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Scaling properties of a percolation model with long-range correlations
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We present the results of Monte Carlo simulations of a percolation model with long-range correlations in
two and three dimensions. The correlations are generated by a fractional Brownian motion. The nature of the
percolation transition in this model is discussed. The percolation thresholds and the critical exponents of the
model are calculated. The exponents are found to be mostiyniversaland dependent on a parameter that
characterizes the nature of the correlations. Some possible applications of the model are discussed in detail,
including flow in field-scaleporous medigwith megascopidisordej with a given permeability distribution,
and estimating their effective permeability, and transport and dispersion in geological formations and explain-
ing the anomalous and nonuniversal behavior of the dispersivity that has been observed in many field-scale
experiments, in terms of the nonuniversal properties of our m¢8&0D63-651X%96)08109-3

PACS numbgs): 47.55.Mh, 64.60.Ak

[. INTRODUCTION long-range correlations. The goal of this paper is to investi-
gate various scaling properties of one such percolation
Percolation theory has become a powerful, much-use¢hodel, recently introduced by one of I, and point out its
tool for investigating various phenomena in disordered mepossible applications. But, let us first summarize the most
dia [1]. Its popularity stems from its relevance to a wide important scaling properties of percolation networks that we
variety of phenomeng2], and from the fact that despite the Wwish to study in this paper.
simplicity of its underlying concepts, it leads to nontrivial ~ Consider a two- or three-dimensional percolation network
critical phenomena. A partial list of its applications includesin which a fractionp of the bonds are conductirigve refer
various flow phenomena in porous media and rai], to such bonds as the open bohdmnd the rest are insulating
transport, mechanical and rheological properties of disor{their conductance is zerd\Near the percolation threshojid
dered materials such as polymers, glasses, and powders, hdie can define a correlation lengihwhich diverges ag. is
ping conduction in amorphous semiconductors, frequencyapproached according to the power gy (p—pc) " The
dependent conductivity in superionic conductors, reactiongorrelation length is the length scale for macroscopic homo-
diffusion, and deposition in porous structures, and evergeneity of the system. For any length scate &, the system
earthquakes and some biological systems. is macroscopically homogeneous, while for length scales
However, most percolation processes that have been stubl<<¢, the system is a fractal and statistically self-similar
ied so far deal with phenomena in which there is either n@bject. Nearp, the accessible fractioX” of conducting
correlation, or only a short-range correlation. The nature obonds, i.e., those that are in the sample-spanning cluster,
disorder in many important physical phenomena and medixanishes a*~(p—p,)”. For any length scale <&, the
is not, however, completely random, and usually there aréample-spanning cluster is a fractal object with a fractal di-
correlations of a given extent. For example, in packing ofmension D,=d—g/v for a d-dimensional system. The
solid particles, whose mechanical properties are described ample-spanning cluster can be divided into two parts: the
elastic percolation networks, there are usually some shorglead-end part that carries no flow or current, anditaek-
range correlations. However, the scaling properties of percd2ong which is the multiply connected part of the cluster.
lation with finite-range correlations are the same as those diearp; the fractionX® of the conducting bonds that are in
random percolation, if the length scale of interest is largethe backbone vanishes a&*~(p—pc)#s, while for any
than the correlation length. Moreover, if the correlation func-length scalel <&, the backbone is a fractal object with a
tion decays faster than ¢, wherer is the distance between fractal dimensiorDg=d— Bg/v. Similarly, the overall con-
two points andl is the dimensionality of the system, then the ductivity G of the network vanishes ag; is approached
critical properties of the systems are identical with those ofccording to the power la~ (p—p.)". If the open bonds
random percolatiofil]. In some other cases, e.g., field-scaleof the network represent the pores or channels of a porous
porous media and aquifers, there are long-range correlationgedium through which a fluid can flow, a hydrodynamic
(see below, by which we mean correlations whose extent ispermeabilityK can be defined that nepg obeys the scaling
comparable with the linear size of the system. In the pasiaw
there have been a few papers that dealt with percolation with
K~(p=po)*. @
*Present address: Applied Mathematics Research Center, MatiGurrently accepted values of these critical exponentyare
ematical Sciences Building 1395, Purdue University, West Lafay3 and 0.88,8=3; and 0.41,8;=0.48 and O.99Dp=i—é and
ette, IN 47907-1395. 2.52, andDg=1.64 and 1.87 fod=2 and 3, respectively.
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For most conductance and permeability distributions one has C(r)~r~@-9, )
t=e=1.3 and 2 fod=2 and 3, respectively. However, there
are certain cases for whidh e. Throughout this paper we where —2<(¢<2 is a parameter of their model, such that
treate as a distinct exponent. 0=<{=<2 represents positive correlations, whit€=</=<0 cor-
The plan of this paper is as follows. In the next section weresponds to negative correlations. Prakeshl. [10] studied
describe the percolation model that we study in this paperthis model in two dimension$2D) and showed that for
We then present and discuss the results of extensive Moni=<0.5 there is no change in from the uncorrelated value
Carlo simulations of the model. The paper is summarized inv=3. For 0.5<{<1.0 their results were consistent with
the last section, where we discuss possible applications deinrib’s resultq 8] [see Eq(5)]
the model.
2
Il. PERCOLATION v d-¢’
WITH LONG-RANGE CORRELATIONS

