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Dynamical behavior of microemulsion and sponge phases in thermal equilibrium
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The dynamical behavior of microemulsion and sponge phases is studied with a time-dependent Ginzburg-
Landau model. The model has been shown previously to capture many of the essential static properties of these
systems. Using a field-theoretic perturbation theory, we calculate the frequency-dedendgriex viscosity
7(w), sound velocityc(w) and dampindd (w), and the scattering intensif(k,t) in bulk and film contrast.

The viscosity is almost frequency independent for smalthen drops sharply at a characteristic frequency
*, corresponding to a characteristic relaxation timel/ow*. The same relaxation time is also found to
dominate the sound velocity and damping. The characteristic frequency has the scaling form
w*~£750(qé), where ¢ is the correlation length and is the inverse domain size of the microemulsion
structure. The scattering intensi§(k,t) decays exponentially in timefor larget with an algebraic prefactor

t™¢, both in bulk and in film contrast. In the latter case, we find there are several regimes of the wave vector
k with different exponents. [S1063-651X96)02109-5

PACS numbgs): 61.20.Gy, 64.60.Ht, 82.76y

[. INTRODUCTION behavior. There have been several studies of the dynamics in
these systems, like the calculation of the dynamic scattering
Microemulsions in ternary amphiphilic systems have aintensity in bulk[24,2§ and film contras{26,27], of the
very intriguing structure on mesoscopic length scales, whiclviscosity [28] and of the sound attenuation and dispersion
gives rise to many interesting properties of these phasd®9] — all of which concern dynamical properties of systems
[1-3]. It is now well established that for systems containingin thermal equilibrium —, or the calculation of a sponge-to-
medium- or long-chain amphiphiles, oil and water channeldamellar transition in shear flo30] — a typical non-
form two multiply connected networks, which are separatecequilibrium situation.
by an amphiphilic monolayer. With decreasing amphiphile We want to present in this paper a systematic study of the
chain length, the typical length scale of both the oil and thedynamical behavior of microemulsion and sponge phases in
water domains decreases; simultaneously, the amphiphilermal equilibrium. In Sec. Il, the time-dependent
concentration within these domains increases. This pictur&inzburg-Landau model is introduced. In Sec. Ill, we de-
emerges from a series of careful neutron scattering experielop the formalism of the dynamic perturbation theory, and
ments [4—6], together with nuclear magnetic resonanceshow how the frequency-dependent viscosjfw), and the
(NMR) self-diffusion measuremen{§] and freeze-fracture sound velocityc(w) and dampind (w) can be calculated in
microscopy[8]. A very similar mesoscopic structure is ob- this approach. We present the results for the viscoelastic be-
served in sponge phases in agueous amphiphilic solutions, tmavior in Sec. 1V, and for the sound velocity and damping in
which an amphiphilic bilayer separates space into two disSec. V. In particular, we show that the frequency dependence
tinct water domain$9,10]. of these transport coefficients is dominated by a single char-
Various theoretical models have been developed duringcteristic frequency®, and discuss the variation of(w),
the last few years to understand the properties of microemuk(w), D(w), and o* with the structural parameters — do-
sion and sponge phasgz|. Microscopic lattice models and main size 2r/q and correlation lengtit — of the static
interfacial models have been used, for example, to calculatstructure of microemulsion and sponge phases. The scatter-
the scattering intensity in bulk contrast. The calculationsing intensityS(k,t) in bulk and film contrast is calculated in
show a pronounced peak at nonzero wave velctand pre-  Secs. VI and VII, respectively. In particular, we determine
dict the dependence of the peak position on amphiphile corthe asymptotic behavior dd(k,t) for short and large times
centration and amphiphile strendthl—13, or on the bend- t. The paper closes with a brief summary and discussion in
ing rigidity of an amphiphilic monolayer and the amphiphile Sec. VIII.
concentration [14]. Furthermore, calculations based on
Ginzburg-Landau modelgl5,10,16—18 and on interfacial
models[19,2Q have shown that the scattering intensity in
film contrast shows a characteristi&k decay for small wave The basic idea of a description of the dynamics of com-
vectorsk, followed by a small peak or shoulder kt=2q, plex fluids by a Ginzburg-Landau model is to construct dif-
whereq is the inverse of the typical domain size of the oil or ferential equations, which determine the temporal evolution
water domains, and finally a k¥ behavior fork>2q — in  of the “slow” variables of the system, in particular, all vari-
agreement with experimental resulfis,21-23. ables which obey a conservation law, while all “fast” de-
The complex internal structure of microemulsion andgrees of freedom are subsumed into a thermal random noise
sponge phases should give rise to an interesting dynamicédrce [31-34. In the case of fluid ternary amphiphilic mix-
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tures, the slow variables are the local concentration differHere, the first contribution,
ence®d(r,t) of oil and water, the local amphiphile concen-
tration p(r,t) — or more precisely its deviation from the
average amphiphile concentratipp—, the momentum den-

fq):j d3r[c(V2D)2+g(®@)(VD)2+f(P)], (12
sity field j(r,t), and the pressure fieldl(r,t). In the case of

aqueous amphiphilic solutions, the order paramétér,t) is
the concentration difference of water on one gtiaside” )

and on the other sidé‘outside”) of the amphiphile bilayer

with ¢>0, is the free-energy functional, which has been used
extensively for investigations of the static structure and
phase behavior of microemulsiof4,38,3. The functions

[15]; all other fields have the same meaning as for ternary () and g(®) in Eq. (12) are usually chosen to have the
systems. The dynamics of these fields is governed by thgym

time-dependent Ginzburg-Landau equatipd5—37]
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where the subscriptsL” and “ T” denote the longitudinal

g(®)=by+b,d?, (13

f(D)=r,d2+r,D%+rgD5, (14)

with b,=0, r,>0 andrg=0. The important features of
these functions are thd{®) has three minima, which cor-
respond to the three homogeneous phases oil-rich, water-
rich, and microemulsion, and thg{0)<0, so that the scat-
tering intensity of the microemulsiowith (®)=0) in bulk
contrast has a pronounced peak at wave vektef. The
latter property can be seen from an explicit calculation of the
scattering intensityyo(k) in the Ornstein-Zernike approxi-
mation, which yield44,38]

Xo(k):%[CkA+b0k2+r2]_l. (15)

The Fourier transform of Eq15) is the real-space correla-
tion function[4]

G(r)~ %e‘”fsin(qr) (16)

and transverse components of a vector field, respectively.
The parametem in Eqg. (1) distinguishes the cases of con- \yith

served (Mh=2) and nonconserved(=0) order parameter.
. have a Gauss-
ian probability distribution, with zero average, and the cor-

The thermal random noise forcés, ¢,, . .

relations
(La(r)ia(r',t"))=2L¢(iV)"8(r=r")s(t=t"), (6)
(Go(rg,(r' )= —2T V2&(r=r")&(t—t"), (7)
(Gp(rgp(r' 1)) = =20 V28(r—r")8(t—t"), (8

<§T,a(rrt)§T,B(r,it,)>: _ZFTV25(r_r,)5(t_tI)5aB!

(CLalr DL p(r 1)) = =20 V25(r=r") 8(t—t") 8up-
(10

The free-energy functionaf[ ®,p,p,j], which appears in
Egs.(1)—(5), is given by

f[q)ip!plj]:f¢[(l)]+fp[p]+~7:int[(1)!p]+]:HD[p1j%'ll)

£72=(r,/4c)Y?+ (bolac), q°=(r,l4c)Y?— (byl4c).

17

The oscillatory exponential decay &f(r) demonstrates that
the structure of a microemulsion is characterizedvy in-
dependent length scales, the correlation lerigdnd the in-
verse average domain sizg The dimensionless product
gé is a convenient measure of the structure of a microemul-
sion. Weakly structured microemulsions with<@é<<1
have an oscillatory correlation function, but no peak in the
scattering intensity at nonzero wave veckorThe peak in
xo(k) for k>0 appears agé=1, and becomes more pro-
nounced with increasingé.

Since we are mainly interested in the properties of the
microemulsion or sponge phase, and not in their coexistence
with other phases, we choose folandg the simple form

9(®)=hy,

i.e., we ignore higher-than-quadratic terms in the free-energy
functional (12).

