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In this paper we derive transport equations for a suspension of semiflexible and rigid particles for several
cases of interest. The analysis is based on a mesoscopic description introduced in the preceding paper@Phys.
Rev. E54, 3955 ~1996!#. The non-Maxwellian contributions to the phase-space probability distribution ob-
tained in the preceding paper give rise to the dissipative fluxes arising in the transport equations for the mass
density and the magnetization as particular cases. In addition, a derivation of the contribution of the particles
to the stress tensor, where the momentum density of the suspended particles as well as that of the carrier fluid
are taken into account, has been developed. An expression for the stress tensor for continuous semiflexible
particles with rigid constraints has been found.@S1063-651X~96!02910-8#

PACS number~s!: 61.25.Hq, 83.10.Nn, 83.10.Pp, 05.40.1j

I. INTRODUCTION

The study of the macroscopic dynamic properties of sus-
pensions is of great fundamental and applied interest. The
macroscopic state of a system can be specified by giving the
values that a set of relevant fields~such as, for instance, the
mass density, the velocity field, the temperature, or the pres-
sure! take at each point of space and each instant of time.
These macroscopic fields satisfy a set of coupled differential
equations, here referred to astransport equations, which are
in the basis of any analysis of irreversible phenomena occur-
ring in many fields of physics, chemistry, biology, and engi-
neering.

The transport equations can be phenomenologically deter-
mined and incorporate the so-called transport coefficients.
The transport coefficients occur as proportionality coeffi-
cients relating the irreversible fluxes to spatial gradients of
the macroscopic variables used to specify the state of the
system@2#. A theory aiming to derive the macroscopic be-
havior from more microscopic grounds starts from the dy-
namics of the constituents of the system, either from the
molecules, as in the theory of simple liquids@3,4#, or from
the dynamics of the suspended particles, as in the theory of
Brownian motion. Magnitudes borne by the particles, as
mass or momentum, are responsible for macroscopic phe-
nomena such as mass diffusion or fluid flow. By means of
averaging and performing the hydrodynamic limit, the long-
wavelength and long-time behavior of the system can be
extracted from the microscopic dynamics. Then the resulting
transport equation, when compared with the phenomenologi-
cal description of the system, permits us to relate the phe-
nomenological transport coefficients with expressions in-
volving details of the underlying microscopic nature of the
system.

In obtaining the transport equations for suspensions from
either microscopic or mesoscopic views, a great difficulty
lies in the treatment of the dynamics of the solvent. If theab
initio calculation from the Liouville equation for the entire
system is chosen@5,6#, the degrees of freedom of the solvent
are projected out in favor of mesoscopic equations describ-

ing the dynamics of the degrees of freedom of the suspended
particles alone. However, the cumbersome expressions for
the friction coefficients as found by this method cannot be
further carried out and are usually substituted by expressions
taken directly from hydrodynamics@7,8#. Other treatments
propose equations of motion for the ensemble of suspended
particles at the mesoscopic level, in which these friction co-
efficients play the role of phenomenological coefficients by
themselves since they are not determined by the theory.

In Ref. @1#, referred to hereinafter as paper I, we have
developed an approach to the dynamics of suspensions of
semiflexible and rigid particles from amesoscopicpoint of
view based on both Landau-Lifshitz fluctuating hydrody-
namics@9# and the induced force method of Mazur and Be-
deaux@11,12#. The system studied in paper I and also in the
present work consists of an ensemble of noninteracting
wormlike particles of lengthL and cross sectiona embedded
in a Newtonian solvent of viscosityhs at constant tempera-
ture T. The configuration of the particle can change with
time and is given by the vector fieldcW (s,t), where
usu<L/2. The treatment of the solvent as a continuum under-
going fluctuations enables us to study the coupling between
the dynamics of the solvent and that of the particles. On one
hand, our mesoscopic approach is simpler than the micro-
scopic one based on the Lioville equation for the whole sys-
tem@5,6# in that it retains only the hydrodynamic behavior of
the solvent but ignores its short-time, short-wavelength mo-
tion, related to details of the molecule-molecule interactions.
On the other hand, our description still retains information
about how the perturbations caused by the particles propa-
gate in the solvent, information ignored in other mesoscopic
points of view@13#, but that is crucial in deriving the proper
friction coefficients.

Thus, in this paper we apply the main ideas and results
developed in paper I to derive several macroscopic transport
equations for suspensions of semiflexible and rigid long par-
ticles. The treatment permits us to obtain explicit expressions
for the transport coefficients occurring in the transport equa-
tions, in terms of the friction matrices introduced in paper I,
which are ultimately related to geometrical aspects of the
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suspended particles as well as to the dynamics of the solvent
at the hydrodynamic level. In particular, we will derive trans-
port equations for mass, magnetization, and momentum den-
sities in the same spirit as in the theory of simple fluids@3#.
We will first identify a mesoscopic variable~referred to as a
dynamic variable! and study its mean behavior for long
wavelengths and small frequencies, i.e., in the so-called hy-
drodynamic limit. To perform the averages, we will use the
non-Maxwellian phase-space probability distribution for
nonequilibrium situations given in Eq.~I.4.54! ~references to
formulas of paper I will be made by adding ‘‘I.’’ in front of
the label of the equation!. We will see that the deviations
from the Maxwellian behavior are related to irreversible
fluxes as that given by Fick’s law, for instance, in analogy
with the so-callednormalsolution of the Boltzman equation
@14,15#. Special emphasis will be put on the analysis of the
momentum transport, mainly on a derivation of the stress
tensor, since for this quantity the solvent does not play a
passive role but carries itself momentum that has to be ac-
counted for. We obtain an expression of the stress tensor for
a semiflexible chain in which the rigid constraints are taken
into consideration. In addition, an extra term relevant at finite
wavelengths accounts for the effect of the momentum carried
by the solvent due to the perturbations caused by the motion
of the particles. Such a contribution is currently ignored in
those treatments in which the momentum carried by the sus-
pended particles is taken as a dynamic variable.

The paper is organized as follows. Section II is devoted to
the derivation of the transport equations for mass and mag-
netization for a suspension of wormlike particles. These ex-
amples will serve as simple and, at the same time, nontrivial
cases to illustrate the procedure and the relevance of the
non-Maxwellian nature of the velocity dependence of the
probability distribution. Explicit results will be obtained only
for the case of a rigid rod, for which the phase-space prob-
ability distribution given in Eq.~I.4.54!, as well as the
Smoluchowski equation Eq.~I.4.55!, appies. In this paper we
have further introduced some simplifications in these two
equations. First, we have neglected terms quadratic in the
velocity gradient, assumed small, as well as buoyancy forces.
The external force and torque acting on the particle, how-
ever, are considered to be position and orientation depen-
dent, although the external fields causing this force and
torque do not explicitly depend on time. It is the case, for
instance, when an inhomogeneous and stationary magnetic
field HW (rW) is applied to the sample. If the particles carry

magnetic momentm0sŴ, then the forceKW ext and torqueTW ext

experienced are given by the expressions@16#

KW ext~rW,sŴ !5m0sŴ•¹W HW ~rW !, ~1.1!

TW ext~rW,sŴ !5m0sŴ3HW ~rW !, ~1.2!

which is a case of practical interest, although our results are
not restrictied only to the magnetic case. Section III is exclu-
sively devoted to the derivation of the mesoscopic expres-
sion for the stress tensor for semiflexible wormlike chains
and the discussion of the coupling between the dynamics of
the particles and the solvent. An explicit form for the stress
tensor for a chain including rigid constraints is derived. As a

particular case we will consider again the rigid rod for which
explicit results for the linear viscosity are obtained. Finally,
Sec. IV is devoted to a brief discussion of the main points
developed and the conclusions that can be drawn from the
present work.

