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Dynamics of semiflexible and rigid particles.
I. The velocity distribution and the Smoluchowski equation
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In this paper we present a derivation of Langevin equations of motion for long semiflexible particles and the
Smoluchowski equation together with the velocity distribution for suspended rigid polymers in the long-time
limit. The starting point is the induced force method of Mazur and BedgRhysica A76, 235(1976] and
Landau-Lifshitz[Fluid Mechanics(Pergamon, Oxford, 1987 fluctuating hydrodynamics. Such a procedure
permits us to introduce in the description all the properties of the dynamics of the solvent in a rather straight-
forward way, which leads us to a precise derivation of friction coefficients, without assumptions taken out of
the theory itself, and to a description in terms of Langevin equations. The link between the mesoscopic
hydrodynamic description and a more coarse-grained one in terms of the Smoluchowski equation is thus
established by means of a singular perturbation method. The long-time limit in the dynamics of the suspended
particles permits us to also obtain the velocity distribution, which is not Maxwellian as postulated in classical
treatments of Brownian motion. The velocity distribution obtained in this way relates the dynamics of suspen-
sions to the dynamics of simple liquids. In addition, buoyancy and centrifugal forces are also obtained.
[S1063-651%96)02810-3

PACS numbse(s): 61.25.Hg., 83.10.Nn, 83.10.Pp, 05.40.

I. INTRODUCTION
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In the analysis of the dynamics of suspensions, it is of todr Llodr r Bl or
great importance to develop models that, on one hand, repro- 12

duce the important features of the system and, on the other,
disregard all unimportant details, in a difficult balance be-
tween accuracy and feasibiliy. Suspensions are characteriz&t
by a large difference in size and mass between the suspend#t ith particle. D ij Is the diffusion matrix obtained from
particles and the solvent molecules. Such a difference is thydrodynamic calculations and is a given potential energy.
basis of most of the simplifications that can be made to pro- Kirkwood's diffusion equation can be derived in the
pose tractable models. We can mention two relevant onedtamework of a complete phase space theory where the po-
first, the detailed molecular structure of the suspended pasitions and velocities of polymer segments and solvent mol-
ticle is commonly ignored when the interest is in overall ecules are taken into accou®. In Ref.[6], for instance, the
motions and, second, the solvent can be regarded as a cogtarting point is the Liouville equation for the composite sys-
tinuum interacting with the suspended particles via frictionaltem of solvent and polymers. The information about the rel-
forces. evant dynamic quantity is thus extracted by means of a pro-
For instance, the classical theory of polymer solutions agector operator formalism. This procedure gives the
formulated by Kirkwood[1-4] is based on the classical functional form of the equation for the probability density in
theory of Brownian motior{5] almost always in the diffu- configuration space, as well as formal expressions for the
sion limit, which suppresses the explicit consideration of thecoefficients(friction or mobility tensors, for exampleap-
inertial forces. Thus the segments of the chain are considerggearing in this equation. The complexity of these formal ex-
as moving with a mean drift velocity determined by the bal-pressions is such that no explicit calculation can be carried
ance between the systematic frictional force, potential forceut without further assumptiori§]. A common one is due to
and the Brownian force. The latter is introduced as a therthe fact that the solvent must satisfy the macroscopic equa-
modynamic force according to tions of motion in the range of wavelengths and frequencies
concerned with the overall motions of the macromolecule,
and then the formal expressions for the friction coefficients
EB({rit, t)=—kBT In:,b {rihb), (1.1  are replaced by those obtained from hydrodynamic calcula-
tions. In the context of the transport proces$&$ and
Brownian motion, there are similar procedures to obtain ei-
- . . . ~ ther Fokker-Planck equations for the probability density in
wherer; stands for the pos_lt_lon of theth partlcle,{rk} de- the complete phase s?)ace of the partif@ocitieg and po)f
notes the ensemble of positions of ke 1,... N particles,  gjiong or Smoluchowski equations for the probability den-
and ¢({r,},t) is the probability density in configurational sity in the configuration space. Again, such procedures start
space.({r},t) then follows the so-called Kirkwood diffu- with the Liouville equations for the complete syste@s 10|
sion equation or Smoluchowski equation, which reads in which hydrodynamics is invoked to obtain the desired

erev is the |mposed velocity field at the posmam of
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expressions for the friction or mobility tensors. When estab- Although, in this paper, we restrict our study to semiflex-
lishing the diffusion equation to describe the dynamics of able long particles, the analysis can straightforwardly be ex-
given system it is not always obvious which friction coeffi- tended to interacting particles, both hydrodynamically and
cient is appropriate. This can lead to errors in the choicevia electromagnetic fields, for instance, and to objects of dif-
[11]. ferent shapes in colloidal dispersions. We believe that the
Kirkwood’s diffusion equation or the Smoluchowski formalism developed here can be a poweful tool in the study
equation describes only the evolution of the system in thef suspension dynamics due to the analogy established be-
configuration space and no reference is made to the distribiween these Brownian systems and simple liquids. Although
tion function in velocity space that is needed to performthis analogy has already been treated in the literaftlieg
averages on those quatities depending on the velocity. It ithe long-time limit discussed here constitutes a great simpli-
then assumed that the distribution function in velocity spacdication, although it retains the relevant information and, at
follows a local Maxwellian of the form the same time, makes the theory useful for systems of inter-

est.
= =0 2a2 The paper is organized as follows. In Sec. Il we will dis-
H exp{ [ui—v (ri)] J (1.3 cuss the concept of induced force and derive the formal so-
[ 2kgT ' lution of the velocity field in terms of the induced force

density and the random pressure tensor. In Sec. 1l we intro-
whered; is the velocity of theith particle andkgT has the QUce thg mobility anq friction kerngls for sem_|erX|bIe worm-
usual meaning. I!ke chains and derive the. equation of motion for the par-
In this paper our aim is twofold. First, fromraesoscopic ticles asl v;/ell ati an ex;:l)anstlo]rc\fof thfe surfaﬁe fields Itn tertms of
description based on both the induced forces meftic a compiete orthogonal set of functions when constrainis are

and fluctuating hydrodynamidd4] we will obtain Langevin present. In Sec. IV, after arriving at the Kramers equation

equations for the motion of semiflexible particles modeled aérom the equations of motion for the semiflexible wormlike

: ; L o . chain, we obtain the Smoluchowski equation and the prob-
wormlike chains. The presence of rigid constraints is explic--an: We obta . , L
P g P bility distribution function for the particular case of a rigid

itly considered. Second, we derive the long-time behavior oft A . )
a suspension of rigid rods by using the fact that the veIocitJOd' Sections Il and Il are mainly devoted to details of the

of the particles reaches its steady-state distribution mucH>¢ of _the induced forc_:es method to fche system u_nder con-
faster than the time in which configurational changes tak |dera}t|on..The reader interested only in the derllvatlon of the
place. We then obtain the probability distribution in the com- ong.—tlme limit of .the Kramers equagon can skip f[hese two
plete phase space, in which the dependence in the velocity ctions and 90 directly to.Sec_. IV. Finally, Sec. V'is devoted
explicitly given, as well as its relation with the Smolu- 0 the conclusions drawn in this paper.
chowski equation.

