for suspensions frondeveloped in paper | to derive several macroscopic transport
either microscopic or mesoscopic views, a great difficultyequations for suspensions of semiflexible and rigid long par-
lies in the treatment of the dynamics of the solvent. Ifdipe  ticles. The treatment permits us to obtain explicit expressions
initio calculation from the Liouville equation for the entire for the transport coefficients occurring in the transport equa-
system is chosefb,6], the degrees of freedom of the solvent tions, in terms of the friction matrices introduced in paper |,
are projected out in favor of mesoscopic equations describahich are ultimately related to geometrical aspects of the
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suspended particles as well as to the dynamics of the solveparticular case we will consider again the rigid rod for which
at the hydrodynamic level. In particular, we will derive trans- explicit results for the linear viscosity are obtained. Finally,
port equations for mass, magnetization, and momentum dergec. |V is devoted to a brief discussion of the main points
sities in the same spirit as in the theory of simple flji8s  developed and the conclusions that can be drawn from the
We will first identify a mesoscopic variablgeferred to as a present work.

dynamic variablg and study its mean behavior for long

wavelengths and small frequencies, i.e., in the so-called hy- 1. MASS AND MAGNETIZATION TRANSPORT
drodynamic limit. To perform the averages, we will use the FOR RIGID RODS

non-Maxwellian phase-space probability distribution for

nonequilibrium situations given in E.4.54) (references to In this section we derive equations for mass transport and
formulas of paper | will be made by adding “I.” in front of for properties related to the orientation of the particle, de-

the label of the equationWe will see that the deviations noted by magnetization in a wide sense, for a suspension of
from the Maxwellian behavior are related to irreversiblewormlike chains in dilute solution. With these two examples
fluxes as that given by Fick’s law, for instance, in analogywe want to illustrate the use of the phase-space probability
with the so-callechormal solution of the Boltzman equation distribution given in Eq(1.4.54) and the consistency of the
[14,15. Special emphasis will be put on the analysis of thewhole scheme.

momentum transport, mainly on a derivation of the stress Let us consider a system of volumewith A" noninter-
tensor, since for this quantity the solvent does not play a@cting identical particles in suspension. Since the system is
passive role but carries itself momentum that has to be ag@ssumed to be diluted, the motion of each particle is statisti-
counted for. We obtain an expression of the stress tensor f&@lly independent. Thus the phase-space probability distribu-
a semiflexible chain in which the rigid constraints are takerfion for the system is given by

into consideration. In addition, an extra term relevant at finite
wavelengths accounts for the effect of the momentum carried
by the solvent due to the perturbations caused by the motion
of the particles. Such a contribution is currently ignored in

those treatments in which the momentum carried by the susyhere X denotes configuration and the velocities of the

pended particles is taken as a dynamic variable. . . > (1) . .
The paper is organized as follows. Section Il is devoted t ':; F;))Zr:tlicc;ll((aa’éx } being the ensemble of coordinates of all

the derivation of the transport equations for mass and mag- . . . . .

o . : . The mesoscopic dynamic quantity associated with the
netization for a suspension of wormlike particles. These ex- ; : S

. . . .~ “mass density of suspended patrticles is given by

amples will serve as simple and, at the same time, nontrivial
cases to illustrate the procedure and the relevance of the L2 _
non-Maxwellian nature of the velocity dependence of the p(F,t)E}IE f dss(f—cl(s,t)), (2.2
probability distribution. Explicit results will be obtained only boJL2

for the case of a rigid rod, for which the phase-space prob- . . . . '
ability distribution given in Eq.(1.4.54, as well as the which is functionally dependent on the position and configu-

Smoluchowski equation EqL4.55), appies. In this paper we Tation of the particles througé((s,t). x is the mass of the
have further introduced some simplifications in these twaParticle per unit of length. Note that we have implicitly as-
equations. First, we have neglected terms quadratic in theumed that the particles have no thickness since we are in-
velocity gradient, assumed small, as well as buoyancy forceéerested in wavelengths much larger than any characteristic
The external force and torque acting on the particle, howparticle dimension. To perform the hydrodynamic limit, let
ever, are considered to be position and orientation depers explicitly show the position of the center of mass
dent, although the external fields causing this force andR()(t), writing the configuration of a wormlike chain as
torque do not explicitly depend on time. It is the case, for

instance, when an inhomogeneous and stationary magnetic c(s,t)=RD(t)+Ac(s,1), 2.3

field H(r) is applied to the sample. If the particles carry

N
\If({)z(i)},t)z_Hl (XD 1), (2.1

where|AcW(s,t)|=|cW(s,t) —RO(t)[~L.

; =y zext Text
magnetic momentnos, then the forcek * and torqueT The Fourier transform of the mass density reads

experienced are given by the expressipts]

L/2 o
S A L .
Ke(7,3) = mos- VA (F), (1.1) p(RO=73 f—L/zdse .60 st
Te(F,§ SxHA(F Li2 R Ny
T(F,S) =meSX H(F), 1.2 :TLE f L/ste"k'[R()<t>+AC”<s,t>], (2.4
i —

which is a case of practical interest, although our results are

not restrictied only to the magnetic case. Section Il is excluwhere use has been made of the definition of the Fourier
sively devoted to the derivation of the mesoscopic exprestransform given in Eq(l.2.13. The hydrodynamic limit im-

sion for the stress tensor for semiflexible wormlike chainsplies that one is interested in length scales much larger than
and the discussion of the coupling between the dynamics dghe size of the suspended particles, so that we can expand the
the particles and the solvent. An explicit form for the stressright-hand side of Eq(2.4) in powers ofkL and retain the
tensor for a chain including rigid constraints is derived. As alowest order. We then have
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R i due to the fact that all terms in the sum in HG.9) are
p(k,H)—M >, e R, (2.9 identical.
' With the aim of obtaining explicit results, let us consider
the particular case of rod-like particles for which the prob-

whereM =L is the total mass of the particle. This limiting =~ P H=Het 2 ;
procedure permits us to extract the part of the dynamic Varigblllty distribution(1.4.54) applies. Let us recall that the con-

able that survives at the macroscopic lifdif. Equation(2.5) figurational field for a rigid rod takes the form
indicates that in the hydrodynamic limit the particles are re-

garded as points where all the mass is located. The balance c(s,t)=R(t)+sit), [s|=<L/2, (2.1)
equation for the mesoscopic mass density is obtained by time _ _ _
differentiating both sides of Ed2.5), giving as given in Eq(l.4.7). Thus, averaging Ed2.8) with respect

to the mentioned probability distribution, the equation
J - > ~i —ik.gh
—p(k,t)=—ik- > Mu(t)e ® RO (2.6 a__ ; - o
o i P ==V-M2 (1) 8(F-RY(1)o
|

whereu®(t) is the velocity of the center of mass. Equiva-

lently, in real space we have that H@.5 corresponds to =—V-MMus(r-R)) (212

yields the long-time, long-wavelength equation for the evo-

p(F,t)=ME S(F—RO(t)), 2.7 lution of the mass density for rigid rods, i.e.,
i
Jd__ - s
while the balance equatiai2.6) in real space reads Ep(f’,t)z =V (F-B)p(F,t)
2 p(F0=—F M GOa-RIW). (28 s (R
at i -V-\ | ksTZ XS T p(7,t)