II. MASS AND MAGNETIZATION TRANSPORT
FOR RIGID RODS

In this section we derive equations for mass transport and
for properties related to the orientation of the particle, de-
noted by magnetization in a wide sense, for a suspension of
wormlike chains in dilute solution. With these two examples
we want to illustrate the use of the phase-space probability
distribution given in Eq.~I.4.54! and the consistency of the
whole scheme.

Let us consider a system of volumeV with N noninter-
acting identical particles in suspension. Since the system is
assumed to be diluted, the motion of each particle is statisti-
cally independent. Thus the phase-space probability distribu-
tion for the system is given by

C~$XW ~ i !%,t !5)
i51

N

C~XW ~ i !,t !, ~2.1!

whereXW ( i ) denotes configuration and the velocities of the
i th particle,$XW ( i )% being the ensemble of coordinates of all
the particles.

The mesoscopic dynamic quantity associated with the
mass density of suspended particles is given by

r~rW,t ![m̃(
i
E

2L/2

L/2

dsd„rW2cW ~ i !~s,t !…, ~2.2!

which is functionally dependent on the position and configu-
ration of the particles throughcW ( i )(s,t). m̃ is the mass of the
particle per unit of length. Note that we have implicitly as-
sumed that the particles have no thickness since we are in-
terested in wavelengths much larger than any characteristic
particle dimension. To perform the hydrodynamic limit, let
us explicitly show the position of the center of mass
RW ( i )(t), writing the configuration of a wormlike chain as

cW ~ i !~s,t ![RW ~ i !~ t !1DcW ~ i !~s,t !, ~2.3!

whereuDcW ( i )(s,t)u[ucW ( i )(s,t)2RW ( i )(t)u;L.
The Fourier transform of the mass density reads

r~kW ,t ![m̃(
i
E

2L/2

L/2

dse2 ikW•cW ~ i !~s,t !

5m̃(
i
E

2L/2

L/2

dse2 ikW•[RW ~ i !~ t !1DcW ~ i !~s,t !] , ~2.4!

where use has been made of the definition of the Fourier
transform given in Eq.~I.2.13!. The hydrodynamic limit im-
plies that one is interested in length scales much larger than
the size of the suspended particles, so that we can expand the
right-hand side of Eq.~2.4! in powers ofkL and retain the
lowest order. We then have
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r~kW ,t !→M(
i
e2 ikW•RW ~ i !~ t !, ~2.5!

whereM[m̃L is the total mass of the particle. This limiting
procedure permits us to extract the part of the dynamic vari-
able that survives at the macroscopic limit@3#. Equation~2.5!
indicates that in the hydrodynamic limit the particles are re-
garded as points where all the mass is located. The balance
equation for the mesoscopic mass density is obtained by time
differentiating both sides of Eq.~2.5!, giving

]

]t
r~kW ,t !52 ikW•(

i
MuW ~ i !~ t !e2 ikW•RW ~ i !~ t !, ~2.6!

whereuW ( i )(t) is the velocity of the center of mass. Equiva-
lently, in real space we have that Eq.~2.5! corresponds to

r~rW,t !5M(
i

d„rW2RW ~ i !~ t !…, ~2.7!

while the balance equation~2.6! in real space reads

]

]t
r~rW,t !52¹W •M(

i
uW ~ i !~ t !d„rW2RW ~ i !~ t !…. ~2.8!

In this last equation we have used the symbol¹W to denote
]/]rW. The macroscopic mass densityr̄(rW,t) is then obtained
after averaging Eq.~2.7!. That is

r̄~rW,t ![M(
i

^d„rW2RW ~ i !~ t !…&05M(
i

^d~rW2RW ~ i !!&,

~2.9!

where the averagê&0 corresponds to an average with respect
to all the realizations of the random force and of the initial
conditions, whilê & stands for an average of the correspond-
ing phase-space function with respect to the phase-space
probability distribution~see Appendix A!. In the first equal-
ity the time dependence of the average is charged on the
evolution of the dynamic variable. In the second equality the
evolution in time of the average is related to the time depen-
dence of the phase-space probability distribution. We will
focus on the second interpretation of the averages with the
aim of using the phase-space probability distribution Eq.
~I.4.54!. Note that the hydrodynamic limit also involves a
limiting procedure in time similar to that already performed
in space. Effectively, the relevant time scales at the macro-
scopic level of description are much larger than those related
to characteristic motions of the particle. Equation~I.4.54!
corresponds to the form of the phase-space probability den-
sity for times larger than the decay time for velocity pertur-
bations@g21[I /z r for the case of rigid particles, whereI is
the moment of inertia of the rod andz r is the rotational
friction coefficient, according to Eqs.~I.4.21! and ~I.4.23!,
respectively#. Therefore, the average with respect to Eq.
~I.4.54! smoothes out the short-time dynamics but still re-
tains the long-time behavior of the system. Since the suspen-
sion is diluted, in addition we have

r̄~rW,t !5MN^d~rW2RW !& ~2.10!

due to the fact that all terms in the sum in Eq.~2.9! are
identical.

With the aim of obtaining explicit results, let us consider
the particular case of rod-like particles for which the prob-
ability distribution~I.4.54! applies. Let us recall that the con-
figurational field for a rigid rod takes the form

cW~s,t !5RW ~ t !1ssŴ~ t !, usu<L/2, ~2.11!

as given in Eq.~I.4.7!. Thus, averaging Eq.~2.8! with respect
to the mentioned probability distribution, the equation

]

]t
r̄~rW,t !52¹W •M(

i
^uW ~ i !~ t !d„rW2RW ~ i !~ t !…&0

52¹W •MN^uW d~rW2RW !& ~2.12!

yields the long-time, long-wavelength equation for the evo-
lution of the mass density for rigid rods, i.e.,

]

]t
r̄~rW,t !52¹W •~rW•bWW !r̄~rW,t !

2¹W •K F kBTzWW t
21~sŴ !•S KW ext~rW,sŴ !

kBT
2¹W D r~rW,t !G L

52¹W •~rW•bWW !r̄~rW,t !2¹W •E dsŴFMNkBT
zWW t

21~sŴ !•S KW ext~rW,sŴ !

kBT
2¹W D c~rW,sŴ,t !G , ~2.13!

wherec(rW,sŴ,t) is the probability distribution in configura-
tion space, a solution of the Smoluchowski equation, Eq.
~I.4.55!.

Since we will use them later in the analysis, let us write
more explicitly the friction tensors for the particular case of
rigid rods that will appear in the transport equations studied
in this paper. First of all, the translational friction tensor is
given by the expression

zWW t
21~sŴ !5

1

4phsL
H F ln 12e

1g t
'~e!G~1WW 2sŴsŴ !

12F ln 12e
1g t

i~e!GsŴsŴJ , ~2.14!

where e[a/L is the aspect ratio. Equation~2.14! follows
from the existent relation between the translational friction
tensor and the friction moments given in Eq.~I.4.20!. Equa-
tion ~2.14! is explicitly obtained in Ref.@17#, where the func-
tionsg t

i ,'(e) are furnished. The rotational friction coefficient
is related to thej11

' component of the corresponding friction
moment. In view of Eq.~I.4.23!, it takes the form

z r
215

3

phsL
3 F ln 12e

1g r
'~e!G , ~2.15!

where the unspecified functiong r
'(e) is also given in@17#.
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On the right-hand side of Eq.~2.15! we can identify first
the flux of mass advected by the externally imposed flow.
The second term, however, contains the flux due to the ex-
ternal forces as well as the dissipative contribution to the flux
of mass. In the case of spherical particles such a term is
precisely Fick’s law. Here, however, the coupling between
the translation and the rotation@18#, which is reflected in the
functional form of the friction tensor as seen in Eq.~2.14!,
shows up in that the last term in Eq.~2.13! cannot be written
in terms of the macroscopic mass densityr̄(rW,t). Therfore,
the diffusion of rodlike particles is in general non-Fickian. It
is worth noting that this second term is entirely due to the
non-Maxwellian corrections in the velocity probability dis-
tribution ~I.4.54!. The circumstances under which diffusion
of rodlike particles is Fickian are discussed later on in this
section.

