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Thermal fluctuations in supercrystal stripe phases of Langmuir monolayers

A. Deutsch and S. A. Safran
Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
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We predict the magnitude of fluctuations of two-dimensional, supercrystal stripe phases of Langmuir mono-
layers, composed of polar molecules, in the low temperature regime. Our model includes both the microscopic
line tension and the interdomain, long-range dipolar interactions. We caldidatee long wavelength ap-
proximation the elastic energy of the stripes and show that the stripes exhibit long-range orientational order.
We predict that the stabilization of the stripe width by the dipolar interactions tends to decrease the thermal
roughness of the domain walls compared with systems with only short-range interactions. In the case of
crystalline stripes our results suggest a possible finite-temperature first-order roughening transition.
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PACS numbds): 68.10—m, 68.60.Dv, 68.15:¢e, 64.70-p

[. INTRODUCTION interaction strength, which is very sensitive to the dielectric
properties of the systerb]; (ii) the microscopic cutoff\,

A variety of amphiphile molecule&surfactants, fatty ac- which is approximately the intermolecular distangé; the
ids, or lipid9 form insoluble monolayers at the water/air in- microscopic isotropic line tensiory, that accounts for the
terface(Langmuir monolayeps The phase diagrams of these short-range attractions; ar(d) the surface fraction of the
systems have been extensively studied and show a wide v@hases¢=¢,;=1—¢,. Our formal analysis is valid for
riety of behaviorgsee, for example, Reffl—3]) such as the 0<¢=1, but we stress that the variation of the surface frac-
coexistence of liquid-gas or liquid-expanded—liquid- tion ¢ may induce phase transition to other phases.,
condensed phases with very large domains. When the molRubble phase, as suggested by Re@). _
ecules that form such monolayers carry a permanent electric !N our review of the well-established equilibrium analysis
dipolar moment, an even richer phase diagram was predicte®f the stripe phasp4,5,11,13 we recalculate the stripe peri-
theoretically[4—7]. The competition between the short-range °diCity with & new emphasis on the energy scales of the
attractions(due to van der Waals interactionand the long-  SYStem. We find that the self-energy of a minority phase

range dipolar repulsion favors spatial inhomogeneities of th(§tripe (the smaller of¢, and ¢,) is much larger than its

in-plane molecular concentration and results in the formatioﬁmer"’lctlon energy with distant stripes. This results in a rela-

: . . ; tively fixed width of the minority phase stripes, which very
of various mesoscopic structures including macroscopic

modulated phases such as ordered stripe or bubble phasweakly depends on the surface fractionWe thus find that

This behavior is al hared by oth i wodi ; € main response of the system to a change in the surface
IS behavior s aiso shared by other quas-two-dIMenSION o, js to adjust the period of the supercrystal rather than

systems with dipolar interactions, such as magnetic thifne width of the stripes. This result is also relevant to the

films. o . calculations of the fluctuations in the stripe width, which we
In the present work, we study both equilibrium propertiesging to be very small on the scale of the stripe wid-
and thermal fluctuations of the domains in the stripe phasqhough it is usually large enough to roughen the domain
and predict the orientational ordering and roughening of thgygjis: see below
stripes. ) ) ) _ Fluctuations of the stripe phase were previously consid-
We consider monolayers which consist of a single type ofred in the literature using two main approaches. The first
molecule that carries a permanent dipolar moment perpersne is phenomenological and starts from a continuum model
dicular to the flat interfacefor the treatment of in-plane of the displacements of the stripes, which leads to an elastic
dipoles see, for example, R¢B]). In such systems, the di- Hamiltonian[13—-15. The second one uses exact calcula-
polar interaction between two molecules reduces tQjons for infinite wavelengtftollectivemodes of the stripes
~ P2?/r3, whereP is the dipolar moment of a molecule and (i.e., all the boundaries of the stripes fluctuate identigally
r is the distance between the molecules. We discard effectmainly for stability analysis of the pha$&0,16—18. In our
arising from internal degrees of freedoms of the moleculeswork, we bridge the two approaches and calcultdesecond
such as the tilt of the tail§9], and study a system with order in the fluctuationsthe full fluctuation Hamiltonian of
uniaxial modulation of the molecular density in the low- the stripes, which leads to acoustic and optical branches in
temperature regime. In this regime, far from the critical tem-the energy spectrum. Our results for the fluctuation energy
perature for the onset of the modulation, domain walls arespectrum are similar to those of R¢19] for thin magnetic
sharp and the resulting supercrystal stripe phase is composétins, but we also focus on the effects of these modes in
of two alternating homogeneous stripes 1,2 with dipolar dendetermining the smectic order of the phase and the roughness
sitieso; and o5, respectively. of the domain boundaries.
Our results are described in terms of four physical param- At surface fractiong+3 we use a simplified physical
eters: (i) u?=(o,—0,)%Ky, whereKy4~P? is the dipolar model and quantify the smectic order of the stripe phase. We
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describe the stripes as fluctuating objects with a fixed width An outline of the paper follows: We start in Sec. Il with
(i.e., symmetric fluctuation modesWe find that the system a review of previous work on the equilibrium properties of
is governed in the long-wavelength approximation by anthe stripe phase with a new emphasis on the energy scales of
elastic Hamiltonian and obtain simple analytic expressionshe system. Our main results are presented in Secs. Il and
for the bending and compression moduli. IV. In Sec. lll we present our fixed stripe-width model and
We find that the symmetric fluctuation modes of theconsider the symmetric fluctuation modes of stripes. Using
stripes can have large amplitudes, which results in a failurghis model we quantify the smectic order of the system. Sec-
of our second-ordetharmonig approximation for the fluc- tion IV discusses the fluctuations of the stripe width and the
tuation Hamiltonian at Iarge Iength scales. However, we fianughneSS of a Stripe boundary_ In the case of a solid stripe
that the harmonic approximation of the Hamiltonisnap- e present a self-consistent calculation that predicts a first-
propriate to des_cribe the orientational o_rder of the stripeyrger roughening transition.
phase. We consider the normal to the stripe boundgry While we have focused on the essential results in the text,
and calculate the normal-normal correlation function,many of the calculations are contained in the appendixes. In
gn(X) =(|A(x) ~A(0)|?). We find that normals to the bound- Appendix A, we develop the necessary formalism for the
ary of the same stripe are highly correlated at all lengthynaiysis of two-dimensional systems with power-law inter-
scales. This result implies that the stripe phase exhibits longsctions. Using Green’s theorem we transform the two-
range orientational order and that the smectic structure petimensional system to a physical picture of interacting do-
sists over large length scales. A more accurate physical piGnain boundaries. Appendix B contains the derivation of the
ture is obtained by considering higher ord¢20] in the  jnieraction energy between two such fluctuating boundaries
fluctuation amplitude; however, we expect, according t0 OUkgy the general case of a power-law interaction. We use this
result, that the orientational order of the phase is long rangeghymalism specifically for dipolar interactions in the analysis
in the more detailed theory as well. . of the stripe phase. In Appendix C we present the normal
It has been shown by other authgf,2q that, in such  mode harmonic analysis of the stripe phase, resulting in
two-dimensional2D) systems, free dislocations are presentacoystic and optical branches in the fluctuation energy spec-
at any finite temperature. The finite dislocation density,;ym. A powerful mathematical tool is developed in Appen-
Np, results in blobs of aregg which are free of disloca- dix E, where we find a general mathematical relation be-
tions. Combining this result with the one we obtain impliestween the discrete and continuous Fourier transforms of a
that within the blobs the smectic structure persistS. Thiﬂ’unction' of which the Poisson summation formula is a spe-
physical picture may fail, however, when the size of thecjal case. This relation is used to extend the general wave-
blobs is comparable with the stripe periodicity, since thenyectorQ dependence of a discrete Fourier transfofiQ)
one can no longer refer to a supercrystal structure. Our resuffgm F(Q=0). This method may be used to extend some of

also ImplleS that the diSlocationS, rather than the ﬂuctuationﬁ']e results that appear a“'eady in the literature Concerning
of the stripe boundaries, lead to the destruction of the supego|lectivemodes of stripe phases.

crystal phase at higher temperatures.

This simplified model is supported by our calculation of
the roughness of the stripe boundarfg® mean square fluc-
tuations of the stripe widjh using a mean field approxima-
tion. These width fluctuations are important both for liquid In order to better understand the fluctuating stripe phase,
and solid stripes. In the case of a surface of a solid, the meane review in this section with some maodifications and em-
square of the fluctuationg?)) determines whether the sur- phasis on the relative energy scales, the well-established
face is rough or faceteghonrough. In a liquid/gas interface analysis of this phase in equilibriufd,5,11,12. We con-
the dynamics of these fluctuations are important for the besider a system of molecules that interact through a dipolar
havior of capillary waves. We find two scaling regimes for repulsion and a short-range attracti@g., van der Waals
the mean square fluctuations of the stripe widéhthe high- interaction. It was shown that in such systems, in equilib-
temperature regime, whelg?)~D,A andD, is the equi- rium, the competition between the long-range repulsion and
librium width of the minority stripes; andb) the low- the short-range attraction may give rise to modulation in the
temperature regime, wherdy?)~A2. The appropriate surface molecular densitj.e., supercrystal phases
scaling regime is determined by the dimensionless parameter We consider a one-dimensional supercrystal stripe phase
~ T/u?A. In both regimes we findy?)<D?2, in agreement in the low-temperature regime where the domain walls are
with our fixed stripe-width model. For the solid stripe case,sharp and where all entropic effects are included in the line
we find in regime(b) that, in contrast with two-dimensional tensiony. As shown in Fig. 1, the phase has a period
systems with only short-range interactions, where the rough®=D;+ D, and the unit cell has a basis of two stripes la-
ening temperature is zero, the long-range dipolar interactionseled 1,2 with dipolar densities; ando,, respectively.
may induce faceting in the stripe boundaries at a finite temThe surface fraction of the stripes labeled 1¢iss D,/D,
perature, via a first-order phase transition. We note that evewhere the parametdd,, which is the width of the stripes
in regime (a) the stripe boundaries are not strictly speakinglabeled 1, is determined by the composition and the equation
rough. The dipolar interactions, which give rise to the superof state. The size of the system in the direction parallel to the
crystal order, result in an additional restoring force acting orstripes is denotetl. We use the notationj(m) to label the
the stripe one-dimensional interface. This restoring force restripes wherg is the cell index anan=1,2 is the index of
duces the mean square fluctuations by a macroscopic facttire stripe within the cell. Using E4A11) the dipolar poten-
relative to a free liquid interface. tial is written Vg, = Kgp 3, where Ky is the interaction

II. THE STRIPE PHASE IN EQUILIBRIUM
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[This physical picture is appropriate for surface fractions
-~ D—> ¢< 3. For surface fractiong >3 one should interchange the
D1 | D, indices (1-2).]

