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We analyze second-order turbulent velocity moments both inr and inp space. Finite size corrections induce
dramatic differences between localr - andp-space scaling exponents. As analytically accessible examples we
focus on two popular parametrizations: the Batchelor parametrization for ther -space structure function and a
common parametrization for the energy spectrum,E(p)}p25/3exp(2p/pd). The spectral bottleneck energy
pileup hidden in the Batchelor parametrization results in an extendedr -space scaling range, comparable to
experimental ones for the same Taylor-Reynolds number Rel. Shear effects are discussed in terms of~global!
apparent scaling correctiondzapp(Rel) to classical scaling, which again depend on whether looked at inr or
in p space. The differences can be traced back to the subtleties of the crossovers in the velocity moments. Our
observations emphasize the need for more experimental information on crossovers between different sub-
ranges.@S1063-651X~96!04006-8#

PACS number~s!: PACS: 47.27.2i

I. INTRODUCTION

In the theory of fully developed turbulence, scaling ranges
of velocity moments inr and inp space are often put into a
one-to-one correspondence with each other. The two scaling
exponents associated with the scaling ranges are believed to
be equivalent. While this view is correct for an infinite sys-
tem ~with an infinite scaling range! the relation between
r -space andp-space exponents becomes more complicated
for finite Reynolds numbers. It is the aim of this paper to
quantitatively examine these finite size effects, as they might
well be essential to interpret experiments@1–8# and numeri-
cal simulations@9–11#.

We first define theinfinite scaling rangeexponentszm. In
r space, they are defined via the velocity structure functions

D ~m!~r !5^@u~x1r!2u~x!#m&}r zm. ~1!

From a theoretical point of view@12–14#, the p-space scal-
ing exponents corresponding to the~discrete! Fourier trans-
formation u(p) of the velocity fieldu(x) are more easily
accessible,

^uu~p!um&}p2zm. ~2!

Kolmogorov’s classical dimensional analysis of the turbu-
lence problem@15# gives, of course, the same result for both
kinds of scaling exponents, namely,zm5m/3. Since Land-
au’s famous footnote in Ref.@16# it has been a matter of
interest whether there are scaling corrections
dzm5zm2m/3 to the classical result in the limit ofinfinite
Reynolds number Re@17,18,13,14#.

Grossmann and Lohse discovered and analyzedfinite size
scaling corrections in their reduced wave vector set approxi-

mations~REWA; see@19–22# and references therein! of the
Navier-Stokes equations. The stirring subrange~SSR! scal-
ing corrections at the infrared end of the spectrum are pre-
sumably due to the broken symmetry of the Navier-Stokes
dynamics because of thefinite sizeof the system: For small
p only downscaleenergy transfer is possible, i.e., the trans-
lational invariance and the self-similarity of the turbulent
flow is broken by the boundary conditions. In addition to the
investigation of these local scaling corrections, REWA also
offered the opportunity to study the Rel dependence ofglo-
bal corrections to classical scaling. Values of Rel ranging
from 102 to 104 could be simulated@20,23# and it was shown
@23# thatdzm}Rel

23/5 due to the spectral corrections to clas-
sical scaling,

^uu~p!um&}p2m/3F11amS ppsD
22/3G , ~3!

which result from large scale anisotropy~e.g., shear!. The
p22/3 shear correction has first been suggested by Lumley
@24#, who employed dimensional analysis, and was later also
found in Refs.@25,23,26,27# with the help of dimensional
analysis in terms of Clebsch variables. The parameterps is
the typical scale set by the strength of the shears,
ps5As3/e, andam a dimensionless parameter, presumably
on the order of 1. It is not yet clear whether the second term
in Eq. ~3! is only a small-p correctionor whether pure shear
energy spectraE(p)}^uu(p)u2&/p}p27/3 exist, i.e., whether
ps@pL can be achieved. Here,pL[1/L is the momentum
scale set by the external stirring force. Yakhot@26# recently
discussed experimental indications for pure shear spectra. In
cross spectra@28# E12(p) they have experimentally been
identified by Saddoughi and Veeravalli@6#.

A systematic analysis of the properties ofr - and
p-space scaling exponents in finite-Rel turbulence has been
performed by the present authors in Ref.@29#. We demon-
strated that ther -space crossover from the inertial subrange*Electronic address: lohse@cs.uchicago.edu
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~ISR! to the viscous subrange~VSR! and from the ISR to a
large-r saturation range can lead to energy pileups at both
ends of thep-space ISR, the so-called bottleneck phenom-
enon@30#. In other words, monotonous localr -space scaling
exponents may give rise to nonmonotonous localp-space
exponents. Both physical~based on the conserved energy
current inp space! and formal explanations for this effect as
well as a comparison with available experimental and nu-
merical data were given in Ref.@29#.

In the present paper, we continue and extend our investi-
gation of finite size effects on local scaling exponents inr
and inp space. For the time being, analytical techniques that
would enable us to study these questions directly from a
dynamical point of view are not available. Therefore we have
to adopt a more phenomenological approach where measured
or ~numerically! calculated velocity structure functions are
described by certain parametrizations. These parametriza-
tions can be formulated either inr or in p space and their
quality can be checked by direct comparison with experi-
mental or numerical data. As a central point in our paper we
exploit the fact that any description of a structure function in
r or in p space impliesat the same timea certain statement
in the respective Fourier spaces. It is therefore legitimate
and, as we believe, even necessary to test a given parametri-
zation against all available information in bothr and p
spaces. A similar approach for energy dissipation correla-
tions was followed by Nelkin@31#.