The second example to be treated here is the transport of
properties related to the orientation. This case is particularly
interesting in situations in which the segments of the chain
bear magnetic or electric dipole moments, and one is inter-
ested in the evolution of the magnetization~or, equivalently,
the polarization! of a dilute suspension of such objects. Al-
though the treatment is general, we will focus on the mag-
netization problem. In this case we define the mesoscopic
dynamic variable as

mW ~rW,t ![m0(
i
E

2L/2

L/2

dsS ddscW ~ i !~s,t ! D d„rW2cW ~ i !~s,t !…,

~2.16!

wherem0 is the magnetic dipole moment per unit of length.
As before, we Fourier transformmW in space and apply the
hydrodynamic limit

mW ~kW ,t !5m0(
i
E

2L/2

L/2

ds
d

ds
cW ~ i !~s,t !e2 ikW•[RW ~ i !~ t !1DcW ~ i !~s,t !]

.m0(
i

@cW ~ i !~L/2,t !2cW ~ i !~2L/2,t !#e2 ikW•RW ~ i !~ t !

5m0(
i
sŴ ~ i !~ t !e2 ikW•RW ~ i !~ t ! as kL→0, ~2.17!

where the second equality applies only for rigid rods, in
which casem0[m0L is the total magnetic dipole moment

per particle anddcW ( i )(s,t)/ds5sŴ, in view of eqs.~I.3.1! and
~I.4.7!. Differentiating both sides of Eq.~2.17! with respect
to time we get

]

]t
mW ~kW ,t !52 ikW•(

i
m0uW

~ i !~ t !@sŴ ~ i !e2 ikW•RW ~ i !~ t !#

1(
i
m0vW

~ i !~ t !3@sŴ ~ i !~ t !e2 ikW•RW ~ i !~ t !#.

~2.18!

On the right-hand side of this equation, we identify two
terms corresponding to the two modes of relaxation of the
magnetization. The first mode is the change in the magneti-
zation due to the motion of the center of mass of the par-
ticles, while the second mode accounts for the change in the

magnetization due to its rotational motion. In real space, Eqs.
~2.17! and ~2.18! correspond to

mW ~rW,t !5m0(
i
sŴ ~ i !~ t !d„rW2RW ~ i !~ t !… ~2.19!

and

]

]t
mW ~rW,t !52¹W •(

i
uW ~ i !~ t !m0sŴ

~ i !~ t !d„rW2RW ~ i !~ t !…

1(
i

vW ~ i !~ t !3sŴ ~ i !~ t !m0d„rW2RW ~ i !~ t !…,

~2.20!

respectively. Finally, after averaging both members of Eq.
~2.20! with respect to the probability distribution Eq.
~I.4.54!, we arrive at the desired transport equation

]

]t
m̄W ~rW,t !52¹W •~rW•bWW !m̄W ~rW,t !

2¹W •K F kBTzWW t
21
•S KW ext~rW,sŴ !

kBT
2¹W DmW ~rW,t !G L

1^VW ~sŴ !3mW ~rW,t !&1
1

z r
^TW ext~rW,sŴ !

3mW ~rW,t !&22Drm̄W ~rW,t !, ~2.21!

where we have defined the rotational diffusion coefficient as
Dr[kBt/z r . The macroscopic magnetization field is in turn
given by

m̄W ~rW,t ![^mW ~rW,t !&5E dsŴm0sŴc~rW,sŴ,t !. ~2.22!

Again, due to the remaining averages we cannot find a closed
equation for the macroscopic magnetizationm̄W (rW,t). On one
hand, the translational friction coefficient depends on the ori-
entation of the particle so that it is coupled withmW (rW,t) in
view of Eqs.~I.4.22! and~2.19!. The coupling between trans-
lation and rotation can be eliminated by taking a homoge-
neous system so that the spatial dependence of the magneti-
zation is no longer relevant. Thus the resulting equation
contains only terms related to the rotation as a mode of re-
laxation. Assuming that the external torque is due to the
action of a magnetic field, one has

]

]t
m̄W ~ t !5^VW ~sŴ !3mW ~ t !&1

1

z r
^~sŴ3HW !3mW ~ t !&22Drm̄W ~ t !,

~2.23!

where Eq.~1.2! has been used. The three terms on the right-
hand side of Eq.~2.23! can easily be analyzed. The first one
is the effect of the external flow in the magnetization and
represents an advective flux in the orientational space. The
second term gives the flux due to the interaction with an
externally applied torque on the system. The last term stands
for the diffusive flux in orientational space. Again, the third
term is entirely due to the non-Maxwellian contributions in
Eq. ~I.4.54!. The remaining averages in Eq.~2.23! couple the
dynamics of the macroscopic magnetization with that of mo-
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ments of the orientation of higher order. For a complete
analysis, it is necessary to introduce transport equations for a
set of dynamic variables of the form

mWW p~rW,t ![sŴ~ t !••• ~p
•••sŴ~ t !d„rW2RW ~ t !…, ~2.24!

which are dynamically coupled to each other. However, such
a procedure is beyond the scope of the present work. Differ-
ent schemes of decoupling for the term involving the mag-
netic field in Eq.~2.23! can be used to express this contribu-
tion in terms of the macroscopic magnetizationm̄W @19,20#.
The analysis of the relaxation of the magnetization of rod-
like particles in homogeneous systems has been performed
by using Eq.~2.23! in @19,20# and will not be further ana-
lyzed here.

To end this section, let us discuss under which conditions
diffusion of rodlike particles can be considered as Fickian.
First of all we consider the dynamics of the orientation of the
particles in the simplest case, i.e., when external torques and
velocity fields are absent and the system is spatially homo-
geneous. Thus, from Eq.~2.23! we get that the average~mac-
roscopic! magnetization satisfies the closed equation

]

]t
m̄W ~rW,t !522Drm̄W ~rW,t !. ~2.25!