Although the local amphiphile concentration does not ap-
pear in the mode(12), theaverageamphiphile concentration

f(D)=r,P?, (18)
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ps enters as a parameter; the valuebgf for example, de- of concentrations due to fluid flow; thus, these terms can be
creases with increasings. The model(12), with only a  understood as a continuity equation. The second and third
single order parameter fiefl, already describes many prop- terms on the rhs of Eq94) and (5) represent structural
erties of microemulsions, such as their wetting behavior aforces, which are necessary to fulfill detailed balance
the oil-water interfac§38—42. However, in some cases itis [44,45. Finally, Eq.(3) for the pressure field corresponds to
necessary or convenient to take into account the local anthe continuity equation for the total mass density.
phiphile concentration explicitly. In this case, the free-energy Note that thefluctuation-dissipation theorer6,47 re-
functional has two additional contributions, quires that the coefficients in the noise correlati@)s-(10)

are identical with thedissipative or irreversible coupling

constantd’y,, I'y, 'y, andI', . Detailed balance also re-
]—'pzf d3r[v(V?p)2+ B(Vp)?+ ap?], (190  quires that theeversiblecoupling constants —gg, Ao, and
9 — Of “corresponding” terms, like thé&v 5F/ §j contribu-
with y>0, >0 anda>0, and[10,16] tion in Eq.(3) for p, and theV§F/ 5p contribution in Eq.(5)

for j_, are the same.
Finally, we want to mention that time-dependent
J:im:j d*r[Bip®@?+ Bo(V2p) D2+ Bap® (V2D)]. Ginzburg-Landau equations have been studied intensively in
(20) the context of dynamic critical phenome#8,35. Two lim-
iting cases of Eq9.1)—(5) have been investigated in particu-
The coupling terms in Eq(20) between the two order pa- lar: modelH [49,35, which is given by Eqs(1) and(4) —
rameters include only the lowest powerspfind® which ~ With 7=0 —, and modelC [50,35, which is defined by
are allowed by symmetry arguments in a balanced microEds. (1) and(2) — with go=7,=0. The free-energy func-
emulsion, and at most two spatial derivatives of the fieldstionals 7 for critical phenomena and for ternary amphiphilic
This model for® andp has been used to calculate the scat-Systems are quite different, however, so that the same equa-
tering intensity in film contrasf15,16], and first showed all tions of motion will give rise to a markedly different dy-
the essential characteristics of this intensity described in thBamical behavior.
introduction. Finally, the “hydrodynamic” part of the free-
energy functional11) takes the forn{43] I1l. DYNAMIC PERTURBATION THEORY

The fundamental quantities of interest, which characterize

1 1 the dynamical behavior of the system in thermal equilibrium
- 3| 2242 .
}—HD_f d r[Zp +ZJ ' (1) are the correlation functions
We now return to the form of the time-dependent Cij(r—r",t=t")=(W,(r,t)W(r",t')), 22

Ginzburg-Landau equationgl)—(5) to comment on the

physical interpretation of the various terms. The first term orwhere V;e{®,p,p,j1,j.}, and the response functions
the right-hand siddrhs) of Eq. (4) together with the left- R;;(r—r’,t—t"), which describe the response of the system
hand sidg(lhs) is the transverse component of the linearizedat timet to a(small) external perturbation at timé. In order
Navier-Stokes equation; similarly, the first and fourth termsto calculate these quantities, it turns out to be very conve-
on the rhs of Eq(5) together with the Ihs can be identified nient to introduce “response fields®;(r,t) [51,52,34. One

with its longitudinal component. The first term on the rhs of of the advantages of these additional fields is that the re-
Eqg. (1) with m=2 describes the diffusion of the order pa- sponse functions can now be calculated on the same level as

rameter® in microemulsions, or in sponge phases with anthe correlation functions by an equilibrium average,
impenetrable bilayer, since in both cases the order parameter

is conserved. The order parametemnist conserved, on the , "_ Tr(r' t' ,

' Rii(r—r"t—=t")=(¥;(r,t)¥(r',t o(t—t"). (23
other hand, in sponge phases in which water can leak il )= (T D Wy )= ) (23
through the amphiphilic bilayer; in this case=0. The sec- Both correlation and response functions can be obtained
ond terms on the rhs of Eqél) and(2) describe the change from the generating functional

|
2000 Tody Ty o o i T 0= [ 2 [ 2068 [ 20 [ 267 [ 9o [ 268) [ 23 [ 20T [ i [ i)

xexp[A[cb,&S,p,z,p,ﬁ,jT,TT,J'L,]1]+ f dt f rlp®@+To®+1,p+1,5+1,p+1,p

+|jTjT+TjTTT+I,-LjL+TjLTL]} (24)

with the “action”
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where
OF
50 2(cV*=boVZ+15) @ +2B1p® +2B,5(V2p) D+ B[ pV2D + VA(p®) ] (26)
and
SF
5—p=2(yV4—BV2+a)p+,81<D2+,82V2CI)2+,83CDV2CD. (27)

The generating functiond24) defines an analog of the partition function of equilibrium statistical mechanics. This form of the
time-dependent Ginzburg-Landau equations has the advantage that all the tools of field-theoretic perturbation theory, as
developed for static Ginzburg-Landau models, can be employed.

The perturbation theory is set up by first neglecting all terms of higher-than-quadratic order in the action. In this case, the
Gaussian actiom, takes in Fourier space the form

with
Ao(k,w)=;\IIT(k,w)[G(°>]‘1llf(—k,— w), (29

where the vecto®r of the dynamic fields is defined by

\IfTE((“IiCI),?)’,p,TT vavTL 1’51jL 1p) (30)

(the superscript “T” denotes the transposition of a vertdhe 10< 10 matrix[ G(©)] ! is composed of three22 blocks and
one 4x 4 block along the diagonal,

[GO] YD, b} 0 0 0
0 (GO Hp.p} 0 0
[G©]1= 0 0 [GO] 27 i} 0 : 39
0 0 0 (GO, BiL.p}

The block matrices are easily obtained from E2p), and are given by

N — 2T k™ iw+T ok™yg 1(K)
[GO] YD, d}= —iw+T okMyg (k) 0 : (32
where xo(k) is the static scattering intensity in bulk contrast, see (E§),
—2I k2 fw+T k2x, (k)
DT HPeI=| ST k2, (k) 0 (33

where

Xp(K)=[2(yk*+ BK*+ )] (34
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is the static scattering intensity of the amphiphile in the Ornstein-Zernike approximation,

_2FTk2 Iw+FTk2

[GOTYirin=| —iw+Tk2 0 |- (35
and
—2F|_k2 0 Iw+F|_k2 |)\0k
~ 0 — 2T K2 Nk Tw+T k2
[GOTHiLPILPI=| —iw+T K2 —irgk 0 o | (36)
—iNgk  —iw+Tk? 0 0

The inversion of the matrixG(®]~* gives all correlation similarly, the amphiphile scattering intensity is found to be
and response functions in the Gaussian van-Hove ap-

proximation. Due to the block structure, the inversion is 2T K2+ 3~~(K, )
straightforward; a complete list of the results can be found in G,k w)=— -~ : . (39
Appendix A. |—iw+T k2x, (k) =2 5(k,o)|?

The next step is to take into account the nonlinear terms . . ] ] )
in the time-dependent Ginzburg-Landau equations, which aré 1S important to note at this point that the fluctuation-
equivalent to higher-than-quadratic terms in the dynamic acdissipation theorenfFDT) poses strong constraints on the
tion (25). These terms lead to a coupling of the independenform of the self-energy matrix. As explained in Appendix B,
modes of the Gaussian approximation. Note that this couth® FDT implies
pling is essential for the investigation of the dynamics of

microemulsions and sponge phases, since only due to the 255(K,0)=—=2xo(KRZ o3 (K, w)} (40)
nonlinear terms can the hydrodynamic modes be affected by o _
the structure. and similarly for%-5(k,w). Thus, in order to calculate the

The matrixG of the full correlation and response func- Scattering intensitie¢38) and (39), only the self-energies
tions can be written as an infinite series of Feynman dia> & (K, @) andZ 5(k,») have to be evaluated, respectively.

grams. A partial summation of this series is possible by the The viscosityn(w) follows from the pole structure of the
Dyson equation, correlation and response functions of the transverse momen-

tum density in thehydrodynamic limit k-0. For the re-
sponse function, Eq35) together with the self-energy con-

G YKk ,0)=[GOT Yk, ,0)-3(k, o). (37) tributions implies
The advantage of thigexac}) relation is that onlyone- 1
particle-irreducibleFeynman diagrams, i.e., diagrams which Gi i (k,w)= (41)

do not separate into two disconnected pieces by cutting a _Iw+FTk2_2jTjT(k’w)
line, contribute to the self-energy mat(k,w). It can now
be shown that — due to the structure of the Langevin equ
tions (1)—(5) — the self-energy matrix has the same block
structure as the Gaussian correlation and response matrix . +1k2—0 42
[G(®]~1. Furthermore, the lower right corner of these block lor S = (42)
matrices vanishes identically due to causality, just as in the
Gaussian matrice32)—(36). Thus the inversion o6 tis wherep,, is the mass density, which follows from the analy-
just as Simp|e as the inversion Eﬁ(o)]_l_ SiS Of the NaVieI’-StOkes equation. In Order to Slmpllfy the

The quantities we are mainly interested in are the scattefotation, we absorb the mass density infpso that from
ing intensities, the viscosity, and the sound attenuation anfOW on 7 is the kinematic viscosity. This yields
dispersion of a microemulsion or sponge phase. The scatter-
ing intensity in bulk contrast is obtained from the Dyson d
equation to be nw)=Tr= 2230 ko) . (43

k

itiT
=0

a]'his result can now be compared with the dispersion relation

Mo Note that when the nonlinear terms in E¢$)—(5) are ne-

2T oK™+ 255 (k, @) . glected, the viscosity is frequency independent; furthermore,
|—iw+T k™o 2(k) =205k 0)|? » has no imaginary part in this case, i.e., there is no elastic
(38 response to an external oscillatory shear force.