Our central finding is that the scaling quality of thesame
parametrization — once looked at inr space, once looked at
in p space — is rather different. This dramatic difference is
not an artefact of the chosen parametrization but a math-
ematical property of the Fourier transformation. Once the
parametrization~as a ‘‘best fit’’ to the data! is accepted in
r (p) space, its corresponding Fourier transform top (r )
space has to be accepted as well — in spite of the often
surprising features.

We restrict ourselves to the two probably most common
parametrizations~and finite size corrections thereof! for the
scaling behavior of velocity moments, namely, thep-space
parametrization~4! discussed by Foias, Manely, and Sirovich
@32# ~henceforth called FMS parametrization for simplicity;
see also Frischet al. @33#! and the Batchelor parametrization
~5! @34,28,35#, common inr space. The latter has been very
common in particular in the engineering literature. Recently
Sirovich, Smith, and Yakhot@36# have given some interest-
ing theoretical foundation for it. We will see that the main
difference between FMS and Batchelor parametrization lies
in the description of the crossover from the viscous to the
inertial range. Pointing out the importance and the surprising
consequences of the nature of the crossovers is a main aspect
of our work, since up to now research was mainly concerned
with infinite Re scaling exponents.

The restriction to the parametrizations is only for techni-
cal conveniance. Our main result, Fig. 4, which reveals the
differences in scaling quality inr vs p space, can be under-
stood without referring to any parametrization. These differ-
ences appear to be somewhat less pronounced~but not ab-
sent! in experimental data. The reason presumably lies in the
experimental necessity to perform some sort of running av-
erage to reduce the noise in the data. In experiments it is
therefore always dealt with locally averaged scaling expo-

nents as opposed to the strictly local ones considered in this
paper. Indeed, we show that bottleneck energy pileups@29#
@i.e., a nonmonotonous local scaling exponentz(p)# hidden
in Batchelor’sr space parametrization considerably reduces
when p spectra are locally averaged as has to be done for
experimental data.

The paper is organized as follows: Sections II and III deal
with local small-p scaling corrections. The bottleneck energy
pileup at the infrared end of the ISR@29# as well as the
small-p scaling corrections found in REWA@19# and also by
dimensional analysis in terms of Clebsch variables
@23,25,26# belong to this category. We believe that these are
all manifestations of the broken Navier-Stokes symmetry due
to the boundaries, i.e., large scale anisotropy@19#. To inves-
tigate possible relations among these effects we modify the
above-mentioned parametrizations to describe the scaling
corrections from REWA, examine the ensuing consequences
in r space, and perform a quantitative comparison for the
local scaling exponentsz2(p) resulting from the three differ-
ent approaches in Refs.@19,23,29#.

In Sec. IV we focus our attention on the Taylor-Reynolds
number dependences of the apparent~global! scaling correc-
tionsdz2

app due to shear effects. While it is probably not too
surprising that Batchelor and FMS parametrization lead to
different Rel dependences of the apparent scaling correc-
tionsdz2

app, our result thatbothparametrizations give rise to
different behavior of dz2

app in momentum and coordinate
space, respectively, is certainly unexpected. E.g., we find
that thep-space resultdz2

app,p}Rel
23/5 of Refs.@23,13# cor-

responds todz2
app,r}Rel

21/2 in r space. This observation
can be viewed as yet more evidence for the fact that finite
size effects can renderr - and p-space exponents inequiva-
lent. Section V is left to a summary and to conclusions.

II. BATCHELOR VERSUS FMS PARAMETRIZATION

A. Definitions and Fourier transforms

To describe the behavior of energy spectraE(p), the
FMS parametrization@32,33#

EFMS~p!5E0e
2/3p25/3exp~2p/pd! ~4!

has frequently been used to interpret experimental@37,38#
and numerical@10,19,20# data. Here,E0 is the p-space
Kolmogorov constant,e the energy dissipation rate, and
pd characterizes the crossover to the viscous range.
On the other hand, measured structure functionsD (2)(r )
are well described by the Batchelor parametrization
@34,28,36,1,35,39,29,40#,

DB
~2!~r !5

er 2/~3n!

F11S 1

3bD
3/2S rh D 2G2/3, ~5!

where n is the viscosity, h5n3/4/e1/4 the Kolmogorov
length, andb527G(4/3)E0/556.028.4 the experimentally
determined@28,41# r -space Kolmogorov constant. The gen-
eralization of both parametrizations toz2Þ2/3 is straightfor-
ward @40# and was considered in@29#. The essential aspects
of our present work do not depend on the precise value of
z2 . Clearly, both parametrizations neglect the finite size of
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the system since they do not contain a scale for the external
stirring force. Furthermore, the FMS-parametrization equa-
tion ~4! does not contain any energy pileup~or bottleneck
effect! @30,29#. The velocity structure function for a given
energy spectrum can be calculated through the Fourier trans-
formation @28#

D ~2!~r !54E
0

`

E~p!S 12
sin~pr !

pr Ddp. ~6!