This equation can be readily integrated to give
m̄W (rW,t)5m̄W (rW,0)exp(22Drt). This result illustrates that the
magnetization fades away in a characteristic time
1/2Dr;hsL

3/kBT in view of Eq. ~2.15!. In general, due to
rotational Brownian motion, magnitudes related to the orien-
tation show a characteristic time that is proportional to
1/Dr @18#. In a purely diffusive system, however, the relax-
ation of a density perturbation of wave numberk is propor-
tional to exp(2Dk2t), D being the translational diffusion co-
efficient @3#. This suggests that for the relaxation of density
perturbations of sufficiently small wave number, the orienta-
tion of the particles can be regarded as being in its steady
state compatible with the externally applied fields. This state-
ment can be put in more mathematical terms following the
same procedure applied in paper I to derive the phase-space
probability density from the Kramers equation. Let us con-
sider that the fields of force and torque vary in space in a
characteristic lengthl much larger than the sizeL of the
particles. Using this length to reduce the spatial coordinates
to a dimensionless form, the Smoluchowski equation~I.4.55!
can be rewritten as

]

]t
c52RW * •bWW •

]

]RW *
c1

kBT

hLl 2
]

]RW *
•z t*W
W 21

•S 2
KW extl

kBT

1
]

]RW *
D c2RW •~VW c!1

kBT

hL3z r*
RW •S 2

TW ext

kBT
1RW D c,

~2.26!

whereRW *[RW / l , z t*W
W[zWW t /hL, z r*[z r /hL

3, and the rotational

operatorRW is defined in Eq.~I.4.25! and has no dimensions.
In Eq. ~2.26! we can identify one operator acting on the
RW * dependence of the probability distribution and another

acting on the orientational part. Assuming that flow effects
are always small, comparing the coefficients of the space
operator and the orientation operator is equivalent to com-
paring the inverse relaxation time, of a density inhomogenity
of sizel , t t

21;kBT/hLl
2, with the inverse relaxation time of

the orientationt r
21;kBT/hL

3. One can then see that if
L/ l→0 the orientational term dominates the relaxation of the
probability distribution. Thus, as in paper I, we can expand
c in powers of (L/ l )2!1 and solve Eq.~2.26! order by
order. The lowest order reads

RW •S 2
TW ext~rW,sŴ !

kBT
1RW D c~0!50, ~2.27!

where we have implicitly assumed that the time scales of

interest are larger thant r . Rewriting c(rW,sŴ;t) in terms of

the conditional probabilityx(sŴurW,t) as

c~rW,sŴ;t !5x~sŴurW,t !f~rW,t !, ~2.28!

Eq. ~2.27! turns into a time-independent equation for

x (0)(sŴurW), f(rW,t) simply beingr̄(rW,t)/MN or the probability
density in position space. Therefore, inserting this result into
Eq. ~2.13!, one arrives at

]

]t
r̄~rW,t !52¹W •~rW•bWW !r̄~rW,t !1¹W •DWW t~rW !•¹W r̄~rW,t !

2¹W •JWext~rW,t !, ~2.29!

where we have defined the position-dependent diffusion co-
efficient according to

DWW t~rW ![kBTE dsŴzWW t
21~sŴ !x~0!~sŴurW ! ~2.30!

and the flux due to the external forces

JWext~rW,t ![r̄~rW,t !E dsŴzWW t
21~sŴ !•KW ext~rW,sŴ !x~0!~sŴurW !.

~2.31!

Only in the case in which the externally applied forces are
independent of the orientation does one have the so-called
Einstein relation, that is,

JWext~rW,t !5 r̄~rW,t !
Dt~rW !

kBT
KW ext~rW !. ~2.32!

Note that the diffusion coefficient defined in Eq.~2.30! de-
pends on the dynamics of the orientation of the rods and
therefore on the external torques acting on the particles. The
simplest situation takes place when there are neither external
torque and force applied on the system nor velocity field
imposed. It is then straightforward to see that under the con-
ditions discussed above, the system satisfies Fick’s law, the
diffusion coefficient given by@17#
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Dt5
1

3 S 1z ti 1
2

z t
'D 5

1

3phsL
S ln 12e

1
g t

i~e!1g t
'~e!

2 D ,
~2.33!

where use has been made of Eq.~2.14! and the fact that

x(sŴurW)51/4p if external fields are absent.
Hence, in this section we have found that transport equa-

tions can be obtained from the phase-space probability dis-
tribution Eq.~I.4.54!. The macroscopic irreversible fluxes are
thus derived from the non-Maxwellian contribution of this
probability density without making use of the Brownian ther-
modynamic force, Eq.~I.1.1!. This is one of the main results
of this paper. In addition, under the restrictive conditions
giving rise to a decoupling of the translational motion from
the rotational motion, transport coefficients are obtained in
terms of geometrical aspects of the particles and the dynam-
ics of the solvent at its hydrodynamic level.

III. MOMENTUM TRANSPORT

Our main concern in this section is the derivation of the
transport equation for the total momentum of the suspension.
By comparing the resulting equation with the phenomeno-
logical equation, we find an expression for the contribution
of the suspended particles to the pressure tensorPab

(p) ~or,
equivalently, to the stress tensorsab

(p) with sab
(p)52Pab

(p)),
from which the effective viscosity of the suspension can be
obtained.

The analysis of the effective viscosity of suspensions was
initiated by Einstein@21#, who studied suspensions of spheri-
cal particles. The increase of the stress in the system is due,
in this case, to the rigid constraint that the spheres offer to
the incoming flow externally imposed. Preliminary works on
viscosity of polymer solutions were due to Burgers@22#,
Kuhn and Kuhn@23#, and Kramers@24#. Wormlike particles
can model polymers with a certain degree of rigidity. Thus
the stress in a suspension of such a kind of particles is not
only due to its rigidity to the imposed flow, but also configu-
rational changes play an important role.

There are several ways to arrive at an expression for the
contribution of suspended long particles to the stress tensor
@25#. One can find in Ref.@26#, for instance, a derivation
based on the classical work of Kirkwood@27#. Kirkwood
considered a given volume of the system as divided by a
hypothetical plane arbitrarily taken as perpendicular to the
z axis. The stress tensorsaz is thus given by the force per
unit of areaFa

(s) , which the upper part of the volume exerts
on the lower part through the plane. Such a force consists of
two contributions: the first one is the force through the plane
between solvent molecules, which accounts for the stress of
the pure solvent, and the second corresponds to the force
between portions of the suspended particle placed at different
sides of the plane. The excess stress in the suspension is thus
due to this second contribution. Assuming, for example, that
the particles are polymers, each modeled as a linear sequence
of beads, and that the suspension is homogeneous, the ex-
pression found for the contribution of the suspended particles
to the pressure tensor@cf. Eq. ~3.134! of Ref. @18## reads

Pab
~p!52sab

~p!5
N
V(

m
^FmaRmb&, ~3.1!

whereFma is the a component of the force acting on the
mth bead placed atRW m and the sum is extended to all the
beads of a polymer. The forceFW m in Eq. ~3.1! must be given
by

FW m52
]

]RW m

$kBT lnc~$RW m%!1U~$RW m%!%. ~3.2!

Note that this force contains two terms. The second is due to
the possible existence of interaction potentials~electrostatic,
elastic effective potentials, etc.! between the beads placed on
different sides of the dividing plane. The first one, however,
is the Brownian thermodynamic force defined in Eq.~I.1.1!.
The Brownian thermodynamic force here plays the role of an
externally applied force that particles transmit to the fluid
causing an additional stress. It ensures, for instance, that the
pressure tensor is isotropic in equilibrium and significantly
contributes to the elastic part of the stress. Its presence in the
expression of the pressure tensor, however, is not evident
@28–32,17# since in a completely microscopic view of the
momentum transport only particle-particle interaction poten-
tials play a role@3#, as in the case of simple liquids. There-
fore, its presence in a mesoscopic description of a system
must reflect the averaged effect of smoothed out degrees of
freedom in the stress. In Refs.@29# and@30#, for instance, the
complete phase space of the whole system~polymer plus
solvent molecules! is considered, aiming the derivation of
the expression for the contribution of polymers at the pres-
sure tensor. A projector operator formalism permits us to
eliminate the dynamics of the solvent, leading to an expres-
sion of the pressure tensor involving only polymer coordi-
nates, where a contribution of the form of the Brownian ther-
modynamic force was found. Again, although the formal
expressions have the appropriate functional form, the expres-
sions for the various coefficients are far too complex to be of
any practical use.

