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We analyze second-order turbulent velocity moments bothaind inp space. Finite size corrections induce
dramatic differences between logalandp-space scaling exponents. As analytically accessible examples we
focus on two popular parametrizations: the Batchelor parametrization forgpace structure function and a
common parametrization for the energy spectriip)op~>%exp(—p/py). The spectral bottleneck energy
pileup hidden in the Batchelor parametrization results in an extendgzace scaling range, comparable to
experimental ones for the same Taylor-Reynolds numbgr Seear effects are discussed in termsggibbal)
apparent scaling correctiof¢?°P(Re,) to classical scaling, which again depend on whether looked mbin
in p space. The differences can be traced back to the subtleties of the crossovers in the velocity moments. Our
observations emphasize the need for more experimental information on crossovers between different sub-

ranges[S1063-651X96)04006-9

PACS numbdps): PACS: 47.27-i

[. INTRODUCTION mations(REWA; see[19—-22 and references thergiof the
Navier-Stokes equations. The stirring subrai§8R scal-

In the theory of fully developed turbulence, scaling rangesng corrections at the infrared end of the spectrum are pre-
of velocity moments ir and inp space are often put into a sumably due to the broken symmetry of the Navier-Stokes
one-to-one correspondence with each other. The two scalingynamics because of thmite sizeof the system: For small
exponents associated with the scaling ranges are believed poonly downscalenergy transfer is possible, i.e., the trans-
be equivalent. While this view is correct for an infinite sys- lational invariance and the self-similarity of the turbulent
tem (with an infinite scaling rangethe relation between flow is broken by the boundary conditions. In addition to the
r-space andp-space exponents becomes more complicateihvestigation of these local scaling corrections, REWA also
for finite Reynolds numbers. It is the aim of this paper tooffered the opportunity to study the Relependence aflo-
quantitatively examine these finite size effects, as they mighbal corrections to classical scaling. Values of \Reanging
well be essential to interpret experimefits-8] and numeri-  from 1¢? to 1¢* could be simulatef20,23 and it was shown
cal simulationd9-11]. [23] that 8¢, Re, ~¥® due to the spectral corrections to clas-

We first define thenfinite scaling rangeexponents,,,. In  sical scaling,

r space, they are defined via the velocity structure functions 0| 28
ps) } ®

1+ ap

DM ()= ([u(x+r)—u(x)J™ecrém, 1) (lu(p)|™yecp=m3

From a theoretical point of vieyl12—14), the p-space scal- which result from large scale anisotrogg.g., shear The
ing exponents corresponding to thiscrete Fourier trans- P~ 22 shear correction has first been suggested by Lumley
formation u(p) of the velocity fieldu(x) are more easily [24], who employed dimensional analysis, and was later also
accessible, found in Refs.[25,23,26,27 with the help of dimensional
analysis in terms of Clebsch variables. The parampias
(Ju(p)|™yocp~ém, (2) the typical scale set by the strength of the shaar
ps=s’/e, and a,,, a dimensionless parameter, presumably
Kolmogorov’s classical dimensional analysis of the turbu-on the order of 1. It is not yet clear whether the second term
lence problenj15] gives, of course, the same result for both in Eqg. (3) is only a smallp correctionor whether pure shear
kinds of scaling exponents, namel§;,=m/3. Since Land- energy spectr&(p)=(|u(p)|?)/p=p~ " exist, i.e., whether
au’s famous footnote in Refl6] it has been a matter of p¢s>p, can be achieved. Her@ =1/L is the momentum
interest whether there are scaling correctionsscale set by the external stirring force. Yakh®6] recently
8¢{m={m— M3 to the classical result in the limit ofifinite  discussed experimental indications for pure shear spectra. In
Reynolds number REL7,18,13,14 cross spectrd28] E;,(p) they have experimentally been
Grossmann and Lohse discovered and analyinite size  identified by Saddoughi and Veeravdl].
scaling corrections in their reduced wave vector set approxi- A systematic analysis of the properties of and
p-space scaling exponents in finitejReirbulence has been
performed by the present authors in Rgf9]. We demon-
*Electronic address: lohse@cs.uchicago.edu strated that the-space crossover from the inertial subrange
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(ISR) to the viscous subrang®SR) and from the ISR to a nents as opposed to the strictly local ones considered in this
large+ saturation range can lead to energy pileups at botipaper. Indeed, we show that bottleneck energy pild@g$
ends of thep-space ISR, the so-called bottleneck phenomdi.e., a nonmonotonous local scaling expongft) | hidden
enon[30]. In other words, monotonous localspace scaling in Batchelor'sr space parametrization considerably reduces
exponents may give rise to nonmonotonous logapace When_p spectra are locally averaged as has to be done for
exponents. Both physicabased on the conserved energy €xperimental _data. _
current inp spacé and formal explanations for this effectas ~ The paper is organized as follows: Sections Il and IIl deal
well as a comparison with available experimental and nuWith local smallp scaling corrections. The bottleneck energy
merical data were given in Ref29]. pileup at the infrared end of the ISR9] as well as the
In the present paper, we continue and extend our investsmall-p scaling corrections found in REWL9] and also by
gation of finite size effects on local scaling exponents in dimensional analysis in terms of Clebsch variables
and inp space. For the time being, analytical techniques that23,25,28 belong to this category. We believe that these are
would enable us to study these questions directly from 4l manifestations of the broken Navier-Stokes symmetry due
dynamical point of view are not available. Therefore we havel© the boundaries, i.e., large scale anisotrfb. To inves-
to adopt a more phenomenological approach where measurégate possible relations among these effects we modify the
or (numerically calculated velocity structure functions are above-mentioned parametrizations to describe the scaling
described by certain parametrizations. These parametrizgorrections from REWA, examine the ensuing consequences
tions can be formulated either inor in p space and their N I space, and perform a quantitative comparison for the
quality can be checked by direct comparison with experiJocal scaling exponents(p) resulting from the three differ-
mental or numerical data. As a central point in our paper weent approaches in Refl9,23,29.
exploit the fact that any description of a structure function in  In Sec. IV we focus our attention on the Taylor-Reynolds
r or in p space impliesit the same tima certain statement Number dependences of the apparghtbal) scaling correc-
in the respective Fourier spaces. It is therefore legitimatdions 6{5°° due to shear effects. While it is probably not too
and, as we believe, even necessary to test a given parametgirprising that Batchelor and FMS parametrization lead to
zation against all available information in bothand p  different Re, dependences of the apparent scaling correc-
spaces. A similar approach for energy dissipation correlations 5£5°°, our result thaboth parametrizations give rise to
tions was followed by Nelkif31]. different behavior of §£5PP in momentum and coordinate
Our central finding is that the scaling quality of tekeme  space, respectively, is certainly unexpected. E.g., we find
parametrization — once looked atiirspace, once looked at that thep-space resuls¢3PPP«=Re, ~*® of Refs.[23,13 cor-
in p space — is rather different. This dramatic difference isresponds tosz3PP'<Re ~Y2 in r space. This observation
not an artefact of the chosen parametrization but a mathcan be viewed as yet more evidence for the fact that finite
ematical property of the Fourier transformation. Once th%me effects can render and p-space exponents inequiva-