Goa(k,w)=
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p-K, -’

FIG. 1. Feynman diagram for the self-ene@)gT(k,w) in a
one-loop approximation. The notation for the various propagators
and vertices is explained in Appendix A. The contribution of the
right vertex contains the vectar=(p—k) xo *(p—k) —pxo *(p).

Sound waves determine the pole structure of the correla-

tion and response functions of the pressure and of the Iongjfhnction of the scaled frequenay/(Toc Y3, for a system with
tudinal momentum density in the hydrodynamic limit. Thus conserved order parametér. The pa;bamete}s agy=1, To=1
the dispersion relation of a sound wave is given by the ZEI0§_ 1 h,=—1.95, andr,=1 (so thatqé=8.9). ' '
of the denominator of these correlation and response func-

tions,

FIG. 2. Real and imaginary part of the complex viscosjtas a

w’—c(w)?k*+iwD(w)k?=0. (48)
de([G V1 HjL.p.jL.p}—2{iL . P.jL.p})=0. (44
Due to the special structure of the mat(B6) — and of the
corresponding part of thE matrix —, this equation reduces P
to c(w)=A5—wlm| =37 (k,w)‘ : (49)
ak e

The comparison of Eq$47) and (48) finally gives[53]

ide
—lo+T k=3 j (ko)  —ikk—3j3 (k)
de .
—iNk =27 (K,0)  —iw+T k=3 5K, 0)

J
D(w)=Tp+T — Re(WEjJL(k,w) ) . (50
k=0

=0. (45)

To proceed, we have to determine the leading powers of all\lote that, as in the case of the viscosity, when the nonlinear
' erms in the Langevin equations are neglected, both the

self-energies appearing in E@5) in the hydrodynamic limit sound velocity and the damping are frequency independent.

k—0. This can only be done by considering explicitly the e . )
Feynman diagramsyfor these sglf-energies.gln tr?e or)lle-loog'nCe the derivative of the self-energy with respedtiovill
ppear frequently in the following sections, we introduce the

approximation, we find

notation
35,0k, 35 ~0K3), 35~0K), ;
et =—3.7 (k, 51
S 55 ~ O(kY). (49 Tl @)= G el] oy
Thus, onlyX; 7 contributes to ordek?, so that and similarlyy; 5 ().
UL

IV. VISCOELASTICITY

— w2+ N3k —iwk? rL+rp—i22fj (ko) |+0OK*
gk k=0 It has been shown in Sec. Il that the viscosity is related to
-0, (47) the self-energijTjT(k,w) in the limit k—0. The leading
contribution to this self-energy term is the one-loop diagram
On the other hand, a sound wave with wave vektoreloc-  shown in Fig. 1. Inserting the expressions for the propagators
ity c(w), and damping constam(w) obeys the dispersion and vertices given in Appendix A, we obtain the explicit

relation[47] result

5.7 (k w):ng d*p X0 (P=K) = xo (P) p-Zcp
L °J 2m)°®  xo'(p—k) —iw+Tep?xo (P)+Te(p—K)%xo (p—K)’

(52
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where[ 7] 5= 45— kakﬁ/k2 is the transverse project¢o
that7,- k=0). Here, the integral over the internal frequency

o' (compare Fig. Lhas already been carried out. An expan- 10+3:
sion of Eq.(52) in powers ofk, and a subsequent integration 1
over the angular components yields )
o E
() éfmd Pt 107
i i \w)= — . — ]
Vi 71872 o PG Hp) 1w+ 2T b2k H(p)]
+2 _
X{(5b0+14cp2) R
107 10° 10 102
. 4h(p)p? qg
o (P —iw+2Tep?x "
Xo (PIL—ie P X0 "(P)] FIG. 3. Scaling functiorf),(qé&) of the characteristic frequency
X{i2h(p)w—F¢X61(p)[6h(p)p2 o) for conserved order parametér.
. Xol(p)]}}, 53 wF = (Tyc 2 50, (q8). (57
These scaling forms indicate the most interesting aspect of
where the viscosity of microemulsions and sponge phases, which is
h(p)=by+ 2¢p2. (54) its dependence on the structural parameteasnd ¢.

In the casew=0, the scaling functiorv of Eq. (55) can

Except for the case»=0, the integration over the internal P€ calculated analytically,
wave vectorp has to be done numerically. A typical result

for the viscosityn(w) of a strongly structured microemul- 1+ %yZ
sion, withqé=8.9, is shown in Fig. 2. Here, the viscosity in v M —
the high frequency limitgy.,,=lim,_..n(w)=I1, has been (¥,0=0) 240 1+y2 " (58)

subtracted. The curves show the typical behavior of complex
fluids. The real part ofy is approximately frequency inde- This result for thezero-shear viscositgigrees with the result
pendent for smalb, i.e., the fluid behaves Newtonian. At a ©f Mundy, Levin, and Dawsofi28,56, which has been ob-
characteristic frequency*, the real part ofy drops sharply; tained from the somewhat different approach of Fredrickson
the imaginary part shows a peak in the same frequen(:?.nd Larsor{57], who studied the Iinea_lr response of the sys-
range. A very similar behavior has been found, for examplelém to an external shear stress. Since the dependence of
in dense colloidal suspensiofs4,55. V(gé,o=0) on the dimensionless parametgf is rather

This behavior ofp(w) can be understood as follows. For weak, the behavior of the zero-shear viscosity is dominated
very small frequencies, the system has enough time to relaly the & prefactor in Eq(55). Thus the zero-shear viscosity
the stress which builds up due to the external shearing forcghould increase rapidly as the transition to a spatially ordered
by rebuilding its internal structure such as to stay as close tphase — such as a lamellar or a cubic bicontinuous phase —
its equilibrium state as possible. This process is accompanigd approached. The origin of this increase can be understood
by a lot of energy dissipation, but allows little elastic re- intuitively: with increasingé, the size of coherent, well-
sponse. At higher frequencies, near the characteristic freordered regions in the microemulsion becomes larger and
quencyw*, the structural relaxation is no longer fast enoughlarger; therefore, more and more energy is dissipated when
to follow the external shear stress, so that energy can now Hée structure within these regions is rearranged.
stored elastically. Finally, for very high frequencies, the vis- The scaling function(),(q¢) of the characteristic fre-
cosity of the fluid is dominated by the viscosity of the sol- quency is shown in Fig. 3. The expression
vent.

The analysis of Eq(53) shows that the viscosity can be 0,(9§)=32.41+4.5q¢)*+(q6)*] (59

written in the scaling form . . .
g contains the leading power-law behaviors for both small and

2 ) large values ofj¢, and fits the curve shown in Fig. 3 over the

77((”)_ UES _ Jdo
oo Pol'y

(550  whole range of the argument quite well. Thus the structural
relaxation time 1b; increases with increasing correlation
lengthand with increasing domain size72q. The origin of
this behavior can again be understood intuitively: the larger

§_=Cfll4§ (56)  the size of an ordered region, the longer it takes to rearrange
its structure.

is the correlation length measured in units of the “am- The full scaling functionV(q¢,»/w}) has to be calcu-

phiphile length” ¢4 The characteristic frequeney’ in Eq.  lated numerically; its real and imaginary parts are shown in

(55), which is defined by the location of the maximum of Fig. 4. The strongest frequency dependence of both the real

Im(7), also shows scaling behavior, and the imaginary part o¥ occurs at the disorder line

— w
C1/4§3V<Q§.w—*

v

where
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FIG. 5. Feynman diagram for the self-enerﬁ)ﬁ(k,w) ina
one-loop approximation. The notation for the various propagators
and vertices is explained in Appendix A. The contribution of the
0.0 right vertex contains the vectar=(p—k) x, *(p—k) — pxo *(p).

tained for diblock copolymer melts by Fredrickson and Lar-
son[57,59 with a different formalism. Since in both theories
the behavior of the viscosity is determined by thatic
structure factor, which has a very similar form for micro-
emulsions and diblock copolyme(® the weak-segregation
regime [60,61], we believe that our other results for the
viscosity, like the scaling behavior of the characteristic fre-
quency Eq(57) and for the sound attenuation and dispersion
curves to be discussed in the next section, should also apply
to disordered diblock copolymers.