In this last equation we have used the symBoto denote

dl9F. The macroscopic mass densit{f,t) is then obtained V(7B (F - f dd MAKST
after averaging Eq2.7). That is (r-Ap(r.t) s MMke
— )= P B (1)) = =10 S O N B
p(r,t)=M§i) (6(F—R (t))>o—M§i: (8(F=RM)), NS\ g~V ]wrsy |, (2.13
B
(2.9

where the averag@, corresponds to an average with respectVnere #(r,s,t) is the probability distribution in configura-
to all the realizations of the random force and of the initialion SPace, a solution of the Smoluchowski equation, Eq.
conditions, while() stands for an average of the correspond- 1.4.55. , . : :
ing phase-space function with respect to the phase-space Since we will use them later in the analysis, let us write
probability distribution(see Appendix A In the first equal- More explicitly the friction _tensors for the partlcqlar case _of
ity the time dependence of the average is charged on th!ggld_rods that V\_/lll appear in the transport equatlons studl_ed
evolution of the dynamic variable. In the second equality the" this paper. First of_ all, the translational friction tensor is
evolution in time of the average is related to the time depen9iVen by the expression

dence of the phase-space probability distribution. We will

focus on the second interpretation of the averages with the 2—1(§): 1 ( |ni+ v (€) (f_gé)

aim of using the phase-space probability distribution Eq. ! dapgl ([ 2¢ !

(1.4.54). Note that the hydrodynamic limit also involves a 1 .

limiting procedure in time similar to that already performed +2|In— + y!(e) §§], (2.14
in space. Effectively, the relevant time scales at the macro- 2e

scopic level of description are much larger than those related ) _ )
to characteristic motions of the particle. Equatidnt.54  Where e=a/L is the aspect ratio. Equatiof2.14 follows
corresponds to the form of the phase-space probability derfrom the existent rglanon betweerj the. translational friction
sity for times larger than the decay time for velocity pertur-tensor and the friction moments given in Et4.20. Equa-
bations[ y~1=1/¢, for the case of rigid particles, whetds ~ fion (2.14) is explicitly obtained in Refl17], where the func-
the moment of inertia of the rod ang is the rotational tions y!'i(e) are furnished. The rotational friction coefficient
friction coefficient, according to Eqgl.4.21) and (1.4.23, s related to thet;; component of the corresponding friction
respectively. Therefore, the average with respect to Eq.moment. In view of Eq(l.4.23), it takes the form

(1.4.54) smoothes out the short-time dynamics but still re-

tains the long-time behavior of the system. Since the suspen- 1

sion is diluted, in addition we have 4 RN

In%—F'er(e)

, (2.19

p(F,H)=MMS(F—R)) (2.10  where the unspecified functiogy (€) is also given in17].
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On the right-hand side of E¢2.15 we can identify first magnetization due to its rotational motion. In real space, Egs.
the flux of mass advected by the externally imposed flow(2.17) and(2.18 correspond to
The second term, however, contains the flux due to the ex- A
ternal forces as well as the dlSSlpatlve cqntrlbutlon to the qu>'< M(F,t) = moz s(t)s(F— ﬁ(i)(t)) (2.19
of mass. In the case of spherical particles such a term is i
precisely Fick’s law. Here, however, the coupling between
the translation and the rotati¢t8], which is reflected in the &N
functional form of the friction tensor as seen in Eg.14), R
shows up in that the last term in E@.13 cannot be written —m(F,t)=—V- >, u(t)mes(t) 8F—RI(t))
in terms of the macroscopic mass dengify,t). Therfore, Jt i
the diffusion of rodlike particles is in general non-Fickian. It

is worth noting that this second term is entirely due to the + > oMty xsD(t)mys(F—RI(1)),
non-Maxwellian corrections in the velocity probability dis- ‘

tribution (1.4.54). The circumstances under which diffusion (2.20

of rodlike particles is Fickian are discussed later on in this ] . ]

section. respectively. Finally, after averaging both members of Eq.

The second example to be treated here is the transport §-20 With respect to the probability distribution Eq.
properties related to the orientation. This case is particularlyl-4-54, we arrive at the desired transport equation
interesting in situations in which the segments of the chain  , R .
bear magnetic or electric dipole moments, and one is inter- —m(f,t)=—V- (- B)m(f,t)
ested in the evolution of the magnetizati@r, equivalently,
the polarization of a dilute suspension of such objects. Al- Sty o S
though the treatment is general, we will focus on the mag- vk Tf_l- ( Ke(F,s) —ﬁ) (F t)l
netization problem. In this case we define the mesoscopic BTt kgT '
dynamic variable as 1
+(Q(S) X M(F,t))+ g-(fext(F,é)
r

- L2 d . )
m(F,t)=po J d5<d—56<'>(s,t)) 8(F—c(s,1)),
i —L/2 L -
(2.16 Xm(f,t))—2D,m(F,t), (2.21)
where we have defined the rotational diffusion coefficient as

D,=kgt/{,. The macroscopic magnetization field is in turn
given by

where g is the magnetic dipole moment per unit of length.
As before, we Fourier transformm in space and apply the
hydrodynamic limit

ﬁw‘(r,t)zm(r,t)):f dSmeSU(F.S0).  (2.22

m(E,t)=Moz Juz dsié(i)(s,t)e—iﬁ-[|i<‘)(t)+A6“>(s,t)]
T J-Lp2 ds
Again, due to the remaining averages we cannot find a closed
= o> [€D(L2,t)—eD(—L/2,t)]e KRV equation for the macroscopic magr_le_tizatﬁ_(ﬁt). Onone
i hand, the translational friction coefficient depends on the ori-
~ entation of the particle so that it is coupled wiff(f,t) in
=m>, sV(t)e K RV® a5 kL0, (2.17  View of Eqs.(1.4.22) and(2.19. The coupling between trans-
i lation and rotation can be eliminated by taking a homoge-