parametrizatioras a “best fit" to the datpis accepted in  |ent. Section V is left to a summary and to conclusions.
r (p) space, its corresponding Fourier transformptqr)

space has to be accepted as well — in spite of the often || gATCHELOR VERSUS FMS PARAMETRIZATION
surprising features.

We restrict ourselves to the two probably most common A. Definitions and Fourier transforms
parametrizationgand finite size corrections theredbr the To describe the behavior of energy specEgp), the

scaling behavior of velocity moments, namely, space  F\vsS parametrizatiofi32,33
parametrizatiori4) discussed by Foias, Manely, and Sirovich

[32] (henceforth called FMS parametrization for simplicity; Eems(P)=Eqe?3p ¥%exp — p/pg) (4)

see also Frischt al.[33]) and the Batchelor parametrization

(5) [34,28,39, common inr space. The latter has been very has frequently been used to interpret experimef8al38
common in particular in the engineering literature. Recentlyand numerical[10,19,2Q data. Here,E, is the p-space
Sirovich, Smith, and Yakhdt36] have given some interest- Kolmogorov constante the energy dissipation rate, and
ing theoretical foundation for it. We will see that the main Pa Characterizes the crossover to the viscous range.
difference between FMS and Batchelor parametrization lie©n the other hand, measured structure functigi8)(r)

in the description of the crossover from the viscous to theare well described by the Batchelor parametrization
inertial range. Pointing out the importance and the surprising34,28,36,1,35,39,29,40
consequences of the nature of the crossovers is a main aspect

2
of our work, since up to now research was mainly concerned D@(r)= €r’/(3v) (5)
with infinite Re scaling exponents. B 1 1\%2 r\2]?®

The restriction to the parametrizations is only for techni- + 3b 7

cal conveniance. Our main result, Fig. 4, which reveals the

differences in scaling quality in vs p space, can be under- where v is the viscosity, n=v*%€* the Kolmogorov
stood without referring to any parametrization. These differdength, andb=27I"(4/3)Ey/5=6.0—8.4 the experimentally
ences appear to be somewhat less pronouficetinot ab-  determined 28,41 r-space Kolmogorov constant. The gen-
sen} in experimental data. The reason presumably lies in theralization of both parametrizations §g+ 2/3 is straightfor-
experimental necessity to perform some sort of running avward[40] and was considered {i29]. The essential aspects
erage to reduce the noise in the data. In experiments it isf our present work do not depend on the precise value of
therefore always dealt with locally averaged scaling expo<,. Clearly, both parametrizations neglect the finite size of
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the system since they do not contain a scale for the external
stirring force. Furthermore, the FMS-parametrization equa-
tion (4) does not contain any energy piledpr bottleneck
effech [30,29. The velocity structure function for a given
energy spectrum can be calculated through the Fourier trans-
formation[28]

0®(r)=4 "E(p)| 1- ©

sin(pr)
or )dp.