®

but for {=1.0 their estimated’s were consistently lower

One of the first studies of correlated percolation was carthan the predictions of Eq5). Moreover, the fractal dimen-
ried out by Coniglioet al.[6]. However, the range of corre- sion D, of the sample-spanning cluster was found to be un-
lations in their model was finite. The first model of percola- altered by the correlations. Schmittbuhl, Vilotte, and Roux
tion with long-range correlations was probably proposed by11] studied simple models of percolation with long-range
Weinrib and Halperiri7] and Weinrib[8]. In their model, a correlations using self-affine surfaces.
site percolation problem was defined by site-occupation vari- We now describe our percolation model with long-range
abless; at the siteqi} of a regular lattice of dimensionality correlations. Consider a stochastic procés(r), called
d, which take on the values 1 and O corresponding to occufractional Brownian motion(fBm) [12], with the following
pied and vacant sites, respectively. For the correspondingroperties:
bond percolation problem, tHe} label bonds. The system is

characterized by the site-occupation probability (Bn(r)—Bp(ro))=0, 9
p=(s), 2) ([Bu(r)=By(ro)1%)~Ir —rol?", (10
and the site-occupation correlation function where r=(x,y,z) and ro=(Xq,Yq,29) are two arbitrary
points, andH is called the Hurst exponent. A remarkable
C(ri—riD=(sisp)—(siXs)), ©) property of fBm is that it generates correlations whose extent

is infinite. For example, consider the one-dimensional case
and define an incremental correlation functioy(x) of the
“future” increments By(x) with the “past” increments
By (—x) by (the meaning of past and future becomes clear if
we replacex with a time variablg

where () is an average over all realizations of the random
variables{s;}. For a statistically isotropic system, the corre-
lation function depends only on the distarjce-r;| between
two sites at positions; andr;. For example, for random
percolationC(r)=p(1—p)d, o. Weinrib and Halperin[7]
and Weinrib[8] considered the case for which (=Bu(—x)Byx(x))
C(r)~r’)‘ (4) Ci(X)_ <BH(X)2> ’

(11)

then one finds thaC;(x)=22""1-1, independentof r.
oreover, the type of correlations can be tuned by varying

. If H>3, thenC;(x)>0 and fBm displaypersistencgi.e.,

a trend(for example, a high or low valuetx is likely to be

2 followed by a similar trend at+ Ax. If H<3, thenC;(x) <0

v=_. (5 and fBm generateantipersistencei.e., a trend ak is not

likely to be followed by a similar trend at+ Ax. For H=

1 -0 DY
Other critical exponents of this percolation model were alsce, (M€ trace of Bm is similar to that of a random walk, and

calculated to linear order in terms @=6—d and 5=4—)\.  he incrementsare uncorrelated. Fdd =—; the process is
Isichenko and Kaldf9] argued that for 2/>\>0 the critical gquwalent tq awhite 'n0|seand is completely rgndpm. Frac-
exponentB should be the same as that of random percola:[Ional Brownian motion has found many applications.

tion. However, this does not agree with field-theoretic results A convenient way of representing a dls_trlbutlon function
of Weinrib [8]. is through its spectral densi§(w), the Fourier transform of

its variance. For example, fordgxdimensional fBm it can be
shown that

where\<d. For \=d, the critical properties of the system
are identical with those of random percolation, and thus ar
not of interest to us. Weinrip8] showed that fon<d

Prakastet al.[10] considered a slightly different percola-
tion model in which the correlation functio@(r), defined
by

S(w)w(Eai:]-wiZ)H-%—d/Z' (12)

C(r)=Cu(ru(r+r"), (6)

where u(r) is a random variable obeying the distribution where o=(w;,...wq4). This spectral representation also al-
with long-range correlations, and denotes an average over dbws us to introduce a cutoff length scatg,= 1/{f, such
values ofr’, in ad-dimensional system is given by that
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1 have found that €H<0.3, indicating negative long-range
S(w,fe0)~ (for S0 2irae: (13)  correlations. We have shown tHai7—19 the reason for the
co” =i=1m difference between our results and those of the previous au-
This cutoff length scale allows us to control the scale ovethors is that the standaf@&/S) method that was used in most
which the spatial properties of a system are correldted of the previous studies is fundamentally biased and unreli-
anticorrelatell Hence for length scale§</, they preserve able. By generatingyntheticcorrelated data over a wide

their correlationganticorrelationy but for / >/, they be- ange ofH, we have showij19] that the(R/S) methodal-
come random and uncorrelated. dndimensions, the limit Wayspredicts 0.#H <0.9, regardlessof the value oH used