With the aim of analyzing the transport of momentum in a
dilute suspension of worm-like particles, in this section we
will develop a methodology that conceptually parallels that
used to derive the expression of the stress tensor in simple
liquids @3#, here, however, starting from the mesoscopic
point of view described in paper I. We will find an expres-
sion for the contribution of the suspended particles to the
pressure tensor, in which the corresponding friction coeffi-
cients can be explicitly found in the framework of the theory
itself.

With respect to the dynamics of magnitudes analyzed in
Sec. II, momentum transport in a suspension is more in-
volved than those examples already treated. In the case of
mass and magnetization transport, the solvent plays a passive
role, but in the case of momentum transport, frictional forces
produce a momentum exchange between the solvent and the
subsystem constituted by the suspended particles. Effec-
tively, if we define the mesoscopic momentum density of the
suspended particles@7# according to

jW8~rW,t ![E
2L/2

L/2

m̃uW ~s,t !d„rW2cW~s,t !…, ~3.3!
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it is obviously found thatjW8 is not a conserved quantity pre-
cisely due to the momentum loss arising from the frictional
forces accounting for the momentum transferred from the
particles to the solvent. Then the macroscopic transport
equation forjW8 does not correspond to the phenomenological
Navier-Stokes equation@33# and therefore the identification
of the expression of the stress tensor from the evolution
equation ofjW8 is not legitimate.

The right mesoscopic~conserved! variable is thus the total
momentum density, involving both the momentum carried
by the particles as well as that propagated through the sol-
vent by the perturbations caused in the velocity field@34#.
Effectively, let us define the dynamic variable corresponding
to the instantaneous momentum density as given by

jW~rW,t ![r t~rW,t !vW ~rW,t !. ~3.4!

In this equation,r t(rW,t) is the instantaneous density of the
whole system fluid plus particles, which is given by

r t~rW,t !5rs1m̃E
2L/2

L/2

dsd„rW2cW~s,t !…, ~3.5!

vW (rW,t) being the actual velocity field. Here and in the follow-
ing we will take a single suspended particle to simplify the
notation. To generalize the results to an ensemble of non-
interacting particles, we will simply multiply the final results
by the number of particlesN.

Before proceeding, some remarks need to be made about
the nature of the hydrodynamic limit. In the case discussed in
this section, where perturbations carrying momentum, as
sound waves or shear disturbances in the velocity field, can
propagate in the system, it is crucial to take the limitk→0
before the long-time limit is performed@3# because these
limits do not commute. An intuitive picture of the underlying
physical reason for this can be obtained as follows. Let us
consider a volume of lateral sizel;1/k, k being a given
wave vector, embedded in an infinite liquid at rest. At
t50, we transfer an amount of momentum to a point inside
the volume and study how this momentum propagates. At a
certain timet, the perturbations in the velocity field, carrying
a part of the initial momentum transferred, occupy a region
of size @9# Ant, wheren[hs /rs is the kinematic viscosity.
However, sound waves, propagating at the speed of sound
c and transporting another portion of the initial momentum,
have traveled a distancect. Therefore, in makingl→` much
faster thanct ~or, equivalently, k→0 much faster than
v/c, v being the frequency!, we ensure that the total initially
transferred momentum is contained in the volume and the
proper balance can be established. Thus we can perform the
same analysis as in Sec. II~also as in Ref.@3#! with the
dynamic variable given in Eq.~3.4! by taking the fluid as
compressible.

In taking the solvent as incompressibleab initio, we are
implicitly assuming that the speed of sound is formally infi-
nite. Thus, if we take the same volume of sizel as before but
now for an incompressible fluid and transfer a given amount
of momentum at a point inside, the momentum carried by the
sound waves is instantaneously lost through the boundaries
of the volume. In other words, the boundaries of our volume

exert a force on the surroundings. Hence the amount of mo-
mentum contained in the velocity disturbances propagating
still inside the volume is less than the initially transferred
momentum. Thus, for an incompressible fluid the proper bal-
ance is established by accounting for both the momentum
carried by the disturbances in the velocity field and the mo-
mentum transferred through the boundaries by means of sur-
face forces. In addition, ifl@Ant, these surface forces are
only due to the pressure.

Let us consider again the dynamic variable given in Eq.
~3.4! with vW being the velocity field for an incompressible
fluid, hence a solution of Eq.~I.2.1!. The dynamic variable
Eq. ~3.4! now describes only a part of the momentum trans-
port phenomenon, according to our previous discussion.
Identifying the excess of the dynamic variable as
D jW(rW,t)[ jW(rW,t)2 jWs(rW,t), where jWs(rW,t) is the momentum
density in the absence of the particles, i.e.,
rs@vW 0(rW,t)1vWR(rW,t)#, we have

D jW~rW,t !5rsvW 1~rW,t !1m̃E
2L/2

L/2

dsd„rW2cW~s,t !…uW ~s,t !,

~3.6!

wherevW 1(rW,t) is the solution of Eq.~I.2.10! without the ran-

dom pressure tensorPWW R. Moreover, we have made use of the
fact that the velocity field at the postion of the particle is the
velocity of the particle itself, in view of stick boundary con-
ditions. As in paper I,vW 0(rW,t) is the velocity field in the
absence of perturbations andvWR(rW,t) is the random velocity
field due to the thermal fluctuations, which already contains
the effect of the random pressure tensor. Fourier transform-
ing Eq. ~3.6!, we get

D jW~kW ,t !5rsvW 1~kW ,t !1m̃E
2L/2

L/2

dse2 ikW•cW~s,t !uW ~s,t !.

~3.7!

Finally, to obtain the desired equation for the transport of
momentum, we proceed as in Sec. II by time differentiating
the dynamic variable. Here, however, according to the pre-
ceding discussion, to account for the variation of the total
momentum, together with the time derivative of the dynamic
variable Eq.~3.4! we explicitly add the portion of the mo-
mentum instantaneously transmitted by pressure forces
2 ikWp1(kW ,t) since the fluid is taken as incompressible. There-
fore, we have

]

]t
D jW~kW ,t !1 ikWp1~kW ,t !5rs

]

]t
vW 1~kW ,t !

1m̃E
2L/2

L/2

ds
]

]t
@e2 ikW•cW~s,t !uW ~s,t !#

1 ikWp1~kW ,t !. ~3.8!

Herep1(kW ,t) is the excess pressure due to the presence of the
particles in suspension. Making use of the Fourier transform
of Eq. ~I.2.10! to eliminate]vW 1(kW ,t)/]t, we arrive at
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]

]t
D jW~kW ,t !52hsk

2vW 1~kW ,t !1E
2L/2

L/2

ds$ fW ind~s,t !

1m̃@2 ikW•uW ~s,t !uW ~s,t !1uẆ ~s,t !#%e2 ikW•cW~s,t !.

~3.9!

The reader can verify that this result is recovered by time
differentiatingD jW(kW ,t) as in Eq.~3.7!, but with vW 1(kW ,t) be-
ging the perturbation in a velocity field for a compressible
solvent and then taking the limitc→`. However, sound
waves cause fluctuations in the density and also in the tem-
perature, thus making necessary the explicit consideration of
the balance equations for the density and internal energy for
the solvent, coupled with the evolution of the perturbation

vW 1(kW ,t) @10#.
To proceed further, we rewrite the expressions in Eq.

~3.9! by developing exp@2ikW•cW(s,t)# in powers of
kW•DcW (s,t), according to Eq.~2.3!, and retain terms only up
to first order. We get

]

]t
D jW~kW ,t !52hsk

2vW 1~kW ,t !1E
2L/2

L/2

ds@ fW ind~s,t !

1m̃uẆ ~s,t !#e2 ikW•RW ~ t !