) ) o . heous system so that the spatial dependence of the magneti-
where the second equality applies only for rigid rods, in;at0n is no longer relevant. Thus the resulting equation
which casemo= oL is the total magnetic dipole moment contains only terms related to the rotation as a mode of re-
per particle andié()(s,t)/ds=Ss, in view of egs.(1.3.1) and  laxation. Assuming that the external torque is due to the
(1.4.7). Differentiating both sides of Eq2.17) with respect ~action of a magnetic field, one has
to time we get

ot

a . e =i 26y —ik.RD)
Em(k,t):—m-Zi mou ) (t)[sek-RY(M] (2.23

aﬁ(t>=<ﬁ<§>xrﬁ<t>>+§<<§xﬁ>xm<t>>—2Drﬁ<t>,

~ ' where Eq.(1.2) has been used. The three terms on the right-
+> mea () x [ (t)e kRO, hand side of Eq(2.23 can easily be analyzed. The first one

i is the effect of the external flow in the magnetization and

(2.18 represents an advective flux in the orientational space. The

second term gives the flux due to the interaction with an

On the right-hand side of this equation, we identify two externally applied torque on the system. The last term stands
terms corresponding to the two modes of relaxation of thdor the diffusive flux in orientational space. Again, the third
magnetization. The first mode is the change in the magnetiierm is entirely due to the non-Maxwellian contributions in

zation due to the motion of the center of mass of the parEq.(1.4.54). The remaining averages in E@.23 couple the

ticles, while the second mode accounts for the change in théynamics of the macroscopic magnetization with that of mo-
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ments of the orientation of higher order. For a completeacting on the orientational part. Assuming that flow effects
analysis, it is necessary to introduce transport equations forare always small, comparing the coefficients of the space
set of dynamic variables of the form operator and the orientation operator is equivalent to com-
R R paring the inverse relaxation time, of a density inhomogenity
MmP(F,t)=8(t)- - - (P- .. (1) S(F— R(1)), (2.24  Ofsizel, 7, *~kgT/7L1?, with the inverse relaxation time of
the orientationrr‘1~kBT/77L3. One can then see that if
which are dynamically coupled to each other. However, sucl./| —0 the orientational term dominates the relaxation of the
a procedure is beyond the scope of the present work. Differprobability distribution. Thus, as in paper I, we can expand
ent schemes of decoupling for the term involving the mag- in powers of (/1)?<1 and solve Eq(2.26 order by
netic field in Eq.(2.23 can be used to express this contribu- order. The lowest order reads

tion in terms of the macroscopic magnetization[19,20.

The analysis of the relaxation of the magnetization of rod- R Te(r ;*) e)

like particles in homogeneous systems has been performed R| ————+R|y0=0, (2.27)
by using Eq.(2.23 in [19,20 and will not be further ana- keT

lyzed here.

To end this section, let us discuss under which conditiond'here we have implicitly assumed that the time scales of

diffusion of rodlike particles can be considered as Fickianinterest are larger tham, . Rewriting (f,S;t) in terms of
First of all we consider the dynamics of the orientation of the . et

particles in the simplest case, i.e., when external torques aﬁae conditional probability(s|F't) as

velocity fields are absent and the system is spatially homo- . .

geneous. Thus, from E(R.23 we get that the averagenac- W(F,S;t) = x(S|F,1) (T,1), (2.28
roscopig magnetization satisfies the closed equation

Eqg. (2.27 turns into a time-independent equation for

0 — S
M H=—2Dm(r1). (225 O 3|, ¢(F,t) simply beingp(F,t)/MA or the probability
density in position space. Therefore, inserting this result into

This equation can be readily integrated to giveEd-(2.13, one arrives at

m(F,t)=m(F,0)exp(~2D,t). This result illustrates that the

magnetization fades away in a characteristic time v IR AP N 5 R (A .Y
1/2D,~ n{L3/kgT in view of Eq. (2.15. In general, due to AP(MO== V(0 B)p(FO VD) Vo(ry)
rotational Brownian motion, magnitudes related to the orien- s et

tation show a characteristic time that is proportional to -V.J¥(r, (2.29
1/D, [18]. In a purely diffusive system, however, the relax-

ation Of a density perturbation Of wave nummeis propor- Wh-e-re we haVe- defined the pOSition-dependent diffusion co-
tional to exp(-Dk2), D being the translational diffusion co- €fficient according to

efficient[3]. This suggests that for the relaxation of density

perturbations of sufficiently small wave number, the orienta- s 3203 0, .

tion of the particles can be regarded as being in its steady Dt(r)szTf dsZ, ($)x' (sl (2:30
state compatible with the externally applied fields. This state-

ment can be put in more mathematical terms following theand the flux due to the external forces

same procedure applied in paper | to derive the phase-space

probability density from the Kramers equation. Let us con- . e Ay o~ L ~ “

sider that the fields of force and torque vary in space in a JeXt(F,t)Ep(F,t)j dSZ; H(S)- K®(F,9) 'O (s|r).
characteristic length much larger than the size of the (2.30)
particles. Using this length to reduce the spatial coordinates

to a dimensionless form, the Smoluchowski equatioh55) gy in the case in which the externally applied forces are

can be rewritten as independent of the orientation does one have the so-called
Einstein relation, that is,

AP +kBT I =, K™
aV TR R e | T T . D).
I, t)=p(F,t) K&Y(r). (2.32
Text kBT
+ =R () + kBTﬁ( T +R |
IR* L3¢} kgT ' Note that the diffusion coefficient defined in EQ.30 de-

(2.26 pends on the dynamics of the orientation of the rods and
' therefore on the external torques acting on the particles. The
S . . simplest situation takes place when there are neither external
whereR* =R/l {f={i/ L, & ={ /7L, and the rotational torque and force applied on the system nor velocity field
operatorR is defined in Eq(1.4.25 and has no dimensions. imposed. It is then straightforward to see that under the con-
In Eq. (2.26 we can identify one operator acting on the ditions discussed above, the system satisfies Fick’s law, the
R* dependence of the probability distribution and anotheriffusion coefficient given by17]
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nSe ™% | mth bead placed aR,, and the sum is extended to all the

1( 1 2) 1 ( 1 yﬂ(€)+ i (€) whereF,, is the a component of the force acting on the
(2.33  beads of a polymer. The forde,, in Eq. (3.1) must be given

D=3l a7 )~ 3mad

where use has been made of Ef.14 and the fact that

x(8|F) =1/4= if external fields are absent.