In our procedure, we start by describing the macromol- Il. FORMAL SOLUTION OF THE VELOCITY FIELD

ecule as an object of a given instantaneous shape with & The system under consideration here will be an incom-

wetll—deflinedt S‘:,rf?cet’h utnder tthk? tacttion_tof sorpe in:grnal Obressible Newtonian fluid of densify; and shear viscosity

external potentials that contribute to its configuration an ; ; ; ;

d namicsp The solvent, constituted by much %maller moly S at constant temperature with particles in suspenson.
y . g y Under these conditions of constant temperature and density,

ecules, is assumed as being a continuum whose dynamicsygs gynamic state of the solvent is thus described by the
well described by hydrodynamic equations for the density

velocity field, pressure, and temperature. In addition, due té\lawer-Stokes equation for the velocity fieir,t) [14]
the thermal motion of the solvent molecules there can exist
local variations of the hydrodynamic fields in space and
time. We will introduce random fluxes accounting for the
cause of these fluctuatiof$4]. With only these initial hy- _ . . "
potheses, it is possible to derive Langevin equations for thiP9ether with the incompressibility condition

motion of the macromolecule. These Langevin equations 5 o

contain friction coefficients given in terms of integrals over V-u=0, (2.2)

the fluid velocity field propagator that can be explicitly car- , ) 5 s

ried out for sor)1/1e par?icurl)argcas@ﬁ—la. The stF:)chaystic valid OUtS"?'e thg particles. In qu'l) F(rt) is a \{olume
properties of the random forces follow from those of theforce density actlng gn every fluid element as, for instance, a
spontaneous fluctuations in the velocity field. From thesegravitational field.P(r,t) is the pressure tensor given by
Langevin equations we will derive the equation of motion in ; 5

the phase space or Kramers equation. Such an equation will _ Vg  dU, R _ s R

be studied in the particular case of rigid rods in the long-time Pap=Pap™ ”S(aTa * g Fllap=Pagtlag,

limit with the aim of deriving the velocity distribution as (2.3

well as the Smoluchowski equation. It is found that the ve-

locity distribution can be explicitly given in this long-time Wherep is the hydrostatic pressur®;, is the systematic

limit if the friction dominates over the inertia, showing a part of the pressure tensor, and the random pressure tensor is
non-Maxwellian behavior. This behavior is very important denoted byHSB According to fluctuating hydrodynamics
from the formal point of view, since it allows the easy deri- [14], the random pressure tensor introduces a Gaussian
vation of transport equations. white-noise stochastic process with

Ps

W . . Lo .
E+v-Vv)=—V-P(r,t)+]—' 2.1




54 DYNAMICS OF SEMIFLEXIBLE AND ... . I.... 3957

tremely small for Brownian particles and usual velocity gra-

dients[20]. These corrections will be discussed elsewhere.

R . R The solution of Eq(2.9) satisfying the boundary condi-

(TR, OIS (1 1) =2kg T7A g, 8(r —1") S(t—t"), tions at the surface of the particles gives the perturbed ve-
(2.9 locity field from which the forces that the solvent exerts on

the particles can be calculated. However, the problem can be

(TIR(F 1)) =0, (2.4)

where use has been made of the definition reformulated by introducing induced forces, whose main ad-
, vantage is to permit the evaluation of the hydrodynamic
Apyu=04y08ut 0405y~ 50050, - (2.6)  forces without explicit determination of the velocity field.

One then reformulates the problem by assuming that the fluid
The hydrodynamic problem is completly specified by givingfield is also defined inside the particles, so that E49) is
the boundary conditions on the surface of the particles an@low valid in all the space, and the perturbations caused by
on external boundaries. If the suspended particles are of sizfeir motion are introduced through induced force densities
much larger than the solvent molecules, the fluid veloCity; 51 £ (1 t). These are nonzero only inside and at the surface
field is found to satisfy stick boundary conditions on the ot the particles. These induced force densities are chosen
surface of the particles. Thus the fluid in contact with a giveng, .y that the pressure is constant inside the particle and that
element at the surface of a particle moves with the samg,e \e|qcity field is continuous through the surface, which in

velocity as the surface element. Stick boundary conditiong,c stands for the stick boundary conditions. Thus, taking all
wil t_Je assumed throughout_the paper. . of this into consideration, we arrive at
Since we want to describe the interaction between the

suspended patrticles and the solvent, we separaze the com- aJl(F,t) o o .

plete velocity figld into an unperturbed velocity fiald and Ps— o = —Vp(r,t)+ pV2u(r,t) +F(r,t)

a perturbationv,. The former is caused by the external

boundaries and by the external fields acting on the bulk, —V.TR(F 1), (2.10

while the latter is due to the presence of the particles and to

the random pressure tensor. Throughout the paper we wiltor convenience, we introduce here the Green’s function of
focus our attention on externally imposed steady homogethe perturbed field, which satisfies

neous flows of the forns o(F)=T - 3, where3 is a constant

tensor. The unperturbed velocity field is a solution of Eq. aé(ﬁt) =y 3 - > .
(2.1) without perturbations and in the absence of particles P~ nsVG(r,t)=14(r)s(t), (2.1
Wy - - L oag . - with
Ps W—i—v@Vvo =—V~P0(r,t)+]-', (27)

V.G(r,t)=0 (2.12

where we have also made use of the fact that the pressure _ o . .
tensor also admits a decompositon of the formdue tothe incompressibility of the fluid. To obtain an expres-

PS=PS+PS. For steady homogeneous flows E2.7) reads ~ Sion for G we introduce here the Fourier transform in space
of an arbitrary fieldA(r ,t) as
psvo(r) - Vuo(r)=—Vpo(r)+F(r) (2.8

- dk .-
- - A(r,t)=f—e'k"A(k,t), (213
since V2uo(r)=0. The incompressibility condition implies (2m)°
that V-uo=0, which, in our case, tumns into: =tr3=0, with
where the symbol tr stands for the trace. In Eq8) pO(F) is
the unperturbed pressure field. This last equation is in fact an . . ik s
equation for the unperturbed pressure field whose role will A(k’t):f dre”™"A(r,1). (2.14
be discussed later on.
Since the particles as well as the fluctuations are ver . : . z -
small, the evolution of these perturbations satisfy the fu"yﬁoulrzler g;alrl;fo(;:]nelngaﬁti(ﬁe.i‘%bstg:\rglng forG(k,t), and us-
linearized Navier-Stokes equati¢h4] 9 £G- (.29,
= s 55
Wy o oae o 3 - dk koo ma 7KK
Ps 1&(t ):—V-ﬁf(r,t)—V-HR(r,t). (2.9 G(H)Zf 2m° ek re S (219

S

Note that we have neglected the terms proportional tcYvhere the incompressibility condition has been used,

vo-Vu; andv,-Vou,, which introduce dependences of the k=Kk/k, andv= #5./ps is the kinematic viscosity. An explicit
friction coefficients in the externally imposed velocity gradi- expression for this integral can be found in 2,26 of Ref.
ents. These corrections, although important, scale, howevdrl5]. Then the formal solution for the total velocity field
with the Reynolds number of the particles, which is ex-reads
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J(F,t):l;0+1;1 IIl. THE LANGEVIN EQUATION
. ‘ . Let us consider a single wormlike chain in suspension
:F.,3+f dt’f dr'G(r—r't—t")-E(r’,t") [13]. The chain is of length. and circular section of radius
—o a. The circular shape of the section is assumed not to change
during the motion of the particle. Since we want to analyze
the long-time properties of the suspension, the formal solu-
tion of the velocity field will be given by Eq2.18).
The random velocity field is defined by We introduce here a set of intrinsic coordinates for the
surface of the chain and the volume infinitesimally close to
N L T Sra , I it. We will define the central line as the curve joining the
v (r,t)=f_wdt fdr G(r—r"t=t")-[-V-I"(r",t")].  centers of mass of the cross sections of the particle. The
2.17) position of the points of the central line 9t a given time
expressed by the one-parameter vector filsit), wheres

Equations(2.16 and (2.17 show that the response of the is the contour length satisfyinig|<L/2. It is convenient to
velocity field to the perturbations is neither instantaneous nofl€fine the unit vectorg22]

local in space. This fact will be important in the derivation of .

the transport equations. Here we will be concerned, however, - de(s,t)

+oR(r 1). (2.16

with the analysis of the long-time evolution equation for the 7(s)= ds (3.3)
system. With this aim we then disregard the explicit time

dependence of the relaxation of the velocity field, referred to A -

as quasistatic approximation, which is valid for times larger dr(s,t) dc(s,t)

thanl?/v, | being some characteristic length of the particle. n(s,H=R(s.1) ds > ) ds? 3.2
In this case, Eq(2.16 reduces to

b(s,t)=7(s,t) XN(s,t), 3.3

J(F,t)=50(ﬁt)+fdF'?’(F—F').ﬁ(F',t)+5R(F,t),
(2.19 whereR(s,t)=|d?c(s,t)/ds?| ! is the radius of curvature at

s at the timet. The use of the contour lengthas a param-

eter, on one hand, ensures that the tangent vector satisfies

3
whereT(r) is the Oseen tensor, which is given b 2 . o
(r) g y |7/=1 while, on the other, the normal vectoiis orthogonal

L2 A3 to 7. The third vector is often referred to &énormal and
dk 1—-Kkk o

?(F)Ef dté(F,t)= -3 -€ K(S,t)E|d6(S,t)/dS| is the geometrical torsion of the curve
1 . o~ If c(s,t) is specified, a given point very close to the
:8 |§| (1+r7). (2.19 surface of the particle can be univocally expressed as
TN r
r=c(s,t)+r,(s,t), (3.9