H=—d/2 represents a white-noise process which is com{Or generating the datd2) We have found that the perme-
pletely random. The spectral density representation also préiPility data may be represented approximately by fBm with
vides a convenient method for generating a sequence ¢f <0-2- In a recent paper Neump20] has reached a similar
numbers that obey a distribution with long-range correla-conclusion. Some of our data yieldethegativevalue ofH,
tions, using a fast Fourier transform technique. For exampldndicating a trend towards the white-noise limit and complete
in the case of fBm, one first generates random numbers, unfandomness. Some authors have argued that the permeability
formly distributed in(0,1), and assigns them to the sites or K_ a_nd porosity¢ are related exponentlally. I_:or example,
bonds of ad-dimensional network. The Fourier transform of Hinrichsenet al. [21] used the following relation between
the resultingd-dimensional array of the numbers is then- (e pérmeability and porosity:
calculated numerically. The Fourier-transformed numbers
are then multiplied by/S(w), and the results are then in- K=1027*P, (15
verse Fourier transformed back into the real space. The num-
bers so obtained obey a spatial distribution with the desiresivherea andb are parameters that they varied in a range that
long-range correlations. To avoid the problem associatedould highlight contrast in the local permeability distribu-
with the periodicity of the numbers arising as a result of theirtion. While Eq.(15) has been used in some field-scale simu-
Fourier transforming, one has to generate the array for #ation of flow problems, we have not found any indication
much larger network than the actual size that is to be used ifor its validity in our own data. One reason for this could be
the simulations, and use the central part of the network. Irthat Iranian oil fields are mostly carbonate reservoirs, which
the discussion of our results, when we refer to the size of are fundamentally different from the sandstone reservoirs
network, we mean the size of its central part that we used istudied so far. Moreover, there cannot be a general relation,
our percolation simulations. An alternative algorithm for such as Eq(15), betweerK and ¢, since obviously one can
simulating fBm, based on its integral representation, is dehave many porous media with the same porosity but vastly
scribed by Rambaldi and Pinazga3]. The spectral repre- different permeabilities. In any event, even if we use a fGn
sentation of distribution functions has been discussed in desr fBm to generate a correlated porosity field, and then em-
tail by Hardy and Beief14]. ploy an equation such d45) to generate the corresponding
A fBm was used by Sahinji5] for generating a percola- permeability field, the resulting permeability field would
tion model with long-range correlations. The motivation for contain long-range correlations, and while its properties
his work was provided by the work of Hewett and Behrenswould not be similar to one that is generated directly by a
[15,16, who analyzed the permeability distributions and po-fGn or fBm, for everyH used in generating the porosity field
rosity logs of heterogeneous rock formations at large lengtwve would have a corresponding permeability field which
scales(of order of hundreds of metersHe argued that the would contain the main ingredient of our model, namely, the
porosity distribution follows a fractional Gaussian noiselong-range correlations. Thus, based on our own data, we

(fGn), whose spectral density in, e.g., 1D, is given by have used fBm for directly generating a permeability field
with long-range correlations.
1 Before we describe our correlated percolation model, we
)~ wH-1 (14 point out that a fBm isnot a stationary stochastic process,

and as a result its correlation function, defined by Hj,

It can be shown that fGn corresponds, roughly speaking, tdepends orboth r andr’, and not justr —r’| alone. This
the derivative of fBm. Vertical porosity logs analyzed by distinguishes our correlated percolation model from the pre-
Hewett [15] produced valuedd>0.5, indicating the exist- vious models. Our correlated percolation model is as follows
ence of long-range positive correlations. The expomengo  [5]. We first generate a correlated permeability field by as-
obtained, was subsequently used for generating areal hetersigning to each bond of a network a number selected from a
geneity maps by simulating fBm statistics. fBm. To construct a percolation network and to preserve the

We have reanalyzefd 7] Hewett's data, as well as exten- correlations between the bonds, we remove those bonds that
sive porosity and permeability data from several oil fields inhave been assigned tisenallest(or the largestpermeabili-
southwest Iran. By using various methods of analyzing thdies. The idea is that in rock with a broad distribution of the
data, such as the standard rescaled-raR§g) method, the permeabilities, a finite volume fraction of the rock should
covariance technigue, and wavelet analysis, we have reachédve a small permeability, and therefore its contribution to
the following conclusions(1) The porosity data do indeed the overall permeability of the system would be small. Al-
show long-range correlations, as found by Hewett and othternatively, the removed bonds can be interpreted as the re-
ers, and can be well represented by a fBm. However, unlikgions that have been plugged as the result of a phenomenon
the findings of most of the previous authdds4—16 who  such as precipitation of solid particles on the surface of their
found thatH>0.5, i.e., positive long-range correlations, we pores. Such a precipitation process is the result of migration
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FIG. 1. A correlated percolation cluster with=0.8 in which FIG. 3. A correlated percolation cluster with=0.2 in which