Hence, in this section we have found that transport equa- E —— J (keT Inz//({li })+U({F§ 1 3.2
tions can be obtained from the phase-space probability dis- m R o m m '
tribution Eq.(1.4.54). The macroscopic irreversible fluxes are
thus derived from the non-Maxwellian contribution of this
probability density without making use of the Brownian ther- Note that this force contains two terms. The second is due to
modynamic force, Eq(l.1.1). This is one of the main results the possible existence of interaction potenti@kectrostatic,
of this paper. In addition, under the restrictive conditionselastic effective potentials, ejdetween the beads placed on
giving rise to a decoup"ng of the translational motion from different sides of the dIVIdlng plane. The first one, hOWGVGr,
the rotational motion, transport coefficients are obtained iriS the Brownian thermodynamic force defined in Hol.1).
terms of geometrical aspects of the particles and the dynam-he Brownian thermodynamic force here plays the role of an

ics of the solvent at its hydrodynamic level. externally applied force that particles transmit to the fluid
causing an additional stress. It ensures, for instance, that the
. MOMENTUM TRANSPORT pressure tensor is isotropic in equilibrium and significantly

) ) ) o o contributes to the elastic part of the stress. Its presence in the

Our main concern in this section is the derivation of theexpression of the pressure tensor, however, is not evident
transport equation for the_ total momentum of the suspensionag_32 17 since in a completely microscopic view of the
By comparing the resulting equation with the phenomenoomentum transport only particle-particle interaction poten-
logical equation, we find an expression for the contributionyj|g play a role[3], as in the case of simple liquids. There-
of the suspended particles to the pressure tehE§} (or,  fore, its presence in a mesoscopic description of a system
equivalently, to the stress tensm‘apﬁ) with ag”ﬁ)= —H(a‘g), must reflect the averaged effect of smoothed out degrees of
from which the effective viscosity of the suspension can bereedom in the stress. In Ref29] and[30], for instance, the
obtained. complete phase space of the whole systgmlymer plus

The analysis of the effective viscosity of suspensions wasolvent moleculesis considered, aiming the derivation of
initiated by Einsteirj21], who studied suspensions of spheri- the expression for the contribution of polymers at the pres-
cal particles. The increase of the stress in the system is dusure tensor. A projector operator formalism permits us to
in this case, to the rigid constraint that the spheres offer t@liminate the dynamics of the solvent, leading to an expres-
the incoming flow externally imposed. Preliminary works onsion of the pressure tensor involving only polymer coordi-
viscosity of polymer solutions were due to Burgg?], nates, where a contribution of the form of the Brownian ther-
Kuhn and Kuhr{23], and Kramerg24]. Wormlike particles modynamic force was found. Again, although the formal
can model polymers with a certain degree of rigidity. Thusexpressions have the appropriate functional form, the expres-
the stress in a suspension of such a kind of particles is naions for the various coefficients are far too complex to be of
only due to its rigidity to the imposed flow, but also configu- any practical use.
rational changes play an important role. With the aim of analyzing the transport of momentum in a

There are several ways to arrive at an expression for thdilute suspension of worm-like particles, in this section we
contribution of suspended long particles to the stress tensatill develop a methodology that conceptually parallels that
[25]. One can find in Ref[26], for instance, a derivation used to derive the expression of the stress tensor in simple
based on the classical work of Kirkwod@7]. Kirkwood liquids [3], here, however, starting from the mesoscopic
considered a given volume of the system as divided by @oint of view described in paper I. We will find an expres-
hypothetical plane arbitrarily taken as perpendicular to thesion for the contribution of the suspended particles to the
z axis. The stress tenser,, is thus given by the force per pressure tensor, in which the corresponding friction coeffi-
unit of areaFEf) , which the upper part of the volume exerts cients can be explicitly found in the framework of the theory
on the lower part through the plane. Such a force consists dfself.
two contributions: the first one is the force through the plane With respect to the dynamics of magnitudes analyzed in
between solvent molecules, which accounts for the stress &ec. 1l, momentum transport in a suspension is more in-
the pure solvent, and the second corresponds to the foraelved than those examples already treated. In the case of
between portions of the suspended particle placed at differemiass and magnetization transport, the solvent plays a passive
sides of the plane. The excess stress in the suspension is thiade, but in the case of momentum transport, frictional forces
due to this second contribution. Assuming, for example, thaproduce a momentum exchange between the solvent and the
the particles are polymers, each modeled as a linear sequensigbsystem constituted by the suspended particles. Effec-
of beads, and that the suspension is homogeneous, the dively, if we define the mesoscopic momentum density of the
pression found for the contribution of the suspended particlesuspended particld§] according to
to the pressure tensef. Eq. (3.139 of Ref.[18]] reads

N,

R L2z . o
H;‘gz—agf;;:vZ (FmaRmg), (3.1) j’(rit)Ef lzuU(s,t)ﬁ(r—C(s,t)). (3.3
m
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it is obviously found thaj’ is not a conserved quantity pre- €xert a force on the_surroundings. H_ence the amount of mo-
cisely due to the momentum loss arising from the frictionalmentum contained in the velocity disturbances propagating
forces accounting for the momentum transferred from thestill inside the volume is less than the initially transferred

particles to the solvent. Then the macroscopic transporiomentum. Thus, for an incompressible fluid the proper bal-

equation forf’ does not correspond to the phenomenologica?mCe is established by accounting for both the momentum

Navier-Stokes equatiof83] and therefore the identification carried by the disturbances in the velacity field and the mo-
of the expression of the stress tensor from the evolutio"€Ntum transferred through the boundaries by means of sur-

. . . face forces. In addition, if>\/vt, these surface forces are
equation ofj’ is not legitimate.