Correspondingly, in Eq(2.18 the random velocity field is
whererl(s,t) is a vector lying on the plane defined by the
JR(FJ)EJ dr'T(r-r)-[-V-IRI" 0] (220 vectorsﬁ(s,t) and b(s,t), i.e., perpendicular, by construc-
tion, to the tangent vectc;?. Then, denoting by the angle

Further physica! insight on the nature of_ the_ i”ducedbetweerﬂ(s,t) andn(s,t) andrlEIrZI, the pointF can be
forces can be obtained by analyzing the quasistatic approxXiiven by specifying the set of quantities,(, ,¢), which

mation. Effectively, in this approximation the explicit time \ij| be used to parametrize the space inside and very close to
dependence of the fluid field is disregarded. In this case, thg,q particle.

induced force density has only a surface component account- | the quasistatic case under consideration, the induced

ing for the discontinuity in the velocity gradient through the tqce density introduced in Sec. Il is only nonzero at the

gurface(the_vgloqty itself is cont|r_1u.0l)sW|th such a forceT surface of the particle, which can be written[24]

field, the fluid inside moves as a rigid body in steady motion,

while the fluid motion outside caused by the induced force

field is the same as that caused by the presence of the real

particle[12,21]. _ . -
In this section we have obtained the formal solution forwhere we have introduced the surfagefunction 59(r,t)

the velocity field in terms of the induced forces and the ran{cf. Appendix A. In this paper we will consider that

dom stress tensor. In the next section we will use these ré3(s,t)>a for everys, which allows us to write

sults to derive the effect of the fluid on the motion of the R

particle. S9(r,t)y=48(r, —a), (3.6)

F(r,t)dr=F®(s,¢,t)89(r,t)r, dr, deds, (3.5
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which is a function of the instantaneous configuration. In Eq
(3.5, E® is the induced force per unit area. Up to this point

our treatment has been exact. However, for a particle whose

aspect ratica/L is smaller than 1 and for properties whose
characteristic length scale is larger therone can introduce

the following approximation: the induced force density is a

function only of the contour lengtk. One then disregards

the explicit induced force distribution around the central line

DYNAMICS OF SEMIFLEXIBLE AND

........ 3959
' dk T-kk R
,u(s,s’)=jWﬁtb(k,s,t)dﬁ(k,s’,t),
) (3.12

where the asterisk stands for the complex conjugate. The
mobility kernel is a 33 symmetric tensor. This property
arises from the symmetry of the Oseen tensor. The form

and substitutes it by a uniform force distribution independenfactor ¢(k,s,t) depends on the actual configuration of the

of ¢

F(s,t)
2

F(s.ot) =5

3.7

where the new quantitf/(s,t) is an induced force per unit of
length, which will be used in what follows.

To obtain the equation of motion for the chain we will
multiply Eq. (2.18 by the surfaces function. In view of the

system. Using Eq(3.4), the form factor reads

. dr, .- s
(i)(k,s,t): J ﬁelkwa(ri_a):elk-c(s,t)‘]o(kla)’
(3.13
wherek, =|k- (1 77)|, which depends os, and Jo(X) is

the Bessel function of first kind and zeroth ord&j(x) is the
form factor taking into account the finite size of the cross

stick boundary condition and the properties of the Surf(,ﬂc(_g‘ection of the particle and in fact ensures that the integration

8 function given in Eqs(A3) and(A4), we can substitute the

complete velocity fieldb(r,t) by u(e,s,t), where this last
guantity is the velocity of a given point of the surface of the
particle. Thus

U(s,@,t)8(r, —a)=vo(r)&(r, —a)+a(r, —a)
deF'?(F—F').[ﬁ(F',t)—V*
TR D] (3.9

One can also disregard the dependence of the velocity at
the surface since rotations around the central line cause

very small perturbation in the fluid field. This is in agreement

with the approximation given by Ed3.7). These two ap-
proximations are not valid for the rotation of a rodlike par-
ticle around its axis of symmetiyl7], which requires spe-

cific treatment of the force and velocity distributions around
its symmetry axis. According to this approximation, we can

integrate both members of Eq3.8) with respect to
r dr,de=dr, and divide by 2ra to obtain

U(s,H)=C(s,t)- B+ f ds' u(s,s')-f(s',t)+UR(s 1),
(3.9

where we have introduced the random velocity

JR(s,t)Ef

and the spatial mobility kernel

ﬁ(s,S’)Ef

dr,
2m7a

5(rL—a)f dr'T(r—r")-[- VIR, 0]
(3.10

dr,
2ma

dFi’ =Y dilie ’
fﬁﬁ(ri—aﬁ(r—r )o(r| —a).
(3.11

Using Eg.(2.19 and changing the order of integration, the
mobility kernel can be rewritten as

in Eq. (3.12 is perfectly convergent. Moreover, from Egs.
(3.12 and (3.13 it follows that the mobility kernel,

u(s,s') is invariant under the exchange-s'.
Introducing the friction kernef(s,s’) as the generalized

inverse of the mobility kerneﬁ(s,s’) [23] (the symmetry
properties of the friction kernel are the same as those of the
mobility kernel, as it follows from its definition according

to

L/

2
f ds’
~Li2

L2 -
ds’u(s,s")-
L/2

3

&(

E

s,s”)ﬁ(s”,s’):f &(s",s")

= 8(s—s")1, (3.14

a

we can invert Eq.(3.9 to obtain f(s,t) in terms of
u(s,t)—¢(s,t)- @ anduR(s,t), yielding

. L/2 N N > 3 >
f(s,t):ﬁmds’g(s,s’)~[u(s’,t)—c(s’,t)-,8]+fR(s,t),
(3.15

where the random force is given by

= L2 3 -
fR(s,t)Ef ds' &(s,s’)-uR(s’,1). (3.16

—L/2
From the properties of the random pressure tensor given in
Egs.(2.4) and(2.5 and the definition of the random velocity
Eqg. (3.10, it can be proved that the random force satisfies
the properties

(fR(s,1))=0, (3.17

(FR(s,FR(s' 1)) =2kgTE(s,8") 8(t—t'), (3.18

where the configuration is kept frozen while the average over

all the realizations ofiR is performed. EquatiofB.18 is the
fluctuation-dissipation theorem.

The motion of a given segment of the chain is given by
the system of equations
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reader should decide whether or not a particular physical
polymer under study can be modeled by a chain responding
. to some kind of rigid constraint described by an equation of
wu(s,t)=fM(s,t)+ f(s,t) + f>{(s,t) + g(s,1), the form of Eq.(3.23. Mechanical constraints that involve
(3.20 the velocity in a way that does not reduce to a time differ-
_ entiation of Eq.(3.23 are excluded from our description
where u is the mass of the particle per unit of length andsince the associated forces involve energy dissipdtah
fH is the hydrodynamic force that accounts for the interac-Another important class of systems that are beyond the scope
tion between the segment and the surrounding solvent. Thigf this work are those responding to constraints formulated
hydrodynamic force has two contributions. The first oneas inequalities. An example is a system whose local radius of
fH2 is related to the induced force density and will accountcurvature is forced to be larger than a minimum value.
for the frictional and Brownian forces. The second contribu-  The existence of constraints gives rise to a force that we
tion fH® is a buoyancy force that appears due to the existencgave calledg(s,t). In the termf® we have gathered the
of an unperturbed pressure gradient, according to(E®. forpes due to interactions W|th external fields such as gravi-
Effectively, the buoyancy force per unit of length experi- tational, electric, or magnetic. Except for the constraint

enced by a segment located at the space @gt) simply forces, which will be discussed later on, we demand only

. . : fFint Fext ; =
follows from the integration of the pressure gradient over thehat f™ as well asf®® are functions ofc(s,t), of external
volumedV of the segment parameters, and of time. No explicit functional form for

these forces, however, has to be assumed in our derivation.
Equations(3.19 and (3.20 do not constitute a closed
system of differential equations fax(s,t) and u(s,t) until
a . FHa(s,t) is specified in terms of these two fieLds. The rela-
:dSJ drmj de[psvo(r)-Voe(r)—Fr)] tionship between the hydrodynamic force aags,t) and
0 0 J(s,t) for the polymer can be obtained by realizing that the
E[ﬁSE(s,t)-E-E+Fb(s,t)]ds, (3.21) induced force densitf(s,t) in Eq. (3.9)'is the forcg that t.he
segment placed a& exerts on the fluid due to its motion.
where we have defined the displaced solvent mass per unit §fonsequently, the hydrodynamic force that this segment ex-

lengthzs=pma® and periences is directly related to the induced force density sim-
ply by