Using the approach of Flament and Gall28] (see Ap-
pendix A we transform the surface integrals of Eg.2) into
line integrals over the boundaries of the stripes and obtain a
physical picture of interacting boundaries. Using Egs.
(A13)—(A15) the electrostatic energy per cell in E@.2)
may be rewritten as

T 1 2 1 2 1 2 T

D sin(
l N H T 1 T Ecer=LD[ &1+ (1= ¢)ep] ~ 2L p?| I+ 1+1In ”(W )
(2.3
\ J\ J\ ] We now introduce the microscopishort-rangef attrac-
tions through the line tensiof, which in principle may be
cell -1 cell 0 cell 1 calculated using a microscopic model. The difference be-

) ) o ) tween the free energy density of the stripe phase and that of
FIG. 1. The stripe phase in equilibrium. This supercrystal phasea system with two homogeneous phages., two separate

is composed of alternating stripe domains, labeled 1,2, with dipoIaEjmd infinite domainswith dipolar densitiesr; ande, and
densitieso; and o5, respectively. The supercrystal has a period . S
D=D;+D, and its unit cell contains two stripes (1,2). The cells with the same volume fractiog is given by

are labeled O:li 2,... ._Thearrow_s indi_cate the.“po_larities” of 2M2 D sin( 7 ) y
the boundariegi.e., the directions in which the line integrals are Af=——|In—+1+In —|.
taken along the boundaries of the stripfs the calculation of the D A

dipolar energy in Eq(A13).

(2.9

This energy difference arises only from the energy of the
boundaries in the systefiincluding boundary-boundary in-

strength. We denote a#(R) the spatial dependence of the teraction$. Minimizing Af with respect tdD gives the equi-

potential librium period of the supercrystal,
1
A
V(R)= —;, 2.0 = m ¥lu?
p D sin(mﬁ)e , (2.59

where p=(R*+A?%)Y2 andA is the microscopic cutoff and the stripe widthD,, is given by
[21,22. The electrostatic part of the energy per cell is written

A
D]_: (ﬁD: Wey/,uz, (25b)
cell_ 2 2 omonKy
sli=ce where sic(x)= sin(x)/x. [These quantities differ from those
) . . obtained by McConnelét al. [16] by a factore that arises
f f om Vim (] om n)|) from the multipole correction term in EGA14). In order to
m) 7 (j.n obtain the correct result in their work one should replace the
=65+ 6,5, line tension\ by A — 2] Using Eq.(2.59 in Eq. (2.4) we
- obtain Af=—2u%/D<0 and thus the energy of the stripe
12 E f f 2 2, ( - - ) phase is always lower than that of a system with two homo-
2 i Joonltiay @ G2 0y (2 geneous phases.

We note some interesting physical properties of the sys-
tem as given by these equilibrium quantities. The depen-
dence of the stripe widtlD 4, on the area fractiow is very
weak for ¢=<3. Defining the stripe width ath=0 as

2.2

wheree;= 7Tchri2/A is the energy density for a domain of
infinite size with dipolar density; , as defined in Eq(A9).
Sizz_LDi is thezarea of the stri_pe with dipolar den_sity and Do= lim Dl:Aey/,Lz, (2.6
pn=(o1—0,)°Ky. The sum in the last expression in Eg. $—0

(2.2) accounts for the dipolar energy of the boundaries.

It is interesting and important to note that this boundarywe find that the width of the stripes is relatively fixed, chang-
energy is equivalent to that of a system with molecular dening fromD;=D, at $=0 to D,;~1.6D, at ¢=13. Thus, the
sitieso;=0,— 0, and o,=0. Since we shall be interested system responds to a change in the surface fraction by ad-
in this work only in the boundary energy, it is instructive to justing the period of the supercrystal rather than the width of
use this equivalent system. We use this equivalent physicdhe stripes. By rewriting Eq2.4),
picture in the schematic drawings of the stripe phase and ) D
consider a system of condensed-phase stripes with molecular _ L Y€ r
density o; (shaded stripgsseparated by vacuum stripes. At D In Finfsind )]~ w?|’ @7
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it is possible to distinguish between the first tertd) u
which accounts for the self-energy of the stripe and the sec- ’ |
ond one E;,;), which accounts for the interstripe interac- :
tions. In the regimep=3 these energies satis;,/Es<1;
thus, a change i, is energetically very costly compared
with a change in the perioD = D,/ ¢. This stability will be Yo
demonstrated more explicitly in the treatment of the antisym-
metric fluctuations of the boundaries in Sec. IV. Note that ...
the dependence of the peri@on the surface fractiog is
symmetric with respect t¢= 3. This symmetry is a property
of Af as seen in Eg2.4). As a consequence, if one consid-
ers the regimep= 3 all the previous discussion is applicable
with the replacement®;—D, and¢—(1— ¢).
It is interesting to note that the effect of the equilibrium
interstripe interactiongsecond term in the parenthesis in Eq.
(2.7] is merely to increase the bare microscopic line tension www
v. However, as we discuss in the following sections, the coll <1 cell 0 cell 4
effective line tension for the symmetric modes of this phase
is zero and due to the long-range dipolar interactions there FIG. 2. The symmetric modes of the stripe phase. The equilib-
exists no trivial(microscopi¢ line tension for the antisym- rium positions of the stripe boundaries are shown in dashed lines.
metric modes. Each boundary fluctuates with an amplitugex,i), wherei is the
cell index. Thus, the stripe width does not change from its equilib-
rium value, and there is only one degree of freedom per cell. The
Ill. THE SYMMETRIC FLUCTUATION figure showsny(x), which is the normal to the boundary of the
MODES OF THE STRIPES stripe(labeled 1) in the zeroth cell at the poifx,y(x)). The angle

. that this normal makes with thg axis is denoted)(x).
In Appendix C we analyze the normal mode spectrum of

the stripe phase in the harmonic approximation, and show,aiiong of the stripes, lead to the destruction of the super-

that it contains both optical and acoustic branches. HoweveErystal phase at higher temperatures

if one considers only I_ong-wavele_ngth modes, which dor_nl- We use an approximation that treats the symmetric and
nate some of the physical properties of the system, one findg,iqymmetric modes of the stripes independently. At the end

that the ‘?‘COU_Sti(.: modes coin(_:ide_v_vith the §ymmetric modegf Appendix C we argue that this approximation is justified
of the stripes; this leads to a simplified physical picture of the; - long-wavelength modes in thedirection. In this section

fluclztu?rt:_ng strltpe phase.h that th tric fluctuati we show that for the symmetric modes, the long-wavelength
n this section we show that the symmetric Tiuctuation ,,qes are energetically less costly and hence have the larg-
.modes.of the stripes can have large amplltudes. .Th's. resulis amplitudes. In Sec. IV we show that the antisymmetric
in a failure of our second-ordeharmonig approximation . yes resylt in a relatively large restoring force. Therefore,
for the fluptuatlon Ham|lton|arj at Iarge_ Iength scales. HOV.V'these modes are energetically unfavorable and their ampli-
ever, we find that the harmonic approximation of the Ham|l-tude is much smaller than that of the symmetric modes. We

tonianis appropriate to describe the orientational order of thethus neglect the coupling between the symmetric and anti-

stripe phase. We consider the normal to the stripe boundaré’ymmetric modes, and use a simplified model for the analy-

n(x) and calculate the normal-normal correlation function,sis of the symmetric modes. This model, as shown in Fig. 2,
gn(x)=(|ﬁ(x)—ﬁ(0)|2). We find that normals to the bound- takes the width of the strip.e(dabeleq Jto bg constant_, .but
ary of the same stripe are highly correlated at all length@!lows them to fluctuate with amplitudesx,i), wherei is
scales. This result implies that the stripe phase exhibits longhe cell index(i.e., y1(x,i) =yz(x,i)=y(xi), using the no-
range orientational order and that the smectic structure pefation of Appendix C, see also Fig].6Experimental data
sists over large length scales. We stress that in order to otQ-Seeg for example, Ref24]) indicate that the stripe width is
tain the full physical picture one should go to higher orderslatively constant and hence agree qualitatively with this
[20] in the fluctuation amplitude; however, we expect ac-model. This description is appropriate only for surface frac-

: . et . .
cording to our result that the orientational order of the phas&ons less thar, since at¢= 3 the interaction between two
is long ranged in the more detailed theory as well. boundaries of adjacent stripes has the same weight as the one

It has been shown by other authdfss,2q that, in such  Petween the two boundaries of the same stripe. Thus, for
L ’ l - . .
two-dimensional systems, free dislocations are present at arf§= z the two types of domains (1,2) interchange their roles
finite temperature. The finite dislocation density,, results ~@nd one should fix the width of the stripes labeled 2 in order
in blobs of area? , which are free of dislocations. Combin- to get the same results. With this model, which contains only
ing this result with the one we obtain implies that within the SYmmetric modes, we have only one degree of freedom per

blobs the smectic structure persists. This physical pictur&€!l: @nd Eq.(C4) for the full fluctuation Hamiltonian then

may fail, however, when the size of the blobs becomes smallfduces to
compared with the stripe periodicitid, since then one can

no longer refer to a supercrystal structure. Our result also AH =
implies that the dislocations, rather than the boundary fluc-

¥(9,Q)|G(q,Q), (3.1)
q,.Q

N| -
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where using Eq(C3) ¥(q,Q) is the discrete Fourier trans-
form of y(q,i), andQ e (— «/D, /D) lies in the first Bril- o . T o
louin zone of the reciprocal lattice of the supercrystal. inandy [i.e., 6(x)=0 in equilibrium]. For small deviations of

Appendix F we calculateG(q,Q) and find in the long- the normal from its equilibrium value we use the Gaussian

wavelength approximatiofi.e., qD,QD<1) approximation for the fluctuation Hamiltonian, E§.1), and
oA ’ the normal-normal correlation function is rewritten

where 6(x), as shown in Fig. 2, is the angle betwerA?iqﬂx)

2
G(9,Q)= 5z[Bo( #)(QD)*+Ko(#)(aD)"], (32 gn(x)=2(1-e" W29, (36

wherege(x)z(| 6(x) — 6(0)|?) is the angle correlation func-

and bending moduli, respectively, are functions of the sur—tlon' Using Eq. (3.2 in the equipartiion relation

face fractiong. The compression and bending moduli of the<|y(q’Q)|2>: T/G(q,Q) we find

system are related to these dimensionless quantities by the 2

relationsB= (1%/D) By and K=pu?DK,. This form of the g (x)=(|6(x)— 6(0)|2)=—2 qX|y(a,0)|2)[1-codqx)]
Hamiltonian,AHy, is in agreement with the elastic Hamil- ~’ L“q

tonian used for lamellar phases and the system in equilibrium
has no effective line tension as a consequence of its spatial

where Bo(¢) and Ky(¢), the dimensionless compression

2T < 9*[1-cogqgx)]

isotropy (see, for example, Ref13]). In Appendixes F and NL 3§90 é(q,Q)

G we explicitly show the vanishing of the effective line ten-

sion[i.e., the vanishing of the coefficient of thgD)? term. DT [+w/D +o g [1—cogqx)]
Such an elastic Hamiltonian was derived phenomenologi- o2 . Jlm dqw
cally both in the vicinity of the critical poinf13] of this '
phase, where the variation of the dipolar moment density in 2T x( )

they direction is small, and at low temperatufdsf], where =2—(1—e*‘x’§c|sind|x/§C|))
domain walls are sharp. It was calculated exactly for the TDp"VBoKo

acoustic modes in similar systems of ultrathin magnetic films T

[19]. We independently calculated it for the symmetric = (1—e~Mélsing|x/ &), (3.7
modes, offering a simple physical picture of the stripes with Kx(¢)

analytic expressions for the elastic constants for an arbitrar
surface fraction.

