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The dynamical behavior of microemulsion and sponge phases is studied with a time-dependent Ginzburg-
Landau model. The model has been shown previously to capture many of the essential static properties of these
systems. Using a field-theoretic perturbation theory, we calculate the frequency-dependent~complex! viscosity
h(v), sound velocityc(v) and dampingD(v), and the scattering intensityS(k,t) in bulk and film contrast.
The viscosity is almost frequency independent for smallv, then drops sharply at a characteristic frequency
v* , corresponding to a characteristic relaxation timet;1/v* . The same relaxation time is also found to
dominate the sound velocity and damping. The characteristic frequency has the scaling form
v*;j26V(qj), wherej is the correlation length andq is the inverse domain size of the microemulsion
structure. The scattering intensityS(k,t) decays exponentially in timet for larget with an algebraic prefactor
t2a, both in bulk and in film contrast. In the latter case, we find there are several regimes of the wave vector
k with different exponentsa. @S1063-651X~96!02109-5#

PACS number~s!: 61.20.Gy, 64.60.Ht, 82.70.2y

I. INTRODUCTION

Microemulsions in ternary amphiphilic systems have a
very intriguing structure on mesoscopic length scales, which
gives rise to many interesting properties of these phases
@1–3#. It is now well established that for systems containing
medium- or long-chain amphiphiles, oil and water channels
form two multiply connected networks, which are separated
by an amphiphilic monolayer. With decreasing amphiphile
chain length, the typical length scale of both the oil and the
water domains decreases; simultaneously, the amphiphile
concentration within these domains increases. This picture
emerges from a series of careful neutron scattering experi-
ments @4–6#, together with nuclear magnetic resonance
~NMR! self-diffusion measurements@7# and freeze-fracture
microscopy@8#. A very similar mesoscopic structure is ob-
served in sponge phases in aqueous amphiphilic solutions, in
which an amphiphilic bilayer separates space into two dis-
tinct water domains@9,10#.

Various theoretical models have been developed during
the last few years to understand the properties of microemul-
sion and sponge phases@2#. Microscopic lattice models and
interfacial models have been used, for example, to calculate
the scattering intensity in bulk contrast. The calculations
show a pronounced peak at nonzero wave vectork, and pre-
dict the dependence of the peak position on amphiphile con-
centration and amphiphile strength@11–13#, or on the bend-
ing rigidity of an amphiphilic monolayer and the amphiphile
concentration @14#. Furthermore, calculations based on
Ginzburg-Landau models@15,10,16–18# and on interfacial
models@19,20# have shown that the scattering intensity in
film contrast shows a characteristic 1/k decay for small wave
vectorsk, followed by a small peak or shoulder atk.2q,
whereq is the inverse of the typical domain size of the oil or
water domains, and finally a 1/k2 behavior fork.2q — in
agreement with experimental results@15,21–23#.

The complex internal structure of microemulsion and
sponge phases should give rise to an interesting dynamical

behavior. There have been several studies of the dynamics in
these systems, like the calculation of the dynamic scattering
intensity in bulk @24,25# and film contrast@26,27#, of the
viscosity @28# and of the sound attenuation and dispersion
@29# — all of which concern dynamical properties of systems
in thermal equilibrium —, or the calculation of a sponge-to-
lamellar transition in shear flow@30# — a typical non-
equilibrium situation.

We want to present in this paper a systematic study of the
dynamical behavior of microemulsion and sponge phases in
thermal equilibrium. In Sec. II, the time-dependent
Ginzburg-Landau model is introduced. In Sec. III, we de-
velop the formalism of the dynamic perturbation theory, and
show how the frequency-dependent viscosityh(v), and the
sound velocityc(v) and dampingD(v) can be calculated in
this approach. We present the results for the viscoelastic be-
havior in Sec. IV, and for the sound velocity and damping in
Sec. V. In particular, we show that the frequency dependence
of these transport coefficients is dominated by a single char-
acteristic frequencyv* , and discuss the variation ofh(v),
c(v), D(v), andv* with the structural parameters — do-
main size 2p/q and correlation lengthj — of the static
structure of microemulsion and sponge phases. The scatter-
ing intensityS(k,t) in bulk and film contrast is calculated in
Secs. VI and VII, respectively. In particular, we determine
the asymptotic behavior ofS(k,t) for short and large times
t. The paper closes with a brief summary and discussion in
Sec. VIII.

II. GINZBURG-LANDAU MODEL

The basic idea of a description of the dynamics of com-
plex fluids by a Ginzburg-Landau model is to construct dif-
ferential equations, which determine the temporal evolution
of the ‘‘slow’’ variables of the system, in particular, all vari-
ables which obey a conservation law, while all ‘‘fast’’ de-
grees of freedom are subsumed into a thermal random noise
force @31–34#. In the case of fluid ternary amphiphilic mix-
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tures, the slow variables are the local concentration differ-
enceF(r ,t) of oil and water, the local amphiphile concen-
tration r(r ,t) — or more precisely its deviation from the
average amphiphile concentrationrs—, the momentum den-
sity field j (r ,t), and the pressure fieldp(r ,t). In the case of
aqueous amphiphilic solutions, the order parameterF(r ,t) is
the concentration difference of water on one side~‘‘inside’’ !
and on the other side~‘‘outside’’ ! of the amphiphile bilayer
@15#; all other fields have the same meaning as for ternary
systems. The dynamics of these fields is governed by the
time-dependent Ginzburg-Landau equations@35–37#
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where the subscripts ‘‘L ’’ and ‘‘ T’’ denote the longitudinal
and transverse components of a vector field, respectively.
The parameterm in Eq. ~1! distinguishes the cases of con-
served (m52) and nonconserved (m50) order parameter.
The thermal random noise forceszF , zr , . . . have a Gauss-
ian probability distribution, with zero average, and the cor-
relations

^zF~r ,t !zF~r 8,t8!&52GF~ i¹!md~r2r 8!d~ t2t8!, ~6!

^zr~r ,t !zr~r 8,t8!&522Gr¹2d~r2r 8!d~ t2t8!, ~7!

^zp~r ,t !zp~r 8,t8!&522Gp¹
2d~r2r 8!d~ t2t8!, ~8!

^zT,a~r ,t !zT,b~r 8,t8!&522GT¹
2d~r2r 8!d~ t2t8!dab ,

~9!

^zL,a~r ,t !zL,b~r 8,t8!&522GL¹
2d~r2r 8!d~ t2t8!dab .

~10!

The free-energy functionalF@F,r,p,j #, which appears in
Eqs.~1!–~5!, is given by

F@F,r,p,j #5FF@F#1Fr@r#1Fint@F,r#1FHD@p,j #.
~11!

Here, the first contribution,

FF5E d3r @c~¹2F!21g~F!~¹F!21 f ~F!#, ~12!

with c.0, is the free-energy functional, which has been used
extensively for investigations of the static structure and
phase behavior of microemulsions@4,38,2#. The functions
f (F) andg(F) in Eq. ~12! are usually chosen to have the
form

g~F!5b01b2F
2, ~13!

f ~F!5r 2F
21r 4F

41r 6F
6, ~14!

with b2>0, r 2.0 and r 6>0. The important features of
these functions are thatf (F) has three minima, which cor-
respond to the three homogeneous phases oil-rich, water-
rich, and microemulsion, and thatg(0),0, so that the scat-
tering intensity of the microemulsion~with ^F&50) in bulk
contrast has a pronounced peak at wave vectork.0. The
latter property can be seen from an explicit calculation of the
scattering intensityx0(k) in the Ornstein-Zernike approxi-
mation, which yields@4,38#

x0~k!5
1

2
@ck41b0k

21r 2#
21. ~15!

The Fourier transform of Eq.~15! is the real-space correla-
tion function @4#

G~r !;
1

r
e2r /jsin~qr ! ~16!

with

j225~r 2/4c!1/21~b0/4c!, q25~r 2/4c!1/22~b0/4c!.
~17!

The oscillatory exponential decay ofG(r ) demonstrates that
the structure of a microemulsion is characterized bytwo in-
dependent length scales, the correlation lengthj and the in-
verse average domain sizeq. The dimensionless product
qj is a convenient measure of the structure of a microemul-
sion. Weakly structured microemulsions with 0,qj,1
have an oscillatory correlation function, but no peak in the
scattering intensity at nonzero wave vectork. The peak in
x0(k) for k.0 appears atqj51, and becomes more pro-
nounced with increasingqj.

Since we are mainly interested in the properties of the
microemulsion or sponge phase, and not in their coexistence
with other phases, we choose forf andg the simple form

g~F!5b0 , f ~F!5r 2F
2, ~18!

i.e., we ignore higher-than-quadratic terms in the free-energy
functional ~12!.

Although the local amphiphile concentration does not ap-
pear in the model~12!, theaverageamphiphile concentration
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rs enters as a parameter; the value ofb0, for example, de-
creases with increasingrs . The model~12!, with only a
single order parameter fieldF, already describes many prop-
erties of microemulsions, such as their wetting behavior at
the oil-water interface@38–42#. However, in some cases it is
necessary or convenient to take into account the local am-
phiphile concentration explicitly. In this case, the free-energy
functional has two additional contributions,

Fr5E d3r @g~¹2r!21b~¹r!21ar2#, ~19!

with g.0, b.0 anda.0, and@10,16#

Fint5E d3r @b1rF21b2~¹2r!F21b3rF~¹2F!#.

~20!