N 2m a N
fb(S,t)E—fO dgoJ’Oerrl}"(r). (3.22 fHa(st)=—f(s,t) (3.24)

(s, =U(s,1), (3.19

fHb(s t)ds= — J Vpo
dv

ue to the action-reaction principle. Then, using this relation

etween the induced force and the hydrodynamic fdfte
together with Eqs(3.15 and (3.21), Egs.(3.19 and (3.20
ecome

The homogeneous nature of the unperturbed velocity fiel%

has also been used. In E§.20), fint stands for the segment-

segment interaction force in which we have included th

forces due stretching, bending, and torsion potenfiélsas

well as the excluded-volume interactiof®4]. We assume

that the constraints can be specified by a set of scalar equa-

tions of the form .
pu(s,t)=— f

S(s,H)=U(s1), (3.25

L/2 N N N 3
ds'é(s,s’)-[u(s’,t)—c(s’,t)- 6]
L/2

A(C(s,1))=0, (3.23

so that the system would Helonomic[25] if friction and +M(s,t)+F(s,) + sc(s,t)- B- B+ 0(s,t)
Brownian forces were not preseff4]. The constraints re- - 2R
sponding to this equation arigid (or scleronomicsince they +9(s,H)+ (s, 0). (326

do not explicitly depend on the timeThis would physically  The first term on the right-hand side of E§.26 describes
correspond to some hindrance in the configuration of the red nonlocal interaction in space, reflecting the hydrodynamic
polymer that we want to reflect in the model used to describgnteractions between differents segments of the particle.

it. For instance, polymers whose chemical structure imposes The main difference of the induced fort&) method and
very large potential energies for the bending of the backbonghe so-called Oseen-Burge(®©B) procedure employed by
can be thought of as rigid polymers or piecewise rigid P0|y'Br0ersma[27—2q and by Yamakawa and co-worke30—
mers if the rigidity is not global26]. Such constraints can be 33] s the following: the location of the force in the IF
formulated by introducing equations of the type of Ed.method is at the surface of the particle, accounting for the
(3.23. Another example is the less familiar model of a con-gjscontinuities of the velocity gradient through the boundary,
tinuous chain whose local radius of curvature is constantyhile the OB method locates the force on the central line.
which would be reminiscent of the fact that locally the bond another difference lies in the fact that in the IF method, the
angles are fixed, although rotation is not hindered. Note thajelocity field at a given surface element is imposed to be the
such a chain does not correspond to the so-called Kratkysame as the velocity of the particle at the same surface ele-
Porod chain[13]. The constraint equation for the case de-ment, which is clearly a statement of stick boundary condi-
scribed is given by[d7(s,t)/9s]?>=1/R?. In general, the tions, while the OB procedure imposes that the average of
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the velocity field on a section orthogonal to the central linewhere the components of the friction kernel, or friction mo-
equals the velocity of the particle at the same central lineanents, are defined as

point. This last condition resembles the stick boundary con- .

dition, but does not have a sound physical justification. Both z _ Z / ,

methods, however, lead to the same results when the thick- §ij= f_ldXd)((Pi(X)g(X'X Jei(x), (333
ness of the semiflexible chain is very small compared to the

global size as, for instance, for infinitely long cylinders which are 3x3 symmetric matrices. In addition, due to the
[16,32, but it gives significantly different results for par- invariance of the friction kernel under the chargge s’ we
ticles whose aspect rat@/'L is not infinitely small[16,27—  pave thatgij :gji . On the other handiR(t) satisfies

29]. The IF method gives notably better agreement with re-

spect to experiments and numerical calculati¢B4—37 (fRt))=0, (3.34
than the OB procedure.

FROTR()) = 2kgTE S(t—1"), 3.3
Representation in a complete and orthonormal set (@ J ) 8Té) ( ) (3.39

of functions as follows from Eqs(3.17), (3.18, and (3.33. Again, the

We will now express Eqg3.25 and(3.26) in terms of an ~ @verages are performed over all the realizations of the ran-
orthogonal set of functions, explicitly taking into account thedom stress tensor introduced in H@.3), keeping the con-
constraint forces. This procedure permits us to pass from fguration of the system frozen. Furthermore, E2j14) be-
continuum description of the chain, where the variables ar€0mes
positions and velocities of the segments, to a discrete picture, 52
vyhere the variables are the components ogf,t) and E Eij .;,jk:z ;ij-aﬁf(t) Sik » (3.39
u(s,t) in the chosen basis. These components of the fields ! !
describe global motions of the chain and, furthermore, per- - s _ o
mit us to establish an analogy between the motion of a singi¥here the mobility momentg,;; are defined as the friction
semiflexible continuous chain and that of a set of particlegnoments in Eq(3.33. _
whose coordinates are precisely the components of the fields. Equation(3.23 is equivalent to a set of constraint equa-

Let us consider a complete and orthonormal set of functions for the moments of the configuration. A possible
tions ;(x), defined in some intervade[a,b], i.e., scheme, although it is not unique, to obtain these constraint

equations is to multiply both sides of E®.23 by ¢;(x) and

b integrate with respect ta. One then gets the system of
. dxei(x) @j(x)= &, (827 equations

A ({c})=0 for a=1,...n. (3.37)
(X)) @i (X" )=8(x—x"). 3.2
2i i) ei(x) =4 ) (3.28 To account for the constraint forces, we introduce a set of
n Lagrange multiplyerg\ .} [24]. Thus the moments of the
For simplicity, we will take—1<x=<1. Choosingx=2s/L,  constraint forces can be written as

a given function ofs, x(s,t) = x(x,t) can be expressed as
n

. IA,
Gi=2 Na—= - (339
(D=2 xi(Dei(), (329 @ G
In order to determine the Lagrange multipliers, let us differ-
where the sum is extended over all the value$ ahd entiate Eq{(3.37) twice with respect to time. We obtain
! N, - PN, - -
xi()=1 dxx(x,t) @i(x). (3.30 > U= ——u. (3.39
-1 i JC; B aCiaCj

In this way we can expand(s,t), u(s,t), and all the forces Multiplying both sides of Eq(3.32 by dA ,/dc;, summing
in terms of the basis functions. Introducing these expansiongver «, and then using Eq$3.38 and(3.39, we can arrive
in Egs.(3.295 and(3.26 and using Eq(3.27), we obtain the at

equation of motion for the components, referred to as mo-

ments from now on, B _ PN .. IN. L
)\aZE Haﬁl T M > f UJU|+2 »B'E
. R L] dCidC; i dC;
ci(t)=u;(t), (3.3)
X; [&;(u—c;-B)—Fi—fFp, (3.40

_ L 3 - > 3 > >
A== 52 &;-[U()~¢(0)- BI+FTO + o)

O ) o where heref,=f"+ {4 % C,- 3 B+ and we have de-
T usCi(t)-B- B+ +gi()+ (1),  (3.32  fined thenx n matrix
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IA IA IV. THE VELOCITY DISTRIBUTION
H,p= ta T (3.41) AND THE SMOLUCHOWSKI EQUATION
i aCi aCi

In this section we will use the set of stochastic equations
3.42 and(3.43 to derive the equation for the evolution of
he probability density in configuration and velocity spaces

when inertial effects are negligible. Directly neglecting the
acceleration terms from the stochastic system of equations
L (3.42 and(3.43 leads to a nonlinear Langevin equation with
Ci=Ui, (3.42 é-correlated noise. It is well known that there are uncertaini-
ties in the interpretation of that kind of equatip#0] when
the noise is due to thermal fluctuations, in the literature re-
|- IN, i PAg ferred to as the ftStratonovich dilemma. Here we overcome
Ui+ > THQEZ s Uiy this difficulty by writing the evolution equation for the prob-
“h e Ik 9600 ability distribution in the complete phase space, referred to
as Kramers equation. Then, we will assume that to the time

Using the expressions for the constraint force and th
Lagrange multipliers, Eq$3.31) and(3.32 take the form