Inverting this equation, i.e., calculating the energy spectrum
from a given structure function, requires a short discussion.
Let us consider turbulence in a large but finite domain, so
thatE(p)→0 asp→0. Then the term involving no trigono-
metric function on the right-hand side~rhs! of Eq. ~6! is
finite, 4*0

`E(p)dp[D (2)(`),`. Physically, this term cor-
responds to the total energy in the fluid. We can now
straightforwardly invert Eq.~6! to give

E~p!52
1

2pE0
`

pr sin~pr !@D ~2!~r !2D ~2!~`!#dr. ~7!

In the limit of infinite system sizeD (2)(`) grows beyond all
bounds, rendering Eq.~7! ill–defined at first sight. However,
since*0

`pr sin(pr)dr}pd8(p), this affects only singular con-
tributions at the origin which we may safely discard. We will
therefore always use Eq.~7! with the understanding that
D (2)(`)50. Formally this means nothing more but that the
Fourier transformation of a function will not change~apart
from thed function! if the function is shifted by a constant.
With the help of the transformation equations~6! and~7! we
can calculate the structure function corresponding to the
FMS parametrization~4! and the energy spectrum associated
with the Batchelor parametrization~5!, giving

DFMS
~2! ~r !5

4E0G~22/3!

r ~5/3!pd
5/3 H 53 pdr2~11pd

2r 2!5/6

3sinF53arctan~pdr !G J ~8!

and

EB~p!52
1

4p

e

3n
prd8

d3

dp3E2`

` exp~ ipr d8x!

~11x2!2/3
dx

5E0e
2/3pd8

25/3AF23 p̃ 1/6K11/6~ p̃!1 p̃7/6K5/6~ p̃!G ,
~9!

respectively. Here, we introduced some abbreviations for
simplicity: The dimensionless constantA has the value
A5@9G(1/3)#/@A2p22/35G(2/3)#, p̃5prd8, and Kn is the
modified Bessel function of the third kind@42#. A result
analogous to our Eq.~9! has been earlier obtained by Sirov-
ich, Smith, and Yakhot@36#. These authors transformed the
Batchelor parametrization for thelongitudinalstructure func-
tion to p space.@WhetherD(r ), the longitudinal structure
functionDL(r ), or the transversal oneDT(r ) is best approxi-
mated by a Batchelor parametrization has to be decided by
comparison with experimental data. Clearly, if one chooses a

certain parametrization for one of them, there is no freedom
left for the others~assuming isotropy!.# In Ref. @29# the
bottleneck effect~see also Sec. II B! and its important physi-
cal consequences hidden in the transformed Batchelor for-
mula were discussed for the first time.

The crossover from the inertial to the viscous range
is characterized byr d ,pd for the FMS parametrization
and by r d8,pd8 for the Batchelor parametrization. The
large- and small-r limits of D (2)(r ) are required to give
D (2)(r )5b(er )(2/3) and D (2)(r )5er 2/(3n), respectively.
Equation~5! is obviously designed to meet these constraints
and comparing the asymptotic relations with the appropriate
limits of Eq. ~8! fixesE055b@G(4/3)#21/2751.74 and

pd
215~10b/27!3/4h'2.34h, ~10!

where we choseb58.4 @28#. Now, r d andr d8 are defined by
equating the asymptotic limits,er 2/(3n)5b(er )2/3, so that
we arrive at

r d5r d85~3b!3/4h'11.25h. ~11!

We note, however, that althoughr d and r d8 are the same
~by definition!, DB

(2)(r ) shows a sharper crossover from
VSR to ISR thanDFMS

(2) (r ), i.e., DB
(2)(r )>DFMS

(2) (r ) for all
r . This can be seen in Fig. 1 of Ref.@29# where we compared
DB
(2)(r ) with DFMS

(2) (r ). Finally, the p-space crossoverspd
andpd8 are defined by the cutoff in the exponential decay of
the spectrum for largep. Thus,pd is determined by Eq.~4!
and, sinceKn( p̃5prd8)}p

21/3exp(2prd8) for large argu-
ment, we have

pd8
215r d8'11.25h. ~12!

Note that the naive expectation that (p-space crossover! 3
(r -space crossover! '2p, holds in neither case. For Eqs.~4!
and ~8! we haver dpd'4.8 whereas for Eqs.~5! and ~9! we
have simplyr d8pd851.

FIG. 1. Energy spectrum equation~9! ~solid! with the energy
pileup, and the spectrum equation~4! ~dashed! without it. We as-
sumed a Batchelor-type infrared~IR! cutoff, Eq. ~15!. The two ar-
rows point to blowups of the spectrum in the crossover regions. In
these enlargements it is compared to classical25/3 scaling.
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B. Bottleneck phenomenon

In @29# we showed that in contrast to Eq.~4! the param-
etrization Eq.~5! contains an important physical phenom-
enon, the bottleneck effect@30#. This becomes apparent
when comparing the energy spectraEFMS(p) andEB(p) in
Fig. 1. For small p both functions coincide. Around
p'pd8 , however, an energy pileup in the crossover region of
EB(p) becomes noticeable, leading to a nonmonotonous
logarithmic slopedlnEB /dlnp. The localr - andp-space scal-
ing exponents

z2~r !5
dlnD ~2!~r !

dlnr
, 2z2~p!215

dlnE~p!

dlnp
~13!

of both the Batchelor and the FMS parametrization are plot-
ted in the right part of Fig. 2. The minimal localp-space
scaling exponent of the spectrumEB(p) is 0.44, i.e., the
scaling correction is an order of magnitude larger than the
discussed intermittency corrections@28,17#. This effect could
explain that the spectra in numerical simulations@9,10,43#
are flatter than the classical expectation, rather than being
steeper as one might expect from possible intermittency cor-
rections.