The coupling terms in Eq.~20! between the two order pa-
rameters include only the lowest powers ofr andF which
are allowed by symmetry arguments in a balanced micro-
emulsion, and at most two spatial derivatives of the fields.
This model forF andr has been used to calculate the scat-
tering intensity in film contrast@15,16#, and first showed all
the essential characteristics of this intensity described in the
introduction. Finally, the ‘‘hydrodynamic’’ part of the free-
energy functional~11! takes the form@43#

FHD5E d3r F12 p211

2
j2G . ~21!

We now return to the form of the time-dependent
Ginzburg-Landau equations~1!–~5! to comment on the
physical interpretation of the various terms. The first term on
the right-hand side~rhs! of Eq. ~4! together with the left-
hand side~lhs! is the transverse component of the linearized
Navier-Stokes equation; similarly, the first and fourth terms
on the rhs of Eq.~5! together with the lhs can be identified
with its longitudinal component. The first term on the rhs of
Eq. ~1! with m52 describes the diffusion of the order pa-
rameterF in microemulsions, or in sponge phases with an
impenetrable bilayer, since in both cases the order parameter
is conserved. The order parameter isnot conserved, on the
other hand, in sponge phases in which water can leak
through the amphiphilic bilayer; in this casem50. The sec-
ond terms on the rhs of Eqs.~1! and~2! describe the change

of concentrations due to fluid flow; thus, these terms can be
understood as a continuity equation. The second and third
terms on the rhs of Eqs.~4! and ~5! represent structural
forces, which are necessary to fulfill detailed balance
@44,45#. Finally, Eq.~3! for the pressure field corresponds to
the continuity equation for the total mass density.

Note that thefluctuation-dissipation theorem@46,47# re-
quires that the coefficients in the noise correlations~6!–~10!
are identical with thedissipativeor irreversible coupling
constantsGF , Gr , GT , andGL . Detailed balance also re-
quires that thereversiblecoupling constants —g0, l0, and
t0 — of ‘‘corresponding’’ terms, like the¹dF/d j contribu-
tion in Eq.~3! for p, and the¹dF/dp contribution in Eq.~5!
for jL , are the same.

Finally, we want to mention that time-dependent
Ginzburg-Landau equations have been studied intensively in
the context of dynamic critical phenomena@48,35#. Two lim-
iting cases of Eqs.~1!–~5! have been investigated in particu-
lar: modelH @49,35#, which is given by Eqs.~1! and ~4! —
with t050 —, and modelC @50,35#, which is defined by
Eqs. ~1! and ~2! — with g05t050. The free-energy func-
tionalsF for critical phenomena and for ternary amphiphilic
systems are quite different, however, so that the same equa-
tions of motion will give rise to a markedly different dy-
namical behavior.

III. DYNAMIC PERTURBATION THEORY

The fundamental quantities of interest, which characterize
the dynamical behavior of the system in thermal equilibrium,
are the correlation functions

Ci j ~r2r 8,t2t8!5^C i~r ,t !C j~r 8,t8!&, ~22!

where C iP$F,r,p,jT ,jL%, and the response functions
Ri j (r2r 8,t2t8), which describe the response of the system
at timet to a~small! external perturbation at timet8. In order
to calculate these quantities, it turns out to be very conve-
nient to introduce ‘‘response fields’’C̃i(r ,t) @51,52,34#. One
of the advantages of these additional fields is that the re-
sponse functions can now be calculated on the same level as
the correlation functions by an equilibrium average,

Ri j ~r2r 8,t2t8!5^C i~r ,t !C̃j~r 8,t8!&}u~ t2t8!. ~23!

Both correlation and response functions can be obtained
from the generating functional

Z@ lF , l̃F ,l r , l̃ r ,l p , l̃ p ,ljT, l̃ jT,ljL, l̃ jL#5E DFE D~ i F̃!E DrE D~ i r̃ !E DpE D~ i p̃ !E DjTE D~ i j̃T!E DjLE D~ i j̃L!

3expHA@F,F̃,r,r̃,p,p̃,jT , j̃T ,jL , j̃L#1E dtE d3r @ lFF1 l̃FF̃1 l rr1 l̃ rr̃1 l pp1 l̃ pp̃

1 ljTjT1 l̃ jTj̃T1 ljLjL1 l̃ jL j̃L#J ~24!

with the ‘‘action’’
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dF D
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2t0S r¹
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G J , ~25!

where

dF
dF

52~c¹42b0¹
21r 2!F12b1rF12b2~¹2r!F1b3@r¹2F1¹2~rF!# ~26!

and

dF
dr

52~g¹42b¹21a!r1b1F
21b2¹

2F21b3F¹2F. ~27!

The generating functional~24! defines an analog of the partition function of equilibrium statistical mechanics. This form of the
time-dependent Ginzburg-Landau equations has the advantage that all the tools of field-theoretic perturbation theory, as
developed for static Ginzburg-Landau models, can be employed.

The perturbation theory is set up by first neglecting all terms of higher-than-quadratic order in the action. In this case, the
Gaussian actionA0 takes in Fourier space the form

A05E dv

2pE d3k

~2p!3
A0~k,v!, ~28!

with

A0~k,v!5
1

2
CT~k,v!@G~0!#21C~2k,2v!, ~29!

where the vectorC of the dynamic fields is defined by

CT[~F̃,F,r̃,r, j̃T ,jT , j̃L ,p̃,jL ,p! ~30!

~the superscript ‘‘T’’ denotes the transposition of a vector!. The 10310 matrix@G(0)#21 is composed of three 232 blocks and
one 434 block along the diagonal,

@G~0!#215S @G~0!#21$F̃,F% 0 0 0

0 @G~0!#21$r̃,r% 0 0

0 0 @G~0!#21$ j̃T ,jT% 0

0 0 0 @G~0!#21$ j̃L ,p̃,jL ,p%
D . ~31!

The block matrices are easily obtained from Eq.~25!, and are given by

@G~0!#21$F̃,F%5S 22GFk
m iv1GFk

mx0
21~k!

2 iv1GFk
mx0

21~k! 0 D , ~32!

wherex0(k) is the static scattering intensity in bulk contrast, see Eq.~15!,

@G~0!#21$r̃,r%5S 22Grk
2 iv1Grk

2xr
21~k!

2 iv1Grk
2xr

21~k! 0 D , ~33!

where

xr~k!5@2~gk41bk21a!#21 ~34!
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is the static scattering intensity of the amphiphile in the Ornstein-Zernike approximation,

@G~0!#21$ j̃T ,jT%5S 22GTk
2 iv1GTk

2

2 iv1GTk
2 0 D , ~35!

and

@G~0!#21$ j̃L ,p̃,jL ,p%5S 22GLk
2 0 iv1GLk

2 il0k

0 22Gpk
2 il0k iv1Gpk

2

2 iv1GLk
2 2 il0k 0 0

2 il0k 2 iv1Gpk
2 0 0

D . ~36!

The inversion of the matrix@G(0)#21 gives all correlation
and response functions in the Gaussian~or van-Hove! ap-
proximation. Due to the block structure, the inversion is
straightforward; a complete list of the results can be found in
Appendix A.

The next step is to take into account the nonlinear terms
in the time-dependent Ginzburg-Landau equations, which are
equivalent to higher-than-quadratic terms in the dynamic ac-
tion ~25!. These terms lead to a coupling of the independent
modes of the Gaussian approximation. Note that this cou-
pling is essential for the investigation of the dynamics of
microemulsions and sponge phases, since only due to the
nonlinear terms can the hydrodynamic modes be affected by
the structure.

The matrixG of the full correlation and response func-
tions can be written as an infinite series of Feynman dia-
grams. A partial summation of this series is possible by the
Dyson equation,

G21~k,v!5@G~0!#21~k,v!2S~k,v!. ~37!

The advantage of this~exact! relation is that onlyone-
particle-irreducibleFeynman diagrams, i.e., diagrams which
do not separate into two disconnected pieces by cutting a
line, contribute to the self-energy matrixS(k,v). It can now
be shown that — due to the structure of the Langevin equa-
tions ~1!–~5! — the self-energy matrix has the same block
structure as the Gaussian correlation and response matrix
@G(0)#21. Furthermore, the lower right corner of these block
matrices vanishes identically due to causality, just as in the
Gaussian matrices~32!–~36!. Thus the inversion ofG21 is
just as simple as the inversion of@G(0)#21.

The quantities we are mainly interested in are the scatter-
ing intensities, the viscosity, and the sound attenuation and
dispersion of a microemulsion or sponge phase. The scatter-
ing intensity in bulk contrast is obtained from the Dyson
equation to be

GFF~k,v!5
2GFk

m1SF̃F̃~k,v!

u2 iv1GFk
mx0

21~k!2SFF̃~k,v!u2
;

~38!

similarly, the amphiphile scattering intensity is found to be

Grr~k,v!5
2Grk

21S r̃ r̃~k,v!

u2 iv1Grk
2xr

21~k!2Sr r̃~k,v!u2
. ~39!

It is important to note at this point that the fluctuation-
dissipation theorem~FDT! poses strong constraints on the
form of the self-energy matrix. As explained in Appendix B,
the FDT implies

SF̃F̃~k,v!522x0~k!Re$SFF̃~k,v!% ~40!

and similarly forS r̃ r̃(k,v). Thus, in order to calculate the
scattering intensities~38! and ~39!, only the self-energies
SFF̃(k,v) andSr r̃(k,v) have to be evaluated, respectively.

The viscosityh(v) follows from the pole structure of the
correlation and response functions of the transverse momen-
tum density in thehydrodynamic limit k→0. For the re-
sponse function, Eq.~35! together with the self-energy con-
tributions implies

G j̃ TjT
~k,v!5

1

2 iv1GTk
22S jTj̃T

~k,v!
. ~41!