. 2 : . only due to the pressure.
The right mesqscopl(:con.serveidvanable Is thus the tota_l Let us consider again the dynamic variable given in Eq.
momentum density, involving both the momentum carried s 7 _ )
by the particles as well as that propagated through the sof-# With v being the velocity field for an incompressible
vent by the perturbations caused in the velocity fiEgd]. fluid, hence a solut_|on of Edl.2.1). The dynamic variable
Effectively, let us define the dynamic variable correspondingEd- (3-4 now describes only a part of the momentum trans-
to the instantaneous momentum density as given by port .ph_enomenon, according to our previous d_|scu35|on.
Identifying the excess of the dynamic variable as
J(F.O)=p(F,H)u(F1). (3.4) AJ(F,_t)EJ.(r*,t)—]S(r*,t), where j4(F,t) is the momentum
density in the absence of the particles, i.e.,
In this equationp(F',t) is the instantaneous density of the ps[vo(F,t) +v(F,t)], we have

whole system fluid plus particles, which is given by
L/2

Li2 AJ(F,)=psvy(T.t) +ﬁf_u2d55(r— E(s,t)u(s,b),

p(FO=pt | dsr-c(s). (39 .

v(F,t) being the actual velocity field. Here and in the follow- wherev(Ft) is the solution of Eq(1.2.10) without the ran-
ing we will take a single suspended particle to simplify thedOm pressure tensdiR
notation. To generalize the results to an ensemble of no
interacting particles, we will simply multiply the final results

. Moreover, we have made use of the
Fact that the velocity field at the postion of the particle is the

velocity of the patrticle itself, in view of stick boundary con-
by the number of particles/. Y P y

Before proceeding, some remarks need to be made aboﬂirtions' As in paper _I’UO(F'E) s th? velocity field in the
the nature of the hydrodynamic limit. In the case discussed ifosence of perturbations ang(r,t) is the random velocity
this section, where perturbations carrying momentum, adield due to the thermal fluctuations, which alre_ady contains
sound waves or shear disturbances in the velocity field, cai1e effect of the random pressure tensor. Fourier transform-
propagate in the system, it is crucial to take the likit0  ing Eq.(3.6), we get
before the long-time limit is performef3] because these
limits do not commute. An intuitive picture of the underlyin T ~ ik E(s )2
physical reason for this can be obﬁained as follows. IYetgus AJ(k't)_psvl(k’t)Jr’“f,L,zdse =ou(s,b).
consider a volume of lateral side-1/k, k being a given 3.9
wave vector, embedded in an infinite liquid at rest. At
t=0, we transfer an amount of momentum to a point insiderinally, to obtain the desired equation for the transport of
the volume and study how this momentum propagates. At @nomentum, we proceed as in Sec. Il by time differentiating
certain timet, the perturbations in the velocity field, carrying the dynamic variable. Here, however, according to the pre-
a part of the initial momentum transferred, occupy a regiorceding discussion, to account for the variation of the total
of size[9] vt, wherev= 74/ps is the kinematic viscosity. “momentum, together with the time derivative of the dynamic
However, sound waves, propagating at the speed of soundiriable Eq.(3.4) we explicitly add the portion of the mo-
¢ and transporting another portion of the initial momentum,mentum instantaneously transmitted by pressure forces
have traveled a distance. Therefore, in making—c much  _jip, (k,t) since the fluid is taken as incompressible. There-
faster thanct (or, equivalently,k—0 much faster than fore, we have
wl/c, w being the frequengywe ensure that the total initially
transferred momentum is contained in the volume and the ; . 9. .
proper balance can be established. Thus we can perform the—-Aj(k,t) +ikp;(k,t)=ps=v1(K,t)
same analysis as in Sec. (also as in Ref[3]) with the t at

L2

dynamic variable given in Eq3.4) by taking the fluid as 2 9 L

compressible. +ﬁf ds—[e k- cshy(s t)]
In taking the solvent as incompressitdb initio, we are -t ot

implicitly assuming that the speed of sound is formally infi- T

nite. Thus, if we take the same volume of sizs before but +ikpa(k,t). (3.9

now for an incompressible fluid and transfer a given amount .

of momentum at a point inside, the momentum carried by théierepi(k,t) is the excess pressure due to the presence of the
sound waves is instantaneously lost through the boundarig¥rticles in suspension. Making use of the Fourier transform
of the volume. In other words, the boundaries of our volumeof Eq. (1.2.10) to eliminatedv ,(k,t)/dt, we arrive at
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0 . . .. L/2 N s L/2 N - .
EAj(k,t)=—175k2v1(k,t)+J ds{f"(s,t) e'k-R<t>f dg[ f"(s,t) + mu(s,t)]= ek ROKt)
-Lr2 —Lr2

+A[ K- U(s,)t(s,t) + (s, t) e~ K<, — koK 1),
(3.9 (3.12

The third term on the right-hand side of E8.10 can also
The reader can verify that this result is recovered by timede worked out by using the expansion of the functions iof
. o > : P f the basis set describing the fields defined along the
differentiatingAj (k,t) as in Eq.(3.7), but with v;(k,t) be- terms o :
ging the perturbation in a velocity field for a compressibIeCh""In contour, apcordlng to Ec{_$.3.29) and(l.3.30). Due to
solvent and then taking the limit—. However, sound the orthonormality of the basis set and using Hg3.24)

waves cause fluctuations in the density and also in the ten{gbge_ther with Eq(1.3.32) to eliminate the induced force, we
perature, thus making necessary the explicit consideration &Ptain

the balance equations for the density and internal energy for., ,
the solvent, coupled with the evolution of the perturbationf ds{ZU(s,t)U(s,t) +AE(s,D)[ (s, t)
71(K,t) [10]. —L2

To proceed further, we rewrite the expressions in Eg.

) - . - Ly - I
&3.9) by develgplng exp-ik-c(st)] |r-1 powers of +7u(s,O]} = EE (B0 U;+AG[ T+ % g.]), (3.13
k-Ac(s,t), according to Eq(2.3), and retain terms only up !

to first order. We get L .
where here the subindéxabels the corresponding moment

of the configuration and velocity fields of the same particle.
g .. . L2 From the first contribution on the right-hand side of this
EM (k,t)y=— nskzﬁl(k,t)Jrf ds f"(s,t) equation, one should extract the part that stands for the ad-
L2 vection of momentum by the externally applied flow, to
separate it from the part that contributes to the stress tensor,