30% of the bonds with the lowest permeabilities have been re30% of the bonds with the lowest permeabilities have been re-
moved. Lightest and darkest areas correspond to the regions witmoved.
the highest and lowest permeabilities, respectively.

small permeabilities are clustered together. Moreover, as we
of fines(small, electrically charged particlethat occurs dur-  can see in Fig. 1, the sample-spanning cluster generated by
ing water flooding that is used for increasing oil productionthis model forH >3 does not have many dead-end bonds and
from underground reservoif22]. Figure 1 shows a square is close to its backbone. This assertion is confirmed by the
network in which the permeabilities have been selected acaumerical results discussed below. Figure 3 shows a square
cording to a fBm withH =0.8, and 30% of its bonds with the network in which the permeabilities are distributed according
smallest permeabilities have been removed, whereas Fig. t8 a fBm withH=0.2, with 30% of the bonds with the small-
shows the same network in which the same fraction of thest permeabilities removed.
bonds have been removatirandom The striking difference To demonstrate the broadness of the permeability distri-
between the two is due to the positive correlations inducedbution that is generated by a fBm, we present in Fig. 4 the
by the fBm, as a result of which most bonds with large ornormalized frequency distribution of the permeabilities gen-
erated by a 2D fBm on a square network. As this figure
indicates, the distribution becomes broader with increasing
H. For H=0.7, the permeabilities vary by more than two
orders of magnitude, while fad =0.3 they vary over more
than one order of magnitude.
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FIG. 2. The same as in Fig. 1, but in which 30% of the bonds FIG. 4. The permeability distributions that are generated by a
have been removeat random 2D fBm for three values of the parametdr
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10" , sizes that we used, after deleting the boundary regions of
network to avoid the problems with periodicity of the
Fourier-transformed array of numbeftsee abovg were

10° % * KK KKK K K BONORINNGER KT L=256 and 64 in 2D and 3D, respectively. According to
finite-size scaling theorj23-25
107"} : pe(L) —pe~L ™1, (16)
so that a fit of the results fqr (L) to Eq.(16) yields bothp,
| and .

To estimate the permeability exponentwe first calcu-
lated the permeability of the networks by applying a unit
] pressure gradient to them, and assuming that each bond rep-
o resents a region of the pore space through which fluid flow
occurs, whose permeability was selected from a fBm de-
107 1 scribed above. Assuming a uniform cross-sectional area for
the bonds, and writing a mass balance for a nodé the
network,2;Q;; =0, yields a set of simultaneous equations for

X . the nodal pressures. He@g; =k;; AP;; , wherek; is the per-

10 10 - - -
Distance meability of bondj andAP;; the pressure drop along it. We
used periodic boundary conditions in the direct®merpen-

FIG. 5. The correlation functio€(r) on a square network in dicular to the direction of the pressure gradient. This set of
which the bond permeabilities are distributed according to a fBmequations was solved by a successive over-relaxation method
The results are, from top to bottom, for the crossover variabldn 2D and a conjugate gradient method in 3D. From the
feo=1, 104 and 0. solution of this set, the effective permeability of the network

was calculated, and the result was averaged over many real-

To show that, despite the finite size of the networks thajzations of the network. Although there are some efficient
we use in our simulations, the generated permeability fieldgigorithms for identifying the sample-spanning cluster and
preserve the correlations, we present in Fig. 5 the covarianGgs hackbond26], we used the solution to the pressure equa-
V(r) of the fBm. The results are for a 25@56 square net- tjons to also identify the backbone by finding the dead-end
work (the largest 2D size used in our studigd=0.7, and  ponds of the network—those along which the pressure drop
three values of the cutoff,,. As can be seen, whei,=1,  \was smaller than a small numbi@f the order of 10%)—and
i.e., when the length scalé ,=1./f, over which the per- removing them from the sample-spanning cluster. The re-
meabilities are correlated is smaélll lengths are measured maining bonds constitute the backbone of the network. In
in units of a network bonid the covariance function is essen- this way, the backbone fractiol® was calculated for a
tially constant, since the system is almost completely rangivenp, the fraction of permeable bonds of the network. The
dom. Forf.,=10* the covariance function becomes a con-critical exponente of the permeability can be calculated
stant beyondr =/,,=10°, whereas forf,,=0, i.e., when from the finite-size scaling theorj23,24, according to
/== and the permeabilities are correlated at all lengthwhich at the percolation threshold
scales, the covariance is never a constant. In fact, since for
fBm [see Eq(10)] V(r)~r?", the covariance increases with K(L,pe)~L "¢, (17
H>0 andr, and the results shown in Fig. 5 confirm this. ] ]

This demonstrates that the finite size of the networks used iWhile the backbone fraction obeys the scaling law
our simulations is large enough and does not distort or de- XB | ~Balv (19)
stroy the properties of fBm. '