This result can now be compared with the dispersion relation

2 iv1
h

rm
k250, ~42!

whererm is the mass density, which follows from the analy-
sis of the Navier-Stokes equation. In order to simplify the
notation, we absorb the mass density intoh, so that from
now onh is the kinematic viscosity. This yields

h~v!5GT2
]

]k2
S jTj̃T

~k,v!U
k50

. ~43!

Note that when the nonlinear terms in Eqs.~1!–~5! are ne-
glected, the viscosity is frequency independent; furthermore,
h has no imaginary part in this case, i.e., there is no elastic
response to an external oscillatory shear force.
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Sound waves determine the pole structure of the correla-
tion and response functions of the pressure and of the longi-
tudinal momentum density in the hydrodynamic limit. Thus
the dispersion relation of a sound wave is given by the zeros
of the denominator of these correlation and response func-
tions,

det~@G~0!#21$ j̃L ,p̃,jL ,p%2S$ j̃L ,p̃,jL ,p%!50. ~44!

Due to the special structure of the matrix~36! — and of the
corresponding part of theS matrix —, this equation reduces
to

detS 2 iv1GLk
22S j L j̃L

~k,v! 2 il0k2S jLp̃
~k,v!

2 il0k2Sp j̃ L
~k,v! 2 iv1Gpk

22Sp p̃~k,v!
D

50. ~45!

To proceed, we have to determine the leading powers of all
self-energies appearing in Eq.~45! in the hydrodynamic limit
k→0. This can only be done by considering explicitly the
Feynman diagrams for these self-energies. In the one-loop
approximation, we find

S j L j̃L
;O~k2!, Sp j̃ L

;O~k3!, S jLp̃
;O~k3!,

Sp p̃ ;O~k4!. ~46!

Thus, onlyS jL j̃L
contributes to orderk2, so that

2v21l0
2k22 ivk2FGL1Gp2

]

]k2
S jL j̃L

~k,v!U
k50

G1O~k4!

50. ~47!

On the other hand, a sound wave with wave vectork, veloc-
ity c(v), and damping constantD(v) obeys the dispersion
relation @47#

v22c~v!2k21 ivD~v!k250. ~48!

The comparison of Eqs.~47! and ~48! finally gives @53#

c2~v!5l0
22vImS ]

]k2
S jL j̃L

~k,v!U
k50

D , ~49!

D~v!5Gp1GL2ReS ]

]k2
S jL j̃L

~k,v!U
k50

D . ~50!

Note that, as in the case of the viscosity, when the nonlinear
terms in the Langevin equations are neglected, both the
sound velocity and the damping are frequency independent.
Since the derivative of the self-energy with respect tok2 will
appear frequently in the following sections, we introduce the
notation

g jTj̃T
~v![

]

]k2
S jTj̃T

~k,v!U
k50

~51!

and similarlyg jL j̃L
(v).

IV. VISCOELASTICITY

It has been shown in Sec. III that the viscosity is related to
the self-energyS jTj̃T

(k,v) in the limit k→0. The leading
contribution to this self-energy term is the one-loop diagram
shown in Fig. 1. Inserting the expressions for the propagators
and vertices given in Appendix A, we obtain the explicit
result

S jTj̃T
~k,v!5g0

2E d3p

~2p!3
x0

21~p2k!2x0
21~p!

x0
21~p2k!

p•Tk•p
2 iv1GFp

2x0
21~p!1GF~p2k!2x0

21~p2k!
, ~52!

FIG. 1. Feynman diagram for the self-energyS jTj̃T
(k,v) in a

one-loop approximation. The notation for the various propagators
and vertices is explained in Appendix A. The contribution of the
right vertex contains the vectoru5(p2k)x0

21(p2k)2px0
21(p).

FIG. 2. Real and imaginary part of the complex viscosityh as a
function of the scaled frequencyv/(GFc

21/2), for a system with
conserved order parameterF. The parameters areg051, GF51,
c51, b0521.95, andr 251 ~so thatqj.8.9).
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where@Tk#ab[dab2kakb /k
2 is the transverse projector~so

thatTk•k50). Here, the integral over the internal frequency
v8 ~compare Fig. 1! has already been carried out. An expan-
sion of Eq.~52! in powers ofk, and a subsequent integration
over the angular components yields

g jTj̃T
~v!5

2g0
2

15p2E
0

`

dp
p4

x0
21~p!@2 iv12GFp

2x0
21~p!#

3H ~5b0114cp2!

1
4h~p!p2

x0
21~p!@2 iv12GFp

2x0
21~p!#

3$ i2h~p!v2GFx0
21~p!@6h~p!p2

1x0
21~p!#%J , ~53!

where

h~p![b012cp2. ~54!

Except for the casev50, the integration over the internal
wave vectorp has to be done numerically. A typical result
for the viscosityh(v) of a strongly structured microemul-
sion, withqj.8.9, is shown in Fig. 2. Here, the viscosity in
the high frequency limit,h`5 limv→`h(v)5GT , has been
subtracted. The curves show the typical behavior of complex
fluids. The real part ofh is approximately frequency inde-
pendent for smallv, i.e., the fluid behaves Newtonian. At a
characteristic frequencyv* , the real part ofh drops sharply;
the imaginary part shows a peak in the same frequency
range. A very similar behavior has been found, for example,
in dense colloidal suspensions@54,55#.

This behavior ofh(v) can be understood as follows. For
very small frequencies, the system has enough time to relax
the stress which builds up due to the external shearing force
by rebuilding its internal structure such as to stay as close to
its equilibrium state as possible. This process is accompanied
by a lot of energy dissipation, but allows little elastic re-
sponse. At higher frequencies, near the characteristic fre-
quencyv* , the structural relaxation is no longer fast enough
to follow the external shear stress, so that energy can now be
stored elastically. Finally, for very high frequencies, the vis-
cosity of the fluid is dominated by the viscosity of the sol-
vent.

The analysis of Eq.~53! shows that the viscosity can be
written in the scaling form

h~v!2h`

h`
5

g0
2

GFGTc
1/4 j̄3VS qj,

v

vv*
D , ~55!

where

j̄5c21/4j ~56!

is the correlation length measured in units of the ‘‘am-
phiphile length’’c1/4. The characteristic frequencyvv* in Eq.
~55!, which is defined by the location of the maximum of
Im(h), also shows scaling behavior,

vv*5~GFc
21/2!j̄26Vv~qj!. ~57!

These scaling forms indicate the most interesting aspect of
the viscosity of microemulsions and sponge phases, which is
its dependence on the structural parametersq andj.

In the casev50, the scaling functionV of Eq. ~55! can
be calculated analytically,

V~y,v50!5
1

240p

11
1

4
y2

11y2
. ~58!

This result for thezero-shear viscosityagrees with the result
of Mundy, Levin, and Dawson@28,56#, which has been ob-
tained from the somewhat different approach of Fredrickson
and Larson@57#, who studied the linear response of the sys-
tem to an external shear stress. Since the dependence of
V(qj,v50) on the dimensionless parameterqj is rather
weak, the behavior of the zero-shear viscosity is dominated
by thej̄3 prefactor in Eq.~55!. Thus the zero-shear viscosity
should increase rapidly as the transition to a spatially ordered
phase — such as a lamellar or a cubic bicontinuous phase —
is approached. The origin of this increase can be understood
intuitively: with increasingj, the size of coherent, well-
ordered regions in the microemulsion becomes larger and
larger; therefore, more and more energy is dissipated when
the structure within these regions is rearranged.

The scaling functionVv(qj) of the characteristic fre-
quency is shown in Fig. 3. The expression

Vv~qj!532.5@114.5~qj!21~qj!4# ~59!

contains the leading power-law behaviors for both small and
large values ofqj, and fits the curve shown in Fig. 3 over the
whole range of the argument quite well. Thus the structural
relaxation time 1/vv* increases with increasing correlation
lengthandwith increasing domain size 2p/q. The origin of
this behavior can again be understood intuitively: the larger
the size of an ordered region, the longer it takes to rearrange
its structure.

The full scaling functionV(qj,v/vv* ) has to be calcu-
lated numerically; its real and imaginary parts are shown in
Fig. 4. The strongest frequency dependence of both the real
and the imaginary part ofV occurs at the disorder line

FIG. 3. Scaling functionVv(qj) of the characteristic frequency
vv* for conserved order parameterF.
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(qj50). This does not indicate, however, that the viscoelas-
ticity of an unstructured fluid varies strongly as a function of
v; the prefactorj̄3 in Eq. ~55! rather leads to a decreasing
frequency dependence with decreasing structure. This is
again in qualitative agreement with colloidal suspensions
@58#.

The behavior ofV(qj,v/vv* ) for v!vv* can be studied
analytically. In this limit, one finds the power laws

Re@V~•,0!2V~•,v̄ !#;v̄2

Im@V~•,v̄ !#;v̄ J v̄→0. ~60!

This result can be used to obtain thestorage and loss moduli
G8(v)5vIm@h(v)# andG9(v)5vRe@h(v)2h`# in the
low-frequency limit,

G8~v!5
g0
2j9

30720pGF
2 c2

141~qj!214~qj!41~qj!6

@11~qj!2#5
v2

~61!

and

G9~v!5
g0
2j3

960pGFc

41~qj!2

11~qj!2
v. ~62!