I 19A - ) . S L
=> f@ij R Haﬁ A _— gjk. (uy scales under consideration, the inertial effects are negligible
j «p dC; ac Cj 2% compared to the frictional effects. Although this derivation in

principle could be done for the general situation, we will
(3.43 concentrate on the particular case of rodli_ke particles to

make more transparent the main points of this paper. Due to

the analogy between the Kramers equation and the Boltz-
Finally, for ease of notation, let us introduce the tensors Mann equation, the procedure to be developed here has many
points in common with the derivation of the so-callearmal
solutionof the Boltzmann equatiopt1] and has the remark-

—C-B)+f;+fR

2 p) azA able property of yielding the Smoluchowski equation for the
ﬁijkEE 2H B , (3.44 probability distribution in configuration space as well as the
ok ac Pac, 19Ck velocity distribution compatible with it. This velocity distri-

bution is non-Maxwellian and is planned to be used in a
forthcoming paper in the derivation of transport equations,

2 N, _0Ag proving that its non-Maxwellian nature is conceptually very
Qij= = H =", (3.45  important.
a,f JCj (7CJ

th th . A. The Kramers equation
with the properties . o .
prop Since the state of the chain is completely given by the set

of moments{c;(t)} of the configuration andu;(t)} of the
5 5 velocity, let us consider that we have a phase space whose
> Qi Qj=Qik. (3.46  coordinates are these moments. The actual state of the sys-
) tem will be represented by a single point in this space. Let us

then consider the density of state points in phase space, i.e.,
as follows from Eqs(3.41) and (3.45),

JA . . W({Ci}v{ui}vt)zl_i[ a(ci—ci()a(ui—u;(t)). (4.1
— U|:0:>Ui:2 (15IJ_QI1)UJ! (347)
JcC;i J According to Ref.[40], the probability density in phase
space is given by
which is obtained by differentiating Eq3.37 once with
respect to the time, and

V{ci} {ui,t) =(W({ci},{u}, 1)), 4.2
3 s where the average is done over all the realizations of the
2 Q; § ﬁlkl, (3.48 random force. Since the number of phase space points is
] conserved, we can write a continuity equation Wéy which
reads
making use again of Eq$3.41), (3.44), and(3.45.
Here we have derived these Langevin equations for the AW 9 - g -
moments, that is, for global motions of the particle. Langevin - = {T . Eiw+ — Jiwl ) 4.3
equations are suitable to perform Brownian dynamics simu- Jt Ry au;

lations. Equation$3.42 and (3.43 describe the motion of
these global motions of the particle in the complete phas&Ve then use Eqg3.31) and(3.32 to ellmlna'[ecI and uI
space when rigid constraints are prege&@,39. from Eq. (4.3) and then average this equation to get
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H{ W) J - g 1 ERR
—_— = — - u(W)— — = - Rii :upU;
ot Z P | |< > | &ui ,71: EJ: zk: ijk kYj

3 L 3 - - 3 >
+(18;=Qy): | =52 & (UG B+ | [ (W)= Z—

> (16— Qi)(fRwy. (4.4
au; i

t!ll—\

1 2
(fRfW) = —kgT ,ﬁ & (16— ij> - <w> (4.5

o J . 190 3 3
—:—z —uyV—-2, = —=-(14;— ijk'(uk cy-B)+f
at l (9Ci Ll &ui k
g 1w 2 .. kgT a
+2 = =X RijcUl e+ > ~—2— (16— Qi) - & (15” Qu) —W. (4.6)
| (9Ui ,LLJyk Ll uw (9U| kI Uj
|
It is important to note from Eq(4.6) that the relevant 6|(t)=0 for 1=2. 4.11

guantities bearing the information concerning the dynamics

of the solvent are the friction tensogﬁ instead of the mo-
Differentiating Eq.(4.7) with respect to time and calculating

bility tensors,uIJ These friction tensors are functions of the e moments of the velocity field, we get
configuration of the system but not of the velocities, in view

of Egs.(3.11) and(3.36.

_ _ Uo(t) = V2R(t), (4.12
B. Normal solution of the Kramers equation
for rodlike particles
For the sake of clarity, we will restrict our derivation to - L2
the case of rodlike particles. The configuration field for a uy(t)= J6 s(t)= \/_w(t)XS(t) 413
rigid rod of lengthL is given by
As)=R()+s¥t), se[-L/2,L2], (4.7 G=0 for I=2, (4.14

Wh(?[reR |strt]hedpos,|f[l'on offtphe centerlzc)f m?ss aith the unit Wherecf)(t) is the angular velocity. Since we have neglected
vector in the direction of the axis. Equati¢4.7) expresses rotations around the axis, this vector lies in the plane or-

in fact the constraint. For this particular case it is convenient
to use Legendre polynomials as the basis set thogonal tos. In this case, the equations for the constraints

can be directly obtained from Eq&l.10 and(4.11). That is,

241\ 1 d
Pi(x)= > E‘T‘W(X —-1). 4.8 2
As{eh=ci- =0, (4.15

Note the normalization factok/(21+1)/2 included in the
above expression. This choice is especially useful since the
:gg?ents of the configuration field given in Eg.7) simply A.({Ei})=c,2=O for 1=2. (4.16

Co(t) = V2R(1), (4.9 Equations(4.9—(4.16 indicate that the moments fde2
are irrelevant coordinates, which will be ignored from now
on. From Eq.(4.6), after some algebra, we arrive at the
(4.10 Kramers equation for the rod written in the most convenient

way

- L ~
Cl(t)_TS
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: = 3 2 3 ::
Z :_i.gq,_ﬁiq,_ﬁ.(;q,_:iq, £11= £1y(1—89) + €158 (4.24
at IR M su I bw
3 due to the rotational symmetry of the rod around its axis and
L9 & (=R )+ kiilq, the inversion symmetry with respect to its center. In Refs.
Ju M M a0 [16,18 explicit expressions for the friction coefficient and
the rotational friction coefficient as functions of the aspect
0 -~ kgT o ratio a/L have been obtained, in good agreement with nu-
T o (=) + =~ P v, (417 merical calculation§34—36 and experiment§37]. Finally,

we have also introduced the rotational opergfz]
where we have defined the velocity of the center of mass

U(t)=R(t). Furthermore, the total effective fordé acting s 20
on the particle is R_Sxaé (4.29
. e ) . . -
K(t)= f_uzds[f'm(s,t)-f—feXt(S,t)+,t,LsC(S,t)-,8~,3 and defined
+fP s,t - 3=
(0] Q=sX(s-B). (4.2

= L fon + 100 ]+ MR- B B=Re(t) + RE(1)

V2 The Kramers equation contains more information than
needed to deal with long-time properties of polymer solu-
+ Msﬁ.E.E (4.19  tions. In normal situations the characteristic time scales for
the relaxation of the velocity are much shorter than those for
the total effective t = configurational changes due to th_e fact that the inertial _ef-
and the total effective torque fects are much smaller than the frictional effects. Let us in-
L2 - ' troduce the deviations with respect to the velocities imposed
T(t):f dssgt) X[ fM(s,t)+f(st) by the external flux
—L/2
—_ - 2 2 2y > - > 3
T usC(s,t)- B- B+1°(s,t)] Au=u-R.B, (4.27)
LZ ~ - ~
e fex £b o - s s o
“3% S(OX[FP(D+F(D)]+18X(S- B B) Ao=a-0. (4.28
=T +To(t) + 1.0 (RQ), (4.19

With this change, the differentiation with respect to the ve-

o ) ] . locity is transformed as
where the contributions due to internal forces identically

cancel. We have also defined the total mass and the moment

of inertia J J
mert i, (4.29
_ Jdu  JAu
l=2uls. 4.2 9 d
12 M (4.2 L7 (4.30
dow JAw

In Egs.(4.18 and(4.19 Mg andl are also given by Eqgs.
(4.20 and (4.21), respectively, by replacing. by the dis-
placed solvent mass per unit of lengihy defined after Eq. Differentiation with respect to the position and the rotational

(3.21). The translational friction tensor is given by operator results in
7 L% g 4 =2 9
&= 7600' (4.22 ——-——B —, (4.3)