Inverting this equation, i.e., calculating the energy spectrum
from a given structure function, requires a short discussion.

> 21
T

| | |
Let us consider turbulence in a large but finite domain, so 10° [} [0 10° , [k
thatE(p)—0 asp—0. Then the term involving no trigono- /P, 0/py
metric function on the right-hand sidehs) of Eq. (6) is
finite, 4/5E(p)dp=D®)(x) <. Physically, this term cor- FIG. 1. Energy spectrum equatid@) (solid) with the energy
responds to the total energy in the fluid. We can nowpileup, and the spectrum equatiéf) (dashed without it. We as-
straightforwardly invert Eq(6) to give sumed a Batchelor-type infrarétR) cutoff, Eq.(15). The two ar-

rows point to blowups of the spectrum in the crossover regions. In
1 (= ) these enlargements it is compared to classical3 scaling.

E(p)=-— EL prsin(pr)[D?(r)—D®(x)]dr. (7)
certain parametrization for one of them, there is no freedom
In the limit of infinite system siz®(?)(«) grows beyond all left for the others(assuming isotropy] In Ref. [29] the
bounds, rendering Eq7) ill-defined at first sight. However, bottleneck effectsee also Sec. |l Band its important physi-
since [5pr sin(r)dr=ps' (p), this affects only singular con- cal consequences hidden in the transformed Batchelor for-
tributions at the origin which we may safely discard. We will mula were discussed for the first time.
therefore always use Ed7) with the understanding that The crossover from the inertial to the viscous range
D®)()=0. Formally this means nothing more but that theiS characterized byrqy,pq for the FMS parametrization
Fourier transformation of a function will not changapart and by rg,pg for the Batchelor parametrization. The
from the & function if the function is shifted by a constant. large- and smalt- limits of D®)(r) are required to give
With the help of the transformation equatioi® and(7) we ~ D@(r)=b(er)®® and D@(r)=er?/(3v), respectively.
can calculate the structure function corresponding to thdquation(5) is obviously designed to meet these constraints
FMS parametrizatiotd) and the energy spectrum associatedand comparing the asymptotic relations with the appropriate

with the Batchelor parametrizatid®), giving limits of Eq. (8) fixes Eq=5b[I'(4/3)] 1/27=1.74 and
AEI'(=2/3) [ 5 .
D@ (= 2ELC2DS s g2y Py = (100/27)¥47~2.347, (10
r(5/3)pg 3
5 where we chosé=8.4[28]. Now, ry andr are defined by
XSir{garctampdr)“ (8)  equating the asymptotic limitsr?/(3v)=b(er)?3, so that
we arrive at
and
ra=r4=(3b)¥4»~11.25,. (11)

1 ,d® = expliprgx)
Es(P)=— 73, Pl ap?) . 1 x2)Ze I

— o0

We note, however, that althoughy and r; are the same
5 (by definition, D)(r) shows a sharper crossover from
=E062’3pé5’3A[§'51’6K11,6(5)+57’6K5,6(E)}, VSR to ISR thanD&)(r), i.e., DE(r)=D&)(r) for all

r. This can be seen in Fig. 1 of Ré29] where we compared
9  D@(r) with D&)(r). Finally, the p-space crossovergy

andpgy are defined by the cutoff in the exponential decay of

respectively. Here, we introduced some abbreviations fO{he spectrum for large. Thus,py is determined by Eq4)
simplicity: The dimensionless constart has the value ™o (5:prd’jocp*1’ée;j<p(—pr[j) for large aréu—

A=[_9_r(1/3)]/[ﬂz”ﬁsr(z/s)], P=prg, andK, is the o "ehave
modified Bessel function of the third kin#2]. A result

analogous to our Eq9) has been earlier obtained by Sirov-

ich, Smith, and Yakhof36]. These authors transformed the

Batchelor parametrization for thengitudinalstructure func-

tion to p space[WhetherD(r), the longitudinal structure Note that the naive expectation thai-épace crossoverx
functionD(r), or the transversal ore+(r) is best approxi- (r-space crossover=2, holds in neither case. For Eq4)
mated by a Batchelor parametrization has to be decided bynd(8) we haver ;pq~4.8 whereas for Eqg5) and(9) we
comparison with experimental data. Clearly, if one chooses have simplyr jp;=1.