The samev-power laws and the same divergence of the
prefactors in the limitj→` ~with q fixed! have been ob-

tained for diblock copolymer melts by Fredrickson and Lar-
son@57,59# with a different formalism. Since in both theories
the behavior of the viscosity is determined by thestatic
structure factor, which has a very similar form for micro-
emulsions and diblock copolymers~in the weak-segregation
regime! @60,61#, we believe that our other results for the
viscosity, like the scaling behavior of the characteristic fre-
quency Eq.~57! and for the sound attenuation and dispersion
curves to be discussed in the next section, should also apply
to disordered diblock copolymers.

The results~62! and~61! for the frequency dependence of
the storage and loss moduli can be used to define another
characteristic frequency,

vG*[ lim
v→0

vG9~v!

G8~v!
5~GFc

21/2!j̄26VG~qj!, ~63!

where the scaling functionVG is given by

VG~y!532
~41y2!~11y2!4

141y214y41y6
. ~64!

This result can now be compared with the characteristic fre-
quencyvv* Eqs. ~57! and ~59!. The two functions have a
different form for smallqj, but agree very well forqj>2,
i.e., for sufficiently well structured microemulsions. We con-
clude that in strongly structured microemulsions, the small-
v behavior of the viscosity is dominated by asingle struc-
tural relaxation time.

FIG. 5. Feynman diagram for the self-energyS jL j̃L
(k,v) in a

one-loop approximation. The notation for the various propagators
and vertices is explained in Appendix A. The contribution of the
right vertex contains the vectoru5(p2k)x0

21(p2k)2px0
21(p).

FIG. 6. Sound dispersionD(v) for q50.95 andj51.0 ~dashed-
dotted line!, j55.0 ~dashed line!, j511.0 ~full line!. The param-
eters arec51, g051, andl051.

FIG. 4. ~a! Real and~b! imaginary part of the scaling function
V(qj,v̄) of the complex viscosity, withv̄5v/vv*
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Expression~52! for the self-energy shows that the charac-
teristic frequencyv* is determined by the relaxation times
of the order parameter fluctuations. For strongly structured
microemulsions, their dynamics is dominated by the modes
with wave vectors in the vicinity of the inverse domain size,
q, which have the longest relaxation times.

Finally, the behavior ofV for large frequencies is found
numerically to be

V~ ,̇v̄ !;v̄21/2, v̄→`. ~65!

The same frequency dependence has been observed in other
strongly structured complex fluids, such as in hard-sphere
colloidal suspensions~both theoretically@54# and experimen-
tally @55#!, and in polymer solutions in the Rouse regime
@62#.

So far, we have completely neglected the contribution of
the fluctuations of the amphiphile concentrationr to the vis-
cosity. In fact, in addition to the diagram shown in Fig. 1,
there is a second, analogous diagram, in which the internal
lines are replaced byr correlation and response propagators.
The structure of this contribution is the same as Eq.~52!,
except that the staticr correlation function decays monotoni-
cally. Forg50 in Eq. ~34!, a simple scaling analysis shows
immediately that~i! the contribution of ther fluctuations to
the viscosity varieslinearly with the correlation lengthjr

@28#, and ~ii ! that the characteristic frequencyvv,r* of this

contribution scales asvv,r* ;jr
24 . We want to emphasize

that, sincejr never gets very large in a microemulsion or
sponge phase, the contribution of ther fluctuations to the
viscosity is much smaller than theF contributions for
v,vv* . However, forvv*!v!vv,r* it leads to an approxi-
mately frequency-independent value of the viscosity, which
depends on the amphiphile fluctuations.

Finally, we want to mention that on the one-loop level of
the calculation of the self-energy, the viscosityh does not
contain contributions due to hydrodynamic interactions. This
corresponds to Rouse dynamics in polymer systems. The ef-
fect of hydrodynamic interactions onh(v) appears first in a
two-loop approximation of the self-energy.

V. SOUND ATTENUATION AND DISPERSION

A comparison of Eq.~43! for the viscosity with Eqs.~49!
and ~50! for the sound velocity and sound damping shows
immediately the strong similarity of these quantities, except
that in the case of sound the self-energyS jL j̃L

(k,v) appears,
which involves the longitudinal rather than the transverse
momentum density.

The leading contribution to the self-energyS jL j̃L
(k,v) is

the Feynman diagram shown in Fig. 5. The expressions for
the propagators and vertices listed in Appendix A give the
explicit result

S jL j̃L
~k,v!5g0

2E d3p

~2p!3
p•Lk

x0
21~p2k!

Lk•@~p2k!x0
21~p2k!2px0

21~p!#

2 iv1GFp
2x0

21~p!1GF~p2k!2x0
21~p2k!

, ~66!

where@Lk#ab5kakb /k
2 is the longitudinal projector~so that

Lk•k5k). In Eq. ~66!, the integral over the internal fre-
quencyv8 has already been carried out. From Eq.~66!, one
obtains

g jL j̃L
~v!5

g0
2

15p2E
0

`

dp
p4

x0
21~p!@2 iv12GFp

2x0
21~p!#

3H ~15b0142cp2!

1
12h~p!p215x0

21~p!

x0
21~p!@2 iv12GFp

2x0
21~p!#

3@ i2h~p!v2GFx0
21~p!„6h~p!p2

1x0
21~p!…#J . ~67!

Instead of the sound velocity and damping, sound data are
often plotted as normalized dispersion

D~v![12
c2~0!

c2~v!
~68!

and attenuation per wavelength

al~v![
pv

c2~v!
@D~v!2D`#, ~69!

or al(v)/c
2(v) @63,48,37#. Typical curves forD(v) and

al(v)/c
2(v) are shown in Figs. 6 and 7, respectively. In

these figures, the correlation lengthj is varied at fixed do-
main size 2p/q. For small correlation lengths, the attenua-
tion curve is dominated by a single large peak, very similar
to the behavior seen in the vicinity of a critical point@63,48#.
For largerj, a second peak develops at lower frequencies;
the height of this peak increases with increasingj, while its
position moves to smaller values ofv. The dependence of
the peak position and peak height on the domain size
2p/q, on the other hand, is rather weak. The behavior of the
dispersion is found to be very similar, where a pronounced
shoulder is observed at the characteristic frequency of the
attenuation peak.

The results for the viscosity discussed in Sec. IV now
indicate that not the dispersionD(v) and the attenuation per
wavelengthal(v) should have a scaling form, but rather the
quantities@64#

2g
jL j̃L
8 ~v!5D~v!2D` , ~70!
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2g
jL j̃L
9 ~v!5

c2~v!2c2~0!

v
, ~71!

whereD`5 limv→`D(v). A typical result for the frequency
dependence of the self-energy contributiong jL j̃L

(v) for a
strongly structured microemulsion indeed looks strikingly
similar to the complex viscosity shown in Fig. 2 .

A more detailed analysis of Eq.~66! shows that
g jL j̃L

(v) can be written in the scaling form

2g jL j̃L
5

g0
2

GFc
1/4j̄

3SS qj,
v

vs*
D . ~72!

The characteristic frequencyvs* , which is defined by the

position of the maximum of2g
jL j̃L
9 , also has a scaling form

@compare Eq.~57!#,

vs*5~GFc
21/2!j̄26Vs~qj!. ~73!

The discussion of the scaling behavior of the sound modes
now follows closely the discussion in Sec. IV for the viscos-
ity. In the casev50, the scaling functionS of Eq. ~72! can
again be calculated analytically,

S~y,v50!5
31

960p

11
3

62
y2

11y2
. ~74!

The scaling functionVs(qj) of the characteristic frequency
vs* shows the same behavior as the scaling function
Vv(qj) of the viscosity, compare Fig. 3. The scaling func-
tion for the sound modes is well fitted by the expression

Vs~qj!55@116~qj!217~qj!4# ~75!

over the whole range of the argument. This result indicates
that for strongly structured microemulsions withqj>5 the
same structural relaxation processes are responsible for both
viscoelastic behavior and sound attenuation.

The full scaling functionS(qj,v/vs* ) has to be calcu-
lated numerically; its real and imaginary parts are shown in
Fig. 8. The asymptotic behavior for smallv is found analyti-

cally to be

Re@S~•,0!2S~•,v̄ !#;v̄1/2

Im@S~•,v̄ !#;v̄1/2 J v̄→0, ~76!

while the asymptotic behavior for largev is obtained nu-
merically,

S~•,v̄ !;v̄21/2, v̄→`. ~77!

A comparison of Eqs.~76! and~77! with Eqs.~60! and~65!
shows that while the large-v behaviors of the two scaling
functionsS andV are the same, their small-v asymptotics
are different.

Our results for the scaling form ofg jL j̃L
(v) can now be

used to discuss the behavior of sound attenuation and disper-
sion, see Figs. 6 and 7. The dispersion

D~v!5

2vg
jL j̃L
9 ~v!

l0
22vg

jL j̃L
9 ~v!

~78!

depends only on the imaginary part ofg jL j̃L
. Equation~76!

therefore implies thatD(v);v3/2 for smallv @65#. The self-
energy contribution 2g

jL j̃L
9 (v) has a maximum for

FIG. 7. Sound attenuational(v)/c
2(v) for q50.95 and

j51.0 ~dashed-dotted line!, j55.0 ~dashed line!, j511.0 ~full
line!. The parameters arec51, g051, andl051.

FIG. 8. ~a! Real and~b! imaginary part of the scaling function
S(qj,v̄) of sound velocity and damping, withv̄5v/vs*
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v5vs* , compare Fig. 2, which leads to the shoulder in
D(v) at approximately the same frequency. Finally, for large

v, Eq.~77! yields2vg
jL j̃L
9 (v);v1/2, so thatD(v)→1. The

sound attenuation per wavelength@divided byc2(v)#,

al~v!

c2~v!
5

2pvg
jL j̃L
8 ~v!