Furthermore, in Ref.@29# we considered a straightforward
generalization of the Batchelor parametrization,

DB
~2!~r !}r 2~r d8

21r 2!22/3~L21r 2!1/3, ~14!

which accounts for the crossover from the ISR to a large-r
saturation range induced by the finite scaleL51/pL set by
the external stirring force. This second crossover might well
not be universal, but our parametrization agrees reasonably
well with available data@1,4,28,39#. Calculating the corre-
sponding spectrum we obtained forr d8!r

EB~p!5
^u2&L

p H 2
G~5/6!

G~1/3!
ApF59 p̄ 2

1F2S 116 ,
5

2
,
5

2
,
p̄ 2

4 D1
11

405
p̄ 4

1F2S 176 ,
7

2
,
7

2
,
p̄ 2

4 D G
1

p

2 F13 p̄1F2S 43,2,32 , p̄
2

4 D1
2

27
p̄ 3

1F2S 73,3,52 , p̄
2

4 D G J , ~15!

wherep̄5p/pL and 1F2(a,b,c,z) denotes a generalized hy-
pergeometric function@44#. The most prominent feature of
this expression is a second bottleneck pileup at the infrared
end of thep-space ISR. The local logarithmic slopes of~14!
and ~15! are plotted in the left part of Fig. 2. Both bottle-
necks have the same physical origin, namely, the broken
symmetry due to finite size effects. The symmetry breaking
scale is introduced by the stirring force and the finite size of
the vessel, wind channel, or atmosphere@1,3# at the infrared
end of the spectrum, and by viscosity at the large-p end of
the ISR. Formally, both bottleneck energy pileups originate
from the sharpr -space crossovers defined by the Batchelor-
parametrization equation~14!. The physical explanation
@20,29# builds on the constant energy flux
T(p);pu(p)*dp1dp2u(p1)u(p2)d(p1p11p2) downscale
in p space. For a detailed discussion of the bottleneck effect
we refer to Ref.@29#.

C. Comparision with experiment

The ultraviolet bottleneck pileup is rather universal and
has meanwhile been observed in many experiments and nu-
merical simulations@9,45#. The infrared bottleneck clearly is
not universal. In the zero-pressure gradient boundary layer

experiments of Saddoughi and Veeravalli@6# it shows up for
velocity measurements in the outer part of the boundary
layer. However, the bottelneck pileup on the low-wave-
number end of the inertial subrange accentuates in the outer
part of the layer for the adverse pressure gradient case of
Saddoughi@7#, where the ratio of the extra strain rate to the
basic shear is large. In Figs. 3 we showcompensatedspectra
E(p)p5/3, which is a common representation of experimental
data: In Fig. 3~d! we have plotted the compensated Batchelor
spectrum~2.6! and~2.12!, and in Figs. 3~a!–~c! the measured
ones of Saddoughi and Veeravalli@6# for comparison. The
Batchelor parametrization which fitsr -space data very well
@39,29,35# seemingly overestimates the strength of the
bottleneck energy pileups.

However, a point to be kept in mind when comparing the
strength of the bottlenecks with experimental data is the is-
sue of averaging. While experimental scaling exponents nec-
essarily represent data averaged over a certain interval, we
defined apointwise ~local! slope in ~13!. To estimate the
effect of averaging, we performed a running average of the
pointwise slopes in Fig. 3~d! using an averaging range of
@p/A10,pA10#, as done in REWA@19,20#. As expected, the
bottleneck pileups become attenuated to about half their size
and are now quantitatively closer to the measured ones. The

FIG. 2. The localp-space scaling exponentsz(p) ~solid!, and
the localr-space scaling exponentz(r51/p).
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matter of averaging becomes even more relevant on large
scales with its poor statistics. This may be another reason
~besides the lack of universality! that the infrared bottleneck
is rarely observed.

D. Higher-order moments

The preceding analysis cannot easily be extended to
higher-order structure functions. The connection between,
say, the fourth-order structure functionD (4)(r ) and the cor-
responding fourth moment ofu(p),

D ~4!~r !}E d~p11p21p31p3!^u~p1!u~p2!u~p3!u~p4!&

3K )
j51

4

@exp~ ipj•r!21#L
angle

dp1dp2dp3dp4 ,

~16!

is considerably more complicated than Eq.~6!. Therefore we
have to restrict ourselves to a few general remarks.

Neglecting intermittency corrections we assume as a first
approximation thatvr(x,t)5u(x1r,t)2u(x,t) and u(p,t)
are Gaussian distributed, so that we may simply factorize
higher moments~for evenm),

^uu~p!um&}^uu~p!u2&m/2,

D ~m!~r !}@D ~2!~r !#m/2. ~17!

The above assumptions are not independent. In a completely
homogeneous medium the second moments inp space are
local @i.e., ^u* (p)u(p8)&}d(p2p8)# and the second line in
Eq. ~17! is a direct consequence of the first one. Of course,
the assumption of Gaussian factorization in Eq.~17! is at
variance with the fact that odd moments do not vanish@e.g.,
D (3)(r ),0 for larger due to Kolmogorov’s structure equa-
tion @28##.