The resultg62) and(61) for the frequency dependence of
the storage and loss moduli can be used to define another
characteristic frequency,

il

I

|
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i
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FIG. 4. (a) Real and(b) imaginary part of the scaling function where the scaling functiofdg is given by
V(q¢, w) of the complex viscosity, witho= o/}
gl )_3,,(4+y2)(1+y2)4

ely)= “14+y2+4y*+y8

(qé=0). This does not indicate, however, that the viscoelas- 649

ticity of an unstructured fluid varies strongly as a function of

w; the prefactorg® in Eq. (55) rather leads to a decreasing This result can now be compared with the characteristic fre-
frequency dependence with decreasing structure. This iguency w; Egs.(57) and (59). The two functions have a
again in qualitative agreement with colloidal suspensionglifferent form for smallgé, but agree very well fogé=2,

[58]. i.e., for sufficiently well structured microemulsions. We con-
The behavior oV (q¢, w/w}) for w<w) can be studied clude that in strongly structured microemulsions, the small-
analytically. In this limit, one finds the power laws o behavior of the viscosity is dominated bysagle struc-

., tural relaxation time.
REV(-,00—V(-,0)]~w?| _
w—0. (60)

Im[V(-,@)]~® 10
This result can be used to obtain tsterage and loss moduli

G'(w)=wlm[n(w)] and G"(w)=wR{ n(w)— n.] in the
low-frequency limit,

96¢°  14+(q8)P+4(ad)*+(gd)°
30720rT3,c2 [1+(aé)*]°

G'(w)=

1-¢(0)% c()?

(61)

and 0.0 el e :
, 108 10° 108 108

908> 4+(a8)? - w/Tec?
9607 T yc 1+(qé)°

G”((U):

) FIG. 6. Sound dispersiofi(w) for g=0.95 andé= 1.0 (dashed-
The samew-power laws and the same divergence of thedotted ling, £=5.0 (dashed ling £€=11.0 (full line). The param-

prefactors in the limitt—« (with q fixed) have been ob- eters arec=1, go=1, andro=1.
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Expression(52) for the self-energy shows that the charac-contribution scales as):’p~§;4. We want to emphasize
teristic frequencyw* is determin_ed by the relaxation times that, sinceé, never gets very large in a microemulsion or
of the order parameter fluctuations. For strongly structuregponge phase, the contribution of tpefluctuations to the

microemulsions, their dynamics is dominated by the modesiscosity is much smaller than thé contributions for
with wave vectors in the vicinity of the inverse domain size,w<w: . However, foro* <w<o?* | it leads to an approxi-

d, which have the longest relaxation times. mately frequency-independent value of the viscosity, which
Finally, the behavior o for large frequencies is found depends on the amphiphile fluctuations.
numerically to be Finally, we want to mention that on the one-loop level of
. — — the calculation of the self-energy, the viscositydoes not
Vo) ~w Y2 w—x. (65) gy Hy!

contain contributions due to hydrodynamic interactions. This

The same frequency dependence has been observed in Ot’g&rresponds to Rouse dynamics in polymer systems. The ef-

strongly structured complex fluids, such as in hard-spher £ct of hydrodynamic interactions o) appears first in a

colloidal suspensionboth theoretically54] and experimen- wo-loop approximation of the self-energy.
tally [55]), and in polymer solutions in the Rouse regime

[62]. V. SOUND ATTENUATION AND DISPERSION
So far, we have completely neglected the contribution of . ) . .
the fluctuations of the amphiphile concentratjpto the vis- A comparison of Eq(43) for the viscosity with Eqs(49)

cosity. In fact, in addition to the diagram shown in Fig. 1, 2nd (50 for the sound velocity and sound damping shows
there is a second, analogous diagram, in which the interndi"mediately the strong similarity of these quantities, except
lines are replaced by correlation and response propagators.that in the case of sound the self-enebyy; (k, ) appears,
The structure of this contribution is the same as &), which involves the longitudinal rather than the transverse
except that the statje correlation function decays monotoni- momentum density.

cally. Fory=0 in Eq.(34), a simple scaling analysis shows  The leading contribution to the self-energy (k, ) is
immediately that(i) the contribution of the fluctuations to  the Feynman diagram shown in Fig. 5. The expressions for
the viscosity variedinearly with the correlation lengtt,  the propagators and vertices listed in Appendix A give the
[28], and (ii) that the characteristic frequeney] , of this  explicit result

; o Fp L L [(P=K)xo "(P—K) —pxo (P)]
E]-LjL(k,w)=g0 273 v N p—K) —i 2. -1 AV VP (66)
(27)° xo "(P—K) —iw+T4p“xo “(P) +T'a(P—k)“xo “(P—k)
|

where[ £, ] 5= kakﬁlk2 is the longitudinal projectofso that Tw
L-k=k). In Eq. (66), the integral over the internal fre- ax(w)Em[D(w)—Dx], (69)
guencyw’ has already been carried out. From E8f), one
obtains

) or a,(w)/c?(w) [63,48,37. Typical curves forA(w) and
v~ (@)= Y fwdp P a,(w)/c?(w) are shown in Figs. 6 and 7, respectively. In
I 1572 ) Xgl(p)[—inrZF(pszgl(p)] these figures, the correlation lengthis varied at fixed do-
main size 2r/q. For small correlation lengths, the attenua-

4

5 tion curve is dominated by a single large peak, very similar
X [ (1800 +420p°) to the behavior seen in the vicinity of a critical poj88,48|.
) . For largeré, a second peak develops at lower frequencies;
12h(p)p“+5x, "(P) the height of this peak increases with increasingvhile its
XSl(p)[—inr 2F¢p2)(51(p)] position moves_to smaller values 'of. The dependenqe of.
_ . ) the peak position and peak height on the domain size
X[i2h(p)w—T¢xo “(P)(Bh(p)p 2/q, on the other hand, is rather weak. The behavior of the
dispersion is found to be very similar, where a pronounced
+X61(P))] . (67) shoulder is observed at the characteristic frequency of the
attenuation peak.

. ] The results for the viscosity discussed in Sec. IV now
Instead of the sound velocity and damping, sound data arggjcate that not the dispersian(w) and the attenuation per

often plotted as normalized dispersion wavelengtho, (w) should have a scaling form, but rather the
c2(0) guantities[64]
A(w) =1- EZ(—Q)) (68)
=77 (@)=D(w)~D., (70

and attenuation per wavelength UL
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FIG. 7. Sound attenuationy,(w)/c*(w) for q=0.95 and
£=1.0 (dashed-dotted line é€=5.0 (dashed ling £€=11.0 (full
line). The parameters ae=1, go=1, and\y=1.

” CZ(w)_CZ(O)
—'ijL(w)—T, (71)
whereD.=lim,_ .D(w). A typical result for the frequency
dependence of the self-energy contributigyT; () for a

strongly structured microemulsion indeed looks strikingly
similar to the complex viscosity shown in Fig. 2 . .

A more detailed analysis of EQq(66) shows that m,',',’,’,‘,’,‘,’,‘,'f,%",,’,,,,,,m”
Y JL(w) can be written in the scaling form Uiy

i
i

o ES( 9. ) 72
-y = — .
I Fq>Cl4 ws FIG. 8. (&) Real and(b) imaginary part of the scaling function

o o ] S(gé,w) of sound velocity and damping, with= o/ w?
The characteristic frequency? , which is defined by the °

position of the maximum of- yj"~j , also has a scaling form cally to be
LiL

[compare Eq(57)],
_ ReS(-,0)=S(-,w)]~ 0" _
w;:(l—‘q)071/2)§7695(q§). (73) |m[S(.,m]~aI/2 a)—>0, (76)

The discussion of the scaling behavior of the sound modes

now follows closely the discussion in Sec. IV for the viscos-While the asymptotic behavior for large is obtained nu-
ity. In the casew=0, the scaling functiors of Eq.(72) can  merically,

again be calculated analytically,

S(-, @)~ 2 oo (77)

1+ —y?
S(y.0=0)= 31 62 (749 A comparison of Eqs(76) and (77) with Egs.(60) and (65)
Y, 9607 1+y? ° shows that while the large- behaviors of the two scaling

functionsS andV are the same, their small-asymptotics

The scaling functio)¢(q¢) of the characteristic frequency gre different.
i shows the same behavior as the scaling function OQur results for the scaling form Of’iJL(“’) can now be

,(gé) of the viscosity, compare Fig. 3. The scaling func- seq to discuss the behavior of sound attenuation and disper-
tion for the sound modes is well fitted by the expression  gjony see Figs. 6 and 7. The dispersion

Q«(q€)=5[1+6(qé)*+7(qé)*] (79 o)
—wy.~ (w
over the whole range of the argument. This result indicates A(w):’—L,J’L (78)
that for strongly structured microemulsions wigl§=5 the )\S—wij.L(w)

same structural relaxation processes are responsible for both
viscoelastic behavior and sound attenuation. i i 5 )
The full scaling functionS(qé,»/w?) has to be calcu- 9ePends only on the imaginary part gf; . Equation(76)

lated numerically; its real and imaginary parts are shown irfherefore implies that (@) ~ 2 for smallw [65]. The self-
Fig. 8. The asymptotic behavior for smallis found analyti- energy contribution —yj"~j (w) has a maximum for
UL
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d*p  xo(p)
(2m)3 xo(k)
y K-Tp ik
—iw+Tr(p— k)2+Fq>p”‘ 0 (P
(80)

Eq:.q)kw

The expression38) together with(80) for G4¢(k,w) has
been analyzed in detail in Refi24,25 as a function ofw;
the intermediate scattering functi@y(k,t) as a function
of time t was calculated by a numerical Fourier transforma-
tion.
Unfortunately, it is very difficult to extract the asymptotic
FIG. 9. Feynman diagrams for the self-enelyg(k,w) ina  behavior of the scattering intensity for short and large times
one-loop approximation. The notation for the various propagators from Eqg. (38). This is much easier when the perturbation

and vertices is explained in Appendix A. The contribution of the theory is formulated directly foB 44 (k,t). The Dyson equa-
left vertex of the second diagram contains the vectortion reads in this case

s=pxo "(P) —kxo H(K).

w=w?, compare Fig. 2, which leads to the shoulder in G(k,t)=GV(k, t)+j dtlj dt,GO(k,t—ty)
A(w) at approximately the same frequency. Finally, for large

w, Eq.(77) yields — w'ijL(w)~wl/2, so thatA (w)—1. The X2 (K, t;—t5)G(k,t2) (81)

sound attenuation per wavelendtlivided by c?(w)], _ _ _
for the matrix G(k,t) of correlation and response functions.