2 ikW•E
2L/2

L/2

ds$m̃uW ~s,t !uW ~s,t !

1DcW~s,t !@ fW ind~s,t !1m̃uẆ ~s,t !#e2 ikW•RW ~ t !.

~3.10!

The first term on the right-hand side stands for the momen-
tum transported by the solvent due to the perturbations
caused by the particles. In appearance, this term contains no
characteristic length scale. However, in Appendix B we
show that it is in fact of order (kL)2 and can be neglected. In
the analysis of the second term on the right-hand side of Eq.
~3.10!, we can use the relationship between the induced force
density fW ind and the hydrodynamic forcefWHa as given in Eq.
~I.3.24! and the equation of motion for the particle, Eq.
~I.3.20!. We thus have

E
2L/2

L/2

ds@ fW ind~s,t !1m̃uẆ ~s,t !#5E
2L/2

L/2

ds@ fW int~s,t !1 fWext~s,t !

1gW ~s,t !#, ~3.11!

wheregW is the constraint force. The right-hand side of this
equation stands for a total external force acting on the fluid
since we have neglected the buoyancy forces. Integrating
with respect tos and making use of the fact thatfW int and the
constraint forces give no contribution to the total force, we
arrive at

eik
W
•RW ~ t !E

2L/2

L/2

ds@ fW ind~s,t !1m̃uẆ ~s,t !#5eik
W
•RW ~ t !KW ext~ t !

[KW ext~kW ,t !.
~3.12!

The third term on the right-hand side of Eq.~3.10! can also
be worked out by using the expansion of the functions ofs in
terms of the basis set describing the fields defined along the
chain contour, according to Eqs.~I.3.29! and~I.3.30!. Due to
the orthonormality of the basis set and using Eq.~I.3.24!
together with Eq.~I.3.32! to eliminate the induced force, we
obtain

E
2L/2

L/2

ds$m̃uW ~s,t !uW ~s,t !1DcW~s,t !@ fW ind~s,t !

1m̃uẆ ~s,t !]} 5
L

2(i ~m̃uW iuW i1DcW i@ fW i
int1 fW i

ext1gW i # !, ~3.13!

where here the subindexi labels the corresponding moment
of the configuration and velocity fields of the same particle.
From the first contribution on the right-hand side of this
equation, one should extract the part that stands for the ad-
vection of momentum by the externally applied flow, to
separate it from the part that contributes to the stress tensor,
which is related to the Brownian motion of the particle. Note
that if one uses Legendre polynomials as a basis set, the
zeroth-order moment of the position is proportional to the
position of the center of massRW according to

RW 5

E
2L/2

L/2

dsm̃cW~s,t !

E
2L/2

L/2

dsm̃

5
1

A2
E

21

1

dxcW~x,t !
1

A2
5

1

A2
cW0.

~3.14!

In the same way, the velocity of the center of mass is given
by uW 5uW 0 /A2. Thus the first term on the right-hand side of
Eq. ~3.13! can be written as

L

2(i m̃uW iuW i5M ~RW •bWW !~RW •bWW !1FMDuW DuW 1
L

2(i.0
~m̃uW iuW i !G .

~3.15!

To find a final expression of the stress tensor as a function
only of velocity and configuration averages, we proceed to
eliminate the constraint force in Eq.~3.15! by using Eqs.
~I.3.38! and ~I.3.40!, yielding

DcW i@ fW i
int1 fW i

ext1gW i #5DcW iF2m̃(
j ,k

RWWW i jk :uW kuW j1(
j

~1WW d i j

2QWW i j !• fW i1
L

2(j ,k QWW i j •jW
W
jk•~uW k2cW k•bW

W !

1(
j
QWW i j • fW j

BG , ~3.16!
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where we have used againfW i5 fW i
int1 fW i

ext to shorten the nota-

tion. In this equationRWWW i jk andQW
W
i j are the geometrical tensors

defined in Eqs.~I.3.44! and ~I.3.45!, respectively. The
Brownian forcefW i

B should be not confused with the thermo-
dynamic Brownian force defined in Eq.~I.1.1!. The last term
on the right-hand side of Eq.~3.16! is a contribution of the
particle to the total random stress tensor, which is extremely
fast compared to the characteristic time scales of the velocity
or the configurational changes. This term vanishes after av-
eraging, in view of Eq.~I.3.35!, keeping the configuration
frozen.

We will further assume that the macroscopic velocity field
is the same as the unperturbed velocity field@18#. We then
arrive at the balance equation for the momentum excess,
which takes the form

]

]t
D jW~kW ,t !1 ikW•$@~RW •bWW !~RW •bWW !#r~kW ,t !%52 ikW•PWW ~p!~kW ,t !

1KW ext~kW ,t !2 ikW•pWW R~kW ,t !, ~3.17!

where we have writtenr(kW ,t)5Mexp(2ikW•RW ) @as in Eq.
~2.5!, but for a single particle# to introduce the particle’s
mass density. On the right-hand side of this expression, to-
gether with the total external force we have defined the con-
tribution of the particles to the pressure tensor, which can be

split into a rapidly varying termpWW R, which is associated with
the random force and a slower one related to variables of the

particles onlyPWW (p), from which one can obtain the viscosity
of the suspension. The first one is given by

pWW R~kW ,t ![e2 ikW•RW ~ t !
L

2(i , j DcW iQW
W
i j • fW j

B , ~3.18!

while the second reads

PWW ~p!~kW ,t !5e2 ikW•RW ~ t !HMDuW DuW 1
L

2 F(
i.0

m̃uW i~ t !uW i~ t !

1DcW iS 2m̃(
j ,k

RWWW i jk :uW kuW j1(
j

~1WW d i j2QWW i j !• fW j

1
L

2(j ,k QWW i j •jW
W
jk•~uW k2cW k•bW

W !D G J . ~3.19!

This last expression is one important result of this paper,
which deserves some comments. First, we have obtained an
expression for the stress tensor of a continuous chain with
constraints, in terms of the moments of the functions depen-
dent of the contour lengths. We see that there are contribu-
tions linked to the velocity and others to the configuration. If
the chain is under the action of rigid constraints, the con-
straint forces introduce additional velocity-dependent terms
whose effect on the viscosity depend on the geometrical as-
pects of these constraints. In expression~3.19! the friction
moments defined in paper I explicitly appear, we can thus
immediately relate them to the mobility moments, according
to Eq. ~I.3.36!, which can be calculated. Precisely these
terms involve contributions linear in the velocity gradients,

responsible for the so-called viscous contributions to the
stress tensor. Terms related to the velocity can depend on the
velocity gradients through the probability distribution giving
rise to the elastic contributions to the stress tensor@18#.
Moreover, we have found that the momentum transported by
the fluid, given by the first term on the right-hand side of Eq.
~3.10!, does not contribute to the pressure tensor to the low-
est order inkL. It contributes, however, when higher orders
in kL are considered@34#; thus it will play an important role
in the calculation of thek-dependent viscosity.

Let us study the rigid rod case for a homogeneous suspen-
sion of particles with the purpose of explicitly deriving the
intrinsic viscosity of the suspension in the simplest situation
and compare with other results. We recall that the configu-
ration of a rigid rod is given in Eq.~I.4.7!, showing that the
thin cylinder has only five degrees of freedom: three associ-
ated with the motion of the center of mass and two due to the
rotation around an axis orthogonal to the cylinder’s axis.