It is interesting to note that the elastic approximation is
valid when both D)<1 and @QD)<1. Hence, the period
of the supercrystal), has the same role in this sense in both
the X and they directions. Specifically, we findin the limit

Where £.=D/x(¢) is the correlation length of the normal
and K=pu?DK, is the bending modulus of the system.
x(#)=\72(By/Ko)** is a dimensionless, slowly varying
function of ¢ of the order of unity. We are interested in the
large scale behavior of the system. In the limit> the

A/D —0) angle correlation function approaches a finite value, which is
independent ok, but is a function of the surface fraction
1 sird(mke) .
= . T sin(m¢) T
OTIma T B ge)=limg, 0= = e ™
X 0 Kx(¢) mKo(@)x(d) uA

Bo(¢p)=2[1+sinc 2(mp)—2(mp)cot(me)]. (3.3D (3.9
where the ratid)NENglz vl u? (Ng is generally referred to
as thebond number In Fig. 3 we plotg.(¢) in units of the
dimensionless parameterT/u?A)e ®N. Our continuum
model is valid [see Egs.(2.5 ] for e’>1 and hence
D2 2(AfD) e PN<1. Thus, [[/u?A)e PN is generally exponentially
2 D2 - (3.4  small and we find thag.<1 for all realistic surface fractions
® (i.e., p=>e~N) [10]. [T/u?A= (T/yA) by andT/yA~1 in
the vicinity of the critical point. Thus, at room temperatures

Using the fluctuation Hamiltonian we now quantify the ! 2 i
amount of disorder in the stripe structure due to thermal fluc?/® estimate that/u“A~1 and in any case not much greater

tuations. A convenient and conventional quantity describingh@n 1J Using the definition, Eq(3.6), this implies that the
the order of the stripes is the director, or the normal to thd'0rmal does not decorrelate at large length scales,
stripe boundary(see, for example, Ref26]). Due to the A N o1 —(1/2) 4 (x
symmetry of the supercrystal the directors of different stripes lm(lno(x) ~o(0)] )—lmZ(l—e H29,09)

obey the same statistics, and we choose to do the calculations

for the stripe labeled zero. We introduce the normal-normal =g.(¢)<1, (3.9
correlation function,

The result forBy can be derived alternative[yL 7,25 using
the equilibrium free energy density of E@.4),

0

orientational order is maintained, and our Gausdihar-
X)= (| An(X) = An( 0)]2 monic) approximation is valid for the director field. How-
9n(x)=({[Mo(x) ~Mo(O)}% ever, as already mentioned by other auth@€ (for the case
=2(1-{cod 6(x)— 6(0)1)), (3.5 ¢=3), we find that the mean square fluctuations of a stripe
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1000 rough or faceted. In a liquid/gas interface the dynamics of
these fluctuations is important for the behavior of capillary
waves. Using a mean field approximation we find two scal-
ing regimes for the mean square fluctuations of the stripe
width yo(x): (8 the high-temperature regime, where
100 - (y2y~D;A and (b) the low-temperature regime, where
(y3)~A2. The appropriate scaling regime is determined by
g the dimensionless parameterT/u2A. In regime(b) we find

c for the solid stripe case that the long-range dipolar interac-
tions may induce faceting in the stripe boundaries via a first-
order phase transitiofiThe transition is in fact between an
almost rough interface and a faceted one, as explained after
Eq. (4.13.]

10}

0.001 0.01 0.1 0.5 A. Stripe-width fluctuations

¢ Previously, we considered the symmetric modes alone
and froze one of the two degrees of freedom that exist per

FIG. 3. The limit of the correlation function of the angle of the cell by fixing the widths of the stripes to their equilibrium
normal, g.(¢), at large length scale§.e., x>¢.) in units of the  values. In this section we demonstrate that this physical pic-
dimensionless parametel/(u?A)e®, which is generally expo- ture is realistic, due to the fact that the stripe-width fluctua-
nentially small. Thus, for realistic values of the surface fractiontions are very small on the scale of the stripe width. We use
(i.e., ¢>e"n) we find thatg.(¢) <1 and the angle does not deco- an approximation that treats the symmetric and antisymmet-
rrelate. ric modes of the stripes independently. At the end of Appen-

dix C we argue that this approximation is justified for long-

(ly(x,i)|?) diverge in the thermodynamic limit for any sur- wavelength modes in thg direction. In the case of the
face fractiong, and hence the stripe phase loses its compressymmetric modes, the long-wavelength modes are energeti-
sional rigidity. This divergence is overcome by the naturalcally less costly and hence have the largest amplitudes. Thus,
finite size cutoff that exists in the system due to the finitefor calculations of physical quantities that depend mainly on
density of free dislocations. The dislocations will result inthe symmetric fluctuations it is justified to neglect the cou-
asymmetric blobs of areg? in which the stripe order will pling between the symmetric and antisymmetric modes. In
persist[15,20. The long-range order of the normal suggeststhis section we investigate the statistics of the width fluctua-
that finite stripes(due to dislocationswill be relatively tions of the stripeqi.e., antisymmetric modésFor these
straight as long as the stripe supercrystal order is still presefiiuctuations it is harder to justify such separation between the
locally. symmetric and the antisymmetric modes. In order to do that

It is interesting to find the condition for the validity one has to go to the full fluctuation Hamiltonian in EqS4)
of this physical picture. The dislocation density is and(C5), transform the vecto¥(q,Q) into symmetric and
np~a, exp(—Ep/kgT), wherea, is the dislocation core antisymmetric components, and compare the magnitude of
diameter andep, is the isolated edge dislocation energy. Farthe cross terms to that of the diagonal ones. Such a calcula-
from the critical pointEp is of the order of the bending tion is intractable analytically and its numerical evaluation is
modulusK [27]. Numerical evaluation oK leads to a rough left to future work. However, we assume that in order to find
estimate that even at room temperatures the dislocatiothe qualitative behavior of the width fluctuations it is suffi-
length scalegp will become comparable with the stripe pe- cient to consider the antisymmetric modes independently and
riodicity D only at surface fraction as low ag~0.1 (the  we use a simplified model to describe the system.
lower bound for the surface fraction is increasing with tem- In Sec. Il we found that the stripes can be considered as
perature. Thus our physical picture is valid for a wide range locally straight and that the symmetric modes that have large
of surface fractions and temperatures. amplitudes are the long-wavelength ones. Thus, when con-

Our analysis fails when the amount of disorder is in-sidering the antisymmetric modes we use a model that con-
creased (e.g., higher temperaturgsleading to isotropic tains no symmetric modes. This model is consistent with our
phases. However, it is striking that even in what seems imesult that the antisymmetric modes that have the largest am-
experiments like isotropic phasg3,24], the stripes tend to plitudes are those with wavelengths comparable with the
maintain their width and their symmetric modes are domi-stripe width. In addition, we note that the terms that domi-
nant. nate the fluctuation energy are those which arise from the

self-energies of the stripes. We also assume that statistically
IV. ROUGHNESS OF THE STRIPE BOUNDARY (a_lt high enc_)ugh temperatujeshe antisymmetric modes of
different stripes are not coherent.

We now extend the calculation of Sec. Ill to include fluc- Hence, it is appealing to use a mean field approximation
tuations in the stripe widti.e., antisymmetric modes of the and to consider the antisymmetric modes only for one of the
boundaries These fluctuations are important both for liquid stripes (labeled zerp Thus, in our simplified model
and solid stripes. In the case of a surface of a solid, the meahe stripe boundaries fluctuate only with antisymmetric
square of the fluctuations determines whether the surface imodes and all the other stripes are at their equilibrium
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y 12

LT 1 2

cell -1 cell 0 cell 1

FIG. 4. The antisymmetric modes of the stripe labeled 1 in the FIG. 5. The kemel of the antisymmetric mod&g(q) in units
zeroth cell(the choice of the stripe is irrelevant due to the symmetry®f 44%/Dg as a function of the dimensionless wave numgBx.
of the phask The boundaries of the stripe fluctuate with amplitudes The solid curve corresponds %=0 and the dashed curve corre-
yo(X) and —y,(x). We use a mean field approximation, where the SPONds tog= 3.
rest of the cells are in their equilibrium state.