+uu(s,t)]e”® RO which is related to the Brownian motion of the particle. Note
LR R ) that if one uses Legendre polynomials as a basis set, the
—ik-f ds{ru(s,t)u(s,t) zeroth-order moment of the position is proportional to the
L2 position of the center of mas’d according to
+ AG(s, [ F™(s,t) + ZU(s,1) Je RO, L2
dsué(s,t
(3.10 a J—L/Z ue(st) 1fld6( 9 1.
= =— X8(X,t) —= = —=¢,.
fuz isi \/z 1 \/5 \/5 0
The first term on the right-hand side stands for the momen- -L2

tum transported by the solvent due to the perturbations (3.19
caused by the particles. In appearance, this term contains no ) o
characteristic length scale. However, in Appendix B weln the same way, the velocity of the center of mass is given
show that it is in fact of orderkL)? and can be neglected. In by U=Uq/\/2. Thus the first term on the right-hand side of
the analysis of the second term on the right-hand side of Ed=q. (3.13 can be written as

(3.10, we can use the relationship between the induced force

densityf™ and the hydrodynamic forcE'? as given inEq. L ~-. = 2 = 2 4 . L ~ac
(1.3.24) and the equation of motion for the particle, Eq. 22i pUG=M(R-B)(R-B)+ MAUAU 2i>20 (Ui
(1.3.20. We thus have (3.19

To find a final expression of the stress tensor as a function
L2 2ind - L2 2 int Zox only of velocity and configuration averages, we proceed to
f_uzds[f (S’t)+l‘“(s-t)]:f_u2ds[f (s.)+f*(s;t)  eliminate the constraint force in E43.15 by using Egs.
(1.3.38 and(1.3.40), yielding
+g(s,H)], (3.11)

AL+ frgi]=Ac,

—~ 3 N 3
_Mg R”kukUJ‘F; (15”
whereé is the constraint force. The right-hand side of this L
equation stands for a total external force acting on the fluid —O0N) T+ =S 0. &, (G—¢C. B
since we have neglected the buoyancy forces. Integrating Qi) fit 52 Q- & (UG )
with respect tas and making use of the fact théft and the

constraint forces give no contribution to the total force, we +2 5 .fB
arrive at T o)
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where we have used agaip=f"+ f®! to shorten the nota- responsible for the so-called viscous contributions to the
. . .2 2 . stress tensor. Terms related to the velocity can depend on the
tion. In th.|s equatiorR;c andQ;; are the geometrlcal tensors velocity gradients through the probability distribution giving
defined in Eq§.(|.3.44) and (1.3.49, respectively. The rise to the elastic contributions to the stress tensd].
Brownian forcefiB should be not confused with the thermo- Moreover' we have found that the momentum transported by
dynamic Brownian force defined in E(.1.1). The last term  the fluid, given by the first term on the right-hand side of Eq.
on the right-hand side of Eq3.16 is a contribution of the  (3.10), does not contribute to the pressure tensor to the low-
particle to the total random stress tensor, which is extremelgst order inkL. It contributes, however, when higher orders
fast compared to the characteristic time scales of the velocity, kL are consideref34]; thus it will play an important role
or the configurational changes. This term vanishes after avp the calculation of thé-dependent viscosity.
eraging, in view of Eq/(1.3.39), keeping the configuration | et us study the rigid rod case for a homogeneous suspen-
frozen. _ ~ sion of particles with the purpose of explicitly deriving the
We will further assume that the macroscopic velocity fieldintrinsic viscosity of the suspension in the simplest situation
is the same as the unperturbed velocity figl8]. We then  ang compare with other results. We recall that the configu-
arriye at the balance equation for the momentum excessation of a rigid rod is given in Eq(l.4.7), showing that the
which takes the form thin cylinder has only five degrees of freedom: three associ-
ated with the motion of the center of mass and two due to the
rotation around an axis orthogonal to the cylinder's axis.

Using the expressions for the geometric tens§r§ and
(3”-, obtained from Eqgs(l.3.44), and(1.3.45), together with
Egs.(1.4.10), (1.4.13), and(1.4.15), in Eq.(3.19, we arrive at

where we have writterp(K,t)=Mexp(-ik-R) [as in Eq. the expression for particle’s contribution to the pressure ten-
(2.5), but for a single particleto introduce the particle’s SOr for a suspension of rigid rods

mass density. On the right-hand side of this expression, to-

gether with the total external force we have defined the con- . i
tribution of the particles to the pressure tensor, which can be NPk t=e

split into a rapidly varying term?rR, which is associated with

SATRD+K-ALR AR A)lp(K )= -iK-1OK)

+R(K ) —iK- 7R(K, 1), (3.17

MAUGAG+1(@0XS)(0XS)— | 0?ss

the random force and a slower one related to variables of the L2 . = ~» 7 L4 | 3333 2

. . . . . + ——=s(1— T+ = : .
particles onlyTT(®), from which one can obtain the viscosity 2\/65(1 S8)- 1t 5] £11SSSS:B
of the suspension. The first one is given by (3.20

3 - =4 L =3 -
wR(k,t)Eef'k-RmEZ AGQ;- TP, (3.189
1)

while the second reads

Note that the term bearing the velocity gradient is propor-
tional to the parallel component of the friction moment

2‘11, in view of the general form of the friction moments for

a rigid rod given in Eq.1.4.24). As in Eq.(2.15, we can
define a new friction coefficient associated with the viscous
stress{= §||11L4/24, which has also been explicitly calcu-
lated in Ref[17] as a function of the cylinder’s aspect ratio.
It takes the form

2

s - L
Pk, )=e'k‘R(‘)[MAﬁAG+—

+AG, —;zjk Rijk aka,+; (18— Qi) fj
L | £t ==l k(e (3.20
2 0z L 2 s L3 " 2e MY '
52 Qi i (B B))“ (3.19 T L e

This friction coefficient has the same order of magnitude as

This last expression is one important result of this paper,  but different numerical value since it corresponds to dif-

which deserves some comments. First, we have obtained an - 2 .
) . .~ Terent components of the same friction momént. Finally,
expression for the stress tensor of a continuous chain wit|

constraints, in terms of the moments of the functions depenwe get

dent of the contour length. We see that there are contribu- o R R .
tions linked to the velocity and others to the configuration. If ﬁ(p)(ﬁ,t): e KRIMAGAG—I[(SX AwAwX S) + w?SS]
the chain is under the action of rigid constraints, the con-
straint forces introduce additional velocity-dependent terms
whose effect on the viscosity depend on the geometrical as-
pects of these constraints. In express{8rl9 the friction
moments defined in paper | explicitly appear, we can thus
immediately relate them to the mobility moments, according A~ . -
to Eq. (1.3.36), which can be calculated. Precisely thesewhere we have neglected the tesx Q) xS being qua-
terms involve contributions linear in the velocity gradients,dratic in the velocity gradient.