Using the expressions for the geometric tensorsRWWW i jk and

QWW i j , obtained from Eqs.~I.3.44!, and ~I.3.45!, together with
Eqs.~I.4.10!, ~I.4.13!, and~I.4.15!, in Eq.~3.19!, we arrive at
the expression for particle’s contribution to the pressure ten-
sor for a suspension of rigid rods

PWW ~p!~kW ,t !5e2 ikW•RW HMDuW DuW 1I ~vW 3sŴ !~vW 3sŴ !2Iv2sŴsŴ

1
L2

2A6
ŝW~1WW 2sŴsŴ !• fW11S L424D j11

i sŴsŴsŴsŴ:bWW J .
~3.20!

Note that the term bearing the velocity gradient is propor-
tional to the parallel component of the friction moment

jWW11, in view of the general form of the friction moments for
a rigid rod given in Eq.~I.4.24!. As in Eq. ~2.15!, we can
define a new friction coefficient associated with the viscous
stresszs[j11

i L4/24, which has also been explicitly calcu-
lated in Ref.@17# as a function of the cylinder’s aspect ratio.
It takes the form

zs
215

6

phsL
3 F ln 12e

1g r
i~e!G . ~3.21!

This friction coefficient has the same order of magnitude as
z r , but different numerical value since it corresponds to dif-

ferent components of the same friction momentjWW11. Finally,
we get

PWW ~p!~kW ,t !5e2 ikW•RW $MDuW DuW 2I @~sŴ3DvW DvW 3sŴ !1v2sŴsŴ#

2sŴ~sŴ3TW !1zssŴsŴsŴsŴ:bW
W %2e2 ikW•RW $sŴ3VW DvW 3sŴ

1sŴ3DvW VW 3sŴ%, ~3.22!

where we have neglected the termsŴ3VW VW 3sŴ being qua-
dratic in the velocity gradient.
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Let us analyze the linear viscosity with the aim of deriv-
ing explicit and simple results. With this pourpose, some
points have to be taken into consideration.

First of all, we will assume that the unperturbed flow is a
Couette~simple shear! flow given by

vW 0~rW !5rW•bS 0 0 0

1 0 0

0 0 0
D , ~3.23!

whereb is the shear rate. Second, as we have already men-
tioned, we will assume that the macroscopic flow is equal to
the unperturbed flow, so that it is also given by the expres-
sion ~3.23!. The linear viscosity then follows by retaining
only linear terms in the shear rate in Eq.~3.22!.

To perform the averaging procedure, we will use Eq.
~I.4.54!. In this expression, the dependence on the velocity is
explicitly given, but the spatial dependence of the probability
distribution function is, however, a solution of the Smolu-
chowski equation, Eq.~I.4.55!. To simplify the present deri-
vation of the effective viscosity, we will consider, third, that
the system is homogeneous and that no external net forces
are acting on the particles, although they can experience ex-
ternally applied torques, homogeneous in space. Under these
circumstances, configurational averages will only concern
the orientation variables. Using these hypothesis together
with Eq. ~2.28!, we get

c~RW ,sŴ !5x~sŴ !
N
V
, ~3.24!

whereV is the volume of the whole system and use has been
made of the fact thatx is independent of the position in a
homogeneous system. The factorN stands for the fact that at
this point we consider the ensemble ofN independent par-
ticles, as commented at the beginning of this section. Substi-
tution of Eq.~3.24! into Eq. ~I.4.55! leads to

2RW •VW x~sŴ !1DrRW •S 2
TW ext~sŴ !

kBT
1RW D x~sŴ !50.

~3.25!

Finally, note that, unlike the case of the mass and magne-
tization transport, in which all macroscopic mass and mag-
netization fluxes were given by the corrective non-
Maxwellian terms in the probability distribution~I.4.54!, the
expression of the pressure tensor does not vanish when av-
eraged with respect to the dominant term, i.e., with the local
Maxwellian. The non-Maxwellian terms give corrections to
the pressure tensor proportional to the mass and the moment
of inertia of the particles. Compared to the dominant terms,
the corrections scale asIb/z r!1, negligibly small if fric-
tional effects dominate over inertial effects. Therefore, the
probability distribution giving the leading contribution of the
pressure tensor for a suspension of rodlike particles under the
circumstances described above reads

C~DuW ,DvW ,RW ,sŴ,t !5
1

N
e2MDu2/2kBTe2IDv2/2kBT

N
V

x~sŴ !,

~3.26!

where use has been made of Eq.~3.24!.
Thus, averaging Eq.~3.20! with respect to Eq.~3.26! one

arrives at@18#

^PWW ~p!&5nkBT1W
W 23nkBT^sŴsŴ2 1

3 1W
W &x2nzs^sŴsŴsŴsŴ&x :bW

W

2n^sŴ~sŴ3TW ext!&x , ~3.27!

wheren[N/V is the number of particles per unit of volume.
The subscriptx indicates that the remaining average con-
cerns the orientational probability distribution only. In this
expression we can identify four different contributions. The
first one gives the osmotic pressure of the suspension. The
second term is the so-called elastic contribution to the pres-
sure tensor, associated with the change in the orientational
probability distributionx when an external flow is acting on
the system. It is well known@18# that this term can be cast in
the form of a thermodynamic Brownian force, according to

^sŴb«amnsŴnRmlnx~sŴ !&x53^sŴasŴb2dab/3&x , ~3.28!

where«abg is theabg component of the Levi-Civita tensor.
It is then clear that the thermodynamic rotational Brownian
force appears after elimination of the rotational velocity of
the rod. Hence we have recovered the same result as in Refs.
@29,30#, here from a completely mesoscopic theory.

The third term in Eq.~3.27! is the viscous contribution to
the stress tensor. The elastic and viscous terms constitute two
different relaxation mechanisms of the stress in the system
when a preexisting velocity gradient is switched off. The
elastic contribution relaxes due to rotational Brownian mo-
tion, with a characteristic time related to the time that the
probability distribution takes to recover the equilibrium form
(6kBT/z r in dilute solution!. The viscous contribution, how-
ever, relaxes instantaneously since it is related to the tension
that the velocity gradient exerts on the rod, instantaneously
compensated by constraint forces. The last contribution is
due to the effect of external torques on the particle. It is very
important for cases where the particles bear magnetic or
electric dipole moments, as it is the case of ferrofluids, since
they are responsible for the dependence of the effective vis-
cosity in the externally applied fields.

The effective shear viscosityh is obtained from the ex-
pression of the pressure tensor by demanding that

^PWW ~p!&52~h2hs!~bWW 1bWW T!. ~3.29!

The reduced viscosity is defined as@18#

@h#[ lim r̄→0

1

r̄hs

~h2hs!. ~3.30!

The mass densityr̄ in the case discussed in this section is
obtained from Eq.~2.9! by averaging with respect to the
probability distribution function, Eq.~3.26!, giving

r̄5
MN
V

5
MwN
NAV

, ~3.31!
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whereMw is the molecular weight of the polymer andNA is
Avogadro’s number. Thus, for the shear reduced viscosity
we get

@h#52
NAV

hsMwb
^Pxy

~p!&, ~3.32!

where use has been made of Eq.~3.23!.
The stationary zero shear viscosity in the absence of ex-

ternally applied torques on the particles can be readily ob-
tained by solving Eq.~3.25! for x( ŝ) up to first order in the
velocity gradient@35#. One finally arrives at

@h#5
NA

Mwhs
S z r
10

1
zs
15D

5
NApL3

90Mw
S 3

ln1/2e1g r
'~e!

1
1

ln1/2e1g r
i~e! D .

~3.33!

In Ref. @17# explicit evaluation of@h# has been performed as
a function of the aspect ratio of the roda/L, which are the
only results for this quantity for finite aspect ratio existing, to
the best of our knowledge.