Ki(x) 1 -
state, as sketched in Fig. 4. This impliesing the notation Mx)=—=— =~z (nX|-A); X“TOM(X)_O'
of Appendix Q yi(x,0)=—y,(x,0)=Yo(x) and ym(x,i) (4.4
=0 for i#0. Equation(C4) for the fluctuation energy then
reduces to The effect of the other stripes enters through), which
1 is a positive and slowly varying function @,
AH,== 2G,(q). 4.1 . _
a 2% |yO(Q)| a(q) ( ) a((i)):l‘l‘SInZ(ﬂT(f))[(ﬂ'gﬁ) 2_ %],
The detailed derivation oB,(q) is given in Appendix H, ;imoa(¢)=2: a(3)~1.1. (4.5
_ . K1(qA) 1 Thus, in this mean field approximation the total effect of the
) 2rq_ 1 2| M _ , pp
Gala)=4p (DO [1-3sim(m)]+q qA (qA)? other stripes is talecreasethe restoring force on variations
from the equilibrium stripe widthD . This result may seem
K1(qDy) N 1y 4.2 surprising, since the interstripe interactions tendnrease
qD, 2 u?l]’ ' the restoring force with increasing surface fractipndue to

the decreasing distance between the stripes. However, the

whereK(x) is the modified Bessel function of order 1 and Strlifp? widthD, increas;s with iane_aSiWB Thus, thi stripe
—AaYu? e A : self-interaction energyi.e., interactions between the stripe
S;quN 1/IAS v%glirl])tgi% Eq.(2.6). ExpandingG4(q) for boundaries decreases a$ increases. This dominates in the
max

total restoring force, which decreases with increasihg
[Note that this discussion and the following analysis are rel-

2,2l N=2r L 2|1 _ evant only for¢<3. For ¢> 3 the roles of the domains in-
Ga(@)=4n {DO [1=3si(m )1+ | 2 (njad| - ) terchangdi.e., 1 2).] This result is in complete agreement
with the discussion of the energy scales in equilibrium at the
. Ka(@Dy) El” end of Sec. II.
qD; 2 w? G,(q) is plotted in Fig. 5 for the two extreme surface
A2 fractions,»=0 and¢= 3. It shows that the surface fraction
=——{a(¢)+(qDg)[In|gDy| — B has little qualitative effect on the energy spectrum. The ex-
Do istence of a minimum foG,(q) implies that fluctuations of

1 ) the stripe width will be largest at this wavelength, whose
— zIn[sina7¢)]+M(qDy)]}, (43 value is on the order of the stripe widty,. This suggests
that the transition from the stripe phase to the bubble phase
where in the last step we used the equilibrium valu®ef  will be to bubbles with diameters of the order of the stripe
given by Eq.(2.5b; B=In2+3—y>0 andyz=0.577 216 width. The fact that this characteristic length scale is indeed
is the Euler constanM (x) is a function which is significant much smaller than those of the symmetric modes supports
only for large values of|D4, our assumption at the beginning of this section.
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Using Eg.(4.4) in the limit gD;<<1, G4(q) is further results relate to “local” roughness and faceting, since the
simplified, symmetric fluctuation modes do have divergent amplitudes

) at large enough scales so that the crystal is not well defined

_GM 2 B at very large length scales due to the symmetric modes.
Ga(Q):D_g(“(¢)+(qD0) {InlaDo| - B Using the notations of Ref[23], we consider a one-
dimensional interface with equilibrium position parallel to
— 3In[sinc(me)]}). (4.6)  the x direction. The pinning effect can be modeled by a

periodic potentialJ(y), wherey is the direction normal to
This approximate form implies th&,(q) has essentially a the interface. For a given interface deformatigs(x), the
quadratic dependence oq)y) at low values of this argu- interface pinning energk, is written
ment. We thus phenomenologically approxim@tgq) by a

parabola E,= J _L/LZ/ZdXU(YO(X)). (4.9
Gap(@) =au?[(|q] —c)?+b?], (4.7)

wherea,b, andc are functions of¢, that are obtained by The interface state is determined by the average of the pin-
fitting G,,(q) of Eq.(4.7) to G,(q) of Eq.(4.3). In principle ~ ning energy(E,), over the fluctuations. KE)/L is finite as
we find thata~1 andb,c~ 1/D;. the interface length goes to infinity, the interface is smooth
Using Eq. (4.7 and the equipartition relation (nondivergingandU is relevant on large scales. However, if
{yo(q)|?)= T/G,p(q) we calculate the mean square fluc- (Ep)/L goes to zero in this limit, the long-wavelength fluc-
tuation of the stripe boundary, tuations are identical to those in the liquid state. In this case,
U is not relevant on large scales and the interface is rough. In

1 1 (= I its general form{E) is written
2y 2y~ p
= — = d -

¢ Cc
arcta B

_ T
- mabu?

et 7D @8 (Ep)= J f dx Dlyo(x)]U(yo(x)P[yo(x)], (4.10

3T a7

wherelL is the length of the stripes. This scaling is obtained
for both extreme values of the surface fractiebv=0 and
¢=3. We find it to be in good agreement with an exact

_numerlgal evaluation ofyo) using Ga(Q)z of Eq. (4'3)_' It is figurations ofyy(x). Using Egs.(4.1) and(4.9) the fluctua-
interesting to note that by adjustin/u"A we obtain o 5y Hamiltonian that includes the pinning energy is written
scaling regimes for the amplitude of the mean square fluc-

tuation of the boundarynote, however, that the relation
e”#*s>1 must hold for consistengy(a) if T/u?A~1, then AH[Yo(X)]=AH[Yo(X) ]+ Eg[Yo(X)]. (4.1
(y3)~D,A; (b) if T/u?A~e ¥ then(y2)~A2. Both re-

gimes obex(y)<Di, which means that the fluctuations of However, using this form ofAH is generally intractable

the stripe width are very small on the scale of the stripe for the simplest f f the pinni :
width. This result supports our model in Sec. Ill, where weeven or the simplest forms of the pinning potentiafy).

. . . X -~ ""~Thus, we shall investigate th tem usin roximat -
fixed the stripe width to its equilibrium value. The qualitative us, we sha estigate the system using approximate ap

. X . ; . roaches. In what follows we describe two such approaches.
difference between the two regimes is manifested in the co

text of th Ivsis of th h f lid st The first one treatdJ(y) as a small perturbation and the
ext of the analysis ol the rougnness ot a Solid SWIP&, & - gac0nq one is less restricted and uses a self-consistent varia-
stripe that consists of a crystalline monolayer

tional approach. In both approaches we use harmonic ap-
proximations forAH,, which are thus tractable.

whereP[yo(x) ]~exp{— AH[yo(X)/T} is the probability for
a thermal fluctuation to have a configuratigg(x) and the
integration [D[yy(x)] is performed over all possible con-

B. Roughening of solid stripes

The stripe phase that we now focus on consists of crys- 1. Perturbation calculation
talline domains separated by dilute gas domains. This phase . . . :
is characterized by an additional restoring force on its inter-.mecr?;(églitt'gtgs Jg;:rsgtﬂ;nzr;zogs tr;aevgestg'cl[swz]htg?;gtg
face position, due to the crystal periodic potential, which' hening t ition t P urer | ! ists. A
tends to pin the interface. While the minimization of the roughening transition temperaturd¢) always exists.

energy of the system results in a periodic striped structur imilar calculation for a two-dimensional system shows that

(faceted phasethe entropy associated with the wandering of or the case of short-range interactiofg=0. In our analy-

the interfaces between these stripes tends to delocalize iyl We examine the effect of the long-range interactions on
nominally straight domain wall boundari€sough phase the mterface_ state.

The following analysis is for one interface, but the result is For §|mpI|C|ty we taKeU(y)= B UOCOS(ZTWAO).’ where
relevant for any of the stripe boundaries of the supercrystat*o™ 4 is the crystal periodof the internal crystalline struc-
We emphasize that our calculations are within the frameworkure of the stripgin they direction. Using this potential in a

of a mean field approximation that decouples the symmetrisystem which is modeled by a harmonic Hamiltonian,

fluctuation modes from the width fluctuations. Therefore, ouxE,)y, is written
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Yo(X) whereF, is the free energy of a reference system and the
(Epn= —f f dx D[yo(X)]UoCOS( ZWA—) PhlYyo(x)] subscriptr denotes that the average is taken with respect to
0 the Boltzman factore"'T of the reference Hamiltonian.
<yg>h We use a harmonic approximation for the reference Hamil-
A2 } (4.12  tonian, which is thus written

=—UyL exp[ — 272

where the subscrigt is used to denote that the averaging is

done with respect to the harmonic Hamiltonian. H=115 G 2 41
Using the first approach we now tredi(y) as a small ro2 % (@lyo(@]* (4.19

perturbation. Noting thaAH, is already harmonic, we can

write AHp=AH, and to first order irJ we find Using Egs.(4.1), (4.11), and (4.12 and the equipatrtition

relation(|yo(q)|?),= 1/G(q), Eq. (4.14 is rewritten

N L (Y8
(Epy)=—UoL exp —27 vl 4.13
0
T 1o Ga(q) s
where(y3) is given by Eq.(4.9. F=Fct E% InG(q)+ E% G(q) ~LUce %
It is interesting to note how the two scaling regimes that (4.16

were found for(y3) affect the roughness of the interface. In
regime (a), whereT/u?A~1 and(y3)~D;A, the absolute
value of the argument of the exponent in E4.13) is expo-

nentially large (~e7’”2), but does not diverge in the thermo-

dynamic limit. This result is unique in the sense that it does 2

not correspond to the classical case of a rough interface, go:_lz > [G(q)]—lzwzﬁ_ (4.17
where the argument of the exponent diverges in the thermo- LAG “q Ad

dynamic limit, resulting i Ep)=0. However, since the re-

storing potential is exponentially small, it is not sufficient to We now minimizeF with respect td3(q) and find the equa-
make the interface smooth on the microscopic scale and tht?on that definess(q)

interface is for practical purposes quite rough in this regime

[e.g., the correlation length of the interface fluctuations is

exponentially large, as shown using the second approach in

whereF. is a constant and, is defined as

Eq. (4.26]. At very small values off/u?A~e~ Y#°, we T Gaa) 4m*UoA, 2,\—277290:0 4.18
enter scaling regimé), where(y3)~ A2, In this regime, the G(q) G(q)? G(a)* ' '
argument of the exponent may become of the order of unity,

resulting in a facetednonrough interface. We thus find

In realistic Langmuir monolayers it seems that the param-
eters cannot reach the extreme values needed for the second
scaling regime and thus we do not expect faceting according
to this approximation approach. Still, the roughness of the G(q) 1= >—>,
interface can be reduced drastically to be somewhere be- Ga(q) +au’é
tween the two regimes. However, these calculations are valid
for any two-dimensional system with dipolar interactions andwhere using Eq(4.12 we find
there may be other systertesg., ultrathin ferromagnetic lay-
erg for which the parameters may fall within the second
scaling regime, and thus induce faceting.