@l0
22vg

jL j̃L
9 ~v!#2

, ~79!

depends both on the real and imaginary parts ofg jL j̃L
. The

real part approaches a constant for smallv, so that

al(v)/c
2(v);v for v→0. The maximum of2g

jL j̃L
9 (v)

and the sharp drop of2g
jL j̃L
8 (v) at the characteristic fre-

quencyvs* lead to the low-frequency peak of the sound at-
tenuation per wavelength. The second peak at higher fre-
quencies occurs — for sufficiently smallvs* — in a v
regime, whereg jL j̃L

(v) is well approximated by the asymp-

totic power law~77!. Therefore, it is easy to see that a peak
occurs atv;l0

4; with increasingqj, the position of this
peak shifts to larger values ofv @29#. Finally, at very high
frequencies,al(v)/c

2(v) decreases asv21/2.

VI. DYNAMIC SCATTERING INTENSITY
IN BULK CONTRAST

We have shown in Sec. III that the scattering intensity in
bulk contrastGFF(k,v) is given by Eq.~38!. We calculate
the self-energy here for modelH, i.e., we take the fluid to be
incompressible. The two Feynman diagrams, which contrib-
ute toSFF̃(k,v) in this case in a one-loop approximation
are shown in Fig. 9. The expressions for the propagators and
vertices given in Appendix A imply

SFF̃~k,v!52g0
2E d3p

~2p!3
x0~p!

x0~k!

3
k•Tp2k•k

2 iv1GT~p2k!21GFp
mx0

21~p!
.

~80!

The expression~38! together with~80! for GFF(k,v) has
been analyzed in detail in Refs.@24,25# as a function ofv;
the intermediate scattering functionGFF(k,t) as a function
of time t was calculated by a numerical Fourier transforma-
tion.

Unfortunately, it is very difficult to extract the asymptotic
behavior of the scattering intensity for short and large times
t from Eq. ~38!. This is much easier when the perturbation
theory is formulated directly forGFF(k,t). The Dyson equa-
tion reads in this case

G~k,t !5G~0!~k,t !1E
2`

`

dt1E
2`

`

dt2G
~0!~k,t2t1!

3S~k,t12t2!G~k,t2! ~81!

for thematrix G(k,t) of correlation and response functions.
In the form~81!, the Dyson equation cannot be solved for the
full correlation matrixG(k,t). Therefore, we calculate the
correlation function in the first Born approximation, i.e., we
replace the full correlation matrix on the rhs of Eq.~81! by
the bare correlation matrixG(0)(k,t). In this case, one finds

GFF~k,t !5GFF
~0! ~k,t !1SF~k,t !, ~82!

with

SF~ t !5E
2`

`

dt1E
2`

`

dt2@GF̃F

~0!
~ t12t !SF̃F̃~ t12t2!GF̃F

~0!
~ t2!

1G
F̃F

~0!
~ t12t !SFF̃~ t22t1!GFF

~0! ~ t2!

1GFF
~0! ~ t2t1!SFF̃~ t12t2!GF̃F

~0!
~ t2!#, ~83!

where the argumentk has been suppressed for simplicity.
The bare propagators are obtained easily by a Fourier trans-
formation from thev functions listed in Appendix A; in
particular, the propagators, which appear in Eqs.~82! and
~83!, are found to be

G
F̃F

~0!
~k,t !5exp@2GFk

mx0
21~k!t#u~ t !, ~84!

GFF
~0! ~k,t !5x0~k!exp@2GFk

mx0
21~k!utu#. ~85!

The self-energy of Eq.~83! can be calculated in two different
ways, either by a Fourier transformation from Eq.~80!, or by
an evaluation of the Feynman diagrams of Fig. 9 int space.
Both calculations lead to the remarkably simple result

FIG. 9. Feynman diagrams for the self-energySFF̃(k,v) in a
one-loop approximation. The notation for the various propagators
and vertices is explained in Appendix A. The contribution of the
left vertex of the second diagram contains the vector
s5px0

21(p)2kx0
21(k).
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SFF̃~k,t !52g0
2E d3p

~2p!3
x0~p!

x0~k!
k•Tp2k•k

3exp$2@GT~p2k!21GFp
mx0

21~p!#t%u~ t !.

~86!

The second self-energy term is again obtained from the
fluctuation-dissipation theorem,

SF̃F̃~k,t !52x0~k!@SFF̃~k,t !1SFF̃~k,2t !#. ~87!

The insertion of these results into Eq.~83!, and the subse-
quent integration over the internal timest1 and t2 finally
yields

SF~k,t !5g0
2E d3p

~2p!3
x0~p!k•Tp2k•k

3H 1

n~k!2m~p,k! F 1

n~k!2m~p,k!
1t Ge2n~k!t

2
1

@n~k!2m~p,k!#2
e2m~p,k!tJ , ~88!

with

n~k![GFk
mx0

21~k!, ~89!

m~p,k![GT~p2k!21GFp
mx0

21~p!. ~90!

The remaining integral over the internal wave vectorp in Eq.
~88! has to be evaluated numerically; note that the apparent
singularity of the integrand cancels out.

A typical result for the time dependence of the dynamic
scattering intensityGFF(k,t) for small solvent viscosity
GT is shown in Fig. 10. The first Born approximation gives
an overshoot at intermediate times, followed by a monotonic
exponential decay at large times.

Let us first consider the behavior of the correlation func-
tion for short timest. In this limit, the self-energy contribu-
tion is given by

SF~k,t !52
g0
2

2 F E d3p

~2p!3
k•Tp2k•k

x0
21~p! G t21O~ t3!, ~91!

while the Gaussian correlation function decays as

GFF
~0! ~k,t !5x0~k!@12GFk

mx0
21~k!t1O~ t2!#. ~92!

Thus the short-time behavior of the dynamic scattering in-
tensity remains unchanged by hydrodynamic modes.

The analysis of the asymptotic behavior for larget is
more complicated. The integral~88! has to be evaluated by
the saddle-point method@66# in this case. A lengthy and
somewhat tedious calculation yields

GFF~k,t !}t25/2exp@2t/tc~k!#, ~93!

i.e., an exponential decay with a relaxation timetc(k), to-
gether with analgebraic prefactor. The relaxation time is
given bytc(k)5max@tc

(1)(k),tc
(2)(k),tc

(3)(k)#, where

tc
~1!~k!5

1

GFk
mx0

21~k!
, ~94!

tc
~2!~k!5

1

GT~p,2k!21GFp,
mx0

21~p,!
, ~95!

tc
~3!~k!5

1

GT~ p̄2k!21GFp̄
mx0

21~ p̄!
. ~96!

The wave vectorsp, and p̄, which appear in Eqs.~95! and
~96!, are determined to sufficient accuracy by
p,5kGT /(GT12GFr 2)1O(k3) and p̄5q̄1a1(k2q̄)
1O@(k2q̄)2#, where q̄25(2b01Ab0223cr2)/3c and
a1

215112(15cq̄416b0q̄
21r 2)GF /GT . The dependence of

these relaxation times on the wave vectork is shown in Fig.
11 form52. For smallk, the relaxation timetc(k) diverges
as k22, compare Eq.~94!, due to the conservation of the
order parameter. Note that this divergence implies that the
decay of the correlation function fork[0 is purely alge-
braic. The internal structure of the microemulsion is re-

FIG. 10. Dynamic correlation functionGFF(k,t) as a function
of the scaled time variabletGFc

21/2 for fixed wave vector
k/q50.5. Van-Hove result~dashed line!, first Born approximation
~full line! and the self-energy contributionSF(k,t) are shown. The
parameters arem52, g052, GF51, GT /GF50.3, c51,
b0521.95, andr 251 ~so thatqj.8.9).

FIG. 11. Relaxation timestc
(1)(k) ~solid line!, tc

(2)(k) ~dashed
line! andtc

(3)(k) ~dashed-dotted line! of the dynamic scattering in-
tensity for a strongly structured microemulsion. The parameters are
m52, GF51, GT /GF50.3, c51, b0521.95, andr 251 ~so that
qj.8.9).
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flected in a maximum of thetc(k) at k.q. Finally, the re-
laxation time decreases rapidly for largek.

The relaxation times shown in Fig. 11 are calculated for a
strongly structured microemulsion (qj.8.9), with a small
solvent viscosityGT . With increasingGT , the width of the
peak of tc

(3)(k) narrows; simultaneously, the function
tc
(2)(k) decreases in magnitude, and approachestc

(1)(k) for
small k. Finally, for GT /GF@1, tc(k)5tc

(1)(k). With de-
creasingqj, on the other hand, the maximum of the relax-
ation time atk5q decreases, and disappears atqj.3.5. For
smallerqj,3.5, tc(k) is a monotonically decreasing func-
tion of k, with tc(k)[tc

(2)(k) for all wave vectors.

VII. DYNAMIC SCATTERING INTENSITY
IN FILM CONTRAST

The dynamic scattering intensity in film contrast,
Grr(k,v), is given by Eq.~39!. The Feynman diagrams,
which contribute toSr r̃(k,v) to one-loop order, are shown
in Fig. 12. The two diagrams on the lhs of Fig. 12 are com-
pletely analogous to the diagrams of Fig. 9 for the self-
energySFF̃(k,v), and describe the coupling of the am-
phiphile density to the hydrodynamic variables. The diagram
on the rhs of Fig. 12, on the other hand, describes the cou-
pling of the amphiphile density to the fluctuations of the
order parameterF; note that the strength of the vertices is
determined by dissipative coupling constants in this case,
while all previous diagrams contained mode-coupling coef-
ficients as vertex strengths. Therefore, it is natural to write
Sr r̃(k,v) as a sum of two contributions,

Sr r̃~k,v![Sr r̃
~H !~k,v!1Sr r̃

~C!~k,v!, ~97!

where the hydrodynamic part@compare Eq.~80!# is given by

Sr r̃
~H !~k,v!52t0

2E d3p

~2p!3
xr~p!

xr~k!