The analysis can be also performed, for instance, for the
components of the viscosity tensor of a ferrofluid@36#, using
the friction coefficients that arise from our treatment. In the
same way, the rotational viscosity@2# can also be evaluated
from the transport equation obtained by considering the an-
gular momentum density of the suspension as the dynamic
variable and proceeding along the lines developed in this
paper.

IV. CONCLUSIONS

The analysis developed in this paper shows that the study
of the dynamics of suspensions from a mesoscopic point of
view based on the induced forces method and the fluctuating
hydrodynamics permits a precise analysis of the coupling
between the dynamics of the solvent and the dynamics of the
suspended particles. While in paper I we put the emphasis on
the derivation of the probability distribution at long times
and to the~formal! calculation of the friction moments, here
we have derived transport equations for different macro-
scopic quantities and identify some transport coefficients in
terms of these friction moments. In particular, we have ana-
lyzed the dynamics of the mass density and the magnetiza-
tion, as well as the momentum density. The paper stresses
the analogy between simple liquids and suspensions, show-
ing that the same lines of reasoning can be used in both
domains if one takes into account that for suspensions the
governing equations are not conservative. In Ref.@13#, for
instance, the formal analogy is also developed. There the
basic equation is the Kramers equation~or the Fokker-Planck
equation for configurations and velocities! and the main liq-
uidlike features of the suspension are due to the direct inter-
action between the Brownian particles, the solvent playing a
passive role. In paper I we started also from the Kramers
equation considered as the minimal model incorporating all
the long-time features of the suspension, but we derived the
long-time behavior of the probability distribution function

@Eq. ~I.4.54!#, where the velocity probability distribution ex-
plicitly appeared. This permits us to deal with the time de-
pendence of the equations at a time scale much larger than
that characteristic for the relaxation of velocity perturbations,
allowing for a simpler treatment.

Another point worth mentioning is that the hydrodynamic
nature of the dynamics of the solvent is considered from the
beginning, which allows for a determination of the friction
coefficients. Thus the transport coefficients appearing in the
transport equations are directly related to those friction coef-
ficients without ambiguity. From our point of view, one of
the major inconveniences of theories starting from the Liou-
ville equation for the system suspended particles plus solvent
molecules@7,8# is that in a given stage of the derivation, the
formal expressions for the transport coefficients have to be
replaced by those obtained from hydrodynamic calculations,
this not always being obvious. A good example is the deri-
vation of the pressure tensor for the suspension from the
mesoscopic theory developed here. We have reasoned along
the lines of the derivation of the stress tensor in the theory of
simple liquids by introducing the total momentum density as
the dynamic variable. An important result is the expression
@Eq. ~3.19!# of the stress tensor for a continuous wormlike
chain with rigid constraints. Since the momentum carried by
the solvent has been explicitly taken into consideration, the
analysis performed here can be used as a good starting point
to study thek and thev dependence of the effective viscos-
ity of a suspension, in the spirit of the generalized hydrody-
namics@3,13,4,34#.

Finally, another important aspect of the developments of
this article together with paper I is that the friction tensors
can be explicitly calculated in the framework of the mesos-
copic theory developed. In this paper, we have restricted our-
selves only to the derivation of the formal expressions with-
out making a detailed analysis. As it has been already
commented, explicit calculations have been done in Refs.
@17,37# for rigid rods with finite aspect ratio. The details of
the calculations can be found in these references.
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APPENDIX A: PHASE-SPACE AVERAGES

Let us briefly discuss the averages performed in Secs. III
and IV. For simplicity, let us denote byX any of the vari-
ables$cW i% and$uW i% that characterize the dynamic state of our
system and byw any of the random forcesfW i

R . Given a
particular realizationw(t) of the random forces and an initial
condition X0 at t50, the solution of Eqs.~I.3.42! and
~I.3.43! gives usX(t), which we denote byX@w(t),X0# to
emphasize the fact that this solution is functionally depen-
dent on the particular realization of the random force and on
the initial conditions. Moreover, let us introduce the prob-
ability distribution of a given realization of the random force
asP@w(t)#. The phase-space probability distribution given a
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initial condition is simply given by@38#

W~X,tuX0!5E dw~ t !P@w~ t !#d„X2X@w~ t !,X0#…,

~A1!

where*dw(t)••• denotes a sum over all the realizations of
the random forcew(t). Obviously, if the probability distri-
bution of the initial conditions is given, one can write

C~X,t !5E dX0W~X,tuX0!C~X0!. ~A2!

Let A„X(t)… be a given function of theX(t), again the
latter a solution of Eqs.~I.3.42! and ~I.3.43! for a given re-
alization of the random force and for some initial conditions.
The average ofA must be interpreted as

^A„X~ t !…&0

[E dX0C~X0!E dw~ t !P@w~ t !#A„X@w~ t !,X0#…, ~A3!

where^&0 denotes the average with respect to the realizations
of the random force and over initial conditions. Introducing
15*dXd„X2X@w(t),X0#… on the right-hand side and
changing the order of integration, Eq.~A3! can be written as

^A„X~ t !…&05E dX0C~X0!E dXH E dw~ t !P@w~ t !#d„X

2X@w~ t !,X0#…JA~X!, ~A4!

where we have replacedA@w(t),X0# by A(X) in view of the
d function. Now, using Eq.~A1!, we end up having

^A„X~ t !…&05E dXC~X,t !A~X!5^A~X!&. ~A5!

Therefore, we can replaceA„X(t)…, which should be aver-
aged over all the realizations of the random forces, by
A(X), a function of the phase-space variableX, and perform
the averages with respect to the phase-space probability dis-
tribution.

APPENDIX B:
MOMENTUM CARRIED BY THE SOLVENT

The momentum carried by the perturbations caused by the
particles in the velocity field of the solvent are described by
the first term on the right-hand side of Eq.~3.10!. In this
appendix we show that this term is in fact of order (kL)2,
thus negligible in the hydrodynamic limit. The formal solu-
tion for vW 1(kW ,t) can be obtained by solving Eq.~I.2.10!,
which gives

vW 1~kW ,t !5E
2`

t

dt8e2nk2~ t2t8!
1WW 2kŴkŴ

rs
•FW ~kW ,t8!, ~B1!

where use has been made of the Fourier transform of the
propagator of the velocity field given in Eq.~I.2.15!.
FW (kW ,t) is the Fourier transform of the induced force density,
as it appears in Eq.~I.2.10!. The induced force density for
k→0 must be of the form

FW ~kW ,t !;e2 ikW•RW ~ t !E ds fW~s,t !. ~B2!

The integral stands for the total induced force density, which,
due to the action reaction principle, is also the total frictional
force acting on the particle@see the discussion preceding Eq.
~I.3.24!#. The total induced force density thus being a fric-
tional force scales as a friction coefficient times a character-
istic velocity. Since in the absence of externally applied
forces the particle is dragged by the flow, the only charac-
teristic velocity is the rotational velocity imposed by the ve-
locity gradient, thus being proportional tobL. The friction
coefficient, on the other hand, must scale as the solvent vis-
cosity times a length. We thus get

uFW ~kW50,t !u;hsL
2be2 ikW•RW ~ t !. ~B3!

By using these-dimensional arguments, we arrive at the scal-
ing of the first term on the right-hand side of Eq.~3.10!

k2vW 1~kW ,t !;n~kL!2bE
2`

t

dt8e2nk2~ t2t8!e2 ikW•RW ~ t8!, ~B4!

showing, therefore, that this term is of second order inkL.
Note that here it is crucial to considerkL→0 before the
quasistatic (v→0) limit is performed, in agreement with the
prescribed ordering of these limits.
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