(4.19

2

_4772UO 2n2g_ 4 E) | 4.9
_a,U.ZAgL < p>r- ( . 0)

-2
= e
a,LLZAg

2. Self-consistent theory

We now extend our analysis and use the second approach, ) o
which treats self-consistently the effect of the pinning potendn the latter expression we explicitly observe the role of the
tial in the fluctuation Hamiltonian. Using this approach we intensive quantitfE,)/L. If itis finite in the thermodynamic
show that the roughening transition is in fact less restrictedimit, ¢ 2 is finite andG(q) differs from G,(q) (i.e., the
than what is predicted by the perturbative approach and th&nning potential is relevant However, if it vanishes we
the transition may be a first-order one. haveé™?—0, G(q)— G,(q) and the pinning potential is not
We follow Ref.[29] and investigate the system using an relevant.
approximate variational approach. We consider a reference Since g is related to the sum over all th&(q), Eq.
Hamiltonian 7, , which is tractable, and use the theorem(4.19 has to be solved self-consistently to yield a value for
[30] that bounds the exact free enerdy,, by . We use Eq(4.7) to approximateG,(q) by Gap(q). Per-
forming the sum oveq in Eq. (4.19 we obtaingy, which is
then used in Eq4.20 to derive an equation faf. The result
Fe<F=F,+(AH,—H,), . 4149 s
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o
! t r( ° | +arct 8- (4.21)
= arctal ——— arctan ———— , .
N b2+ g2 b2+ g 2
and
au
w§)2 4U, 20T t I A ° 22
- =——eX - | arcta) ————= arctan ———— . .
Bo| “an?™P| T auraiibrre? Vb2 +¢72 b?+ &2

Defining 7= (A,/m&)?, the previous equation is rewritten  long-range interactions bounds the lowest free mode to be
Omin~b~D7 %, while for a free interface it is-L ! (system

= ex;{ T arctar( Co size limited. This effect is very strong for stripe domains,
=ay _— —_— . . . L
o+ 7 o+ but we expect it to bg |rrelevar_1t in systems of finite size
domains, where the size cutoff is already related to the do-
R—cCq main size and not to the system size.
+arcta oo [ (4.23 In order to find whether faceting is possible in this system

we have to explicitly solve Eq4.23 for » (£). We find that

where we defined the following dimensionless parameters: at high temperatures there is only one solutigy»D,,
which implies that the pinning effect is negligible. However,

_4Up 2T _[bAo 2 _CAo, as the reduced temperaturés decreased below a threshold
@0= au’’ = au?lAy’ M=\ T T T value two new solutions\g<¢,3<D; appear, where the
solution with the smaller value of, &5, corresponds to a
Ay minimum of the free energy. As is further decreased;,
R= X~1- (4.24 and ¢, vanish and¢; thus corresponds to a global minimum

of the free energy. This is a first-order transition mechanism
It is important to note thaty=0 is not a solution to Eq. and in order to quantify the transition we rewrite the free
(4.23. It implies that as long as),#0 (b#0), we have energy of Eq.(4.16 as a function ofy and find its global
£2+0 and thus(E,)#0. The pinning potential is always minimum. Using the5(q) that minimizes the free energy as
relevant to some extent and as we concluded, using the firgiven by Eq.(4.19, and using Eq.(4.7) to approximate
approach, the interface is never fully rough. Physically, theG,(q) by G,,(q) we write the» dependent part of the free
additional restoring force on the interface position due to theenergy in a dimensionless form,

f(77)=2;AOF—fC=CO|I’I(7]+ 770+c3)+(R—c0)ln[77+ 7o+ (R—Co)2]+ 210t 7 arctar( S +arctar( R~ %
LT Vot m Vnot 7 Vmot 7
ag T Co R_CO

where all thez independent terms of the free enerfgyare  zero. Rewriting Eq(4.23 with 7> 7,,c3 we find that below
lumped intof .. Rewriting Eq.(4.23 with %< 79,c3 we find 7, the value of the order parameter is determined by the
that above the transition temperaturéethe value of the or-  gglf-consistent equation

der parameter is

4.27

73= apeXg — —arctan —| |.
V71 Vs

0 ™ 2
arctar< \/%)Jr 2 ]<7]0'C°’ Below the transition temperature we expari@n) for
(4.26 n> no,cg and find the transition temperature by equating
f(n)=1f(n)=0. SubstitutingR=1 and using the limit
ag<1 in Eq. (4.27 we find that the transition is character-
and we note thatr;o,cg~e*2bN, and thusyn; is practically ized by

r
N1~ apeXpP) — ——
Vo
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Ao, calculated the thermal roughness of the stripe boundaries.
7.~ 7/3|TR~e*1ao; =N 7% 0.386\/a—0. This quantity will enter into an analysis of the line shape in
4.29 scattering from the stripes. In the case of solid stripes, our
' self-consistent calculation suggests a possible first-order
This solution is thus restricted to strengths of pinning potenfoughening transition in a realistic region of the physical
tial which fall in the rangeyo,c2<a<1. The upper limitis Parameter space. This prediction has yet to be verified ex-
needed for our theory to be consistent, siage=1 implies perimentally. We note that our treatment of this problem is
£x=A, (i.e., the correlation length is shorter than the micro-Within & framework of a mean field model. Thus, the effects
scopic cutoff, which is not physical. Hence, fat,=1 a of the distant stripes and the coupling to the symmetric fluc-
more refined theory is needed in order to describe the syduation modes of the stripes may modify our results. Some
tem, but we still expect a first-order transition. For a Verymore theoretical work that will include these effects as well

weak pinning potentialdy=< 7]0,03) the first-order transition &S computer simulations based on a microscopic Hamiltonian

mechanism is destroyed and there is a smooth change in tr?é the interface must be done in order to complete the mean

correlation length¢ with temperature. leld picture that we have presented.
The predictions of the two different approaches may seem
at first contradictory. The reason that the perturbative ap- ACKNOWLEDGMENTS

proach does not predict the first-order transition is that it \ye thank D. Andelman for his useful comments and for
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becomes valid for lower temperatures. For very low values
of ap= no,cg the self-consistent approach does not predict a
transition either. We conclude that the self-consistent ap-
proach is more general and that the perturbative approach is
only a special case of it. In this Appendix we present a general formalism for the
We note that the previous treatments of the rougheningreatment of 2D systems with long-range power-law interac-
transition in two-dimensional systemisith only short-range tions. This formalism decouples the energy of the system
interaction$ predicted that it occurs only &tz=0, due to  into separate bulk and boundary terms. We then use this

the large fluctuation§31,32. Our results suggest a possible formalism in the specific case of dipolar interactions.
first-order transition.

APPENDIX A: SYSTEMS WITH LONG-RANGE
POWER-LAW INTERACTIONS

1. General case

V. DISCUSSION We consider a 2D system of patrticles interacting through

We now summarize our results and discuss their experian isotropic repulsive pair potentiéhe attractive case was
mental implications. We emphasize that our predictions aréreated by Flament and Gallg23]) which depends only on
relevant for the low-temperature regime, far enough from théhe interparticle distance
critical point for the onset of the stripe order.

We calculated the equilibrium stripe width and stripe pe-
riodicity as functions of the surface fraction of the dense
phase. The dependence of these quantities on the surface
fraction is unique to systems with dipolar interactions. It iswhereRzlfl—Fz| and with interaction strengtl,>0. To
still unclear to what extent the real physical systems are ingescribe phenomena on length scales much larger than those
deed dominated by long-range dipolar interactions. Henc&y a molecular size, it is appropriate to take the continuum
measuring the surface fraction dependence of these quanF— . . . Lo .
ties can verify this physical picture and will give an estimate imit, where we introduce the particle densityr). The in

teraction energy between two domaiBg and S, (which

of the bond numberu*/ . may overlap can be written as
In our analysis of the symmetric modes we found that the Y

stripe phase exhibits long-range orientational order. We pre- 1

dicted that if the dislocation density is not too high, the En:_f f dzrlerZU(Fl)g(Fz)vn_ (A2)
stripes are practically straight within the blobs that are free of 2)sJs,

dislocations. This prediction can be qualitatively verified ex- _ ) _

perimentally, probably by optical imaging. We assume thatn the following analysis we consider the case of homoge-
our infinite-length stripe model will have corrections due toneous distributions of particles within each of the domains;
the presence of dislocations, which will make the stripes les#) addition we assume that the system is at sufficiently low
straight than our idealized model predicts. temperatures so that the domain boundaries are sharp. Hence,

In our analysis of the fluctuations in the stripe width weit is possible to writea(r;)o(r,)=0,0, for R=a and

K
Vo=—n, (A1)
R
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a(ry) o(r,)=0 for R<a, wherea is the microscopic cutoff If F=G is only a function ofR, we have

comparable to the interparticle spacing. Thus, the only spa-

tial dependence in the integrand of EA2) comes through 2 2 e - =

V,. Following McConnell and Mo)[6], Green’s theorem d%r,d%roViF=— Fdl;-dl,.  (A3)
. . : $1/S; C; JCy

[33] is used to transform the double surface integral into a

double line integral over the contougs andC, surrounding  gqjiowing Flament and Gallé23] we introduce the function

S: and$S,, respectively, P,(R) such that
f f d2r.d2? ( PG o°F ) 1 f
r,dr 3 if R=a;
s 182l G, T ay1ay, V2P, (R)= 2 VolR) % (A4)
if R<a.
= jg (Fdx;dx;+Gdydys,).
C1 JC, Forn#2, P, is given by
a n—-2
Anlg]  RE K
Po(R)= A= o(n=2)%a 2 (A5)

3] e
nl1=(n=2)In 3 R<a;

This function and its derivative are continuoudRat a. P, satisfies the required conditions everywhere except=ad, where

V2P,=—2mw(n—2)A,56®(R). In the particular case=2, we haveP,(R)=(K,/4)[In(R/a)]?> for R>a and P,(R)=0 for
R<a. Using the definition oP,(R) and the Green’s theorefiEq. (A3)], Eq. (A2) can be rewritten as

E,=E.+E.=2m(n—2)A, alaszdzrldzrﬁ(z)(m alasz é 1-dl, (AB)

E, appears as the sum of a surface t&grand a boundary terf.. . This is readily shown in the following example. Consider
a domain with particle density; and are&s; embedded in a 2D bulk with particle density and are&,. The energy of this
bubblelike system can be written as

Ebubble:%‘rif fd2r1d2r2Vn+%U§ff dzrlderVn_%(Ul_Uz)zJ’ f d?r,d?r,V,, (A7)
$;JS SJS, $JS;

where S=S;+S,. Taking the thermodynamic limitS,— o) for the casen>2 and using Eq(A6) this energy can be
decoupled into

Epubble= 2m(N—2)A07S,+2m(N—2)A05S,— (01— 07)? ﬁ: fﬁc Pa(R)dl;-dl,+Eg
1 1

—)-)

=€,51+ €,S5,—(0q,— O'z)zé é R)dl,-dl,+Eg, (A8)

where Eg= _UigngsBpn(R)ail.(ﬂz and B is the boundary ~casen<2. When the boundary of the system is fixég is

of the systeme; is the energy per unit area for a domain of a constant and the relevant energy of this system is

infinite size with particle density; and is given by AEpyopie=Epuboie— Es

=2mw(n—2)A, a?=%a|f d’rV,(r).  (A9) =€,5,+€,S,— (0,—0,)? ﬁgc 3€C P,(R)dl,-dl,.
r> 1 1

. _— . (A10)
The integral definition ofe; is convergent only fom>2.