In the form(81), the Dyson equation cannot be solved for the

ey~ (o) full correlation matrixG(k,t). Therefore, we calculate the
ay(w) Vil 79 correlation function in the first Born approximation, i.e., we
cA(w) _[)\S—wy."f (0)]? (79 replace the full correlation matrix on the rhs of E§1) by
I the bare correlation matri(®(k,t). In this case, one finds
depends both on the real and imaginary partsygf . The Gaa(K,t)=GHp(K, 1)+ g(k,t), (82

real part approaches a constant for small so that _
a,(w)/c3(w)~w for ®—0. The maximum of— 1y~ 5. (@) with
and the sharp drop of—yj~j (w) at the characterlst|c fre-

UL

O fr v it g (O
quencye?’ lead to the low-frequency peak of the sound at- 2¢(t)_f dtlf dta[ G5 (ti— 1) 235 (11— t2) GG 4 (t2)
tenuation per wavelength. The second peak at higher fre-

quencies occurs — for sufficiently smadt* — in a o +Gg&,(tl_t)2®d~>(t2_t1)GSI9r)b(t2)
regime, whereijL(w) is well approximated by the asymp- ©) ~ 0)
totic power law(77). Therefore, it is easy to see that a peak +Copo(t—11)203(t1—t2) Gy (ta)], (83

occurs atw~)\3; with increasingqé, the position of this

peak shifts to larger values af [29]. Finally, at very high where the argumerk has been suppressed for simplicity.

frequenciesg, (w)/c?(w) decreases as ™~ 2. The bare propagators are obtained easily by a Fourier trans-
formation from thew functions listed in Appendix A; in
particular, the propagators, which appear in E@2) and
(83), are found to be

VI. DYNAMIC SCATTERING INTENSITY
IN BULK CONTRAST G(O) ) (k) =exd —Tok™xg Lk)t]6(t), (84)

We have shown in Sec. lll that the scattering intensity in 5O "
bulk contrastGeq(k,w) is given by Eq.(38). We calculate Gipp(k,t)=xo(K)exd —T'ok™xg '(K)[t]]. (85
the self-energy here for modkHl, i.e., we take the fluid to be
incompressible. The two Feynman diagrams, which contribThe self-energy of Eq83) can be calculated in two different
ute to 243 (k,w) in this case in a one-loop approximation ways, either by a Fourier transformation from E80), or by
are shown in Fig. 9. The expressions for the propagators ara@h evaluation of the Feynman diagrams of Fig. @ space.
vertices given in Appendix A imply Both calculations lead to the remarkably simple result
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FIG. 10. Dynamic correlation functioB44(k,t) as a function
of the scaled time variableT'yc™Y? for fixed wave vector
k/g=0.5. Van-Hove resultdashed ling first Born approximation
(full line) and the self-energy contributidii, (k,t) are shown. The
parameters arem=2, go=2, I'=1, I't/I'$=0.3, c=1,
by=—1.95, andr,=1 (so thatqé=8.9).

d°p  xo(p)
~ _ _ N2 2 KT .
sk 0= goJ @m? xot < oK

X exp{—[Tr(p—K)2+Top™xo H(p) 11 6(1).
(86)

The second self-energy term is again obtained from th

fluctuation-dissipation theorem,

255k, =—xo(K[Zed(k,) +Z05(k,—1)]. (87

The insertion of these results into E@3), and the subse-
guent integration over the internal timég andt, finally
yields

d®p
Ecp(k,t):g%f G Yok Tk

1

x[ ! +t|em vt
(k) — u(p,k) | v(k)— u(p,k)
1
= A wpkt
0 — w2 } (8
with
v(K)=T okMxo *(K), (89
w(p,K)=T1(p—Kk)2+T p™xo *(p). (90)

The remaining integral over the internal wave vegion Eq.

(88) has to be evaluated numerically; note that the apparerﬁ%)’

singularity of the integrand cancels out.

FIG. 11. Relaxation times{Y(k) (solid line), 7?(k) (dashed
line) and 7¥(k) (dashed-dotted lineof the dynamic scattering in-
tensity for a strongly structured microemulsion. The parameters are
m=2,T4=1,T1/T$=0.3,c=1, by=-1.95, andr,=1 (so that
0é=8.9).

d*p k- Zp_-k
(2m)°  xo(p)

while the Gaussian correlation function decays as

9

Eq)(k,t): - 2

t2+0(t3), (91

GO (K,t) = xo(K)[1— k™o H(K)t+0(t?)].  (92)

Thus the short-time behavior of the dynamic scattering in-

?ensity remains unchanged by hydrodynamic modes.

The analysis of the asymptotic behavior for larges
more complicated. The integré8) has to be evaluated by
the saddle-point methof66] in this case. A lengthy and
somewhat tedious calculation yields

Goao(K,t)oct™exg —t/7¢(k)], (93
i.e., an exponential decay with a relaxation timgk), to-
gether with analgebraic prefactor. The relaxation time is
given by 7o(k) =max 75)(k),72(K), (K], where

(1) —
7-C (k) F(IkaX(;l(k) ’ (94)
2 (k)= ! . (95)
¢ FT(p<_k)2+F¢xpr2Xo (p<)
(k)= ! (96)

T+(p—k)2+T4pMxo ()

The wave vectorg_ andp, which appear in Eqg95) and
are determined to sufficient accuracy by
po=kI1/(TF++2l¢r,)+0(k%) and p=q+a;(k—q)

A typical result for the time dependence of the dynamic+O[(k—a)?], where g?=(—bg+\b5—3cr,)/3c and

scattering intensityGgq(k,t) for small solvent viscosity

a; '=1+2(15cq*+6boq?+r,)T"4 /T'1. The dependence of

I't is shown in Fig. 10. The first Born approximation gives these relaxation times on the wave vedtds shown in Fig.
an overshoot at intermediate times, followed by a monotonid1 form=2. For smallk, the relaxation timer.(k) diverges

exponential decay at large times.

as k™2, compare Eq(94), due to the conservation of the

Let us first consider the behavior of the correlation func-order parameter. Note that this divergence implies that the

tion for short timeg. In this limit, the self-energy contribu-
tion is given by

decay of the correlation function fde=0 is purely alge-
braic. The internal structure of the microemulsion is re-
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flected in a maximum of the (k) at k=q. Finally, the re-
laxation time decreases rapidly for large

The relaxation times shown in Fig. 11 are calculated for a
strongly structured microemulsiorgé=28.9), with a small
solvent viscosityl't. With increasingl't, the width of the
peak of r§3)(k) narrows; simultaneously, the function
72)(k) decreases in magnitude, and approacH&¥k) for
small k. Finally, for ['+/T4>1, 7¢(k)= 73 (k). With de-
creasinggé, on the other hand, the maximum of the relax-
ation time atk=q decreases, and disappearg ét=3.5. For
smallerqé< 3.5, 7.(k) is a monotonically decreasing func-
tion of k, with 7,(k)= 7 (k) for all wave vectors.

FIG. 12. Feynman diagrams for the self-enedfjy;(k,w) in a
one-loop approximation. The notation for the various propagators
VII. DYNAMIC SCATTERING INTENSITY and vertices is explained in Appendix A. The vertices contain the

IN FILM CONTRAST contributions  w=py, *(p)—kx, (k) and Z=2p8;—28,k?

AR 12
The dynamic scattering intensity in film contrast, Bap” = Bs(p=k)".