We have studied various scaling properties of this percoz the packbone fractal dimension is calculated by noting
lation model, and have calculated the relevant critical €Xpog, 4 atp, the number of bondslg in the backbone is given
nents discussed above. In particular, we have studied thi ¢ B

percolation model in the square and simple-cubic networks,

and have calculateg,, v, 85, D, Dg, ande for the entire Ng~LPs, (19
range —3<H<1. We have found that, ad approaches-

1 the white-noise limit in 1D, the critical exponents already As is well known, ifL is relatively small, one has to include
approach their value for random percolation. Thus negativéhe correction-to-scaling terms in Eq46)—(18), in order to
values ofH essentially generate distributions that are moreobtain accurate estimates of the exponents. For example, Eqg.
or less random. To calculate the percolation threspgpldve  (17) should be rewritten as K(L,pd)~L " ®"[ay
used networks of various linear site and for each. we  +a,f,(L)+asf,(L)], where f;(L) and f,(L) are the
calculated theeffectivepercolation thresholg (L) at which  correction-to-scaling functions, and tas are constant. This

a given quantity, such as the backbone frack®vanishes. method does require a precise estimatgof However, be-

The results were then averaged over a large number of reatause of the large network sizes that we used, we found such
izations, ranging from a few thousand for small valued.of corrections to be small. Alternatively, one can plot
to 100 for the largest values &f Except for calculating the log[K(p)] versus logp—p.) for p close top., with the
correlation function shown in Fig. 5, the largest networkslope of the resulting straight line beieg A similar method

Covariance
N
o
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1 ; . . , , show the dependence @f (L) of the square and simple-

cubic networks on their linear side. As can be seen, ds
o9 ] increases the effective values pf(L) decrease sharply.
However, beyond a minimum size,, there is only a very
ost * ] weak dependence g, on L, if any. This minimum size is
aboutL ,=150 for the square network arid,=30 for the
ot 1 simple-cubic network. We conclude that if the percolation
=S and permeability properties of our networks are calculated
o6t : with sizesL>L ,, the results will be independent bf Since
most of our calculations discussed below arelfer256 (the
ot . square networkand L =64 (the simple-cubic netwopk we
are confident that our results are not affected by finite-size
o.4r 1 effects.
. In general, we find that correlatiorigositive or negative
035 % 00 15 700 70 300 change the percolation threshold of the system from its value
L for random percolation. However, the direction of the change

depends on whether we progressively remove the highest or
the lowest permeable bonds from the network. This can be
seen in Fig. 7 where we present the results for various values
of H. These results were obtained by progressively removing
the bonds with thdowestpermeabilities. Had we removed
the bonds with thehighest permeabilities, the percolation
os} . threshold p.,, of the resulting network would be just
pP.n=1—p. (see beloy, wherep, is the percolation thresh-
old shown in Fig. 7. This figure shows that, Esincreases
osf ’ from its value for the random caske,=—3, the percolation
thresholdp, of the system decreases from its corresponding
values for random percolation which apg=3 and 0.2488
for the square and simple-cubic network, respectively. The
reason for this is that the low or high permeable regions are
clustered together, so that if, e.g., we remove the bonds with
the lowest permeabilities, clustering of the high-permeability
. ] bonds still generates a sample-spanning cluster, even if the
02 - = > = = = o fraction of the removed bonds is below the percolation
L threshold of the network in random percolation. Figure 7
also indicates that only whe=—3 do our results approach
FIG. 6. The dependence of the effective percolation thresholdhose for random percolation, so that although the incremen-
pc(L) on the linear sizeL of the square networktop) and the  tal correlation function defined by E@l1) vanishes atH =
simple-cubic networkbottom. The curves are a guide to the eye. 1 the percolation properties of our model become identical
with those of random percolation only kit=—3.
can be used for estimatings . If accurate data are obtained, =~ What is the nature of percolation transition in our model?
and if large values oL are used, the two methods vyield
essentially identical results. We used both methods in order 1
to check the accuracy of our results. Moreover, using the
same methods, we carried out extensive simulations in the
limit in which all the long-range correlations vanish and our 085
percolation model becomes equivalent to random percola-
tion. The agreement between our results in this limit and
those of random percolation confirms the accuracy of our
method(see below. p. &—
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Ill. RESULTS AND DISCUSSION r *
L ] v v
The first issue we discuss is the effect on our results of the o2r VY oy o
finite size of the networks used in our simulations since, v
strictly speaking, all the scaling laws of percolation are valid . ‘ , M
only for infinitely large networks. Although we already -05 0 H 08 !

showed that the finite size of the networks does not destroy

the correlationgsee Fig. %, we also studied how the effec-  FIG. 7. The dependence of the bond percolation thresholof
tive values ofp.(L) vary with L. This can tell us what linear the squardcircles and the simple-cubittriangles networks orH.
size L approximates an “infinite” network. In Fig. 6 we Arrows indicate the corresponding values for random percolation.
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_FIG. 8. The dependence_of the correlation Ie_ngth exponent FIG. 9. The dependence of the backbone expogsgnon H in
H in 2D (circles and 3D (triangles. Arrows indicate the corre-  op (gircleg and 3D(triangles. Arrows indicate the corresponding
sponding values for random percolation. values for random percolation.