1A a3 PN S
—§(SXT)+ {5558 B —e W RISXQAwXS

+8xAGA XS,

(3.22
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Let us analyze the linear viscosity with the aim of deriv- where use has been made of E8.24).
ing explicit and simple results. With this pourpose, some Thus, averaging Eq3.20 with respect to Eq(3.26) one
points have to be taken into consideration. arrives af18]

First of all, we will assume that the unperturbed flow is a

Couette(simple shearflow given by <ﬁ<P>>: nkBTf—3nkBT(§§— %5)(_ ngséfg;fg)x Y

—n(S(Sx Tex )
0 ol (323 n(S(SXT*Y),, (3.27
0 O wheren=A/V is the number of particles per unit of volume.
The subscripty indicates that the remaining average con-
wherep is the shear rate. Second, as we have already meferns the orientational probability distribution only. In this
tioned, we will assume that the macroscopic flow is equal taxpression we can identify four different contributions. The
the unperturbed flow, so that it is also given by the expresfirst one gives the osmotic pressure of the suspension. The
sion (3.23. The linear viscosity then follows by retaining second term is the so-called elastic contribution to the pres-
only linear terms in the shear rate in E§.22. sure tensor, associated with the change in the orientational
To perform the averaging procedure, we will use Eq.probability distributiony when an external flow is acting on
(1.4.54). In this expression, the dependence on the velocity ighe system. It is well knowfil8] that this term can be cast in

explicitly given, but the spatial dependence of the probabilitythe form of a thermodynamic Brownian force, according to
distribution function is, however, a solution of the Smolu-

chowski equation, Eqil.4.55. To simplify the present deri- ~ ~ ~ ~
vation of the effective viscosity, we will consider, third, that (SpE aurSyRuINX(8)) = 3(SaSp— 8upl3)y, (3.28
the system is homogeneous and that no external net forces
are acting on the particles, although they can experience esvheree .z, is thea Sy component of the Levi-Civita tensor.
ternally applied torques, homogeneous in space. Under thedleis then clear that the thermodynamic rotational Brownian
circumstances, configurational averages will only concerriorce appears after elimination of the rotational velocity of
the orientation variables. Using these hypothesis togethdhe rod. Hence we have recovered the same result as in Refs.
with Eq. (2.28), we get [29,30, here from a completely mesoscopic theory.
The third term in Eq(3.27) is the viscous contribution to
.2 ~ the stress tensor. The elastic and viscous terms constitute two
Y(R.S)=x(8) . (3.24  (ifferent relaxation mechanisms of the stress in the system
when a preexisting velocity gradient is switched off. The

whereV is the volume of the whole system and use has beeflastic contribution relaxes due to rotational Brownian mo-
made of the fact thag is independent of the position in a tion, with a characteristic time related to the time that the
homogeneous system. The facidistands for the fact that at probability distribution takes to recover the equilibrium form
this point we consider the ensemble &findependent par- (6kgT/Z, in dilute solution. The viscous contribution, how-

ticles, as commented at the beginning of this section. SubstEVer relaxes instantaneously since it is related to the tension
tution, of Eq.(3.29 into Eq.(1.4.55 leads to that the velocity gradient exerts on the rod, instantaneously

compensated by constraint forces. The last contribution is
ot S due to the effect of external torques on the particle. It is very
_ T%4s) +7€> (%):O important for cases where the particles bear magnetic or
kgT X ' electric dipole moments, as it is the case of ferrofluids, since
(3.29  they are responsible for the dependence of the effective vis-
cosity in the externally applied fields.
Finally, note that, unlike the case of the mass and magne- The effective shear viscosity is obtained from the ex-

netization fluxes were given by the corrective non-

Maxwellian terms in the probability distributiofh.4.54), the = o0 _ 3 3o

expression of the pressure tensor does not vanish when av- (P =—(n—ns)(B+B"). (3.29
eraged with respect to the dominant term, i.e., with the local

Maxwellian. The non-Maxwellian terms give corrections to The reduced viscosity is defined giS]

the pressure tensor proportional to the mass and the moment

—ﬁ-ﬁx(§)+Dr7€-

of inertia of the particles. Compared to the dominant terms, _ 1
the corrections scale ds3/{,<1, negligibly small if fric- [7]=lim;—o—(7— 7). (3.30
tional effects dominate over inertial effects. Therefore, the Ps

probability distribution giving the leading contribution of the — i o .

pressure tensor for a suspension of rodlike particles under thE® mass density in the case discussed in this section is

circumstances described above reads obtained from EQ.2.9) by averaging with respect to the
probability distribution function, Eq(3.26), giving

s 2 1 N >
’\I,(AU),A(.U,R,S,t): Ne—MAuzlszTe—|Aw2/2kBTVX(S)' — MN_ MWN

(3.26 P= N TNV (339
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whereM,, is the molecular weight of the polymer aht} is  [Eq. (1.4.54)], where the velocity probability distribution ex-

Avogadro’'s number. Thus, for the shear reduced viscositplicitly appeared. This permits us to deal with the time de-

we get pendence of the equations at a time scale much larger than
that characteristic for the relaxation of velocity perturbations,

_ NAV allowing for a simpler treatment.
[7]=- ﬂSMW,3<HXY ) (3.32 Another point worth mentioning is that the hydrodynamic
nature of the dynamics of the solvent is considered from the
where use has been made of E823. beginning, which allows for a determination of the friction

The stationary zero shear viscosity in the absence of exeoefficients. Thus the transport coefficients appearing in the
ternally applied torques on the particles can be readily obtransport equations are directly related to those friction coef-
tained by solving Eq(3.25 for x(S) up to first order in the ficients without ambiguity. From our point of view, one of

velocity gradien{35]. One finally arrives at the major inconveniences of theories starting from the Liou-
ville equation for the system suspended particles plus solvent
_ Na (& &s moleculeq7,8] is that in a given stage of the derivation, the
[7]= M., 75 10 ' 15 formal expressions for the transport coefficients have to be
replaced by those obtained from hydrodynamic calculations,
_ Npml® 3 1 this not always being obvious. A good example is the deri-
© 90M,, | In1/2e+ v (e€) + In1/2e+ yl(e) ) vation of the pressure tensor for the suspension from the