JR IR dAuU
whereas the rotational friction coefficient reads

s s a0

. 4.3
L=5z8, 423 e 432

where we have used the property Under such transformations, E@.17) becomes
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P . le 4 4 K g are of the order of unity since these components simply com-
—V=—(AutR-B8): | —=—-B-—=|¥— M =24 pare relaxation times for inertial effects for lengthwise and
at IR dAu dAu sidewise motion withy ! that are of the same order of mag-
- nitude.
—(Aw+0)-| R—(RQ) J |y — I J _p ' Our_ next step is to replac® in Eq. (4.36 by the expan-
A w I 9Aw sion given in Eq(4.38 and equate terms of the same order
R in y. Thus the zeroth-order solution is obtained from the
J & - kgT 4 {9 - equation
S _—— — = |Aw
dAu M M sAuU I 9A @ =g (4.40
kgT 4 i
B2 4.33 and is found to be
I 9Aw 1
O AT AL B 2 1) — —a-MAUZ2KgT o~ 1A02/2kgT 4(0)( B 2
This equation can be written in a more compact form byqf (AudeRsD Ne € RS
introducing theconvectiveoperator (4.41)
. 9 K o R due to the fact that the differential operald®) acts only on
r®=—(Au+R-B)-| =—B-—=|— vE ——(Aw the velocities. In this equatiom\ is the normalization con-
dAu 2 stant, which has been computed in Appendix C. The un-
. . 9 T 9 known function¢(°)(§,§,t) is only configuration dependent.
+Q) | R=(RQY) ——=| =7 ——= (4.349  One can also see that the zeroth-order solution leads us to a
dA w JAw S . o .
distribution function in the velocities space corresponding to
_— the local equilibrium. This is often referred to as “equilibra-
and thediffusiveoperator tion in momentum space[6]. Furthermore, the integrability
2 condition for the next order, obtained by integrating both
R a i - kB_T 0 a 1Ae sides of the equation for the next ordeq. (4.45] with
dAu My M pAU| dAw respect to the velocities, imposes
kgT 4 - o
=, (4.35 f dAudAw —W(O)—F(C)\P(O)}ZO, (4.42
I oA at
which will be useful in what follows. We then obtain that is, ¢(?)(R,5,t) has to satisfy
J d J 0 J = 2 9 = 2 0
E«1f=r<°>«1f+ YO, (4.36 E‘i’( >+ﬁ-(R-g)¢< '+ R-Q¢'9=0, (443

In Eq. (4.395 we have introduced the coefficient which is precisely a continuity equation foﬁ(o)(ﬁ,é,t). In-

Z tegrating Eq.(4.41 with respect to the velocitietsee Ap-
Y= (4.37  pendix Q, we get that, up to this order of approximation,

#»O(R,s,t) is the probability distribution function in the
which corresponds to the reciprocal of the relaxation timeconfiguration space
related to the rotational inertial effects of a Brownian par-
ticle.

The large friction limit of Eq.(4.36 will lead us to the
Smoluchowski equation. We will follow the line of reason-
ing as described in Ref$40,42,43. Then one expands the X(R,S,t)
probability distribution function in the form

lp(ﬁ,g't) = %j dAUdAwe™ MAu2/2kBTe— IAw2/2kBT¢(O)

L = O(R,S,1). (4.44)
(0 1

=vO+ ;/\P( e (438 15 summarize, from the zeroth order in the* we have
obtained, on one hand, the above mentioned equilibration in
Note that in our expansion we will regard as being very momentum space and, on the other hand, the evolution equa-
large or, in other words, that the inertial effects relax verytion for the probability distribution function in the configu-
fast compared to configurational changes. The Smoluration space, which is a continuity equation describing the
chowski equation will then be valid for times larger than motion of an “ideal fluid” [14] without dissipation.

v~ 1. Furthermore, the components of the tensor The first-order solution satisfies the equation
iz (4.39 i\p(o)_F(C)\p(O):F(d)\p(l) (4.45
My~ ' at '
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which leads us to

\P(l):%eMAu2/2kBTeIAw2/2kBT[ ¢(1)+ AJ-,&;" +Aw ,&

| N R

* — . . (0)
szTAu ,8 AU 2kBTAw (RQ) Aw)d) },
(4.49

where use has been made of the definitions
Ar=yMZ LA, (4.47)
3_1 2

=yM¢ - B. (4.48

In these expressions, the operamj[and,&r , acting only on

R ands, respectively, are given by

»IZaMz

PO o 4.5
S v “(RQ). (4.50

Again, the unknown functioy®)(R,S,t) has to satisfy

R. B (]5(0)

J 1 1 3 s 2
E(ﬁ +§(trﬁ +RQ)

;U¢| @

+R-(Q¢?)

keT o -
+——=(Af ¢'?)
M IR t ¢

Xy
;U¢| Q

KeT . - -
+T—R-(Ar¢(°))+ R-3-

+(7€-ﬁ)+ﬁ-7€)

b — %trg’* ¢<0>_%(7§. Q)¢<0>>
=0 (4.5

which follows from the corresponding integrability condition
similar to Eq.(4.42, now considering the second order.

RS =0+

1 1 s 1 . .

V| Zrpr e Z X (0)

5 ¢ (ztl’,B +2(R Q))¢ }
(4.53

Then, Eq.(4.52 can be rewritten by using(R,S,t), that is,

P = ie—MAuzlszTe—lszlszT

1 .. s o
Y+ ;(AU-A:‘-FAarAr)w

L[ M oo s
+ — —kB—TUU.,B

1—kB—TAwAw) (RQ)}(A] (4.54)

The error made when replacingf® by ¢ in this equation is
of the ordery 2 and is therefore negligible in our approxi-
mation. After time differentiation of both members of Eg.
(4.53, using the integrability conditions given in Eq4.43),
and (4.5, and employing again Eq4.53 to eliminate
¢ and ), we arrive at the Smoluchowski equation

= =—R~B~a§tlf—7€~(ﬂ¢)

AL Ko4+KP 9

+ — — + —
BR keT 4R

+M—Ms§ - keT . [ TOWTP
kgT B-B|Y e kgT

+ R+ ——0-(ROD) | o, (4.55

kgT

where use has been made of the definitiotcind T given
in Egs.(4.18 and(4.19. Equationg4.54) and(4.55 are the
main results of this paper.

V. CONCLUSIONS

In this paper we have developed a genarssoscopic
formalism to deal with the dynamics of suspensions. Al-

One can construct the probability distribution function though we have analyzed a particular case, it is not restricted

\P(AG,A;),ﬁ,é,t) up to first order inyfl, yielding
1

W= — o~ MAU2KgT o~ 14w 2kgT ¢(0)+ oM+ AJ_A:«
_,- > M .,. z*- >
+Aw-A, 2kBTAu B -Au
2k TAw (RQ)- Aw>¢><°> ] (4.52

The form of the probability distribution function reflects its

to semiflexible or rigid polymers in dilute solution, but it can
be applied to semidilute and concentrated suspensions either
of flexible, semiflexible, or rigid polymers, spheres, micelles,
bubbles, and surfaces immersed in solvents. The main hy-
pothesis underlying the theory is that the suspended objects
need to be much larger than the size of the solvent molecules
so that the dynamics of the solvent could be described by
means of a continuum theory. In a first step, we have derived
Langevin equations where the friction tensors are explicitly
given and the statistical properties of the random forces fol-
low from those of the fluctuating velocity field. The formal-
ism differs from the Oseen-Burgers procedure and it has

non-Gaussian nature due to the appearance of linear and qugeen proved that it leads to more accurate results. The evo-

dratic terms inAu andA .