py t=rj~11.25,. (12)
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B. Bottleneck phenomenon X ) S L R
In [29] we showed that in contrast to E@) the param-
etrization Eq.(5) contains an important physical phenom- 151
enon, the bottleneck effedi30]. This becomes apparent )
when comparing the energy speckEays(p) andEg(p) in g(p)
Fig. 1. For small p both functions coincide. Around 101
p~pg. however, an energy pileup in the crossover region of
Eg(p) becomes noticeable, leading to a nonmonotonous 05+ 'Sp"\cf//
logarithmic slopadlnEg/dinp. The localr- andp-space scal- 7 b spote
ing exponents 0L
dinD@(r dinE ' 1o 5" 1o
L) = ( ), () —1= (p) 13 0" 10" 10 07 10" 10
dinr dinp p/p, P/Py

of both the Batchelor and the FMS parametrization are plot- £iG. 2. The localp-space scaling exponenigp) (solid), and
ted in the right part of Fig. 2. The minimal loc@kspace the localr-space scaling exponetir = 1/p).

scaling exponent of the spectrubg(p) is 0.44, i.e., the

scaling correction is an order of magnitude larger than the D<BZ>(r)ocr2(r82+r2)*2/3(|_2+ r2)s, (14
discussed intermittency correctiof8,17]. This effect could

explain that the spectra in numerical simulatid8s10,43  which accounts for the crossover from the ISR to a large-
are flatter than the classical expectation, rather than beingaturation range induced by the finite schie 1/p, set by
steeper as one might expect from possible intermittency cotthe external stirring force. This second crossover might well

rections. not be universal, but our parametrization agrees reasonably
Furthermore, in Ref.29] we considered a straightforward well with available datd1,4,28,39. Calculating the corre-
generalization of the Batchelor parametrization, sponding spectrum we obtained fqr<r

(AL T(5/6) —[5_, 1155 p?)  11_, 17 7 7 p?
Es(P) == ~FaV"oP el 523 4 ) T aos el 2 4
m[1__ (4 3 p? 2 7 5 p?
—| = —o _ — 3 2 _
+ 2 3plF2<312!21 4 +27p 1F2(3|3121 4):“; (15)

wherep=p/p, and ;F,(a,b,c,z) denotes a generalized hy- experiments of Saddoughi and Veeravidl] it shows up for
pergeometric functioi44]. The most prominent feature of velocity measurements in the outer part of the boundary
this expression is a second bottleneck pileup at the infrarethyer. However, the bottelneck pileup on the low-wave-
end of thep-space ISR. The local logarithmic slopes(@#)  number end of the inertial subrange accentuates in the outer
and (15) are plotted in the left part of Fig. 2. Both bottle- part of the layer for the adverse pressure gradient case of
necks have the same physical origin, namely, the brokesaddough[7], where the ratio of the extra strain rate to the
symmetry due to finite size effects. The symmetry breakinghasic shear is large. In Figs. 3 we shoampensatedpectra
scale is introduced by the stirring force and the finite size ofg(p)p®?, which is a common representation of experimental
the vessel, wind channel, or atmosphEk¢3] at the infrared  data: In Fig. 3d) we have plotted the compensated Batchelor
end of the spectrum, and by viscosity at the lapgend of  spectrum(2.6) and(2.12), and in Figs. 83)—(c) the measured
the ISR. Formally, both bottleneck energy pileups originateones of Saddoughi and Veeravdli] for comparison. The
from the sharp -space crossovers defined by the BatchelorBatchelor parametrization which fitsspace data very well
parametrization equatior{14). The physical explanation [39,29,3§ seemingly overestimates the strength of the
[20,29 builds on the constant energy flux bottleneck energy pileups.
T(p)~pu(p)fdp,dp,u(p)u(p,) 8(p+p,+p,) downscale However, a point to be kept in mind when comparing the
in p space. For a detailed discussion of the bottleneck effeattrength of the bottlenecks with experimental data is the is-
we refer to Ref[29]. sue of averaging. While experimental scaling exponents nec-
essarily represent data averaged over a certain interval, we
defined apointwise (local) slope in(13). To estimate the
effect of averaging, we performed a running average of the
The ultraviolet bottleneck pileup is rather universal andpointwise slopes in Fig. (8) using an averaging range of
has meanwhile been observed in many experiments and nbp/\/10,p+/10], as done in REWA19,20. As expected, the
merical simulation$9,45]. The infrared bottleneck clearly is bottleneck pileups become attenuated to about half their size
not universal. In the zero-pressure gradient boundary layeand are now quantitatively closer to the measured ones. The

C. Comparision with experiment
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FIG. 3. Compensated.e., spectra multiplied by the wave vect?®) longitudinal and transversal spectra for ,Rel450 in some
boundary layer, as measured by Saddoughi and Veerg&hl(g), (b), and(c) show theu,, u,, andu; spectra, respectively. Energy pileups

are seen at both ends of the ISR. From the straight line the Kolmogorov constant is estimated, which is not relevant for our context here.

(a)—(c) are copied from Ref.6] with kind permission of the authors. We refer[®)] for more details on the measuremer{th. shows the
compensated Batchelor spectru@6) and (2.12 for comparison(solid line). The dashed line shows the averageder the range
[p/+/10,py/10]) slope which should be compared with the experimental data.

matter of averaging becomes even more relevant on large {lu(p)|™ e (Ju(p)|2)™?2,
scales with its poor statistics. This may be another reason
(besides the lack of universaljtyhat the infrared bottleneck DM(r)[ D (r)]™2 17)

is rarely observed.