mesoscopic theory developed here. We have reasoned along
(333 the lines of the derivation of the stress tensor in the theory of
simple liquids by introducing the total momentum density as
the dynamic variable. An important result is the expression
[Eq. (3.19] of the stress tensor for a continuous wormlike
chain with rigid constraints. Since the momentum carried by
the solvent has been explicitly taken into consideration, the
%nalysis performed here can be used as a good starting point
to study thek and thew dependence of the effective viscos-

the friction coeff|C|er_1ts that_ arise from our treatment. In theity of a suspension, in the spirit of the generalized hydrody-
same way, the rotational viscosiff] can also be evaluated namics[3,13,4,34

from the transport equr_;\tion obtained by gonsidering the an- Finally, another important aspect of the developments of
gular momentum density of the suspension as the dynam.'t%is article together with paper 1 is that the friction tensors

variable and proceeding along the lines developed in thl%an be explicitly calculated in the framework of the mesos-

paper. copic theory developed. In this paper, we have restricted our-
selves only to the derivation of the formal expressions with-
IV. CONCLUSIONS out making a detailed analysis. As it has been already
mmented, explicit calculations have been done in Refs.
7,37 for rigid rods with finite aspect ratio. The details of
e calculations can be found in these references.

In Ref.[17] explicit evaluation of %] has been performed as
a function of the aspect ratio of the r@dL, which are the
only results for this quantity for finite aspect ratio existing, to
the best of our knowledge.

The analysis can be also performed, for instance, for th
components of the viscosity tensor of a ferrofl(@®], using

The analysis developed in this paper shows that the stu
of the dynamics of suspensions from a mesoscopic point
view based on the induced forces method and the fluctuatin
hydrodynamics permits a precise analysis of the coupling
between the dynamics of the solvent and the dynamics of the ACKNOWLEDGMENTS
suspended particles. While in paper | we put the emphasis on
the derivation of the probability distribution at long times
and to the(formal) calculation of the friction moments, here
we have derived transport equations for different macro
scopic quantities and identify some transport coefficients i
terms of these friction moments. In particular, we have ana-
lyzed the dynamics of the mass density and the magnetiza-
tion, as well as the momentum density. The paper stresses APPENDIX A: PHASE-SPACE AVERAGES
the analogy between simple liquids and suspensions, show- ) ) )
ing that the same lines of reasoning can be used in both L€t us briefly discuss the averages performed in Secs. Ill
domains if one takes into account that for suspensions th@nd IV. For simplicity, let us denote b any of the vari-
governing equations are not conservative. In R&g], for ables{¢;} and{(;} that characterize the dyna[nlc state of our
instance, the formal analogy is also developed. There theystem and byw any of the random force$?. Given a
basic equation is the Kramers equationthe Fokker-Planck particular realization(t) of the random forces and an initial
equation for configurations and velocitieand the main lig- condition X, at t=0, the solution of Eqgs(l.3.42 and
uidlike features of the suspension are due to the direct inteid.3.43) gives usX(t), which we denote by[w(t),Xq] to
action between the Brownian particles, the solvent playing @mphasize the fact that this solution is functionally depen-
passive role. In paper | we started also from the Kramerslent on the particular realization of the random force and on
equation considered as the minimal model incorporating althe initial conditions. Moreover, let us introduce the prob-
the long-time features of the suspension, but we derived thability distribution of a given realization of the random force
long-time behavior of the probability distribution function asP[w(t)]. The phase-space probability distribution given a
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initial condition is simply given by 38] APPENDIX B:
MOMENTUM CARRIED BY THE SOLVENT
_ _ The momentum carried by the perturbations caused by the
WX, t1Xo) f WL PIW(D) ]oX=X[w(L), XoD), particles in the velocity field of the solvent are described by

(Al)  the first term on the right-hand side of E@.10. In this
o appendix we show that this term is in fact of ordéd?,
where [ éw(t) - - - denotes a sum over all the realizations of th5 pegligible in the hydrodynamic limit. The formal solu-
the. random fprpgw(t). Olb.wously, .'f the probablllty'dlstrl- tion for Jl(lz,t) can be obtained by solving Edl.2.10),
bution of the initial conditions is given, one can write which gives

s 22
N t o 1-kk . .
ko= [ ave 0TS E Ry, @Y

\P(X,t)=f dXW(X,t|X0) W(Xo). (A2)

Let A(X(t)) be a given function of the&{(t), again the )
latter a solution of Eqs(l.3.42 and (1.3.43 for a given re- where use has been made of the Fourier transform of the

alization of the random force and for some initial conditions.Propagator of the velocity field given in Eql.2.15.

The average oA must be interpreted as F(k,t) is the Fourier transform of the induced force density,
as it appears in Eql.2.10. The induced force density for
(AX(1)))o k—0 must be of the form
If(lz,t)~e*”z'§(t)f dsf(s,t). (B2)

EJ dXo‘I’(Xo)f ow(t) PLw(t) JAX[w(t),Xo]), (A3)
The integral stands for the total induced force density, which,

where(), denotes the average with respect to the realizationgue to the action reaction principle, is also the total frictional
of the random force and over initial conditions. Introducing force acting on the particlesee the discussion preceding Eq.
1=[dX8(X—X[w(t),Xo]) on the right-hand side and (I.3.24]. The total induced force density thus being a fric-

istic velocity. Since in the absence of externally applied

forces the particle is dragged by the flow, the only charac-

(A(X(t))>0=J dXo‘I’(Xo)J dx[f SW(t)PIw(t)]8(X teristic velocity is the rotational velocity imposed by the ve-
locity gradient, thus being proportional L. The friction
coefficient, on the other hand, must scale as the solvent vis-

—X[w(t),xo])]A(x), (A4)  cosity times a length. We thus get
= - _ik-R
where we have replacet] w(t),X,] by A(X) in view of the [F(k=01)|~ nL2Be RO, (B3)
6 function. Now, using Eq(A1), we end up having By using these-dimensional arguments, we arrive at the scal-

ing of the first term on the right-hand side of E§.10

A(X(t =de\IfX,tAX=AX. A5 t -
(AX(1))o (XDAX)=(A(X)).  (A5) kzﬁl(lz,t)~v(kL)2,8f dre Ve KR (5
Therefore, we can replac&(X(t)), which should be aver- -

aged over all the realizations of the random forces, byshowing, therefore, that this term is of second ordekln
A(X), a function of the phase-space variafleand perform  Note that here it is crucial to considél—0 before the
the averages with respect to the phase-space probability diguasistatic —0) limit is performed, in agreement with the
tribution. prescribed ordering of these limits.
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