The similar looking factorizations in Eq.~17! lead to quite
different results concerning them dependence of the cross-
oversr d8

(m) andpd
(m) ~or pd8

(m)) between VSR and ISR. These
lengths are defined as above by matching the asymptotic
behavior for large and for smallr and by the cutoff in the
exponentials, respectively. Inr space we get

r d8
~m!5r d8

~2!5r d85const ~18!

for all m, which is in agreement with recent measurements
@40#, while in p space

pd
~m!52pd

~2!/m52pd /m ~19!

FIG. 3. Compensated~i.e., spectra multiplied by the wave vectork5/3) longitudinal and transversal spectra for Rel51450 in some
boundary layer, as measured by Saddoughi and Veeravalli@6#. ~a!, ~b!, and~c! show theu1 , u2 , andu3 spectra, respectively. Energy pileups
are seen at both ends of the ISR. From the straight line the Kolmogorov constant is estimated, which is not relevant for our context here.
~a!–~c! are copied from Ref.@6# with kind permission of the authors. We refer to@6# for more details on the measurements.~d! shows the
compensated Batchelor spectrum~2.6! and ~2.12! for comparison~solid line!. The dashed line shows the averaged~over the range
@p/A10,pA10#) slope which should be compared with the experimental data.
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becomes smaller with increasingm. ~The same relation
holds forpd8.) Equation~19! has been numerically confirmed
to a high precision@19#. Thus, for increasingm the ISR
becomes smaller and smaller inp space, whereas it remains
invariant in r space. Technically, this is due to the fact that
we compare two power laws inr space and a power law with
anexponentialin p space. An intuitive understanding is pro-
vided by the following remark: RaisingD (2)(r ) to some
power smoothes the transition from VSR to ISR and conse-
quently reduces the corresponding spectral strength at large
values ofp.

III. SMALL- p SCALING CORRECTIONS

A. Infrared cutoff

In order to define a finite range for the infrared scaling
corrections discussed below we introduce the external stir-
ring force scaleL5pL

21 into the p-space parametrizations
EB(p) and E FMS(p): Both spectra are multiplied by
(2/p)arctan@(p/pL)

11/3#. This amounts to imposing energy
equipartitionE(p);p2 on the unforced wave vector modes
@28,46,18# with p!pL . The corresponding structure func-
tions saturate forr.L, D (2)(r.L)'D (2)(`)5 const.

We can now introduce the Taylor-Reynolds number
Rel5lu1,rms /n, wherel5u1,rms /(]1u1) rms is the Taylor
length andn the viscosity. To expresspd and pd8 @see~10!
and ~12!# in terms of L and Rel we note that
e5ceu1,rms

3 /L with ce'1 ~from grid turbulence experiments
@47#!. We neglect the Rel dependence ofce for small Rel
@48#. On the other hand,e515n(]1u1) rms

2 @28# and we fi-
nally geth5153/4ce

21L Rel
23/2. With ce'1 and using~10!

and ~12! this means

pd
21'18L Rel

23/2, ~20!

pd8
21'86L Rel

23/2, ~21!

so that we have connected the length scalesr d ([r d8) and
L with the Taylor-Reynolds number Rel .

B. REWA scaling corrections and structure functions

Motivated by deviationsdzm(p) from classical scaling
found by Grossmann and Lohse@19# in the SSR~and, also,
in the VSR! we model a spectrum according to the numerical
results in @19# and numerically Fourier transform it intor
space. We focus attention onp-space SSR scaling correc-
tions alone. The scaling corrections are introduced as fol-
lows: For any spectrumE(p) with dlnE/dlnp52z(p)21 a
modification defined by

Ẽ~p!5E~p!
~pb

b1pb!d/b

pd ~22!

leads to a local exponent

z̃ ~p!5z~p!1
d

11~p/pb!
b . ~23!

The three parametersd,b,pb determine size @i.e.,
z̃ (p)52/31d for small p#, smoothness and onset of the in-

frared scaling corrections, respectively. We choose
d50.0020.04,b52, andpb'10pL215pL as suggested by
the numerical findings in@19#. The two spectra

ẼFMS~p!5EFMS~p!
~pb

21p2!d/2

pd ,

ẼB~p!5EB~p!
~pb

21p2!d/2

pd ~24!

were each multiplied by the small p cutoff
(2/p)arctan@(p/pL)

11/31d# and then numerically Fourier
transformed. The local scaling exponents forp and r space
@defined as in~13!# are shown in Figs. 4~a! and 4~b!, respec-
tively. We chose Rel53000 as in typical experiments@1#.