The probability distribution function in the configuration
space is obtained, as in E@t.44), after integration of Eq.
(4.52 with respect to the relative velocities

lution of the system in phase space is governed by these
Langevin equations and it is found to satisfy the Kramers
equation, where positions and velocities are independent
variables.
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The long-time motion of the suspension has been obtainedhere, in addition, we can identify the diffusion coefficient
from the Kramers equation. The procedure employed here im terms of geometrical aspects of the particle and the dy-

analogous to that leading to the normal solution of the Boltzy,5mics of the solvent througf}. The use of a Maxwellian

mann equation, in which it is assumed that the processe stribution in the average would have led sj‘(cf =0
related to the relaxation of the velocity are much faster thal Istribution n , verage wou v u A
o recover Fick’s law it would have been necesssary to re-

changes in the configuration of the system. This separation i ) : ;
time scales is ensured in our case if the frictional effects argic _the velom_ty of_the particles to the Brownian thermody-
namic force given in Eq(1.1) and then write

much more important than inertial effects. It is worth point-
ing out that the Kramers equation cannot correctly describe
the short-time dynamics of our system, £0-10 ¢ s, since

the explicit time dependence of fluid motion has been ne-

glected. T pant has ot been sffcienty emphasized 1 %20 0 2 (e balndtle ferte s regectacbe
the literaturg[19]. In the case of flexible polymers in dilute y

solution, for instance, the mass of the solvent dragged Witﬁorce. Such a procedure is not always obvious, as in the case

the coil is much more important than the mass of the poly-g:)tr?]ee St:rrsessate(;lS%re(;feawsélrsep:trilnsggn?; r:jgéﬂg?stb?Jtlrﬁ;ae?ﬁ;
mer itself and therefore it is crucial in the analysis of its 90,

short-time behaviof15]. These inertial effects associated or not the Brownian thermodynam|c for(_:e played the same
with fluid motion lead, furthermore, to the long-time tail be- role as the external and internal forces in the expression of
havior of the velocity autocorrelation function of a Brownian the stress tensqr6-50. The derivation of the expression

particle[12,44). The use of the quasistatic approximation for Loerrttahies s};ensnseéetnoscére f;%r\?ergee??:(;S?;'?;]i;rr;]eiﬁry [z:esfnted
the fluid dynamics, as it has been done here, introduces an pian ped | ; 9 paper.
Another important result of this paper is shown in Eg.

enormous simplification in the calculation that, in addition, o . . .
leads to the correct behavior at long times. In this way, our(4'53’ Wh'f:h Is the Smoluchc_)yvsk| equation that Qescr!bes
épe evolution of the probability density in configuration
Space. First, we want to mention that the mesoscopic theory
presented here led us to the knowledge of the friction tensors
since the hydrodynamic nature of the evolution of the solvent
. . PR is a basic ingredient of the theory itsglf5]. This permits us
Equation(4.54 gives the probability distribution in the to deal with different situations such as, for instance, vis-

complete phase spack in our approximation. The proce- . . . )
dure developed permits us to obtain the explicit dependenccoelasnc solvents, provided that the equation of motion for

. X . ; ) the velocity field is known.
t?cfjr\?algp?aergfrl]?gﬁé,lﬁwmﬁctr? iesdp'erggigif;fr?elgc:nj etigr?rg;%ﬁéa' Second_, we have obtaineq several additional contributions
Smoluchowski equation Eq4.55. One of the more inter- acting as if they were effective forces and torques together
esting aspects of the vel,ocit)./ 'dep'en dencd’a that it does with the totail external force and torque. Let us first analyze
not correspond to a local Maxwellian distribution, but addi- e role. of K by considering that there is a gravitational
tional terms appear. In the analysis of the dynamics of sudi€ld acting on the system that is in thermodynamic equilib-
pensions, it has been customary to supplement the solutidiMm- Thus
of the Smoluchowski equation with a local Maxwellian dis- . . -~
tribution function [6]. However, our derivation points out K+ KP=—(M—-My)gz, (5.3
that, to the lowest order in 4/ we get a continuity equation

for ¢ and a local Maxwellian, while, up to first order, one \where— gz is the gravitational field, parallel to theaxis of
obtains correction terms with respect to the local Maxwellianthe |aboratory reference frame, and use has been made of
behavior in the Velocity distribution and the Smoluchowski Eqs(41& and(322) This is ob\/ious|y the balance between
equation fory. By means of Eq(4.54, the macroscopic the weight of the particle and the hydrostatic force. Clearly,

behavior of a given physical magnitude associated with thgolving the Smoluchowski equation for these equilibrium
dynamics of the Brownian particles can be obtained in the:onditions gives a number density distribution

same way as done in the theory of simple liquid§]. To

clarify, let us take the simplest case of a system with neither Y~e" (M~Mggz/2kgT (5.9

an externally applied velocity field nor external forces acting

on the particles. Let us then calculate the macroscopic parFhus, to have a thermodynamically stable suspension of
ticle flow by averaging the mesoscopic particle density. Un4macroscopic size~ 10 cm at room temperature, it is neces-
der certain conditions of decoupling between translationasary that M —Mg) ~kgT/gz~10 8 g. This implies that in
and rotational motion, we havhe particles are noninteract- the situations of interest for Brownian systems of particles of
ing and the index labels the particles size~10"4—10"® cm, the masses of the particles and of the
displaced fluid must be rather close or practically identical.

- 2 -
u=¢ " FP (5.2

containing the relevant information to derive the long-time
behavior when frictional effects are dominant in front of in-
ertial effects.

J(r t)= > T B - z 30 0 - This reinforces our statement about the important role that
J(r,t)=< Z uié(r_Ri)> = —keT{& ) a—Fp(r,t), fluid inertia plays in the short-time dynamics.
(5.1) The analysis of the force due to the term

R L (M —Ms)ﬁ-E-E is also very simple. Take, for instance, a
where p(r,t)=(2;8(r —R;)) is the particle’s number den- system in pure rotation around tlzeaxis. This force is then
sity. Clearly, this expression is nothing but Fick's law, directed in the radial direction, towards the external wall if
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M>Mg or towards the axis of rotation M<M;. Thus this \whereA is the total area of the particle amg{r) is some

stands for a centrifuge force due to the curvature of the flowynction defined in the bulk. One can easily see from Egs.
lines of the carrier fluid. For the rotational motion, the anaIO'(Al) and (AZ) that the surface® function is given by

gous term proportional t6) - (RQ) tries to make the cylin-

ders lie in a plane orthogonal to the axis of rotation if
I>1¢ and align the particles with the axis of rotation if
I <lg. This effect is, however, very small for Brownian par-

ticles and, in fact, of higher order than other shear-dependen, the case in which the radius of curvature is much larger

contributions neglected in linearizing the Navier-Stokesthan the radius of the section, the surfatiinction reduces
equation[20]. These neglected contributions lead to friction 4, 8(r, —a).

tensors depending on the velocity gradient, which are re-

sponsible for the appearance of lift forces on the particles, .

and will be discussed elsewhere. APPENDIX B: CALCULATION OF (f}'w)
In summary, this paper has been devoted to the develop-

ment of a theory for suspension dynamics based on a mesp:,

scopic starting point, which allows for a precise description

of the solvent dynamics and its influence on the particle’'s _ . .

motion. In this way we have related the friction coefficients (FR(OWLFR])=(f{) (W)

to integrals involving the Oseen tensor and geometrical fac-

tors. From a statistical point of view, we arrived at the non- n f‘ dt’z (FR(t)FR(t')>-<

equilibrium velocity distribution compatible with the Smolu- e VIR

chowski equation. Finally, theb initio treatment of the

properties of the solvent permitted us to obtain in a natural R SW

way buoyancy and centrifugal forces in the Smoluchowski =limy _-Ke T &k <T> (BY)

equation that are currently added without justification. . ofi (")

S9(r,t)=8(r, —a) 1—Lcos,o) (A5)
: L R(s,t) '

Employing the Furutsu-Novikov formul@51], the last
m in Eq.(4.4) can be written as

oW
SfR(t)
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zen. The functional derivative is defined as

APPENDIX A: THE SURFACE é FUNCTION R
WD) _[d ¢ :
In this appendix we will discuss the meaning of the sur- (Sf_R—(tr)= Ew[fi,a(t)"‘(ﬁaﬁ@j&t_t )]
face & function used in Sec. Il. 1B
For simplicity’s sake, we will consider only that the shape
of the sections is circular and independent of the actual co
figuration of the system. The surface of the particle is give
by the points satisfying , =a. Very close to the surface,

according to Eq(3.4), the volume elemendr and the area
element at the surfac®A read

o=0
(B2)

:}Qere greek indices stand for Cartesian coordinates of the
vectors. The functional derivative contained in E§1) can
be reduced to

SW P Suy(t)
(1 sty T eman) Y
= — k | k
dr (1 R(s't)COSp)ridrldgodS, (A1)
a The properties of thé functions contained iW have been
dA=|1- coso | adeods. A2 used. Finally, formally integrating E@3.43 in terms of the
( R(s,t) % |ade (A2) forces and applying the functional derivative to this formal

solution, we arrive at

We define here5®(r,t), referred to as the surface delta

function, as the generalized function that satisfies the prop- 51]|(t) 1
erties =

t 3 3 3
[[at'S (Han- Gl AT amatt 1),
(B

STRA) &
f S9(r)r dr, deds=A, (A3)

where the only contribution wheri—t comes from the term
proportional to the random force. The factor in curly brack-