This is consistent with the statemd3] that for a straight This analysis for a system of two domains is extended in
boundary E./E, diverges in the thermodynamic limit for the Sec. Il to a system of infinite number of domains in the case
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of a supercrystal. P is not restricted as in EqA5). This form simplifies the
The use of Green’s theorem therefore allows a convenientalculation of the line integrals and we shall use it in the rest

physical picture of interacting boundaries. This simplifica-of this work[22].
tion will be used in the treatment of the fluctuations of the In the treatment of the stripe phase we téfa simplic-
domain boundaries, where the area of the domains is cority) Ky out of the definition of P. We introduce
served and the only relevant energy is that of the boundarie¥/(R)=p 3, as defined in Eq(2.1), and the functiorP(R)

that satisfiesV?P(R) = 2V(R). Using Eq.(2.2) the electro-

2. Dipolar case and application to the stripe phase static part of the energy per cell is written

In the case of dipolar |nt_eract|on9(=3) Eqg.(A10) is in Econ= €151+ 6,5
agreement with the formalism of McConneit al. [21,34],
and differs from it only in the way the microscopic cutoff is L 5 ) . .
introduced. In the latter, the microscopic cutoff is explicitly —iM _E J j d*r o, 0% VAT o T LD
included in the potential which is written === 705709

[

(A12)
Kq
VdipEVSZF' (A11) Using Green’s theorem, E¢A3), for each of the integrals in
Eqg. (A12) we obtain a physical picture of interacting bound-
wherep=(R?+A?)'2 and A is the microscopic cutoff. Us- aries of polarities, which are indicated by the arrows in Fig.
ing this definition implies thaW?P=3V everywhere; thus, 1. The dipolar energy per cell is now written

= 2 : — " d1 . d1
Ece” 6181-0— 6282+/.L J;x é(oyl) %(j’Z)P(“(Oxl) r(j’2)|)d|(0’l) dl(j,2)

©

L/2

L/2
= €151+ €65,+ sz;w s f_ L/deldxz{P(\/(j +¢)°D%+ (X1~ X2)?)+ P(V(j — )’ D+ (X1 — X2)?)

—2P(V(iD)*+ (x,=x2) D)}, (A13)

where in the last step we used the fact that in the thermody- * b\2

namic limit (i.e., L—«) the only significant contribution to Sin(77q5)=(77¢)1_[ [1—(—) , (A15)

the line integrals comes from the boundaries parallel to the n=1 n

stripes. Since these are line integrals, each boundary has a

“polarity” (up or down as indicated by the arrows in Fig. 1. we finally obtain Eq/(2.3),

The interaction energy between two antiparallel boundaries

separated by a distange<L is D sin(we)
Ecen=LD[ e+ (1— ) ey]— 2L u? Ing +1+In— }

(Al16)

L/2 L2
E(W):_MZJ f XmdXZP(\/(Xl_X2)2+W2)
—L2d oy APPENDIX B: FLUCTUATIONS
OF TWO BOUNDARIES

—uPL |n<2—L) if w>A; _ _ _
we The use of Green’s theorem gives a physical picture of
- oL (A14) interacting boundaries through some pair potential. Thus, in
— uPL In(X) if w=0. order to analyze the fluctuating stripe phase we consider the
case of two fluctuating boundaries. This analysis is extended
to the stripe phase in Appendix C. As in Appendix A we start
with the more general case and consider a power-law inter-
actionV,, as defined in EqfAl). In Sec. Il it was shown that
the interactions are reduced to line integrals over straight and
parallel boundaries. We now consider two such boundaries
of lengthL, separated by a distanee (the casew=0 was
treated by Flament and Gallg23]) and let them fluctuate
Ybout their equilibrium positions with small perturbations
y1(x;) andy,(x,) with (yi>xi=0. Due to the extra line

The boundary-boundary interaction kernel is written
P=3p 1 for p>A, which is always correct fow>A. The
casew=0, which may be referred to as the self-energy of
the boundary, corresponds to the last term of @d.3) with
j=0. In this case a multipole correction term, which is
— u? per unit length, must be taken into account as shown b
McConnell and de Kokef21,35.

Using Eq.(A14) for each of the terms in the sum in Eq. _ -
(A13), and using the identity lengthdl; has now a component in the direction and be-
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comesdl;= =dx;(X+ dy,/dx y), where the plus sign corre-
sponds to a down arrow boundary and the minus to an up
one (see Fig. 1L The interaction energy of two antiparallel

boundaries separated by an average distamcas in Eq.
(A14) becomes

L/2 L/2
En(w)=— sz f dx,dx;
—L/2Y - L/2

dy,; dy,
_ 2 _ 2
X Pn(\/(XZ Xl) +(W+y2 yl) )( 1+ Xm dX2 .

(B1)

[In order to be consistent with the notation of Appendix A

and Sec. Il we haveu?=(o,—0,)% for n#3 and
w?= (01— 0,)’Ky for n=3.] After expandingP,, up to sec-
ond order iny and assumingdy;/dx;<1 one finds
En(w)=E%(w)+AE,(w), where ES(w) is the interaction
energy of the straight boundaries, ané&,(w) is the fluc-
tuation energy, given by

dy; dy,

__ .2 - _7“
ABN(w)=—? [ dxax, 2Py

11 )
+‘E(V1‘Y2) 1

2] ar

W2> IPL(T)
;

w? 9°P(r)
+ %(Y1—y2)2r—z Tnz

w dP,(r)
+(Y2_Y1)T ;r

(B2)

Here, r=+/(x;—X,)2+w? and the double line integral is
now considered as a surface integral over a square of area

A=L2. The integral in the last term &fE,(w) vanishes for

n>2 in the thermodynamic limit, since the average value ofExpanding y; in

NN

cell -1 cell 0 cell 1

FIG. 6. The fluctuating stripe phase. The equilibrium positions
of the stripe boundaries are shown in dashed lines. Each boundary
fluctuates with an amplitude.,(x,i), wherei is the cell index and
m=1,2 is the boundary index within the cell. Using Green'’s theo-
rem, the dipolar fluctuation energy is represented by double line
integrals that correspond to boundary-boundary interactions. The
interactions are between boundaries of stripes labeled 1 and stripes
labeled 2. Each boundary has a “polarity,” indicated by an arrow,
that corresponds to the direction of integration along this boundary.

modynamic limit with respect to the first one for>2. Thus,
for n>2 we are left in the thermodynamic limit with

AE,(w)=— %szAdxldxz(Y1_ yz)ZVZPn(r)

=—3 szAd X1 0% (Y1 = Y2)2Vn(1). (B4)

the Fourier series, y;(x;)= (1/

the fluctuations is zero. Applying Green's theorem again weyL) quiqe‘qxi, we obtain in the thermodynamic limit

obtain

AE (W)=—3 Mz fAdxldXZ(yl_ Y2)2V2Pn

J 2
- ﬁgdxlﬁ_xl[(h_yz) Pnl

+§dx1

B

—%dxz
B

whereB represents the contour of the squéreUsing peri-
odic boundary conditiong(— L/2)=y(L/2) the second in-
tegral is found to be independent of the system dizén the

J 2
5_)(1()/1_)’2) Py

(B3)

J 2
(9_)(2()/1_)/2) Pats

AE(W)=3p% 2 [Va(@w) +Va( =Wy 3,

=2y lya Va0 (B5)

whereV,(q,w)=f " duV,(JuZ+w?) e,

APPENDIX C: NORMAL MODE ANALYSIS
OF THE FLUCTUATING STRIPE PHASE

In this Appendix we consider the fluctuations of the
boundaries of the stripes about their equilibrium positions,
assigning an independent small perturbation with a zero av-
erage to each of the boundaries, as shown in Fig. 6. We
derive an expression for the fluctuation free energy, that

thermodynamic limit and hence negligible with respect to thdeads to two branche&coustic and opticalin the energy

first one. The second integral vanishes identicallyvicr O
as argued by Flament and GallgB8]. Thew=0 equivalents

spectrum.
In Sec. Il we treated the stripe phase in equilibrium and

for the last two integrals do not appear in their results. Weconsidered the energy per cell in EQ.2), which was pos-
find that these two integrals are also negligible in the thersible due to the symmetry of this phase. However, when we
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treat the fluctuations of this phase we must consider the totalhereN is the number of cells an@ e (— #/D , @/D) lies
fluctuation energy. Using thg (n) notation of Eq.(2.2) we in the first Brillouin zone of the reciprocal lattice of the su-

find percrystal. We include in the boundary energy the micro-
scopic line tensiony [see Eq.(2.4)] and the resulting fluc-
tuation Hamiltonian is written
Edlp 2 E UmUanJ’ f 2
mn=1i,j=—o @i,myJ (j,n) (im (.n

1 ~ ~ _
H=32 2 Y(0.Q9@.QY'qQ. (€4

><V(| (i,m) (, n)|)
where?(q,Q)z('\?1(q,Q),72(q,Q)) is a row vector and
=Ep+u? E % § G isa2x2 matrix, whose detailed derivation is given in
bi=me S0 J62) Appendix D,
><P(|r(| y 1 2>|)d|(n,1> dlu,z)’ (CD) G(9,Q)=B(q,Q)+1(yq?— By), (C53

Where Eb:€1A1+ €2A2 and ,U.2:(0'1_0'2)2Kd. Al and Where
A, are the total areas of the stripes with dipolar densities
o, ando, , and energy densitieg; ande,, respectively.
These areas are fixed since the perturbations have a zero
average and thug, is the equilibrium bulk energy. Each of
the contour integrals in EGC1) can be divided into two line
integrals[of the same form that was considered in Eg1)

for two fluctuating boundarigssince in the thermodynamic
limit the contribution from the ends of the stripes is negli- (C5b
gible. Subtracting the total equilibrium energy of the stripe
phase and using E¢B4), the relevant electrostatic energy

2+OC

’lg’(q 2 g (A/D) )W(2mk+QD)2+(gD)2

1 _ e i$(27k+QD)