G,,(k,0), is given by Eq.(39). The Feynman diagrams, ) ©
which contribute taS 5(k, ) to one-loop order, are shown 25k w)=% Z (ko) +2 Z(k o), 97)
in Fig. 12. The two diagrams on the lhs of Fig. 12 are com-

pletely analogous to the diagrams of Fig. 9 for the selfwhere the hydrodynamic pdtompare Eq(80)] is given by
energy 2 45(k,w), and describe the coupling of the am-

phiphile density to the hydrodynamic variables. The diagram

on the rhs of Fig. 12, on the other hand, describes the cou- 3 (k @)= — TgJ
pling of the amphiphile density to the fluctuations of the -

d*p x,(p)
(2m)® X, (K)

order parametef; note that the strength of the vertices is K-To ok
determined by dissipative coupling constants in this case, X — p;k 71—, (98
while all previous diagrams contained mode-coupling coef- —lo+T(p=k)*+T'p7x, “(p)
ficients as vertex strengths. Therefore, it is natural to write
3 5(k,) as a sum of two contributions, and the order-parameter part by
|
d3 m 2 -2 k2_ 2_ —k 272
E;%)(k,w)zfprfpsz p3 —1p . [2B1 m,3_21 B3p ﬁs(pm —)1] ' (99)
(2m)° X0 (P—K) =i+ Tep"xo "(p) +Ta(p—k)"xo "(P—k)

The advantage of this separation is that the effects of theurves form=2 andm=0 almost coincide. Second, the dy-
hydrodynamic modegmodel H) and of coupling to the namic correlation function vanishes fas#0 as k? for
order-parameter fluctuatiorgsiodelC) on G,,(k,w) can be k—0 as a consequence of the conservation of the amphiphile
discussed independently. concentration. Third, the main contribution to the one-loop
The self-energy contributio;5(k,w) in Eq. (39) can  self-energyX ;(k, ) arises from the coupling to the order
again be obtained from the fluctuation-dissipation theoremparameterd, while the effect of hydrodynamic relaxation

which reads in this casgsee Appendix B for details modes would be difficult to distinguish in the scattering
" Ny curves of Figs. 13 and 14. Finally, ttiell dynamic correla-
35V (k, )=~ 2x,(H RV (k, )}, (100 tion function at fixed wave vectde satisfies théexac) sum
rule [47]
2T k2
S92 (k,0) = —"—m{Z 2 (k,0)}. (101) = do .
@ f_wﬁepp(k,w)zega (k). (102

The dynamic scattering intensity in film contrast
G,,(k,w) is shown in Figs. 13 and 14 as a function@for ~ We find that our one-loop results fulfill this condition very
k=q, and as a function df for fixed w, respectively. These well; calculations for several wave vectdtsshowed devia-
curves demonstrate several properties@f,(k,w). First,  tions of less than one percent.
note that the effect of the conservation of the order parameter In order to extract the asymptotic behavior of the interme-
® on the amphiphile scattering intensity is rather weak; thediate correlation functiorG,,(k,t), for short and long times
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FIG. 13. Dynamic scattering intensi,,(k, ) in film contrast
with k=g as a function of the scaled frequenmy(l“py‘lz) for
both conservedfull line) and nonconservedashed-dotted line
order parameterb. The van-Hove approximation is also shown
(dashed ling The parameters arg;=2, I',)=1, I'p,=1, I't=1,
B1=0.7, B,=—-1.0, B3=-0.1, a=1, B=1, y=0.01, c=1,
bg=—1.95, andr,=1.

t, we follow again the route taken in Sec. VI. In the first

Born approximation, the correlation function then reads
G,p(k,t)= G (kt)+2p(kt) (103

where

GY(k,t)=x,(Kexd —T k%, "(K|t]], (109

andZ ,(k,t) is given by an expression completely analogous

to Eq.(83), with ® and® replaced by andp, respectively.

We divide the self-energy terms again into a hydrodynamic
part, and a part describing the coupling to the order param-

M. HENNES AND G. GOMPPER

54
2.0
/Ty = 3.0

1.5 .

\\

A

2 \
(D 1.0 1 ‘\\\
0.5 1 N\
00 0. '; ~~~~~ ;% ' 2.5
0.0 5 1. . k/q .

FIG. 14. Dynamic scattering intensi,,(k, ) in film contrast
with w/(I',y )=3.0 as a function of the scaled wave vector
k/q, for both conservedfull line) and nonconserve@ashed-dotted
line) order parameterd. The van-Hove approximation is also
shown (dashed ling The parameters are,=2, I')=1, I'p=1,
'r=1, B;=0.7, B,=-1.0, B3=-0.1, a=1, B=1, y=0.01,
c=1,by=-1.95, andr,=1.

eter fluctuations. The latter contribution — obtained by a

Fourier transformation from Eq$99) and(101) — is given
by

d3p

LR e

[2,31 23,k — B3p®— B3(p—k)?]?

Xo {(P—K)xo (p)
xexp{ — [ (P—K)™xo 1(p—K)
+p"xo (Pt}

(105

The self—energyE;%)(k,t) follows from the fluctuation-
dissipation theorem, which reads in this case

©) - _ 2rs(©) O —
Egz(k,t)— I k [Ep’ﬁ(k,t)+2p’5(k, )1,
(106
together witth)%)(k,t)~0(t). These expressions can then

be inserted back into the analog of E§3); an integration
over the internal time variablas andt, finally yields

1 d?
20k =Tk (2753
[231 28,k*— B3p®— Ba(p—k)?]?
Xo (p K)xo (p)
X{ A(p,k)
k(K)[k(k)=N(p,k)]
A(p.k) — 2k (k) —t}e"(k)‘
k(K)[x(k)=X(p,k)]
1
T Ik —M (P T2 W)t)' (107
where
k(K)=T k2x, *(k), (108
MP.K)=T [ (p—K)™xo (P—K) +p™xo H(P)].
(109

A typical result for the time dependence of the dynamic am-
phiphile scattering intensit,,,(k,t) is shown in Fig. 15.

The expressiori107) can now be used to extract the as-
ymptotic time behavior of the amphiphile correlation func-
tion. For small timeg, an expansion of Eq107) in powers
of t implies

E;C)(k,t) :Elsjtat(k)

d*p A(p,K)
(2m)° xo (P—K)xo "(P)

_ir2k4[

X[2B1—2B.k?— Bap®— Ba(p—k)?]?|t3

+0(t%), (110
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G,p(k, Dot texp —t/67)  (Ipc?<T, ,m=0),11
with a k-independentelaxation time

0.75 A

9<C2)E%1_, (119
2890 x0 *(q)

whereq= (—bg/2c)*2 The investigation of a system with a
conserved order parametér, i.e., withm=2, turns out to be
more complicated, because the expon&p,k) of Egs.
(107), (109 has several minima in this case. A somewhat
tedious but straightforward calculation shows that there are
several different regimes, which have to be distinguished.
For a strongly structured microemulsion or sponge phase,
with qé>3.5, we find

FIG. 15. Dynamic correlation functio@,,,(k,t) as a function of
the scaled time variablel’,,y /2 for fixed wave vectok/q=0.1
and nonconserved order parameter Van-Hove result(dashed
line), first Born approximatior(full line) and the self-energy con-

-3/ 1 —

tribution > (k,t) are shown. The parameters ame=0, 7,=0, t 32€Xq_t/6.(c )(k)] k<é 1
I',=1, T'y=1, I't=1, p;=0.7, B,=-1.0, B3=—0.1, a=1, tlexp —t/62)) £ 1<k<q
B=1, y=0.01,c=1, by=—1.95, andr,=1. G,,(k,t)x 5 for

pp t~exd —t/63 (k)] k~q
w_herngfa‘(k)=E£C)(k,t=0_) is the static self-energy con- t~lexp(—t/62)) k>q
tribution. Therefore, the linear time dependence of the
Gaussian correlation function for0, (Ty<D,,m=2). (116

o .

(0) - _ 2.-1 2
Gpp (kD) =x,(K[1-T k%, “(Kt+0O(t9], (11) g rejaxation timeg{? is still given by Eq.(115), but with

e wave vectorq now determined by g%=(—b,

. . L _ h
remains unchanged, just as for the scattering intensity in buI%r \/BéTch)ISC [compare Eq(96)]. In addition, the relax-

contrast, compare Eq&€1) and(92). Note, however, that the

value ofG,,(k,t=0) is modified in this case, since the static 210" iMes
self-energyX 5'®\(k) is nonzero. 1
In order to extract the asymptotic behavior @f,,(kt) 6 (k)= TN (117
for large times, we employ again the saddle-point method »(k12)"xo "(k/2)
[66]. The analysis is somewhat more complicated than for
the correlation functior 4,4 (k,t) in bulk contrastcompare and
Sec. V), since both conserved and nonconserved order pa-
rameter® has to be considered, and also the limits of small 03 (k)= 1 (118
and large amphiphile mobility have to be investigated. ¢ T [(P—K) ™y X(P—K)+P™xg X(P)]
: . o . ol (P Xo (P P "Xo (P
Let us consider first the case of low amphiphile mobility,
e, [,<Iec? ™™ We find that in this limit the fluctua- appear, where
tions of the order parameter are irrelevant for the long-time
behavior of G, (k,t). The self-energys(9(k,t) is domi- Lk )
nated by the first exponential in E€LO7), which leads to p=5+[- 15ck?— 4bo+ 2(45c*k* + 12cbok® + 4bg
G, (k,t)ctexgd —t/67 (k)] (I, <Tyc2 ™), —12cr,) Y)Y 12c) 12, (119
(112