)(r " — — N -
f & (r)g(r)ridrldq:dS—f g(r . =a,¢,s)dA, ets is preciselysf(t")/ 5TR(t'). Gathering all these results,
(A4) we arrive at Eq(4.5).
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APPENDIX C: VELOCITY AVERAGES

(C4

J dA ge ™A /2kgT —
I

ZWkBT)

In this appendix we compute the different integrals in-

volved in the velocity averages. For the center of mass mo- o )
tion we have which is the normalization constaht,. The integral analo-

gous to Eq(C2) in this case gives

€y

312
f dA Ge—MAUZ/2kgT _ ( ZﬂkBT)

1 s S kgT ~n
M N—f dAw(AwAw)e-'sz/?kBT:EI‘—(f—ss). (C5)

which is the normalization constalt,. The second integral,
corresponding to the exponential together with the secondhe last integral leads us to

rank tensorAUAU, is given by

2 [ drs(Ao,doho Ae,)e 302
1 TOATA T a— MAUZ/2kgT KeT > N, R A
—f dAu(AuAu)e Mauisel=—_1, (C2

N, M

keT\? .,
= == ) _{2) 3)
Integrals of the same kind but with tensorsiaf of odd rank ( I ) [Taﬁw 7{a,3w+37{a5w], (C6)
are clearly zero. Finally, the integral of the four-rank tensor _
AUAUAUAU and the exponential yields where the tenSOI’ﬂﬂ'};w read
) —
T(aﬁw_ 5QB57V+ 5a755v+ 5011/537' (C7)

1 S 2
~MAuZik
Nuf dAu(Au,AugAu,Au,)e” MAuTAeT

kgT)\?
= | [8asByrt ayBput 8ar0p, . (C3)

+8,,5,55, (Cy)
The integrals for the rotational velocity follow lines simi- anan
lar to these for the center of mass velocity. One has to takéﬁﬁwzsasﬁsysv. (C9

into account, however, that for a fixed vecfthe domain of

: o . S The normalization constaM is defined as
integration is bidimensional and lies in the plane orthogonal

tos. According to this we have N=NyN,, . (C10
[1] J.G. Kirkwood, Rec. Trav. Chint8, 649 (1949. [15] J. Bonet Avalos, J.M. Ruband D. Bedeaux, Macromolecules
[2] J.G. Kirkwood, J. Polym. Scil2, 1 (1954. 24, 5997(1991).
[3] J.J. Erpenbeck and J.G. Kirkwood, J. Chem. Pi38.909  [16] J. Bonet Avalos, J.M. Ruband D. Bedeaux, Macromolecules
(1958. 26, 2550(1993.

[4] H. YamakawaModern Theory of Polymer Solutiorislarper
& Row, New York, 197).

[5] S. Chandrasekhar, Rev. Mod. Ph¢s, 1 (1943; see alsdSe-
lected Papers on Noise and Stochastic Processdited by N.
Wax (Dover, New York, 1954 where this reference is also

[17] J. Bonet Avalos, J.M. RubD. Bedeaux, and G. van der Zwan,
Physica A211, 193(1994.

[18] J. Bonet Avalos, Ph.D. thesis, Universitat de Barcelona, 1992
(unpublisheg

[19] R. Klein and W. Hess, Adv. Phy82, 173(1983.

included. ) . ]

[6] R.B. Bird, C.F. Curtiss, R.C. Armstrong, and O. Hassager,[zo] K. Miyazaki, D. Bedeaux, and J. Bongt Avalos, J. Fluid Mech.
Dynamics of Polymeric Liquid8Viley, New York, 1987. 296, 373(1995, and references therein.

[7] J.G. Kirkwood, J. Chem. Phy44, 180(1946. [21] P. Mazur, Faraday Discuss. Chem. S88, 33 §19E§7).

[8] .M. Deutch and I. Oppenheim, J. Chem. Phgd, 3547 [22] B. Dubrovine, S. Novikov, and A. Fomenk&eomerie Con-
(1979). temporaine. Modes et ApplicationgMir, Moskow, 1985.

[9] T.J. Murphy and J.L. Aguirre, J. Chem. Ph$3, 2098(1972. [23] H. Yamakawa, T. Yoshizaki, and M. Fuijii, Macromolecules
[10] J.M. Deutch and |. Oppenheim, Faraday Discuss. Chem. Soc. 10, 934 (1977).

83, 1(1987. [24] M. Doi and S.F. EdwardsThe Theory of Polymer Dynamics
[11] A. Altenberger and J.S. Dahler, Macromolecul&’ 1700 (Clarendon, Oxford, 1986 and references therein.
(1985. Equations(1.1) and (1.2) of this reference are incor- [25] F. Gantmacher_ectures in Analytical Mechaniodviir, Mos-
rectly used for rotational motion. cow, 1975; H. Goldstein, Classical Mechanigs 2nd ed.
[12] P. Mazur and D. Bedeaux, Physica7&, 235 (1976. (Addison-Wesley, Reading, MA, 1980
[13] H. Yamakawa, Annu. Rev. Phys. Ched®, 179(1974); 35, 23 [26] M. Fixman and J. Kovac, J. Chem. Phd, 4939(1974; 61,
(1984). 4950(1974.

[14] L.D. Landau and E.M. LifshitzFluid Mechanics(Pergamon, [27] S. Broersma, J. Chem. Phy&2, 1626(1960.
Oxford, 1987. [28] S. Broersma, J. Chem. Phy&2, 1632(1960.



3970 J. BONET AVALOS 54

[29] S. Broersma, J. Chem. Phy&4, 6989(1980. [41] J.A. McLennan,Introduction to Non-Equilibrium Statistical

[30] H. Yamakawa and M. Fujii, Macromolecul&s 407 (1973. Mechanics(Prentice-Hall, Englewood CLiffs, NJ, 1989

[31] H. Yamakawa and M. Fujii, Macromolecul&s 128 (1974. [42] U.M. Titulaer, Physica A91, 321(1978.

[32] H. Yamakawa, Macromolecule 339 (1975. [43] U.M. Titulaer, Physica ALOQ, 251 (1980.

[33] G. Tanaka, T. Yoshizaki, and H. Yamakawa, Macromoleculeg44] E.H. Hauge and A. Martin-Lfp J. Stat. Phys7, 259 (1973.
17, 767 (19849. [45] J.-P. Hansen and |.R. McDonal@heory of Simple Liquids

[34] M.M. Tirado and J. Gare de la Torre, J. Chem. Phygl, (Academic, London, 1986
2581(1979. [46] G. Wilemski, J. Stat. Physl4, 153 (1976. In this reference

[35] M.M. Tirado and J. Gara de la Torre, J. Chem. Phyg3, the different attempts to generalize the Smoluchowski equation
1986(1980. are brefly reviewed.

[36] M.M. Tirado, C. Lqez Martnez, and J. Garaide la Torre, J.  [47] W.H. Stockmayer, W. Gobush, Y. Chikahisa, and D.K. Car-
Chem. Phys81, 2047(1984. penter, Discuss Faraday SakQ, 182 (1970.

[37] H. Tj. Goinga and R. Pecora, Macromolecul@d, 6128 [48] H. Yamakawa, G. Tanaka, and W. Stockmayer, J. Chem. Phys.
(199). 61, 4535(1974.

[38] E.J. Hinch, J. Fluid Mech271, 219 (1994, and references [49] B.U. Felderhof, J.M. Deusch, and U. Titulaer, J. Chem. Phys.
therein. 63, 740(1975.

[39] P.S. Grassia, E.J. Hinch, and L.C. Nitsche, J. Fluid Meé&, [50] W.H. Stockmayer, G. Wilemski, H. Yamakawa, and G.
373(1999, and references therein. The use of Langevin equa-  Tanaka, J. Chem. Phy&3, 1039(1975.
tions in Brownian dynamics simulations of systems with rigid [51] K. Furutsu, J. Res. Natl. Bur. Stand. Sec.7B, 303 (1963;
constraints is reviewed. E.A. Novikov, Sov. Phys. JETEO, 1290(1969; P. Hanggi, in
[40] N. van KampenStochastic Processes Applied to Physics and Stochastic Processes Applied to Physeddited by L. Pesquera
Chemistry(North-Holland, Amsterdam, 1990 and M.A. Rodrguez(World Scientific, Singapore, 1985