FIG. 4. ~a! Local p-space scaling exponentsz(p) of the FMS
and the Batchelor-type energy spectra, both with the arctan cutoff
for smallp, see text. To allow for comparison withr space~b!, we
plottedz(p) versuspL /p rather than versusp/pL . The Taylor Rey-
nolds number is Rel53000; cf. Eqs.~20!,~21!. From bottom to top
on the rhs of the figure, the three pairs of curves correspond to~i!
no small-p scaling corrections,~ii ! small-p scaling corrections ac-
cording to~24! with d50.02 andpb /pL510, and~iii ! small-p scal-
ing corrections withd50.04, pb /pL515. Note that on the scale of
this plot the bottleneck on the left hand side of the figure is quite
large and only partly seen.~b! Local r -space scaling exponents
z(r ) for the six curves of~a!. From bottom to top for both the FMS
and Batchelor triple of curves: no scaling corrections,d50.02,
pb /pL510 andd50.04, pb /pL515.
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For the FMS parametrization without scaling corrections
(d50) a well-defined scaling range inp space~about one
decade! corresponds to very bad scaling behavior inr space.
REWA spectra are well described by the FMS parametriza-
tion @19,20,22# and consequently the corresponding local ex-
ponentz(r ) in @22# looks very similar to our present result.
The scaling properties ofDFMS(r ) is worse than that for the
experimental structure function for the same Rel53000@1#.
Introducing finite small-p scaling corrections
(d50.02,0.04) leads to improved~but still poor! r -space
scaling, while thep-space exponent becomes nonmonoto-
nous by construction.

The Batchelor parametrization exhibits much better scal-
ing properties to begin with, even ford50. The influence of
the infrared cutoff can be partly compensated by small
p scaling corrections~again d50.02,0.04). The ensuing
r -space behavior is then quite comparable with the experi-
mentally realized scaling ranges of about 1.5–2 decades for
Rel53000 @1#.

To summarize: Our findings concerning small-p scaling
corrections support and reinforce the conclusion drawn ear-
lier when investigating the bottleneck phenomena. The
simple arctan or exponential cutoffs of thep-space ISR scal-
ing range lead to unrealistically shortr -space scaling ranges.
Only the energy pileups at both ends of thep-space ISR lead
to a realistic scaling range of the structure function, if com-
pared to experiment@1#. Batchelor’s parametrizations~2.11!,
~2.12! of the crossovers include these energy pileups and
give a realistic scaling range for given Rel . Our findings
also explain why ther -space scaling found in REWA is
worse than that for thep-spectra@19#, as the latter is quite
well described by the FMS parametrization@22#. It is hard to
see how realistic scaling ranges inr space can come about in
the absence ofp-space bumps at both ends of the ISR.

IV. SHEAR EFFECTS

A. Shear parametrizations

The generalized FMS parametrization@cf. Eqs. ~3! and
~4!#, which includes the effects of shear,

^uu~p!um&}p2m/3F11amS ppLD
22/3Gexp~2p/pd!, ~25!

was shown@23# to lead to an apparent scaling correction
defined by

dzm
app,p5minp@zm~p!#2m/3. ~26!

As usual,zm(p)52dln^uu(p)um&/dlnp. For pL!pd it was
found that

dzm
app,p5sgn~am!

10

9 S 9mpL
8pd

D 2/5am
3/55cmRe

23/10

5cm8Rel
23/5. ~27!

The apparent scaling corrections vanish with increasing
Rel with a23/5 power law for allm. From now on we will
only consider the casem52. The local scaling exponent fol-
lowing from ~25! is shown in Fig. 5~a! for Rel53000 and

a251. Rel has been determined using~20!. The correction
dz2

app,p'0.06 is comparatively large but depends through
the factora2

3/5 on our choice ofa2 . The Rel dependence of
dz2

app,p is displayed in Fig. 6 and for large Rel the asymp-
totic result~27! is recovered.

The form of the shear correction in~25! is based on noth-
ing but dimensional analysis. Applying the same reasoning
directly to the Batchelor parametrization inr space and as-
suming the shear transition to be of the Batchelor type we are
led to the ansatz

DB~r !5
e

3n
r 2

r d8
4/3

~r d8
21r 2!2/3

r s
22/3

~r s
21r 2!21/3, ~28!

with r s5ps
215Ae/s3. We assume that shear sets in at the

stirring scale, hencer s5L. Equation~28! is a generalization
of the Batchelor parametrization in complete analogy to the
generalized FMS parametrization~25!. The former is as le-

FIG. 5. ~a! Local scaling exponentsz(r ) and z(p5g/r ) when
shear corrections according to~25! are present, with Rel51500
(pd53227) and a251. The parameterg serves to shift the
p-space curve slightly to ensure that the minima of the two curves
coincide.~b! As in ~a!, but now shear corrections according to~28!
and its Fourier transform. Again, we chose Rel51500
(pd85r d

215676).
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gitimate a choice as the latter. The local scaling exponent of
DB(r ) is given by

z~r !521
2

3

r 2

L21r 2
2
4

3

r 2

r d8
21r 2

, ~29!

and is shown in Fig. 5~b!. The apparent scaling correction is
defined analogously to~26!,

dzapp,r5minr@z~r !#2m/3. ~30!

For the same Rel51500 as above,dzapp,r'0.0028 is now
much smaller than the corresponding value for the general-
ized FMS parametrization. This reflects the much better scal-
ing properties of the Batchelor parametrization~compared to
FMS; cf. Fig. 4!, which we have extensively discussed in
Secs. II and III. The Rel dependence ofdzapp,r is displayed
in Fig. 6. For largeL@r d8 ~i.e., for large Rel) we obtain

dzapp,r5A2
4

3

r d8

L
}Re23/4}Rel

23/2. ~31!

This means that even the asymptotic dependences on Rel of
dzapp,p ~Batchelor! and dzapp,p ~FMS! differ from each
other. Let us reexamine these scaling properties after Fourier
transforming~25! and ~28!.