_ The relaxation time®V(k), 6Y(k), 62 and 63 (k) are

with plotted as a function of the wave vectorfor a system with
g¢é=8.9 in Fig. 16. The various regimes of E{.16) arise
00 (k)= 1 (113 from the fact that different relaxation times dominate over
( =

some range of wave vectors. Note tht (k) diverges in

the limit k—0, so thatG,,,(k=01t)~t~%2 i.e., the correla-

This result applies both for conserved and for nonconservetion function decaypurely algebraicallyin time [27].

order parametes. In our discussion of the relaxation times, we have so far
In the opposite limit of slow order-parameter dynamicscompletely neglected the “hydrodynamic” contribution

FI,BF(I)C(Z*’“)"" the conservation or nonconservation of theEgH)(k,t) of % ,(k,t) in Eq. (103. Due to the completely

order parameter becomes important. In the latter case, i.eanalogous structure of the dynamic equations for the order

for m=0, the intermediate scattering intensity of well- parameter and for the amphiphile concentration with respect

structured microemulsion or sponge phaseith qé>1) de- to the coupling to hydrodynamic variables, the analysis of

cays fort—» as this term does not require any new calculations. Rather,

Tk, 1)
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fluctation-dissipation theorem, are automatically satisfied at

0 . every level of a perturbation theory.
10.0 [ The main results of this paper can be summarized as fol-
Voqon lows.

""‘.‘_/ Y (1) The real part of the viscosity; is almost frequency
independent for small frequencies It drops sharply at a
characteristic frequency*, which depends on the correla-
tion length& and on the domain sizei2 q of the fluid. With
increasingé, »* decreases strongly, while the dependence
on q is rather weak. The imaginary part of peaks at
w=o*.

(2) The behavior of the sound velocity and damping is
very similar to the behavior of the imaginary and real parts
FIG. 16. Asymptotic relaxation times(®(k) (full line), 62 of the viscosity. This holds both for the dependence on fre-

(dashed ling 9)(k) (dashed-dotted lingtogether with the hydro- dUency and on the structural parametgrandg. In particu-
dynamic relaxation time"(k) (dotted ling, for conserved order lar, the samecharacteristic frequency” appears in both

parameter® and I'y<I',. The parameters ar€,=1, c=1,  CaSes. ) ) _ _ )
bo=—1.95, andr,=1 (so thatqé=8.9). (3) The short-time behavior of the intermediate scattering

intensity G(k,t) both in bulk and film contrast, is linear in

EE)H)(k,t) is given by Eq.(88), with »(k) and u(p,k), Egs. timet. Mode-coupllng terms do not <_:ontr|bute in th|_s I|m|t_.
(89) and (90), replaced byx(k), Eq. (108, and (4) The behavior of the intermediate scattering intensity
' T ' for large times is given by an exponential decay together

g(p,k)ErT(p_k)2+rpp2X—1(p), (120  Wwith an algebraic prefactor. In the case of the scattering
’ intensity in bulk contrast, the prefactortis®2 The scatter-
respectively. The self-energ¥ ,(k,t) corresponds to the ing intensity in film contrast shows several differdntre-
self-energy2 4 (k,t) in the limit of very weakly structured gimes, which are characterized by different algebraic factors.
microemulsions, since the static scattering intengifyk) The time dependence of the intermediate scattering inten-
has a peak a&=0, and decays monotonically as a function sity requires some further discussion. We have found that the
of the wave vectok. In this case, the results of Sec. VI first Born approximation yields a nonmonotonic behavior of
imply that the scattering intensitfs44(k,t) in bulk contrast, but as-
ymptotically a monotonic decay for—. On the other
G, (k,t)ct™ S Zexp —t/6) (121)  hand, the numerical Fourier transform of the Dyson equation
in Ref. [25] showed a dampedscillatory decay for larget.
First, note that if the longest relaxation time of the mode-
coupling terms idarger than the Gaussian relaxation time —
) T , (1220  which has to be the case if the mode-coupling terms domi-
Fr(p<—k)*+T,p<x, “(pP<) nate the asymptotic behavior for large— the first Born

imati trictl king breaks d f fficient!
where p_=kI'y/(T'y+ 2T, @) + O(K) [compare EQ{(@5)]. approximation strictly speaking breaks down for sufficiently

o T AR L - large times, since the ‘“correction” term becomes much
This “hydrodynamic” relaxation time is also shown in Fig.

; - i larger than the “leading” Gaussian term. Therefore, the
16; it demonstrates that the hydrodynamic relaxation mOd‘byson results are more reliable for . On the other hand

dominates for smak. The upper boundary of this hydrody- e {5 the exponential decay of the correlation function, the
namic regime de_pends on the viscodity of the so_lvent, and Dyson form ofGgq(k,t) gets so small for large that after
decreases with increasirigy. We want to mention paren- e\ oscillations it cannot be distingushed from numerical

thetically that the short-time behavior 6f,,(k,t), given by inaccuracies. Therefore, it is also very difficult to prove an
Eq(111), is not modified by the coupling to the hydrody- qgiliatory asymptotic behavior. In any case, we are confi-

0.0 0.5 1.0 15 k)q 2.0

with the relaxation time

1

o0 (k)=

; ; H
namic modes, sinc&{"(k,t)~t* [compare Eq(91)]. dent that thealgebraic prefactoris valid independent of an
oscillatory or monotonic decay.
VIll. SUMMARY AND DISCUSSION The asymptotic behavior of the intermediate scattering in-

tensity in film contrasG,,,(k,t) has already been studied in
We have calculated in this paper the frequency-dependentetail by Granek and Cates in R¢R7], based on a time-

(complex viscosity, the sound velocity and damping and thedependent Ginzburg-Landau theory similar to ours. How-
scattering intensity in bulk and film contrast of microemul- ever, their approach differs from ours in two important as-
sion and sponge phases. Our analysis is based on pects: (i) their static film correlation function does not
Ginzburg-Landau model, which has been demonstrated preontain a peak or shoulder kt=2q, so that the results can
viously to capture many of the essential static properties obnly be compared fok<q, and(ii) they do not include the
these complex fluids. Our field-theoretic calculation of thehydrodynamic modes into the time-dependent model as ad-
dynamical properties has the advantage that the effects of thditional fields, but rather as a memory term. In the more
coupling of various hydrodynamic and concentration modesnteresting case of a fast amphiphile relaxation, Granek and
can be studied systematically. Furthermore, this approac@ates[27] find for a nonconserved order parameter that the
guarantees that important general conditions, like thdarge-time behavior is given pr(k,t)~t*3’2exp(—t/r) for
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TABLE |. Response propagators.

@ Gy (k) 1
—i0+T ok™xg 1(K)
(b) GO (k,w) L
—iw+T K2x, (k)
(© G (k) 1
T —Tw+ K2
(d G2 (k,w) fw—T k?
Ut W2 NIE-T T Ko+ To(I + Tk
(e) Gk, w) iw—T K2
0?=NgK2 =T T pk*+io(T +T p)k?
(f) G%O)p(k,w) —iNok
- P = NIKE=T T K +iw(T +T )k
© —i
@ Gy, (k,w) i\ ok

w?=\GK2=T' T pk*+iw(I +T p)k?
with xg 1K) =2(ck*+bok?+r5), x,'(K)=2(yk*+ Bk?+ a)

ké<1, and bprp(k,t)~t‘1’2exp(—t/T) for ké>1. For a  sponge phases. Unfortunately, this will require an enormous
conserved order parameter, they obtain the largehavior numerical effort. Furthermore, an analytical calculation of
Gpp(k,t)~t’3’2 for ké<1, and Gpp(k,t)~t*1’3exp(—t/r) scaling laws is no longer possible in this case. Nevertheless,
for ké>1. The relaxation timer in these expressions is a it would be worthwhile to pursue such an approach, because
function of the wave vectok, and is different for conserved it should be possible to clarify some of the problems men-
and nonconserved order parametésse Ref.[27] for de- tioned above in this way.
tails). These results have to be compared with our result The sound attenuation as a function of frequenacy
(114) for nonconserved, anfl16) and (121) for conserved has been measured in Refl67] for the system
order parameters. While there is agreement about the genetd,bO-octane€,E5 with 7 wt % amphiphile in the micro-
form of the scattering intensity — an exponential decay withemulsion phase. For a balanced microemulsion,
an algebraic prefactor — the algebraic exponents differ in allx(w) =D (w)c ™ 3(w)/2 is found to be roughly constant
cases. Furthermore, while we find a linear short-time deperfor small w, and to decrease smoothly in the frequency range
dence of the intermediate scattering intensity, Granek and—100 MHz. This qualitative behavior is in agreement with
Cated 27] obtain a cusp singularity with the exponent 1/2 for our theoretical results. It is interesting to note that measure-
nonconserved and 1/3 for conserved order parameters.  ments of sound attenuation and dispersion curves near criti-
It would now be interesting to perform a self-consistentcal points, where the characteristic frequenegy scales as
calculation of the dynamic behavior of microemulsions andw,~ £~ % with the “dynamic” exponentz=3 [48,37, are

TABLE Il. Correlation propagators.