The above assumptions are not independent. In a completely
D. Higher-order moments homogeneous medium the second momentp gpace are

The preceding analysis cannot easily be extended P& [i-e., (u*(p)u(p’))>5(p—p’)] and the second line in

higher-order structure functions. The connection between'iq' 17 is a Qirectf cGonseq.uen;:e of the first one. Of course,
say, the fourth-order structure functi@®)(r) and the cor- t € assumgﬂcm Of tailli:s?agd actorlza"[uog in E‘:{W) IS at
responding fourth moment af(p), variance with the fact that odd moments do not vafisk.,

D®)(r)<0 for larger due to Kolmogorov’'s structure equa-
tion [28]].

DM)U)“f S(pr+ P2+ P+ Pa){U(pr) u(p2) u(ps)u(ps)) The similar looking factorizations in Eq17) lead to quite

different results concerning the dependence of the cross-

‘ _ oversr ™ andp{™ (or p;(™) between VSR and ISR. These
X J.Hl [exp(ip;-r)—1] dp,dpzdpsdps, lengths are defined as above by matching the asymptotic
angle behavior for large and for smatl and by the cutoff in the

(16 exponentials, respectively. Inspace we get

. . . ro™=r,@=r,=const (18)

is considerably more complicated than E§). Therefore we

have to restrict ourselves to a few general remarks.
Neglecting intermittency corrections we assume as a fir

approximation thatv,(x,t)=u(x+r,t)—u(x,t) and u(p,t)

are Gaussian distributed, so that we may simply factorize m @

higher momentsfor evenm), Py =2p¢/m=2pg/m (19

or all m, which is in agreement with recent measurements
40], while in p space
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becomes smaller with increasing. (The same relation T .
holds forpy.) Equation(19) has been numerically confirmed

to a high precision19]. Thus, for increasingn the ISR

becomes smaller and smallerpnspace, whereas it remains 0.70
invariant inr space. Technically, this is due to the fact that

we compare two power laws mspace and a power law with [~~~ "7— === =NV
anexponentiain p space. An intuitive understanding is pro-  { (p) "v'fo',z; 1
vided by the following remark: Raisin®®)(r) to some

power smoothes the transition from VSR to ISR and conse-
quently reduces the corresponding spectral strength at large  0.60F Batchelor
values ofp. infra-

T

Ill. SMALL- p SCALING CORRECTIONS
A. Infrared cutoff @ R/p

In order to define a finite range for the infrared scaling
corrections discussed below we introduce the external stir-
ring force scaleL=p_ Linto the p-space parametrizations
Eg(p) and Epyg(p): Both spectra are multiplied by 070
(2/7)arctaf(p/p, )**?]. This amounts to imposing energy
equipartitionE(p) ~ p? on the unforced wave vector modes BRI
[28,46,18 with p<p_. The corresponding structure func- ultra-
tions saturate for>L, D@ (r>L)~D®@)(x)= const. Cr) violet Batchelor
We can now introduce the Taylor-Reynolds number
Re\=Nuy;ms/v, Where X =uy ms/(d1U1)rms iS the Taylor 0.60
length andv the viscosity. To expresgy and p; [see(10)
and (12)] in terms of L and Rg we note that
e=ceuirm5/L with c.~1 (from grid turbulence experiments . ! ‘
[47]). We neglect the Re dependence of, for small Reg, 10 [0 10

[48]. On the other hande=15v(d,u1)?,s [28] and we fi- ®) r/L
nally get »=15"%c_ 'L Re_ *2. With c.~1 and using(10)
and(12) this means FIG. 4. (a) Local p-space scaling exponen{§p) of the FMS
and the Batchelor-type energy spectra, both with the arctan cutoff
pg1~ 18L Re;glz, (20 for smallp, see text. To allow for comparison withspace(b), we
plotted{(p) versusp, /p rather than versug/p, . The Taylor Rey-
péfl~86L Re;3’2, (21 nolds number is Rg=3000; cf. Eqs(20),(21). From bottom to top

on the rhs of the figure, the three pairs of curves corresporig to
so that we have connected the length SCﬂ[ﬁQEré) and no smallp scaling corrections(ii) small{p scaling corrections ac-

L with the Taylor-Reynolds number Re cording to(24) with §=0.02 andp, /p, =10, and(iii ) smallp scal-
ing corrections with5=0.04, p,/p_ = 15. Note that on the scale of

this plot the bottleneck on the left hand side of the figure is quite

large and only partly seer(b) Local r-space scaling exponents
Motivated by deviationsé{,(p) from classical scaling ¢(r) for the six curves ofa). From bottom to top for both the FMS

found by Grossmann and Loh§&9] in the SSR(and, also, and Batchelor triple of curves: no scaling correctio@s; 0.02,

in the VSR we model a spectrum according to the numericalp,/p_=10 ands=0.04, p,/p_=15.