X _ei¢(2ﬂ'k+QD) 1

and 3, is a positive function ofp, which is written

for the analysis of the fluctuations is written 12 u? +o
Bo=3 E Binn(0,0)= AD Z sir(mk)e ™ (A/D) 27k,
AEdip:Edip_Eequilibrium :E_w n; 1 ( 1)m+n (C5C)
o Using Egs.(C5) the fluctuation Hamiltonian of EqC4) can
xXAE" ([J—i+(m—n)¢]D) be schematically rewritten as
e 2 L2 (L2 1 —~ _
=43 3 om0 [ daang AH=33 S Tu@.Q) Yaa.Q)
=-=nm=1 —w2d -2 a Q
><[ym<x1,j>—yn<xz,i>]2 X('él(q,Q) G2(0,Q) Y*{(q,@) s
XV (x—x) 2 +[j—1+(m-n)$]?D?), (C2) 92(0.Q) G(a.Q)/1¥2(a.Q)
whereV(R) was defined in E¢(2.1) and using the definition where
of the equilibrium dipolar energy per cell in EQ.3 we 272 £
~ _ oD 2 a2
have Egquitibrium= (Number of cellsK E..;. The boundary G1(q,Q)= S e (ADNRakr QDA (D) g2
fluctuation amplitudes are denoteg,(x,i), wherei is the k=—o

cell index andm=1,2 is the boundary index within the cell,

as shown in Fig. 6. The indices, (), (j,m) were attached to

AE in order to label the boundaries 1,2 that appear in Eqangd
(B4). We diagonalize this quadratic form of the energy by
transforming both thex coordinate and the discrete ~ 2mu? O
coordinates j,i into  Fourier space. For x 92(9.Q)=~—3p kZ_
we  write  Yp(X,j)= (1/VL) Zqym(a,j)€'%, where g -
e(— mw/A,w/A). For j we introduce a discrete Fourier X @ 14(27k+ QD) (C7b

transform in thé? direction (perpendicular to the stripgs

— By, (C79

e~ (A/D)V(2mk+ QD)2+(gD)2

Thus, the problem is reduced to that of pairs of coupled
oscillators. We decouple the oscillators through diagonaliza-

?m(qu)_ \/—Z yi(Q,])€1P9; tion of Eq. (C6), which yields

1 _ _
H=22 2 [G.(a.Q)V:(q.QI
qg Q

. . 'JDQ C3 ~ oy
Ym(Qhj)= fQ m(a,Q)e” (€3 +G_(0,Q)|Y-(9.Q)]2], (C8)
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where C11(0,0=C,4q,0)
G-0.Q=6(a.Q=[G(a.Ql,  (Co L DE [(90(p—5)D)
37+(q,Q)=%[%(q,Q)te”%(q,Q)] (C9b) +V(0,(p+ ¢)D)]-2V(0,pD)]
and +[V(0.0+V(-q.0)];

a9 = gZ(q Q. lim 6(q,Q,¢)=m. (C99  C11(a,|#0)=Co4q,]#0)= 7 £’[V(q,ID)+V(—0,ID)];
[Gx(a.Q) Q)| QD0 ' ’
— 1. 2 .

G, and G_ correspond to the optical and acoustic CAql) ==z w V@ (+¢)D)+V(=a,(I+¢)D)];
branches of the energy spectrum, respectivély yanishes L o -
in the limit qD,QD—0). It is important to note that Eq.  C2.1(a.1)=— 7z xV(Q.(I-¢)D)+V(-q,(I-¢)D)].
(C90 implies that in the limitQD—0 the acoustic and op- (D2)
tical branches coincide with symmetric and antisymmetri .
modes of the stripes, respectively. cWe defines5(q,1) such that

This general form of the second-order fluctuation Hamil-
tonian will be further analyzed in order to calculate physical
quantities. However, an important property of the system can B o= Cr o
already be extracted from this expression: THg,Q) are L2tz
not eigenvectors of the system, nor anéth the exception of B =C (D3)
the Q=0 cas¢ the symmetric and antisymmetric modes of 212l
the stripes(Y1(9,Q) +Y2(9,Q),Y2(9,Q) = Y1(q,Q)). Thus,  with its discrete Fourier transform
any separate analysis of the only symmetric or antisymmetric
modes neglects their coupling and is only an approximation, _ ‘
which becomes a good one only at long wavelengths B(q’Q):me B(q,m)emP<, (D4)

(Q—0). Infinite wavelength(in the y direction,Q=0)

symmetric or antisymmetric modes, for which these modedJsing the above definitions EGD?2) is rewritten

do decouple, were considered by several authbdsl6—18

in the context of stability of the supercrystal. However, these C(q,1)=B(q,1) 14, Bo, (D5)
Q=0 modes cost a macroscopic amount of energy, which

makes them improbable, and hence one must consider finitgheres, is the delta of Kronecket, is a 2xX2 unit matrix,

By1=Bys= 3% u[V(q,ID)+V(—q,ID)];

Q modes in calculating physical quantities. andB, is a positive function ofp, which was defined in Eq.
(C50. We add to the dipolar energy the microscopic short-
APPENDIX D: THE KERNEL OF THE GENERAL range attractions through the line tensipnUsing the nota-
FLUCTUATION HAMILTONIAN tion of Eq.(D1) the fluctuation energy due to the line tension
is written

In this Appendix we derivej(q,Q), the kernel of the
second-order fluctuation Hamiltonian of the stripe supercrys-
tal, as it appears in EqC4) .

We first expand the perturbations of the boundaries in the
Fourier seriesym(x,j)= (1/\L) Zq¥m(q,i)e'", and use EQ.  where again=j—i. Using Eqs(D1) and(D6) we obtain the
(B5) to rewrite the electrostatic fluctuation energy of EQ.ota| fluctuation Hamiltonian,

(C2) as

I\)II—‘

% EJ 5 A°Y(a,)Y'(a,j),  (D6)

AH=AEq,+AE,= E 2 Y(a.i)G(a.) Y (a.j),
AEgip= 22 S vaic@i-ny'@i,  © "

(D7)
whereY(q,i)=(y.(q,i),y»(q,i)) is a row vector and’ is a  where using Eqs(D5) and(D6) we find
2X 2 matrix. Note that due to the discrete translational sym- )
metry of the supercrystalC is a function of j—i and g(a,H=5B(q,1)+15 (vq°—Bo). (D8)

we denotel=j—i. Using the definition ofV(R) in Eq.
Using Eg. (C3) we represent the boundary perturbations

(2.1) we introduce the one—dimensional;? (direction Y(a.1) in Eq. (D7) as a Fourier series i space. We trans-
Fourier transform of V(yx“+w7), such that V(q,w) form the summation indices fromi,{) to (I,j). Thus we

+oo i . o
=J_duv(yus+w)eh  Using that 2, .V(O.(P  optain the full Fourier representation of the fluctuation
—¢)D)==2,__.V(0,(p+ ¢#)D) we obtain Hamiltonian, Eq.(C4), with the kernel
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Ga.Q= % 6(ape?=5g.Q)+1(ye’~Bo).
(DY)

We use the method that was developed in Appendix E in
order to extencB(q Q) from B(q 0). Using Eq.(D4) and a

Gaussian representation for the potential

V(R)=[R?>+A?]" 32= _ 4 z)f dte- (RP+4212,

Jar 9(A

(D10
in Eq. (D3) we obtain

B@0= X Bgm)

= 2\/M—a(A f du(e'd+e~ 'q”)f dtA(t,u),

(D11)

where A(t,u) is a 2X2 matrix

A (tuy=(—1)"" > exp —|u?+(2mm

m=—o

2

+2ma,,)? +A2|t? (D12

2m

anda, | =(I—
Eq. (E5), for Eqg. (D12) we obtain

T
Ari(t,u)= ge*“z*W(— !

ak 2
X E exr{ (tD) —i2mwka |.

(D13
Introducing Eq.(D13) in Eq. (D11) we obtain
2

2u
rl(q 0) __( 1)r+|k_z e i2mkay |

* d 2,2 2
% -1 —A“t —(wk/tD)
fo dtt a(Az)[e le

X f du(eliV+ e iauyg—tu?

Amp?
D

(— 1)r+l 2 efiZﬁkamfwdt
0

k=—o
2 IZ}’

(D14)

2
+q

which gives after some calculus

r)¢. Using the Poisson summation formula,
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~ 27 u?
B (0.0 = e (~ 1)

% 2 — (AID)V( 211-k)2+(qD)

k=—x

—i2mkay |

(D15)

Comparing the definition oB in Eq. (D4) with Eq. (E2), we
identify W in our case aQD/2 . [Equations[E2) and (E5)
require the argument to ber@n, while the argument oB in
Egs.(D4) and(D11) is m. We achieve the proper form of the
argument by transformingm—2mm together with
D— D/2m, as is done in Eq(D12).] Using Eq.(E4) we
substitutek with k+ QD/2# in Eg. (D15 and extend
B(q,Q) from B(q,0),

~ 27’
Br,|(qu)= AD

X >, e (AD)N2mks QD)2+ (qD)?

k=—o

W @~ i(2mk+QD)ar, (D16)

Substitutinga, ;= (1 —r) ¢ we finally obtain Eq.(C5b).

APPENDIX E: THE EXTENDED POISSON
SUMMATION FORMULA

In this Appendix we find the relation between the continu-
ous Fourier transformation of a function and the discrete
Fourier transformation of the same function evaluated at dis-
crete points. Consider the continuous functidx) with the
Fourier transform

~ 1 (= )
H(fl)=§fﬁwdxé”xh(X);

h(x)= J " dye Ay, (ED)

as well as the same function evaluated at discrete points
x=2mm with the discrete Fourier transformation

HW)= D 2™y (27m). (E2)

m=—ow

Using the Poisson summation formula, E(E5), with
h(27m) = 6(n—m) we find

o

kE S(p—ky= > e iz (E3)

=—c m=—o

Using this identity together with EGEY), Eq. (E2) is rewrit-
ten
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ﬁ(W): Z eizmeJtL dr]efiz"m”l:l(n)
=" aniin = ar-w-k

=k_2_ H(k+W). (E4)

This equality reduces in the case Wf=0 to the Poisson
summation formulgsee, for example, Ref36]),

+

H(0)= 2 h(27m)= 2 H(k). (E5)

Hence, it is possible to exten’a(\l\l) from ﬁ(O) by merely

substitutingk+ W for k in the argument oH in the Poisson
summation formula.

APPENDIX F: FLUCTUATION HAMILTONIAN
FOR SYMMETRIC MODES

In this Appendix we calculate the kern@l(q,Q) for the
fluctuation Hamiltonian of the symmetric modest, and
find its long wavelength approximatidine., its value in the
limit gD,QD<1).