@ GO (k,w) 20 k™
|—iw+T ok "(K)[?
(b) G¥(k,w) | 2rp|<271
|*Iw+Fpk2)(p (k)[?
(© G (k,w) 21 1k?
[—iw+Tk7?
(d) G{9) (k,) 2NJT ke + 2T k(w2 +T 5k
[w?—A\3K2—T' T k*+io(T +T)k??
0 p p
(e GO (k,w) 2N30 K4+ 2T k(w2 + T2k
lw?=Ngk? =T T k*+iw(T +T ,)Kk??
) G}fg(k,w) 20No(I'L+T k%K

lw?=Ngk? =T T k*+iw(T +T ,)K?]?
with xg *(k)=2(ck*+bok?+15), x, *(K)=2(yk*+ Bk?+ a)
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FIG. 18. Bare correlation functions. Straight lines represent
ANy physical fields, wavy lines response fields. Solid lines denote the
) order parameter propagators, lines with crosses are propagators of
the pressure field, lines with check marks represent the amphiphile
FIG. 17. Bare response functions. Straight lines represent physeoncentration propagators. For the momentum dernsitye indi-
cal fields, wavy lines response fields. Solid lines denote the ordetate the longitudinal componejt by dashed lines, and the trans-
parameter propagators, lines with crosses are propagators of therse componerit by lines with bars. The label@)—(f) refer to
pressure field, lines with check marks represent the amphiphile corfFable II.
centration propagators. For the momentum denjsitywe indicate
the longitudinal _compo_ner]'[ by dashed lines, and the transverse pect, for example, the zero-shear viscosity to scale as
componeni; by lines with bars. The labelg)—(g) refer to Table I. 77(0)~K(2)P5_2- The viscosity of a strongly swollen sponge
phase in the system cetylpyridinium chloride-hexanol brine
usually performed in the same range of frequenf368.  has been investigated experimentally irsteady-sheaex-
The experiment of Ref67] indicates that the sound attenu- periment as a function of the shear rate in RéB]. The
ation has a maximum for a microemulsion near the apex ofesults show a shear-rate-independent viscosity in the range
the three-phase triangle. This is again consistent with oup.1—100 Hz. The zero-shear viscosity is found to increase
result that the dampin® () should increase with increas- |inearly with the amphiphile concentratigny, in contrast to
ing correlation length. the theoretical expectation. We believe that the most plau-
An interesting limit of microemulsion and sponge phasessible conceivable explanation for this discrepancy is that
is the case of strongly swollen systems, where the typicadteady shear destroys the complex equilibrium structure of a
domain size of oil and water regions is much Iarger than th%ponge phase a|ready at very small shear rates.
thickness of an amphiphilic mono- or bilayer. In this case, More experimental data are clearly necessary for a de-
the correlation lengtl, the inverse domain sizg, and the tailed test of the theoretical predictions. In particular, it
“amphiphile length” c** are given byé~kops ', d~ps,  would be interesting to measure simultaneously the static
and ¢4~ k3 Y where k, is the bending rigidity of the scattering intensity in bulk contraép determineq and &),
amphiphile layer[14]. These relations imply in particular the viscosity and the sound attenuation and damping for a
gé~ ko. Although it is unclear whether our results still apply series of balanced microemulsions with increasing am-
guantitatively in this limit, we believe that the qualitative phiphile chain length. The correlation lengttcan be varied
behavior should be predicted correctly. Thus, we would exalso by approaching the transition to a spatially ordered

TABLE lll. Nondissipative and dissipative vertices.

@ ig07q,(1+02) =igoTg K
(b) i707q,(0y+02) =i7o7g k

(©
i%ﬂ[qlxal(qquxal(qz)]

(d) .70 -1 -1

'E’E[ql)(p (d1) +d2x, "(d2)]

© i 0Tzt A3) [ B 3(2B2+ B3) (05 +03) — 282020s]
(f) .90 2
'771(‘114‘ G2+203)[2B81—(282+ B3)d3]

— 90837 (A1 + 03) (0% + 0103) + (Uz+ G) (45 + G013)]

) To(01+02) ™[ 281~ 28307~ (282+ B3) 45— 2330102

v Fp(Q1+Q2)2[,31— 7(2Bo+ B3) (02 +G3) — 285010, ]

with xg *(k)=2(ck*+bok?+15),  x, *(k)=2(yk*+ Bk?*+ )
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phase(if the transition is weakly first ordgr

Our results for the viscosity, for the sound velocity and
damping, and for the dynamic scattering intensity in bulk
contrast should also apply to the disordered phase of diblock
copolymer melts. In fact, the shear-induced isotropic-to-
lamellar transition predicted in Ref30], based on a very
similar Ginzburg-Landau model, has been confirmed very
nicely for a symmetric diblock copolymer m¢iQ]. Further-
more, the small» regime with a quadratic and linear de-
pendence of the storage and loss moduli, respectively, has
already been observed experimentally in these systems
[71,57. Therefore, it would now be very interesting to de-
termine the characteristic frequeney , and to measure the
sound velocity and damping.
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APPENDIX A: RULES FOR FEYNMAN DIAGRAMS a,
The inversion of the matrixG(®]~! — defined in Egs. 9 K
(31 to (36) — of the Gaussian action, yields the propa- o o .
gators Gi(jo)(k,w), which are related to théunreducey FIG. 19. Dissipative and nondissipative vertices. The lat@is

Gaussian(or van-Hové response and correlation functions (M refer to Table Ill.

b
y For an arbitrary dynamic fiel® (k,w), they have the gen-

(Wi(Ky,01) WKz, 02))0=G{X (kg ,w1)(2m)*S(ky +kp) ~ €ral form[32,72

Kolortes) (A Guylkw)= —Im{Ty(k,0)KGiy(ko)},  (BD

The results of this matrix inversion are summarized in Tables

| and 1I; the graphical representations of the propagators ar¢heren=0 or n=2 for nonconserved or conserved fields,

shown in Figs. 17 and 18. respectively. The wave-vector and frequency-dependent dis-
The higher-than-quadratic terms in the dynamic func-sipative coupling constant(or Onsager coefficient

tional A, given by Eq.(25), determine the vertices of the I'y(k,w) in Eq. (B1) follows from the relation

Feynman diagrams, which are listed in Table IIl, and shown (stat .

graphically in Fig. 19. It turns out to be convenient to con- '(K)=Ty(k,0=0)k"GFy(k,0=0)  (B2)

sider the longitudinal and transverse projectors, between thefull) dynamic response functic@g . (k,t) and

the (full) static correlation functio® 129 (k). Equation(B2)
KoKg (A2) can be derived from Kramers-Kronig relations together with
the sum rule

NIH

[[’k]a =

and
) GRE (k)= f >-Guw(k,0). (B3)
[T]a 55(1 __Zkak (AS)

Klap Pk P In model H, the static correlation function of the order

: . arameterd is given b
of the momentum density as part of the vertices, and not ag g y

part of the propagators. The reason is that in the calculation G (k) = xo(K) (B4)
of self-energy diagrams the external propagators have to be
cut off, the corresponding projectors, however, have to baince we have not taken into account any higher-than-

taken into account. quadratic terms in the static free-energy functional. There-
fore, the renormalized Onsager coefficient is found to be
APPENDIX B: FLUCTUATION-DISSIPATION S 05K, o)
THEOREMS Fep(k,w)=T¢— k:¢_1(k) (B5)

Fluctuation-dissipation theoren@8DT) provide important
relations between the full correlation and response functionsvhich implies
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255k @)= —2xo(K)ReZ 3 (K, 0)} (B6)
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The condition(B2) then implies that the Onsager coefficient
of the amphiphile concentration remains unrenormalized in

for the self-energy contributions. The same relation applieshis case,

for the self-energy terms of the amphiphile concentration
if it couples only to the momentum density field. Similarly,
one finds

ETT,JT,L(k’w) = ZRG{EjT,J T,L(k'w)} (87)
for the momentum density field.
In modelC, a one-loop calculation shows that
S ,5(k,w=0)=T k22> (k) (B8)

which yields the relation

1
Xo "(K) =310 (k)

(stat)
Gpp

(k)= =T k?G;,(k,w=0).

(B9)

I'y(kw)=T,. (B10
Therefore, the relation between the self-energy terms reads
2T K2
Egz(k,w)z Im{Ep;(k,w)}. (B11

(O]

Equations(B6), (B7), and (B11) have been used in this
paper to calculate the self-energy contributidngy in a
simple way. It is also possible, of course, to calculate these
self-energy terms directly from the corresponding Feynman
diagrams. Since the FDT relations have to be satisfied in any
order of a loop expansion, they can be used as a test of a
correct and consistent calculation of the Feynman diagrams
in this case.
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