To answer this question we also calculated a few geometric
exponents of our model. We found thatlepends weakly on
H; this can be seen in Fig. 8, where we show the dependen
of vonH. In 2D, our initial simulation$5] indicated thaD ,

%B*)d as H—1, and that forH>3 the sample-spanning
cluster and its backbone are similar. Sifigg>Dyg, the re-
ilts shown in Fig. 10 confirm the near compactness of the
sample-spanning cluster pt. However, forH <O the dif-

. . _91__ - .
may retain its value for random percolatioD,=z=1.9.  forance betweeB, andDyg increases, as they approach their
However, estimating, accurately in 2D proved to be dif- 5,65 for random percolation in the lintit=—%, D ~2.52
ficult. The sample-spanning correlated percolation cluster aPsng Dg=1.87 P

pears to be compact, even@t. Since for random percola-
tion in 2DD,=1.9 is only slightly less than 2, the Euclidean
dimension, it is difficult to distinguisib ,~=1.9 fromD ,=2.
The matter becomes clear only in 3D where our calculation
indicate that at least fdd >0.5 the sample-spanning cluster
at p; is nearly compact, and in fad,—3 asH—1. For
0<H<0.5 the sample-spanning clusterpatis less compact,
although it still appears to be very dense. Only witen:
—3 does D, approach its value for random percolation
D,=2.52. SinceD,=d—pg/v, the fact thatD,=d for
0<H<1 means that the critical exponeptis essentially
zero. A zero value of3 may indicate that the percolation
transition on the sample-spanning clustés first order, in
contrast with random percolation, for which the transition is
second order. However, as our results for the backlisee

below) indicate, the percolation transition on the backbone is 3
second order. Thus, unlike the random percolation, there is a L
distinct difference between the nature of the percolation tran-
sition on the sample-spanning cluster and its backbone, if
there are long-range correlations of the type that exist in our - v
model. Note, however, that the hull of the sample-spanning .|
cluster, i.e., its external surface or perimeter, is very rough, v
and is probably fractal with a well-defined fractal dimension, I
which may then indicate that the percolation transition on the 18
hull of the clusters is also second order. Thus our percolation <
model offers a rich and intriguing variety of possibilities that
do not exist in the random percolation.

These results can be understood better if we study the
properties of the backbone of the correlated percolation clus- 1 , ,
ter. Figure 9 presents the dependence of the backbone expo- -95 0 H 05 !
nentBz onH for d=2 and 3, while Fig. 10 shows variations
of the fractal dimensio®g with H, thus confirming that the FIG. 10. The dependence of the fractal dimensidg of the
percolation transition on the backbone of our model is secbackbone orH in 2D (circles and 3D(triangles. Arrows indicate
ond order. We also found thd&g increases withH, that  the corresponding values for random percolation.

Figure 11 compares the permeability of a correlated
square network with that of a random one. These results
were obtained foH =0.8. As can be seen, the permeabilities
df the two networks are drastically different. Similar results
were obtained for the simple-cubic network. On the other
hand, if we compare the permeability of a correlated network
with H<3 with that of a random network, the difference
between the two is not as drastic as that shown in Fig. 11.
' This is clearly seen in Fig. 12 where we compare the results

for a simple-cubic network wittd =0.2. These results indi-
cate that, ifH<3 and the fraction of the removed bonds is
not too large, the difference between the permeability of a
correlated network and that of a random one is relatively

Ds
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FIG. 11. The permeability of a correlated square netwsdtid
curve with H=0.8, and its comparison with that of a random  FIG. 13. Logarithmic plot of the permeability of a 256<256
square network. In the correlated network the bonds witthigh-  correlated square network witth=0.9, vsp—p. . The straight line
est permeabilities are progressively removed until the percolatioris & guide to the eye.
threshold is reached.
H<3. An example is shown in Fig. 14, where we show the