B. Fourier transforms

Transforming the FMS-parametrization equation~25!
with the help of Eq.~6! to r space leads to

DFMS~r !}
G~22/3!

~5/3!rpd
5/3

3F53 pdr2~11pd
2r 2!5/6sinS 53arctan~pdr ! D G

1
a2G~24/3!pL

2/3

~7/3!rpd
7/3

3F73 pdr2~11pd
2r 2!7/6sinS 73arctan~pdr ! D G .

~32!

The local slope of Eq.~32! for Rel51500,a251, is also
plotted in Fig. 5~a!, to compare it with the slope of Eq.~25!.
Now dzapp,r'0.11 is even larger thandzapp,p ~both for
FMS!, which is clearly understandable from Fig. 4 because
of the even worse scaling properties of the FMS parametri-
zation in r space~compared top space!.

Surprisingly, we obtain for the Rel dependence of
dzapp,r ~FMS! the asymptotic result

dzapp,r~Rel!}Rel
21/2, ~33!

which differs considerably from~27!. We conclude that, for
the FMS parametrization, it matters a lot whether the appar-
ent scaling corrections are determined inr or in p space. It is
the r -space result~33! which has to be compared with the
(r -space! data of@1#. Note that the Rel dependence is still
steeper than what is found experimentally@1,5#.

Finally, we calculate the spectrum corresponding to the
generalized Batchelor parametrization~28!. For r@r d8 we de-
rive an analytical result in Appendix A, while in general the
transformation is performed numerically employing a con-
tour integration technique described in Appendix B. The re-
sult for the localp-space slope of the generalized Batchelor
parametrization~28! is shown in Fig. 5~b!. It shows the ul-
traviolet bottleneck energy pileup@30#, which we had dis-
cussed in detail in Ref.@29#. In addition, the spectrum shows
reducedspectral strength at the infrared end of thep-space
ISR, i.e., a smaller local slopez(p),2/3. This effect can be
interpreted as, so to say, aninversebottleneck effect and can
both formally and physically be interpreted along the same
line of arguments as the bottleneckpileups discussed
above and in@29#. Formally it reflects the sharp crossover
from r 2/3 to r 4/3 scaling in the structure function. Physi-
cally @20,29#, the constant energy flux T(p)
;pu(p)*dp1dp2u(p1)u(p2)d(p1p11p2) downscale now
requiresreducedspectral strength at the infrared end of the
ISR, as the spectral strength is increased in the shear range.
Correspondingly, there is also an energy pileup at the high-
p end of the shear range, which may be a consequence of the
constant helicity flux in this region@27#. It leads to a local
slopez(p).4/3.

We see that, for the Batchelor parametrization, positive
correctionsdz(r ).0 in r space lead to negative corrections
dz(p),0 in thep-space ISR. The apparent scaling correc-
tions dzapp,p have to be defined as

dz2
app,p5maxpL!p!pd

@z2~p!#2m/3. ~34!

FIG. 6. Double-logarithmic plot of dzapp,r(Rel) and
dzapp,p(Rel) for FMS (a251) ~upper two curves! and Batchelor
parametrization~lower two curves!.
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This definition is close in spirit to the experimental proce-
dure, namely, looking for scaling exponents in the middle of
the ISR. Also, it leads todz2

app,p(Rel→`)50 as required.
The Rel dependence ofdzapp,p is shown in Fig. 6. From the
data we conclude that

dzapp,p}2Rel
23/2,0. ~35!

For Rel51500 we havedzapp,p520.0082.
To summarize this section, we found that the crossovers

at both ends of the ISR govern the Rel dependence of
dzapp. In the two examined cases either the exponent in the
Rel dependence~FMS! or the overall sign~Batchelor! of
dz changed when going fromr to p space. We hope that our
analysis leads to more detailed numerical or experimental
studies of the ISR to shear crossover. This would help to
clarify the question of the Rel dependence of scaling correc-
tions.

V. SUMMARY AND CONCLUSIONS

Throughout the paper we have demonstrated that scaling
properties inr and inp space can be quite different. In the
infinite Rel limit these differences are of course irrelevant.
Yet, as we demonstrated, for those Rel which can be
achieved in experiments and even more so for the numerical
ones, the finite size corrections are considerable and it is
important to know what their influence is to be able to inter-
pret the data correctly. The apparent scaling correction
dzapp due to shear corrections even showasymptoticallydif-
ferent Rel scaling behavior, depending on whether they are
defined inp or r space.

Comparison of thesize of the scaling ranges for given
Rel between experiment@1# and our parametrizations makes
us favor a Batchelor-type parametrization rather than a pa-
rametrization of FMS type. The latter, consisting of a power
law in p space with a large-p exponential cutoff and a small-
p arctan cutoff, does not exhibit any bottleneck energy pile-
ups at the ends of thep-space ISR and leads to unrealistic
short scaling ranges in ther -space structure function. In
other words, combining all regimes discussed in this paper
~VSR, ISR, shear range, and large-r saturation range! we
think that thep-space parametrization

E~p!5
2E0e

2/3

p
arctanF S ppLD

11/3Gp25/3F11S ppsD
22/3G

3exp~2p/pd!, ~36!

with pd>ps>pL is less favorable than anr -space parametri-
zation

D~r !5
e

3n
r 2

r d8
4/3

~r d8
21r 2!2/3

r s
22/3

~r s
21r 2!21/3

L24/3

~L21r 2!22/3,

~37!