results in[19] and numerically Fourier transform it into

space. We focus attention qmspace SSR scaling correc- frared scaling corrections, respectively. We choose

tions alone. The scaling corrections are introduced as fol6=0.00-0.04, =2, andp,~10p, —15p, as suggested by

lows: For any spectrunk(p) with dinE/dinp=—¢(p)—1 a  the numerical findings in19]. The two spectra

modification defined by

B. REWA scaling corrections and structure functions

- (Pot+ P9
_ (pE+pP)o~ Erms(P)= EFMS(D)T,
E(p)=E(p) 0’ (22)
= (p5+p?)*
leads to a local exponent Es(p)= EB(p)—pﬁ (24)
~ o were each multiplied by the smallp cutoff
£(p)=d(p)+ 1+ (p/py)?” 23 (2/mr)arctaf(p/p)** %] and then numerically Fourier

_ _ _ transformed. The local scaling exponents foandr space
Ihe three parameterss,,p, determine size [i.e., [defined as if(13)] are shown in Figs. @) and 4b), respec-
{(p)=2/3+ & for small p], smoothness and onset of the in- tively. We chose Rg=3000 as in typical experimenfg].
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For the FMS parametrization without scaling corrections . . ' !
(6=0) a well-defined scaling range m space(about one 2 "‘\p spoce Re,=1500
decadg corresponds to very bad scaling behavior ispace.

REWA spectra are well described by the FMS parametriza- .
tion[19,20,23 and consequently the corresponding local ex- .5 .
ponent{(r) in [22] looks very similar to our present result.

The scaling properties ddgyg(r) is worse than that for the t(r)
experimental structure function for the same, Re8000[1].

Introducing finite smallp scaling corrections [.OF
(6=0.02,0.04) leads to improvetbut still poop r-space

scaling, while thep-space exponent becomes nonmonoto- =
nous by construction. N

The Batchelor parametrization exhibits much better scal- 05— = x s X
ing properties to begin with, even f@= 0. The influence of 10 10 10 10 10
the infrared cutoff can be partly compensated by small () r/L
p scaling corrections(again §=0.02,0.04). The ensuing
r-space behavior is then quite comparable with the experi- =T T T
mentally realized scaling ranges of about 1.5-2 decades for RefISOO
Re, =3000[1].

To summarize: Our findings concerning smgalkcaling 5k ]
corrections support and reinforce the conclusion drawn ear- ) 1 space 43
lier when investigating the bottleneck phenomena. The { (r)
simple arctan or exponential cutoffs of thespace ISR scal- Yl
ing range lead to unrealistically shorspace scaling ranges. 1.0 \ b space
Only the energy pileups at both ends of fhspace ISR lead \
to a realistic scaling range of the structure function, if com- | -
pared to experimerjtl]. Batchelor's parametrizatior8.11), 0.5} k/ ( \/ 4
(2.12 of the crossovers include these energy pileups and 3PP
give a realistic scaling range for given ReOur findings v R— o 'o
also explain why ther-space scaling found in REWA is 10 10 10
worse than that for th@-spectra[19], as the latter is quite (o) r/L
well described by the FMS parametrizati@®]. It is hard to
see how realistic scaling rangesrigspace can come about in FIG. 5. (a) Local scaling exponent&(r) and (p=y/r) when
the absence qgf-space bumps at both ends of the ISR. shear corrections according t@5) are present, with Re=1500
(pg=3227) and @,=1. The parametery serves to shift the
p-space curve slightly to ensure that the minima of the two curves
coincide.(b) As in (a), but now shear corrections according(&8)

A. Shear parametrizations and its Fourier transform. Again, we chose ,Rel500
(pg=rq'=676).

IV. SHEAR EFFECTS

The generalized FMS parametrizatipef. Egs. (3) and
(4)], which includes the effects of shear,

—2/3 a,=1. Re, has been determined usig0). The correction

exp(—p/pg), (25  573PPP~0.06 is comparatively large but depends through

the factorag/5 on our choice ofx,. The Rg dependence of

was shown[23] to lead to an apparent scaling correction 8¢5°" is displayed in Fig. 6 and for large Rethe asymp-
defined by totic result(27) is recovered.
The form of the shear correction {@5) is based on noth-
SLPPP=miny[ {m(p)]—m/3. (26)  ing but dimensional analysis. Applying the same reasoning
directly to the Batchelor parametrization linspace and as-
As usual, {(p) = —dIn{Ju(p)|™)/dInp. For p,<pgq it was  suming the shear transition to be of the Batchelor type we are
found that led to the ansatz

(Ju(p)|™ep~ ™3 1+ ayy,

3/5_ —3/10 4/3 —2/3
m =CpRe Da(r)= € 2 ry s
B - 2 2 -1/31
v (rg®+r)2BR (ri+r2)~ 13

10/9mp,_ \?°
app.p_ —

=c/Re ", (27)

(28)