small. Only when the percolation threshold is approache\(jiog'arithmiC plot of the permeability of a 646464 corre-
does the difference become large. This is due to the negativa€d Simple-cubic network versys-p for H=0.35. Simi-
nature of the correlations fai <1. In this regime, the clus- @' 0 Fig. 13, Eq(1) is completely obeyed and no significant
tering of the high- or low-permeability bonds does not Occurdgylatlon from it is o.bserved. To pheck the accuracy of the
very easily, and as a result with decreasihghe distribution ~ cfitical exponene estimated from figures such as 13 and 14,
of the permeabilities of the bonds becomes increasingly ran® lso estimated them by finite-size scaling discussed
dom asH approaches-1. abqve, WhICh is _belleved to be _the mos_t accur_ate method of
Figure 13 shows the logarithmic plot of the permeability €Stimating a critical exponent, if a precise estimateofs
of a 256x256 correlated square network vergus p, near available. The results obtained by this method agreed com-
c . . .
the percolation threshold fai =0.9. This figure shows that, Pl€tely with those obtained from figures such as 13 and 14.
similar to random percolation, nepg, the permeability does F19ure 15 shows the estimates of the critical exporeand
follow Eq. (1), confirming again that the percolation transi- Its dependenc_e oRl. Unllke_ random percolation for Wh"_:h
tion on the backbone of our model is second order. Since fof'® €xponene is largely universalexcept for some special
H>1 one has positive correlations, high- or low-permeability ©35€27)), for our correlated percolation model the expo-
bonds cluster together, and as a result sample-to-sample fiugente depends smoothly oH. This is similar to the results
tuation of the permeability is not large. This means that, a®f Prakastet al.[10], who found that the critical exponent
discussed above, the critical exponentf the permeability  ©Of the conductivity of their model depends on the parameter
can be accurately estimated from plots such as that shown #(S€€ @bove The implication of this nonuniversal behavior
Fig. 13. However, we also found that the same is true fol®f € iS discussed below.
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FIG. 12. The same as in Fig. 11, but for a simple-cubic network FIG. 14. The same as in Fig. 13, but for a>684x64 simple-
with H=0.2. cubic network withH=0.35.
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25 , : broad, computer simulations of Bermanal.[32] indicated

that this idea is still very useful even if the conductance

distribution is relatively narrow. However, unlike the previ-

ous applications of this idg@29-32, which were to porous

media withmicroscopicdisorder that were reduced tan-

Y | dompercolation systems with largely universal scaling prop-

Yoy, erties, in the present problem one has a field-scale porous

medium with macroscopicdisorder that, as shown in this

v paper, is reduced to a percolation system with nonuniversal

15} i properties. Recent computer simulations of Moreno and

Tsang[33] and Herweijer and Dubrul84] confirm the ap-

. plicability of percolation to flow in field-scale porous media

. with macroscopic disorder. These authors found that, if a 3D
* porous medium is represented by a cubic tessellation of rect-

-bs 0 os 1 angular blocks whose permeabilities follow a distribution

H F(K), then the flow paths are along only the regions with

large permeabilities. The volume fraction of such regions

was found to depend oR(K). This is precisely the essence

of the idea developed i28-31l.

We can use this idea and our results in this paper to obtain
an estimate of the permeabilit¢ of a field-scale porous
medium with a permeability distributiofR(K). Suppose that
their apparent dependence Binis not the result of a cross- K. is the critical permeability such that all the permeabilities

over between two limiting cases, we carried out a carefuless than_K.C. are set to be zero and, foIIowu{QS—B]],.the
analysis of our permeability data. First, we changed thepermeabllltles of the rest of the pore space are assigned the

rangeA p=p— p, in which the permeability data were fitted Same valu&.. Equation(l) tells that

to Eq. (1). We found that, provided thakp is sufficientl e

smal?(roughly speaking, iﬂl?)< 1/z, wherepZ is the coord)i/- K=Kl p(K)=p(Ko)I% (20
nation number of the networkthe exponene is insensitive  \yhere p(K) =/ ZF(K)dK is the fraction of the regions of

to the range ofAp in which the fitting was done, as it must o pore space having a permeability larger tHaWe need

be. Secondly, similar to finite-size scaling, there may be sigg, eliminatep(K) — p(K,) from Eq. (20), since it cannot be
nificant correction-to-scaling terms to the power-law depenipeasured directly, and replace it with some measurable
dence ofk on Ap, and instead of Eq(1) one should write o ,antity. Thus following Refs[28—31 we maximize Eq.
K~(p—pc)*bi+ba(p—pc) *+---], where e is a (20) with respect toK,, which yields p(K)—p(K.)

Permeability Exponent
L]

FIG. 15. The dependence of the permeability exporeoh H
in 2D (circles and 3D(triangles. Arrows indicate the correspond-
ing values for random percolation.

To confirm that the exponemt and the other percolation
exponents discussed below do actually dependHorand

correction-to-scaling exponent, and thes are constant. —eK.F(K,), implying that
Thus we fitted the permeability data for network sizesL ¢
to this equation to see whether still varies with H. We K~eng+e[F(Kc)]e. (21)

found that the effect of correction-to-scaling terms is insig-

nificant, and obtained the same valuesedds before. Thus Therefore, given a permeability distributidh(K), we first

we are confident that the dependence of the exponents thatestimate the exponer and the percolation thresholal,

we find is not the result of a crossover effect, lack of preci-from which the critical permeabilitK, is estimated. Then,

sion in our data, or a finite-size effect. Eqg. (21 provides us with an estimate of the overall perme-
Consider now a possible application of our correlated perability K of the pore space. In particular, if the distribution

colation model. The application we consider is flow throughF(K) of the porous medium gives rise to a nonuniversal

field-scaleporous media, such as oil reservoirs and aquifersscaling law for the permeabiliti€, in which the critical ex-

and estimating their effective permeability. The fact that theponente depends on some parameter of the distribution, then

permeability distribution and porosity logs of such porousthe dependence @& on this parameter also has to be deter-