Our model contains only symmetric modes and therefore Z,(Q)= =

we have only one degree of freedom per cell. Thus,(E¢)
for the full fluctuation Hamiltonian reduces to E@.1),

1 ~
Hs=52 [¥(0.Q)1°G(a.Q), (F1)
a.Q

where

2

G(Q.Q= X Gna(a.Q). (F2)

Using the definition oﬁ(q,Q) in Egs.(C5) we obtain

G(9,Q)=F(q,Q)—F(0,0+2yq? (F3)

where

2 »

> sird (2wk

2
F0.Q= X Bna(a.Q=3p

+QD)§ @~ (A/D)V(2mk+QD)?+(qD)*. (F4)

Separating the sum in E¢F4) we obtain
F(0,Q)=F(0,Q)+Z(0,Q)+Z(q,~Q),  (F)

where

3923

2
SirA(3QD¢p)e (A/DV(QD)*+(aD)?

(F6)

A
- 5(27Tk

2
] (F7)

~ 8
Fo(0.Q)=

is thek=0 term and

2 ®

MEsinZ

AD

+QD)\/1+

In the long wavelength regimgD,QD<1, and the expo-
nent in Eq.(F7) can be expanded faqfD<27k+ QD, since
|QD|<m andk=1. We thus write

(2’7Tk+QD)§ ex

Z(q,Q)=

27k+QD

Z(0,Q)=2Z(0Q) +Z»(Q)(qD)?+Z,4(qD)*

+higher order terms. (F8)

Denotinge= A/D which is a small parameter, we find

,
Z(0Q)= SAD Z sir? (2wk+QD)§ g €(27k+QD)
(F9
1#°Z(q,Q)
2 9(aD)? |
a
W2 sir?| (2wk+ QD) >
E o €(27k+QD)
k=1 27k+QD ’
(F10
~15'2(a,Q
24 9(aD)" |,
w? & sin(mk
SWZDZE 2 (kw D214 e2mk). (FLI

Using Eq.(F8), Eq. (F5 becomes

F(9,Q)=Fo(0,Q) +F(0,Q)+F»(Q)(qD)?+F4(qD)*
+ higher-order terms , (F12
where
F(0Q)=Z(0Q)+Z(0-Q), (F13
Fa(Q)=ZxQ)+Z5(—Q), (F14)
F,=27,. (F15

For the calculation oE(O,Q) we represent the sine in Eq.

(F9 in terms of exponents and obtain a geometric series

which sums to
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47m 2coslieQD) 1 co§$(2m+QD)Je” QD+ cog p(2m—QD)]e P — 2e‘2”fcos{¢QD)cosr(eQD)

F(O Q) e27TE_1 2

Noting thatEo(0,0)iO, we conclude from EqF12) that the

only contribution toF (0,0) comes from the terda(0,Q). By
expanding their difference ie we find using Eq(F16)

F(0,Q)—F(0,0)

2
- 4;’; [—ZSinz(%QDqﬁ)e‘l

+ %(QD)2+27Tsin2(%QD¢>)sin’2(7r¢)

—(QD)cot{7m¢)sin(QD )

O+ 0(5)}. (F17)
ExpandingEo(q,Q) in € and using Eq(F6) we find

- A2
Fo(a.Q)= —57-{—2sif(3QD) e
- (QD?+(aDP+0()]}.  (F18

The € ! term of Eo(q,Q) is thus canceled by that of Eq.

(F17 when both are introduced in EqF3). In the long
wavelength approximatio@D<1 and we neglect the®
term of Eq.(F18), which is third order ingD,QD with re-
spect to thee® term of Eq. (F17), which is of order
(QD)2. Thus, using the definition d8, in Eq. (3.3,

Bo(¢)=2[1+sinc *(m¢) — 2(m¢p)cot m)],

we find

Fo(d,.Q)+F(0.Q)—F(0,0
2

o
= 52Bo(#)(QD)?
+higher order termsine, gD, and QD. (F19

We now consider the fourth-order term. Using E@&15),
(F11), and the definition oK, in Eq. (3.33,

< sir’(mke)
Ko(d)= 32 k—z
we find

F4:F[KO+O(E)]. (F20

Finally, we consideEz. Using Eq.(F14) and expanding Eq.
(F10 in QD we find

cosi2me)—coq 27 )
(F16

Q)= u? & smz(:kqs) .

=1

& sin(27ke)
2 (2mk)?

87T,u

—(QD)? >
k=1

sif(mkg) @2 cog2mke)
2k 4 (27K)? }“Lo(é)

+0((QD)%. (F21)

Introducing this result back in Eqg.(F12 vyields a
(QD)?(gD)? term which we neglect in this approximation
with respect to the @D)? term of Eq.(F19), and a ¢D)?
term. Thus, using Eqs$F12), (F21), (F20), and(F19 in Eq.
(F3) we obtain

2

G(0,Q)= 52[Bo($)(QD)*+Ko(#)(aD)*+O(e)]

Ap?| & sirt(mke) ok 1y )
el el CRE

(F22

As shown in Appendix G the coefficient o§D)? (i.e., the
effective line tensiohis zero toO(€) due to the equilibrium
condition. Thus, using EqG7) in Eq. (F22), we obtain

2
G(0,Q)= 52[Bo(#)(QD)*+Ky(#)(aD) ]

+ higher order terms ie,qD, and QD.
(F23

APPENDIX G: THE EQUILIBRIUM CONDITION
FOR THE STRIPE-PHASE

In this Appendix we derive the equilibrium condition for
the stripe phase in an alternative form to that derived in Sec.
Il. This form is compatible with the calculations in Appen-
dix F and we use it to prove the vanishing of effective line
tension for the symmetric modésee Eq.(F22)].

We rewrite the free energy density of the stripe phase, Eq.
(2.4), using the Poisson summation formula and a Gaussian
representation foP. The multipole correctiofalready men-
tioned after Eq(A14)] will be introduced at a later stage.

1
P(R)= p 1=1(R2+A2)~ 2= f dte— (RP+AHE?
e
(GD
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The boundary energy per c¢lbst term of Eq.(A13)] is

L/2 L/2
AEceII_M 2 f dx;dx,
=-w J—-1L/2 L/2

X{P(J(M+ ¢)?D?+ (X1 — X2)?)+ P(V(M— ¢)?D?+ (X1~ X2)?) — 2P(y(MD)?+ (X1 — X2)?)}

.
32 3 [ de[ anlP(mT @77 )+ P(m= @177 ) - 2P((mDP T )

=u’L X " dyfP((m+ D7+ 7))+ P((m— §)PD%+ 7))~ 2P(mD)2+ 7P}, (G2

whereé= x4+ X,, 7=X;—X,, and the limits of the integration overwere taken ta- « due to the convergence of the integral.
Using Eq.(G1) and the Poisson summation formula Eg5) in Eg. (G2), we obtain[in the same manner that E@p15) was
obtained the energy per unit length

AE AEceII f dz \/_f dt 2 el (2mm+ 2w ) (DI2m)2+ 52 +A2]t2+e [(27m—27$)(DI2m)2+ n%+ A2]t2

m=—cwx
_ g~ [(2mm)2(Dr2m)?+ 7%+ A%t

4,U«2 - 2 R — A2 (k/D)%t 2 * 12,2
Z_Tk?w sinf(mk ) Odtt e ﬂcdr/e

- 4\/_’“ E Sil’12(7qu§)facdtt‘ze—Aztz—(vrk/D)Zr2
k 0

=—o0

:_4M2§ sz(ﬂ

e*eZﬂ'k. G3
k=1 k (G3

The multipole correctiorf21] is —x? per unit length per The sum was calculated by representing the sine in terms of
boundary to ordelO(€®). Having two boundaries per cell exponents, thus obtaining a geometric series which can be
and introducing the microscopic line tensignthe free en- summed exactly. Using Eq8G4) and(G6), the equilibrium

ergy density is written condition, Eq.(G5), is rewritten to ordeiO(€®)
Af=%(AE—2,u2+~y) w2 & sing( wk(;b) 1y
Z ek~ 202 =0. (G7)
i sir? Wkd)) 62”k+% +2D—7. (G4

Note thate in the argument of the exponent plays a role of a
In order to obtain the equilibrium condition we minimize hatural cutoff. The sum in EqG7) diverges in the limit

Af with respect taD and find e—0 and it is therefore necessary to keep a finite value of
€ to maintain convergence. This has the result that the equi-
0 J(Af) AT 9(AT) de AT 4MS librium quantities depend on the cutoff, as indeed was found
oD D ge oD D D2 in Egs.(2.5).
(GH
where APPENDIX H: THE KERNEL
® FOR THE ANTISYMMETRIC MODES
32277621 sinf(mk¢p)e™ * In this Appendix we calculate the kernél,(q) for the
fluctuation Hamiltonian of the antisymmetric modes of one
1 1 cog2m¢)—e 27€ stripe in the supercrystébee Fig. 4. The rest of the stripes
TmEZre_1 2 cosi2me)—cog2m¢) are assumed to be at their equilibrium positiae., a mean

field approximation Without affecting the generality, we
=1 +0(€). (G6) choose the stripe labeled 1 in the zeroth cell. Using the no-
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tation of Eq.(D1) we have * 1 a2 = #?
- 2 |7 ¢>2 ( +¢>2}:_d7522 '”(1__2)
Y(g,i#0)=(0,0; Y(q.0=Yyo(@)(-1D, (HI) p=1 (P~ P p=1 P
2
whereY(q,i) is a row vector, whose two components are the =— —In[sind w¢)]
ith cell boundary displacements in Fourier space. Thus, dé
2yo(q) is the Fourier transform of the local change in the = ¢ sinc 2(mp)—1].
width of the stripe. EquatiofD1) is rewritten H5)
AEdipZEE Vo(9)|2G4(q), (H2a) SubsututlngE p~?= 7?6 and Eq.(H5) for the sums in
249 g. (H4) we fmd
where _ . Ki(ga) 1
Gd(Q):‘]‘MZ[ Do ’[1- 3sir(me)]+0° lq—A— TN
Gy=7140,0)+7240,0~ £144.0~ 724(0,0.  (H2b)
_ n K1(gDy) (H6)
An explicit calculation of V(gqw)=/"_du(u®+w? qD;, ||’

2y —(3/2)niqu i . e . . .
+A°) e'd" gives whereDy, is the equilibrium stripe width for surface fraction

¢$—0. Using Eq.(2.5b, Dy is defined

4

V(q W)+V( a, W)— Ki(qw'); Do= lim Dleeymz_ (H7)
¢$—0

Y0 _i H3 Adding to the boundary energy the microscogihort-

(Ow)= w2’ (H3) ranged attractions through the line tensiopy we find the

fluctuation Hamiltonian for the antisymmetric modes for one

whereK(x) is the modified Bessel function of order 1. To stripe,

O((A/D)% we havew’=w for w>A and w'=A for 1
w=0 [35]. Using Eq.(H3) in the definition ofZ, , in Eq. AHa=§2 yo(@)[*Ga(a), (H8)
(D2), Eq. (H2b) is rewritten 4

where
G 1 E 1 1 2 1 1 Ga(q) = Gy(q)+ 2 )
—_—— + R — =
4= u? DZ (p— ¢)2 (ptd)? p? Di A2 ald dalq Yq
Ki(qa) 1
Ki(gA) Ky(gD =4 2{Dzl—lsin%f )1+9? -
A D,
Ky(gDhy) 1
| . Kuaby L y11 (H9)
The first two sums are rewritten gD, 2 u
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