3
k•Tp2k•k

2 iv1GT~p2k!21Grp
2xr

21~p!
, ~98!

and the order-parameter part by

Sr r̃
~C!~k,v!5GrGFk

2E d3p

~2p!3
pm

x0
21~p2k!

@2b122b2k
22b3p

22b3~p2k!2#2

2 iv1GFp
mx0

21~p!1GF~p2k!mx0
21~p2k!

. ~99!

The advantage of this separation is that the effects of the
hydrodynamic modes~model H) and of coupling to the
order-parameter fluctuations~modelC) onGrr(k,v) can be
discussed independently.

The self-energy contributionS r̃ r̃(k,v) in Eq. ~39! can
again be obtained from the fluctuation-dissipation theorem,
which reads in this case~see Appendix B for details!

S r̃ r̃
~H !~k,v!522xr~k!Re$Sr r̃

~H !~k,v!%, ~100!

S r̃ r̃
~C!~k,v!5

2Grk
2

v
Im$Sr r̃

~C!~k,v!%. ~101!

The dynamic scattering intensity in film contrast
Grr(k,v) is shown in Figs. 13 and 14 as a function ofv for
k5q, and as a function ofk for fixedv, respectively. These
curves demonstrate several properties ofGrr(k,v). First,
note that the effect of the conservation of the order parameter
F on the amphiphile scattering intensity is rather weak; the

curves form52 andm50 almost coincide. Second, the dy-
namic correlation function vanishes forvÞ0 as k2 for
k→0 as a consequence of the conservation of the amphiphile
concentration. Third, the main contribution to the one-loop
self-energySr r̃(k,v) arises from the coupling to the order
parameterF, while the effect of hydrodynamic relaxation
modes would be difficult to distinguish in the scattering
curves of Figs. 13 and 14. Finally, thefull dynamic correla-
tion function at fixed wave vectork satisfies the~exact! sum
rule @47#

E
2`

` dv

2p
Grr~k,v!5Grr

~stat!~k!. ~102!

We find that our one-loop results fulfill this condition very
well; calculations for several wave vectorsk showed devia-
tions of less than one percent.

In order to extract the asymptotic behavior of the interme-
diate correlation function,Grr(k,t), for short and long times

FIG. 12. Feynman diagrams for the self-energySr r̃(k,v) in a
one-loop approximation. The notation for the various propagators
and vertices is explained in Appendix A. The vertices contain the
contributions w5pxr

21(p)2kxr
21(k) and Z52b122b2k

2

2b3p
22b3(p2k)2.
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t, we follow again the route taken in Sec. VI. In the first
Born approximation, the correlation function then reads

Grr~k,t !5Grr
~0!~k,t !1Sr~k,t !, ~103!

where

Grr
~0!~k,t !5xr~k!exp@2Grk

2xr
21~k!utu#, ~104!

andSr(k,t) is given by an expression completely analogous
to Eq.~83!, with F andF̃ replaced byr andr̃, respectively.
We divide the self-energy terms again into a hydrodynamic
part, and a part describing the coupling to the order param-
eter fluctuations. The latter contribution — obtained by a
Fourier transformation from Eqs.~99! and~101! — is given
by

S r̃ r̃
~C!~k,t !5

1

2
Gr
2k4E d3p

~2p!3

3
@2b122b2k

22b3p
22b3~p2k!2#2

x0
21~p2k!x0

21~p!

3exp$2GF@~p2k!mx0
21~p2k!

1pmx0
21~p!#utu%. ~105!

The self-energySr r̃
(C)(k,t) follows from the fluctuation-

dissipation theorem, which reads in this case

]

]t
S r̃ r̃

~C!~k,t !52Grk
2@Sr r̃

~C!~k,t !1Sr r̃
~C!~k,2t !#,

~106!

together withSr r̃
(C)(k,t);u(t). These expressions can then

be inserted back into the analog of Eq.~83!; an integration
over the internal time variablest1 and t2 finally yields

Sr
~C!~k,t !5

1

2
Gr
2k4E d3p

~2p!3

3
@2b122b2k

22b3p
22b3~p2k!2#2

x0
21~p2k!x0

21~p!

3H l~p,k!

k~k!@k~k!2l~p,k!#

3F l~p,k!22k~k!

k~k!@k~k!2l~p,k!#
2t Ge2k~k!t

1
1

@k~k!2l~p,k!#2
e2l~p,k!tJ , ~107!

where

k~k![Grk
2xr

21~k!, ~108!

l~p,k![GF@~p2k!mx0
21~p2k!1pmx0

21~p!#.
~109!

A typical result for the time dependence of the dynamic am-
phiphile scattering intensityGrr(k,t) is shown in Fig. 15.

The expression~107! can now be used to extract the as-
ymptotic time behavior of the amphiphile correlation func-
tion. For small timest, an expansion of Eq.~107! in powers
of t implies

Sr
~C!~k,t !5Sr

stat~k!

2
1

12
Gr
2k4F E d3p

~2p!3
l~p,k!

x0
21~p2k!x0

21~p!

3@2b122b2k
22b3p

22b3~p2k!2#2G t3
1O~ t4!, ~110!

FIG. 14. Dynamic scattering intensityGrr(k,v) in film contrast
with v/(Grg21/2)53.0 as a function of the scaled wave vector
k/q, for both conserved~full line! and nonconserved~dashed-dotted
line! order parameterF. The van-Hove approximation is also
shown ~dashed line!. The parameters aret052, Gr51, GF51,
GT51, b150.7, b2521.0, b3520.1, a51, b51, g50.01,
c51, b0521.95, andr 251.

FIG. 13. Dynamic scattering intensityGrr(k,v) in film contrast
with k5q as a function of the scaled frequencyv/(Grg21/2), for
both conserved~full line! and nonconserved~dashed-dotted line!
order parameterF. The van-Hove approximation is also shown
~dashed line!. The parameters aret052, Gr51, GF51, GT51,
b150.7, b2521.0, b3520.1, a51, b51, g50.01, c51,
b0521.95, andr 251.
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whereSr
stat(k)5Sr

(C)(k,t50) is the static self-energy con-
tribution. Therefore, the linear time dependence of the
Gaussian correlation function fort→0,

Grr
~0!~k,t !5xr~k!@12Grk

2xr
21~k!t1O~ t2!#, ~111!

remains unchanged, just as for the scattering intensity in bulk
contrast, compare Eqs.~91! and~92!. Note, however, that the
value ofGrr(k,t50) is modified in this case, since the static
self-energySr

stat(k) is nonzero.
In order to extract the asymptotic behavior ofGrr(k,t)

for large times, we employ again the saddle-point method
@66#. The analysis is somewhat more complicated than for
the correlation functionGFF(k,t) in bulk contrast~compare
Sec. VI! , since both conserved and nonconserved order pa-
rameterF has to be considered, and also the limits of small
and large amphiphile mobility have to be investigated.

Let us consider first the case of low amphiphile mobility,
i.e., Gr!GFc

(22m)/4. We find that in this limit the fluctua-
tions of the order parameter are irrelevant for the long-time
behavior ofGrr(k,t). The self-energySr

(C)(k,t) is domi-
nated by the first exponential in Eq.~107!, which leads to

Grr~k,t !}texp@2t/uc
~0!~k!# ~Gr!GFc

~22m!/4!,
~112!

with

uc
~0!~k![

1

Grk
2xr

21~k!
. ~113!

This result applies both for conserved and for nonconserved
order parameterF.

In the opposite limit of slow order-parameter dynamics
Gr>GFc

(22m)/4 the conservation or nonconservation of the
order parameter becomes important. In the latter case, i.e.,
for m50, the intermediate scattering intensity of well-
structured microemulsion or sponge phases~with qj.1) de-
cays fort→` as

Grr~k,t !}t21exp~2t/uc
~2!! ~GFc

1/2!Gr ,m50!,
~114!

with a k-independentrelaxation time

uc
~2![

1

2GFq̄
mx0

21~ q̄!
, ~115!

whereq̄5(2b0/2c)
1/2. The investigation of a system with a

conserved order parameterF, i.e., withm52, turns out to be
more complicated, because the exponentl(p,k) of Eqs.
~107!, ~109! has several minima in this case. A somewhat
tedious but straightforward calculation shows that there are
several different regimes, which have to be distinguished.
For a strongly structured microemulsion or sponge phase,
with qj.3.5, we find

Grr~k,t !}5
t23/2exp@2t/uc

~1!~k!#

t21exp~2t/uc
~2!!

t23/2exp@2t/uc
~3!~k!#

t21exp~2t/uc
~2!!

for

k!j21

j21,k,q

k'q

k.q

~GF!Gr ,m52!. ~116!

The relaxation timeuc
(2) is still given by Eq.~115!, but with

the wave vector q̄ now determined by q̄25(2b0
1Ab0223cr2)/3c @compare Eq.~96!#. In addition, the relax-
ation times

uc
~1!~k![

1

2GF~k/2!mx0
21~k/2!