The apparent scaling corrections vanish with increasingvith rg=p_*=\/e/s®. We assume that shear sets in at the
Re, with a —3/5 power law for allm. From now on we will  stirring scale, hence;=L. Equation(28) is a generalization
only consider the casm=2. The local scaling exponent fol- of the Batchelor parametrization in complete analogy to the
lowing from (25) is shown in Fig. %a) for Re,=3000 and generalized FMS parametrizati@¢@5). The former is as le-
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R — 5 r(-2/3)
oC
= Fms(r) (5/3)rp%P

X

5 5
3Par—(1+ par2)%Csin| Zarctar pdr)) }

a,I'(—4/3)p?
BT

SCOPPIO_4_ _Sgapp,p

-

7 7
SLoP X | = pgr — (1+ par?) "Esin| sarctaripgr) | |.
1951 | 3 3
(32
-8 The local slope of Eq(32) for Re, =1500, @,=1, is also
10 1 : 3 5 7 plotted in Fig. %a), to compare it with the slope of EQ5).
10 10 0 10 Now 8{3PPT~0.11 is even larger tha®{2PPP (both for

Rey, FMS), which is clearly understandable from Fig. 4 because
of the even worse scaling properties of the FMS parametri-
FIG. 6. Double-logarithmic plot of 5/2PP'(Re) and  zation inr space(compared tgp space.

5¢?PPP(Re)) for FMS (a,=1) (upper two curvesand Batchelor Surprisingly, we obtain for the Re dependence of
parametrizatior(lower two curves SL3PPT (FMS) the asymptotic result
SLPP"(Re)*xRe ", (33

gg;r;?t;agi\c/reur):%i/as the latter. The local scaling exponent 0\}‘vhich differs considerably froni27). We conclude that, for

the FMS parametrization, it matters a lot whether the appar-
ent scaling corrections are determined ior in p space. It is
r2 4 r2 the r-space result33) which has to be compared with the
31252 3772 (299  (r-space data of[l]_. Note that the Re dependence is still
d steeper than what is found experimentdlly5].

Finally, we calculate the spectrum corresponding to the
and is shown in Fig. ). The apparent scaling correction is g_enerahzed B.atchelor pgrametnza_tl(drs). FO,”>,>r(,1 we de-
defined analogously t26), rive an anal_ytlcgl result in Appendlx_A, while in ggneral the

transformation is performed numerically employing a con-
tour integration technique described in Appendix B. The re-
S3PPT =min [£(r)]—m/3. (30) sult for the localp-space slope of the generalized Batchelor
parametrization28) is shown in Fig. o). It shows the ul-
traviolet bottleneck energy pileu80], which we had dis-
For the same Re=1500 as above$§/3PP'~0.0028 is now cussed in detail in Ref29]. In addition, the spectrum shows
much smaller than the corresponding value for the generakeducedspectral strength at the infrared end of fhapace
ized FMS parametrization. This reflects the much better scalSR, i.e., a smaller local slop&p)<2/3. This effect can be
ing properties of the Batchelor parametrizatisompared to  interpreted as, so to say, &versebottleneck effect and can
FMS; cf. Fig. 4, which we have extensively discussed in both formally and physically be interpreted along the same
Secs. Il and Ill. The Redependence of{?PP' is displayed line of arguments as the bottlenegbileups discussed
in Fig. 6. For largeL>r} (i.e., for large Rg) we obtain above and in29]. Formally it reflects the sharp crossover
from r?® to r*3 scaling in the structure function. Physi-
cally [20,29, the constant energy flux T(p)
4rg ~pu(p)Sdp;dpau(p;)u(pz) S(p+p;+p2) downscale now
OLAPPI= \/Eg fdo‘Re_3/4°‘ Re, %2 (3D requiresreducedspectral strength at the infrared end of the
ISR, as the spectral strength is increased in the shear range.
Correspondingly, there is also an energy pileup at the high-
This means that even the asymptotic dependences groRe P end of the shear range, which may be a consequence of the
S¢3PPP (Batcheloy and 673PPP (FMS) differ from each  constant helicity flux in this regiofi27]. It leads to a local

other. Let us reexamine these scaling properties after Fouriglope{(p)=>4/3. o N
transforming(25) and (28). We see that, for the Batchelor parametrization, positive

correctionssZ(r)>0 inr space lead to negative corrections
6{(p)<0 in the p-space ISR. The apparent scaling correc-
B. Fourier transforms tions 6£2PPP have to be defined as

{r=2+

Transforming the FMS-parametrization equati¢Bs) app.p_
with the help of Eq(6) tor space leads to 0L T =maX, <pep[L2(P)]—m/3. (34)
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This definition is close in spirit to the experimental proce-experiments, we may have, say~L/4. In this case, the
dure, namely, looking for scaling exponents in the middle ofenergy pileup due to largesaturationSec. Il and Ref[29])

the ISR. Also, it leads ta¢5PPP(Re,—>)=0 as required. and the spectral strength reduction due to shear effects will
The Re, dependence of/2PPP is shown in Fig. 6. From the partly compensate each other at the infrared end of the

data we conclude that p-space ISR. This leads to a smaller change of the local
slope than predicted by E¢l5). Also, experimentally only
5{3PPP — Rg ~32<0. (35) averaged slopes are accessible which partly smoothen the

bottleneck bumps in the pointwise slopes. A better resolution
may be necessary to further reveal the physics of the cross-