with r d8<r s<L, which shows bottleneck effects inp space.
In many isotropic turbulence experimentsr s'L and the
shear range will be suppressed. If less isotropy is achieved in

experiments, we may have, say,r s'L/4. In this case, the
energy pileup due to large-r saturation~Sec. II and Ref.@29#!
and the spectral strength reduction due to shear effects will
partly compensate each other at the infrared end of the
p-space ISR. This leads to a smaller change of the local
slope than predicted by Eq.~15!. Also, experimentally only
averaged slopes are accessible which partly smoothen the
bottleneck bumps in the pointwise slopes. A better resolution
may be necessary to further reveal the physics of the cross-
over regions which might well be a key in understanding
scaling corrections.

ACKNOWLEDGMENTS

We thank A. Esser, G. Falkovich, S. Grossmann, L.
Kadanoff, and R. Kerr for helpful suggestions, V. Yakhot for
supplying us with the results of his work prior to publication,
and M. Nelkin for bringing the history of Eq.~3! to our
attention. D.L. heartily thanks G. Falkovich for his hospital-
ity during his stay at the Weizmann Institute of Science,
Rehovot, where part of the work was done, and kindly ac-
knowledges support by the Einstein Foundation, by a NATO
grant through the Deutsche Akademische Austauschdienst
~DAAD !, and by the DOE. A.M.-G. was supported by the
Natural Sciences and Engineering Research Council of
Canada.

APPENDIX A: ANALYTICAL BATCHELOR-TYPE
SHEAR SPECTRUM

We can analytically perform the transformation of the
Batchelor-parametrization equation~28! under the assump-
tion that r@r d8, so that

D~r !'
e

3n S rr sD
2/3 1

~r s
21r 2!21/3. ~A1!

With this approximation we get

E~p!52
1

2pE0
`

prD ~2!~r !sin~pr !dr

5
p

2p

e

3nr s
2/3

d

dp S r s22 d2

dp2D
3E

0

`

r 2/3~r s
21r 2!22/3cos~pr !dr. ~A2!

The integral in Eq.~A2! can be solved@44# to give

E
0

`

r 2/3~r s
21r 2!22/3cos~pr !dr

523r s
1/3G~5/6!2

G~2/3! 1F2S 56 ; 12 , 76 ; p̃
2

4 D
1

A3
2

G~1/3!p21/3
1F2S 23 ; 13 , 56 ; p̃

2

4 D ,
~A3!

where p̃5prs . Reinserting this result into Eq.~A2! we de-
rive the following, rather clumsy expression:
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E~p!5
er s

5/3

3n S 15

14p

G~5/6!2

G~2/3!
p̃ 2F 11131F2S 176 ;

5

2
,
19

6
;
p̃ 2

4 D 21F2S 116 ;
3

2
,
13

6
;
p̃ 2

4 D 1
187

37051
F2S 236 ;

7

2
,
25

6
;
p̃ 2

4 D p̃ 2G
1

A3
4p

G~1/3! p̃ 27/3H 2827 1F2S 23 ; 13 , 56 ; p̃ 2

4 D 2F13 1F2S 23 ; 13 , 56 ; p̃ 2

4 D 1
2

5 1F2S 53 ; 43 , 116 ;
p̃ 2

4 D G p̃ 2

1F65 1F2S 53 ; 43 , 116 ;
p̃ 2

4 D2
9

111
F2S 83 ; 73 , 176 ;

p̃ 2

4 D G p̃ 42
108

13091
F2S 113 ;

10

3
,
23

6
;
p̃ 2

4 D p̃ 6%).

~A4!

For smallp the local scaling exponent ofE(p) is 4/3, for
largep it is 2/3, but the transition from one range to the other
is nonmonotonous. This is reflected in the right part of Fig.
5~b!. In the left part of that figure, the ultraviolet bottleneck
energy pileup can be seen in addition, which is not included
in Eqs.~A1! and ~A4!.

APPENDIX B: CONTOUR INTEGRATION
FOR OSCILLATING INTEGRANDS

The numerical Fourier transformation~7! of ~28! cannot
straightforwardly be performed, as the integrand is strongly
oscillating and not exponentially damped. To cope with this
problem, we employ contour integration techniques@49#.
Plugging~28! into ~7! we obtain after some algebra

E~p!52
e

3n
r d8

4/3r s
22/3 p

4p

d3

dp3E2`

` ~r s
21r 2!1/3exp~ ipr !

~r d8
21r 2!2/3

dr.

~B1!

The integral has singularities or zeros at6 ir d8 and 6 ir s .
Taking the correct branch cuts and performing the corre-
sponding contour integration in the upper half-plane, we ob-
tain

E
2`

` ~r s
21r 2!1/3exp~ ipr !

~r d8
21r 2!2/3

dr

52A3E
r d8

` uz22r s
2u1/3exp~2pz!

~z22r d8
2!2/3

dz ~B2!

or

E~p!5
e

3n
r d8

4/3r s
22/3

A3p
4p E

r d8

` z3uz22r s
2u1/3exp~2pz!

~z22r d8
2!2/3

dz,

~B3!

which can now be straightforwardly integrated. Our numeri-
cal result is displayed in Fig. 5~b!.
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