~117!

and

uc
~3!~k![

1

GF@~ p̂2k!mx0
21~ p̂2k!1 p̂mx0

21~ p̂!#
~118!

appear, where

p̂5
k

2
1@215ck224b012~45c2k4112cb0k

214b0
2

212cr2!
1/2#1/2~12c!21/2. ~119!

The relaxation timesuc
(0)(k), uc

(1)(k), uc
(2) and uc

(3)(k) are
plotted as a function of the wave vectork for a system with
qj.8.9 in Fig. 16. The various regimes of Eq.~116! arise
from the fact that different relaxation times dominate over
some range of wave vectors. Note thatuc

(1)(k) diverges in
the limit k→0, so thatGrr(k50,t);t23/2, i.e., the correla-
tion function decayspurely algebraicallyin time @27#.

In our discussion of the relaxation times, we have so far
completely neglected the ‘‘hydrodynamic’’ contribution
Sr
(H)(k,t) of Sr(k,t) in Eq. ~103!. Due to the completely

analogous structure of the dynamic equations for the order
parameter and for the amphiphile concentration with respect
to the coupling to hydrodynamic variables, the analysis of
this term does not require any new calculations. Rather,

FIG. 15. Dynamic correlation functionGrr(k,t) as a function of
the scaled time variabletGrg21/2 for fixed wave vectork/q50.1
and nonconserved order parameterF. Van-Hove result~dashed
line!, first Born approximation~full line! and the self-energy con-
tribution Sr(k,t) are shown. The parameters arem50, t050,
Gr51, GF51, GT51, b150.7, b2521.0, b3520.1, a51,
b51, g50.01,c51, b0521.95, andr 251.
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Sr
(H)(k,t) is given by Eq.~88!, with n(k) andm(p,k), Eqs.

~89! and ~90!, replaced byk(k), Eq. ~108!, and

s~p,k![GT~p2k!21Grp
2xr

21~p!, ~120!

respectively. The self-energySr(k,t) corresponds to the
self-energySF(k,t) in the limit of very weakly structured
microemulsions, since the static scattering intensityxr(k)
has a peak atk50, and decays monotonically as a function
of the wave vectork. In this case, the results of Sec. VI
imply that

Grr~k,t !}t25/2exp~2t/uc
~4!! ~121!

with the relaxation time

uc
~4!~k![

1

GT~p,2k!21Grp,
2 xr

21~p,!
, ~122!

where p,5kGT /(GT12Gra)1O(k3) @compare Eq.~95!#.
This ‘‘hydrodynamic’’ relaxation time is also shown in Fig.
16; it demonstrates that the hydrodynamic relaxation mode
dominates for smallk. The upper boundary of this hydrody-
namic regime depends on the viscosityGT of the solvent, and
decreases with increasingGT . We want to mention paren-
thetically that the short-time behavior ofGrr(k,t), given by
Eq.~111!, is not modified by the coupling to the hydrody-
namic modes, sinceSr

(H)(k,t);t2 @compare Eq.~91!#.

VIII. SUMMARY AND DISCUSSION

We have calculated in this paper the frequency-dependent
~complex! viscosity, the sound velocity and damping and the
scattering intensity in bulk and film contrast of microemul-
sion and sponge phases. Our analysis is based on a
Ginzburg-Landau model, which has been demonstrated pre-
viously to capture many of the essential static properties of
these complex fluids. Our field-theoretic calculation of the
dynamical properties has the advantage that the effects of the
coupling of various hydrodynamic and concentration modes
can be studied systematically. Furthermore, this approach
guarantees that important general conditions, like the

fluctation-dissipation theorem, are automatically satisfied at
every level of a perturbation theory.

The main results of this paper can be summarized as fol-
lows.

~1! The real part of the viscosityh is almost frequency
independent for small frequenciesv. It drops sharply at a
characteristic frequencyv* , which depends on the correla-
tion lengthj and on the domain size 2p/q of the fluid. With
increasingj, v* decreases strongly, while the dependence
on q is rather weak. The imaginary part ofh peaks at
v5v* .

~2! The behavior of the sound velocity and damping is
very similar to the behavior of the imaginary and real parts
of the viscosity. This holds both for the dependence on fre-
quency and on the structural parametersq andj. In particu-
lar, the samecharacteristic frequencyv* appears in both
cases.

~3! The short-time behavior of the intermediate scattering
intensityG(k,t) both in bulk and film contrast, is linear in
time t. Mode-coupling terms do not contribute in this limit.

~4! The behavior of the intermediate scattering intensity
for large times is given by an exponential decay together
with an algebraic prefactor. In the case of the scattering
intensity in bulk contrast, the prefactor ist25/2. The scatter-
ing intensity in film contrast shows several differentk re-
gimes, which are characterized by different algebraic factors.

The time dependence of the intermediate scattering inten-
sity requires some further discussion. We have found that the
first Born approximation yields a nonmonotonic behavior of
the scattering intensityGFF(k,t) in bulk contrast, but as-
ymptotically a monotonic decay fort→`. On the other
hand, the numerical Fourier transform of the Dyson equation
in Ref. @25# showed a dampedoscillatory decay for larget.
First, note that if the longest relaxation time of the mode-
coupling terms islarger than the Gaussian relaxation time —
which has to be the case if the mode-coupling terms domi-
nate the asymptotic behavior for larget — the first Born
approximation strictly speaking breaks down for sufficiently
large times, since the ‘‘correction’’ term becomes much
larger than the ‘‘leading’’ Gaussian term. Therefore, the
Dyson results are more reliable fort→`. On the other hand,
due to the exponential decay of the correlation function, the
Dyson form ofGFF(k,t) gets so small for larget that after
a few oscillations it cannot be distingushed from numerical
inaccuracies. Therefore, it is also very difficult to prove an
oscillatory asymptotic behavior. In any case, we are confi-
dent that thealgebraic prefactoris valid independent of an
oscillatory or monotonic decay.

The asymptotic behavior of the intermediate scattering in-
tensity in film contrastGrr(k,t) has already been studied in
detail by Granek and Cates in Ref.@27#, based on a time-
dependent Ginzburg-Landau theory similar to ours. How-
ever, their approach differs from ours in two important as-
pects: ~i! their static film correlation function does not
contain a peak or shoulder atk.2q, so that the results can
only be compared fork!q, and~ii ! they do not include the
hydrodynamic modes into the time-dependent model as ad-
ditional fields, but rather as a memory term. In the more
interesting case of a fast amphiphile relaxation, Granek and
Cates@27# find for a nonconserved order parameter that the
large-time behavior is given byGrr(k,t);t23/2exp(2t/t) for

FIG. 16. Asymptotic relaxation timesuc
(1)(k) ~full line!, uc

(2)

~dashed line!, uc
(3)(k) ~dashed-dotted line!, together with the hydro-

dynamic relaxation timeuc
(4)(k) ~dotted line!, for conserved order

parameterF and GF!Gr . The parameters areGF51, c51,
b0521.95, andr 251 ~so thatqj.8.9).
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kj!1, and byGrr(k,t);t21/2exp(2t/t) for kj@1. For a
conserved order parameter, they obtain the large-t behavior
Grr(k,t);t23/2 for kj!1, and Grr(k,t);t21/3exp(2t/t)
for kj@1. The relaxation timet in these expressions is a
function of the wave vectork, and is different for conserved
and nonconserved order parameters~see Ref.@27# for de-
tails!. These results have to be compared with our result
~114! for nonconserved, and~116! and ~121! for conserved
order parameters. While there is agreement about the general
form of the scattering intensity — an exponential decay with
an algebraic prefactor — the algebraic exponents differ in all
cases. Furthermore, while we find a linear short-time depen-
dence of the intermediate scattering intensity, Granek and
Cates@27# obtain a cusp singularity with the exponent 1/2 for
nonconserved and 1/3 for conserved order parameters.

It would now be interesting to perform a self-consistent
calculation of the dynamic behavior of microemulsions and

sponge phases. Unfortunately, this will require an enormous
numerical effort. Furthermore, an analytical calculation of
scaling laws is no longer possible in this case. Nevertheless,
it would be worthwhile to pursue such an approach, because
it should be possible to clarify some of the problems men-
tioned above in this way.

The sound attenuation as a function of frequencyv
has been measured in Ref.@67# for the system
H2O-octane-C12E5 with 7 wt % amphiphile in the micro-
emulsion phase. For a balanced microemulsion,
a(v)v225D(v)c23(v)/2 is found to be roughly constant
for smallv, and to decrease smoothly in the frequency range
12100 MHz. This qualitative behavior is in agreement with
our theoretical results. It is interesting to note that measure-
ments of sound attenuation and dispersion curves near criti-
cal points, where the characteristic frequencyvc scales as
vc;j2z with the ‘‘dynamic’’ exponentz.3 @48,37#, are

TABLE I. Response propagators.

~a! G
F̃F

(0)
(k,v) 1

2 iv1GFk
mx0

21(k)

~b! G r̃ r
(0)(k,v) 1

2 iv1Grk
2xr

21(k)

~c! G
j̃ TjT

(0)
(k,v) 1

2 iv1GTk
2

~d! G
j̃ L jL

(0)
(k,v) iv2Gpk

2

v22l0
2k22GLGpk

41 iv(GL1Gp)k
2

~e! Gp̃p
(0)(k,v) iv2GLk

2

v22l0
2k22GLGpk

41 iv(GL1Gp)k
2

~f! G
j̃ Lp
(0)

(k,v) 2 il0k
v22l0

2k22GLGpk
41 iv(GL1Gp)k

2

~g! Gp̃ jL

(0) (k,v) 2 il0k
v22l0

2k22GLGpk
41 iv(GL1Gp)k

2

with x0
21(k)52(ck41b0k

21r 2), xr
21(k)52(gk41bk21a)

TABLE II. Correlation propagators.