media appear to obey fGn and fBm statistics indicates thatined. If the permeability distribution obeys the statistics of

flow in such porous media can be reduced to flow througha fBm, then Figs. 7 and 12 give the desired dependenpg of

the sample-spanning cluster of the correlated percolation d€and thusk ) ande on H. Therefore in any practical appli-

scribed in this paper. The idea is th@8—31] in a heteroge- cation one also has to determikk for a given field-scale

neous medium with a broad distribution of the permeabilitieporous medium. Early analysis of Hewett and Behrens

or flow conductances, a finite volume fraction of the systen{15,16 had indicated that for many rock$>0.7. However,

has a small permeability or hydraulic conductance, whosenore recent and careful studigs7—19,35 suggest that in

contribution to the overall permeability or conductivity is fact 0<H<U0.5.

very small. Thus one can eliminate such low permeability or

conductance regions of the system, i.e., set their permeability IV. SUMMARY AND DISCUSSION

or conductance to be zero, in which case one obtains a per-

colation system with long-range correlations. Although in  Summarizing our results, some of the critical exponents

the original paper of Ambegaokar, Halperin, and Lari@&  that characterize the scaling properties of our percolation

it was assumed that the conductances are exponentialtpodel depend at most weakly éh the parameter that char-
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acterizes the nature of the correlations, while some others a ~tVA*0), (23)
depend smoothly and strongly é#h As a result, most scal- )
ing properties of this percolation model arenuniversal where#=(e— Bg)/v, which means tha¢=1/(1+6), and thus

Another possible application of our model[i§] to dis- X IS related to the critical exponents of our model.

persion in field-scale porous media. Dispersion, the unsteady € argue that it is théwo-dimensionatorrelated perco-
mixing of two miscible fluids displacing one another in a lation that is relevant to the interpretation of the field-scale
porous medium, is caused by a chaotic velocity field in thedispersion data, since such data are obtained at large dis-
pore space. It can be modified by molecular diffusion whicht@nces from the sourceup to several tens of kilometers
transfers the solutéhe displacing agehbut of the stagnant whereas the thickness of such porous media is at most a few
regions of the pore space and the slow boundary layer zond&indred meters, and therefore such porous media are long
near the pore walls. Dispersion is important to enhanced re2nd thin, and thus essentially two dimensional. Therefore
covery of oil, salt-water intrusion in coastal aquifers, pollu-©oN€ has to use the critical exponents of our 2D percolation
tion of groundwater flow, and several other phenomendVith long-range correlations to estimafeand hencey. Our
[2—4]. Dispersion inhomogeneouporous media is usually results in this paper indicate that these exponents are nonuni-

modeled by the convective-diffusion equatit®DE), versal,_ consistent Wit_h the fiel_d data _that indicate tj@as
nonuniversal and varies from field to field. In fact, using our

results we estimate thgt=0.5—-0.60 for 8<H <1, consistent
with the range of experimental data discussed above. We
thus propose that percolation with long-range correlations is
relevant to dispersion phenomena in field-scale porous media
and aquifers, and provides a rational and plausible explana-
tion for the nonuniversality of the dispersivity exponegnt

and how it may depend on the structure of the field-scale
porous medidi.e., on the value ofd that characterizes the
nature of the correlations

Another possible application of our percolation model is
to modeling the fracture network of heterogeneous rock. The
analysis of fracture surfaces and 3D fracture networks of
rock masses at large scalp$6] indicates that the fracture
etworks may have the structure of a percolation cluster.
oreover, similar to our correlated percolation model, the
fracture networks of rock are dense, confirming the existence
of long-range correlations in the rock. We plan to explore
this possibility in future work.

These are just a few possible applications of our percola-
tion model with long-range correlations to some practical
@éoblems. We hope that this paper will stimulate more work
In this interesting and, from a practical viewpoint, important

2

aC aCc
E"’V'VC:DL W—'—DTVZC! (22

whereC is the solute concentration, the average flow ve-
locity, D, the longitudinal dispersion coefficiefin the di-
rection of macroscopic flow), andD; and V3 are the dis-
persion coefficient and the Laplacian in the transvers
(perpendicular to the macroscopic flpwdirections, respec-
tively. An important characteristic of dispersion is the dis-
persivity &, =D/ /v, which is the length scale above which a
description of dispersion by a CDE is valid. Description of
dispersion by a CDE assumes thatD_, Dy, and ¢ are
independent of length scale and time, and has been reaso
ably successful for porous media sthall length scalegof
order of at most a few meterg3, 4.

However, there have been seveiiald studies of disper-
sion [36—39 indicating thatD, and ¢, are scale and time
dependenty, ~L° anda, ~tX, and thaD, depends linearly
on v and thus on the permeabilitg. HereL is the length

(where the solute or the displacing fluid is injected into the
flowing fluid in the rock. A nonuniversaly=0.5-0.6 has

been found40—-47 to provide a reasonable fit of the data.
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