For Re,=1500 we haves{*PPP=—0.0082. over regions which might well be a key in understanding
To summarize this section, we found that the CroSSOVer§caling corrections.

at both ends of the ISR govern the Relependence of

S¢%PP. In the two examined cases either the exponent in the ACKNOWLEDGMENTS
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Yet, as we demonstrated, for those ,Revhich can be
achieved in experiments and even more so for the numerical APPENDIX A: ANALYTICAL BATCHELOR-TYPE
ones, the finite size corrections are considerable and it is SHEAR SPECTRUM
important to know what their influence is to be able to inter-
pret the data correctly. The apparent scaling correctio%
S8L%PP due to shear corrections even shasymptoticallydif-
ferent Rg scaling behavior, depending on whether they ar
defined inp or r space. e [r\28 1
Comparison of thesize of the scaling ranges for given D(r)~3—(—) 5
Re, between experimeni] and our parametrizations makes virs)  (rs+r9)
us favor a Batchelor-type parametrization rather than a payith this approximation we get
rametrization of FMS type. The latter, consisting of a power

We can analytically perform the transformation of the
atchelor-parametrization equatid®8) under the assump-
dion thatr>r, so that

; (A1)

law in p space with a larg@-exponential cutoff and a small- N 2 i
p arctan cutoff, does not exhibit any bottleneck energy pile- E(p)=- Zfo pro™(r)sin(pr)dr
ups at the ends of thp-space ISR and leads to unrealistic
short scaling ranges in the-space structure function. In p e d 5 d?
other words, combining all regimes discussed in this paper = 3727?’d_p( rs— W)

S

(VSR, ISR, shear range, and largesaturation rangewe
think that thep-space parametrization

11/
P ) Tp—ws
PL

X exp = p/pg), (36) foorZ/a(r§+rz)fz/acos(pr)dr
0

XJ' r2%r2+r2)-2cogprydr.  (A2)
0

2E0€2/3
E(p)= - arcta

p| =23
1+(p—) The integral in Eq(A2) can be solved44] to give

S

with pg=p<=p_ is less favorable than anspace parametri- I'(5/6)2 517 p2
tio — a3l Y .- .0
zation S T(2/3) * 2(6’2'6’4)
1413 -2/3 —4/3
_ € My I's L \/§ 215 p?
D(r)=zr (241278 (124 12) B (74 12) 2% +7F(1/3)p‘1’31F2(§;5,6;7),

37)

with rg<rg <L, which shows bottleneck effects mspace.
In many isotropic turbulence experiments~L and the wherep=pr,. Reinserting this result into E4A2) we de-
shear range will be suppressed. If less isotropy is achieved irive the following, rather clumsy expression:

(A3)



404 DETLEF LOHSE AND AXEL MULLER-GROELING 54

. rd®( 15 r(5/6)2 17 5 19 52) o (113 137?187 (237 25 %%,
(P)=3, |17 T2y P 131 2626 a) Fol626 4] 37082l 62 6 AP
@ 28 215p% |1 215p2% 2 54 11p°?

v =-73"_" - |=-.- Z.F |_1= —.- . . 7 F JIn2
Tl WP T 2R 335 T T 3 3735 7 | TeiFe 3 s 7 P

6F 541192 9
Tl 335 7

(A4)

For smallp the local scaling exponent d&(p) is 4/3, for  The integral has singularities or zeros @air and *irg.
largep it is 2/3, but the transition from one range to the otherTaking the correct branch cuts and performing the corre-
is nonmonotonous. This is reflected in the right part of Fig.sponding contour integration in the upper half-plane, we ob-
5(b). In the left part of that figure, the ultraviolet bottleneck tain

energy pileup can be seen in addition, which is not included

in Egs.(A1) and (A4). (r3+r?)Yexpipr)
jﬁw 12+ 1228 dr
APPENDIX B: CONTOUR INTEGRATION 211
FOR OSCILLATING INTEGRANDS =2 —r | exp(—pz)
:_\/—f 11223 dz (B2
The numerical Fourier transformatidid) of (28) cannot a’)
straightforwardly be performed, as the integrand is strongly
oscillating and not exponentially damped. To cope with this
problem, we employ contour integration techniqyds$]. \/"p » 78|22~ 2|1’3exp(—pz)
Plugging(29) into (7) we obtain after some algebra E(p)— ’4’3r;2/3 ype =177 z,
ra’ d

(B3)

24 v 2\1UBay i
c g 213 P d® (= (ri+r?)expipr)
(P)=—%-rg Ts aod 72 2\23 r. - - : :
4 p° (rg"+r9) which can now be straightforwardly integrated. Our numeri-

(B1)  cal result is displayed in Fig.(B).
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