~a! GFF
(0) (k,v) 2GFk

m

u2 iv1GFk
mx0

21(k)u2

~b! Grr
(0)(k,v) 2Grk

2

u2 iv1Grk
2xr

21(k)u2

~c! GjTjT
(0) (k,v) 2GTk

2

u2 iv1GTk
2u2

~d! GjL jL
(0) (k,v) 2l0

2Gpk
412GLk

2(v21Gp
2k4)

uv22l0
2k22GLGpk

41 iv(GL1Gp)k
2u2

~e! Gpp
(0)(k,v) 2l0

2GLk
412Gpk

2(v21GL
2k4)

uv22l0
2k22GLGpk

41 iv(GL1Gp)k
2u2

~f! GjLp
(0) (k,v) 2vl0(GL1Gp)k

2k
uv22l0

2k22GLGpk
41 iv(GL1Gp)k

2u2

with x0
21(k)52(ck41b0k

21r 2), xr
21(k)52(gk41bk21a)
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usually performed in the same range of frequencies@63,68#.
The experiment of Ref.@67# indicates that the sound attenu-
ation has a maximum for a microemulsion near the apex of
the three-phase triangle. This is again consistent with our
result that the dampingD(v) should increase with increas-
ing correlation length.

An interesting limit of microemulsion and sponge phases
is the case of strongly swollen systems, where the typical
domain size of oil and water regions is much larger than the
thickness of an amphiphilic mono- or bilayer. In this case,
the correlation lengthj, the inverse domain sizeq, and the
‘‘amphiphile length’’ c1/4 are given byj;k0rs

21 , q;rs ,
and c1/4;k0

1/4rs
21/4 wherek0 is the bending rigidity of the

amphiphile layer@14#. These relations imply in particular
qj;k0. Although it is unclear whether our results still apply
quantitatively in this limit, we believe that the qualitative
behavior should be predicted correctly. Thus, we would ex-

pect, for example, the zero-shear viscosity to scale as
h(0);k0

2rs
22 . The viscosity of a strongly swollen sponge

phase in the system cetylpyridinium chloride-hexanol brine
has been investigated experimentally in asteady-shearex-
periment as a function of the shear rate in Ref.@69#. The
results show a shear-rate-independent viscosity in the range
0.12100 Hz. The zero-shear viscosity is found to increase
linearly with the amphiphile concentrationrs , in contrast to
the theoretical expectation. We believe that the most plau-
sible conceivable explanation for this discrepancy is that
steady shear destroys the complex equilibrium structure of a
sponge phase already at very small shear rates.

More experimental data are clearly necessary for a de-
tailed test of the theoretical predictions. In particular, it
would be interesting to measure simultaneously the static
scattering intensity in bulk contrast~to determineq and j),
the viscosity and the sound attenuation and damping for a
series of balanced microemulsions with increasing am-
phiphile chain length. The correlation lengthj can be varied
also by approaching the transition to a spatially ordered

FIG. 17. Bare response functions. Straight lines represent physi-
cal fields, wavy lines response fields. Solid lines denote the order
parameter propagators, lines with crosses are propagators of the
pressure field, lines with check marks represent the amphiphile con-
centration propagators. For the momentum densityj , we indicate
the longitudinal componentjL by dashed lines, and the transverse
componentjT by lines with bars. The labels~a!–~g! refer to Table I.

FIG. 18. Bare correlation functions. Straight lines represent
physical fields, wavy lines response fields. Solid lines denote the
order parameter propagators, lines with crosses are propagators of
the pressure field, lines with check marks represent the amphiphile
concentration propagators. For the momentum densityj , we indi-
cate the longitudinal componentjL by dashed lines, and the trans-
verse componentjT by lines with bars. The labels~a!–~f! refer to
Table II.

TABLE III. Nondissipative and dissipative vertices.

~a! ig0Tq2~q11q2!5 ig0Tq2k

~b! i t0Tq2~q11q2!5 i t0Tq2k

~c!
i
g0
2
Tk@q1x0

21~q1!1q2x0
21~q2!#

~d!
i
t0
2
Tk@q1xr

21~q1!1q2xr
21~q2!#

~e! i t0Tk~q21q3!@b12
1
2 ~2b21b3!~q2

21q3
2!22b2q2q3#

~f!
i
g0
2
Tk~q11q212q3!@2b12~2b21b3!q3

2#

2 ig0b3Tk@~q11q3!~q1
21q1q3!1~q21q3!~q2

21q2q3!#

~g! GF~q11q2!
m@2b122b3q1

22~2b21b3!q2
222b3q1q2#

~h! Gr~q11q2!
2@b12

1
2 ~2b21b3!~q1

21q2
2!22b2q1q2#

with x0
21(k)52(ck41b0k

21r 2), xr
21(k)52(gk41bk21a)
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phase~if the transition is weakly first order!.
Our results for the viscosity, for the sound velocity and

damping, and for the dynamic scattering intensity in bulk
contrast should also apply to the disordered phase of diblock
copolymer melts. In fact, the shear-induced isotropic-to-
lamellar transition predicted in Ref.@30#, based on a very
similar Ginzburg-Landau model, has been confirmed very
nicely for a symmetric diblock copolymer melt@70#. Further-
more, the small-v regime with a quadratic and linearv de-
pendence of the storage and loss moduli, respectively, has
already been observed experimentally in these systems
@71,57#. Therefore, it would now be very interesting to de-
termine the characteristic frequencyv* , and to measure the
sound velocity and damping.
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APPENDIX A: RULES FOR FEYNMAN DIAGRAMS

The inversion of the matrix@G(0)#21 — defined in Eqs.
~31! to ~36! — of the Gaussian actionA0 yields the propa-
gators Gi j

(0)(k,v), which are related to the~unreduced!
Gaussian~or van-Hove! response and correlation functions
by

^C i~k1 ,v1!C j~k2 ,v2!&05Gi j
~0!~k1 ,v1!~2p!4d~k11k2!

3d~v11v2!. ~A1!

The results of this matrix inversion are summarized in Tables
I and II; the graphical representations of the propagators are
shown in Figs. 17 and 18.

The higher-than-quadratic terms in the dynamic func-
tional A, given by Eq.~25!, determine the vertices of the
Feynman diagrams, which are listed in Table III, and shown
graphically in Fig. 19. It turns out to be convenient to con-
sider the longitudinal and transverse projectors,

@Lk#ab[
1

k2
kakb ~A2!

and

@Tk#ab[dab2
1

k2
kakb ~A3!

of the momentum density as part of the vertices, and not as
part of the propagators. The reason is that in the calculation
of self-energy diagrams the external propagators have to be
cut off, the corresponding projectors, however, have to be
taken into account.

APPENDIX B: FLUCTUATION-DISSIPATION
THEOREMS

Fluctuation-dissipation theorems~FDT! provide important
relations between the full correlation and response functions.

For an arbitrary dynamic fieldC(k,v), they have the gen-
eral form @32,72#

GCC~k,v!5
2

v
Im$GC~k,v!knGC̃C~k,v!%, ~B1!

wheren50 or n52 for nonconserved or conserved fields,
respectively. The wave-vector and frequency-dependent dis-
sipative coupling constant ~or Onsager coefficient!
GC(k,v) in Eq. ~B1! follows from the relation

GCC
~stat!~k!5GC~k,v50!knGC̃C~k,v50! ~B2!

between the~full ! dynamic response functionGC̃C(k,t) and
the~full ! static correlation functionGCC

(stat)(k). Equation~B2!
can be derived from Kramers-Kronig relations together with
the sum rule

GCC
~stat!~k!5E dv

2p
GCC~k,v!. ~B3!

In modelH, the static correlation function of the order
parameterF is given by

GFF
~stat!~k!5x0~k! ~B4!

since we have not taken into account any higher-than-
quadratic terms in the static free-energy functional. There-
fore, the renormalized Onsager coefficient is found to be

GF~k,v!5GF2
SFF̃~k,v!

kmx0
21~k!

, ~B5!

which implies

FIG. 19. Dissipative and nondissipative vertices. The labels~a!–
~h! refer to Table III.
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SF̃F̃~k,v!522x0~k!Re$SFF̃~k,v!% ~B6!

for the self-energy contributions. The same relation applies
for the self-energy terms of the amphiphile concentrationr,
if it couples only to the momentum density field. Similarly,
one finds

S j̃ T,L j̃T,L
~k,v!522Re$S jT,L j̃ T,L

~k,v!% ~B7!

for the momentum density field.
In modelC, a one-loop calculation shows that

Sr r̃~k,v50!5Grk
2Sr

~stat!~k! ~B8!

which yields the relation

Grr
~stat!~k!5

1

x0
21~k!2Sr

~stat!~k!
5Grk

2G r̃ r~k,v50!.

~B9!

The condition~B2! then implies that the Onsager coefficient
of the amphiphile concentration remains unrenormalized in
this case,

Gr~k,v!5Gr . ~B10!

Therefore, the relation between the self-energy terms reads

S r̃ r̃~k,v!5
2Grk

2

v
Im$Sr r̃~k,v!%. ~B11!

Equations~B6!, ~B7!, and ~B11! have been used in this
paper to calculate the self-energy contributionsSC̃C̃ in a
simple way. It is also possible, of course, to calculate these
self-energy terms directly from the corresponding Feynman
diagrams. Since the FDT relations have to be satisfied in any
order of a loop expansion, they can be used as a test of a
correct and consistent calculation of the Feynman diagrams
in this case.
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