PHYSICAL REVIEW E

STATISTICAL PHYSICS, PLASMAS, FLUIDS,
AND RELATED INTERDISCIPLINARY TOPICS

THIRD SERIES, VOLUME 54, NUMBER 4 PART B OCTOBER 1996

ARTICLES

Wetting description of block copolymer thin films

Scott T. Milner
Exxon Research & Engineering, Route 22 East, Annandale New Jersey 08801

David C. Morse
Materials Research Laboratory, University of California, Santa Barbara, California 93106
(Received 18 October 1995

Symmetric diblock copolymers undergo a weakly first-order microphase separation transition to a lamellar
phase. In a thin film of thicknesd this transition is altered for two reasons: the film geometry imposes
commensurability restrictions on the concentration profiles, and the surface field favors one of the two blocks.
The latter effect dominates fat> ¢, where ¢ is the correlation length neaf.. We construct a wetting
Hamiltonian, in which the slowly varying amplitudé(z) of the compositiore(z) = 2(z)cos@2) is the order
parameter, and explore the changes in the profile induced by changes in temperature, surface fiéld, and
The resulting phase diagram exhibits a line of first-order prewetting transitions ending in a critical point, and
a capillary condensation transition to an ordered film. Turning to commensurability effects, we compute the
ranges of thickness near half-integer numbers of layers for which the free surface of a copolymer film is
unstable to capillary waves, analogous to spinodal decomposition in two dimensions.
[S1063-651X96)01409-3

PACS numbdps): 61.41+e, 61.30.Cz, 81.36.t, 68.55-a

[. INTRODUCTION confinement into a thin film. All these phenomena can be
directly observed with reflectivity techniques, which have
The isotropic-lamellar transition in diblock copolymer been used extensively to study such copolymer filins5].
melts has received considerable attention, both experiment&8lome of the phenomena we shall describe have been ob-
and theoretical, for two contradictory reasons. First, becausgerved experimentally, and some have yet to be observed but
the lamellar phase seems at first sight the simplest possibkurely must be present. We have tried to be imaginative with
ordered mesophase and, second, because in fact the transiti@gard to the behavior of lamellar films, but the films are
is an unusual fluctuation-induced first-order transition, andikely to be yet more resourceful.
the ordered lamellar phase has all the richness with respect to Confinement of a diblock melt into a thin film has two
elasticity and dynamics of smectic liquid crystals, of whichbasic effects. The film boundaries inevitably impose some
lamellar phases are an example. surface field on the monomer concentration difference
In this paper we are concerned with the ways in which thec(r) =c(r) —cg(r). Also, the finite film thickness imposes
behavior of diblock copolymer melts confined to a thin film commensurability on the film if it is to order with lamellae
differs from the behavior of bulk samples. We may consideparallel to the film, as is favored by the presence of any
films of a few layers or many layers in thickness, above orsurface field. Many of the effects of surface fields and in-
below the bulk ordering transition, thick or thin with respect commensurability on a thin film of a lamelldor smectig
to the correlation length, with or without surface fields thatfluid have been considered previously in R¢€-8]. Such a
prefer one of the two blocks of the diblock copolymer. We film responds in several ways to these intrusions. At tem-
may consider films of commensurate or incommensurat@eratures above the temperature of the first-order ordering
thickness with respect to the lamellar order, and films coniransition temperature, surface fields induce some lamellar
fined between two substrates or with a free surface. order at the boundaries, which may penetrate across the film
These various cases are of interest because of the grahté=d, where¢ is the correlation length for the decay of
variety of possible ways a diblock melt might respond tooscillatory composition variations ardlis the thickness of
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the film. If the film thickness is incommensurate with the squared-gradient term plus a double-well potential, if the
period of the bulk lamellar phase, and order does extendpatial variation of the phase variable is neglected, which is
across the film, then the film may either order at a nonoptishown to be a reasonable approximation for any commensu-
mal wave number, which depresses the temperature of th@ate film. A film of thicknessi> ¢ will undergo a first-order
first-order transition, or may undergo a capillary-wave insta-transition between a “disordered” state in which induced
bility toward a state with an inhomogeneous film thicknesslamellar order exists only near the walls and an “ordered”
The latter phenomenon is analogous to spinodal decomposstate in which lamellar order of magnitude similar to that of
tion in two dimensions, with the thicknesix) of the film  the bulk ordered state extends throughout the film. Depend-
playing the role of a conserved order parameter analogous 189 On the strength of the surface field, the amplitut(@)

the composition in a demixing binary fluid. At temperaturesnear €ither boundary at temperatures infinitesimally above
near that of the bulk ordering transition, a small surface fieldhis ordering temperature may be in one of two states: “non-
may have large effects, producing lamellar ordering at theVet,” or “wet™ In the nonwet state, the amplitude of in-
surface of an amplitude comparable to that of the bulk-duced lamellar order is smaller than that in the bulk ordered
ordered state. Because the isotropic-smectic transition is firstate and decays away within a bulk correlation length of the
order, a small surface field may also, in a phenomena analgoundary. In the wet state, the amplitude of !nduced lamellar
gous to capillary condensation of a confined binary fluidorder at the boundaries exceeds the amplitude of the bulk
mixture, [9] induce order throughout a film of thickness ordered state, and may persist a greater distance into the film.

d> ¢ at a transition temperature above that of the bulk tranin @ semi-infinite film, the thickness of this wetting layer of
sition. lamellar order diverges as the transition temperature is ap-

This paper, which considers both surface field and comProached from above. At temperatures above the order-
mensurability effects in various regimes, is organized as foldisorder transition temperature, these two states are separated
lows. In Sec. Il, the basic results of the Brazovskii- N the (hs,t) plane by a line of first-order prewetting transi-
Fredrickson-Helfand theory of the bulk isotropic-lamellar ions, which terminates in a critical end point. In a film of
transition are reviewed. We show that the resulting bulk fredinite thickness, the wetting layers on the opposite bound-
energy is very well approximated by an even, sixth-orde@fi€S may jump together discontinuously at a temperature
polynomial in the concentration differencér), similiar to ~ @bove that of the bulk transition. This shifting of the transi-

that used previously by Fredrickson and BinddQ] which  tion temperature, which is analogous to capillary condensa-
greatly simplifies the rest of our calculations. tion, occurs when the free energy cost of ordering the re-

In Sec. Ill, we compute the composition profile and freeMaining material in the center of the film is less than the cost
energy of a thin film within a linear response approximation©f the two interfaces between surface-ordered material and

appropriate to describing surface-induced order at temperdb€ disordered center. .
tures well above the bulk transition temperature. In this N Sec. VI, we present some final remarks, areas for fur-
weakly ordered regime, it is possible to calculate the profildher work, and suggestions for future experiments. Details of
and free energy for any value df¢. The effects of com- the gxact Ilnear—responsg calculations, and the gradu_ent ex-
mensurability result in a free energy that is an oscillatingP@nsion of the Brazovskii free energy, are presented in Ap-
function of thicknessd, such that thin films near a half- Pendices A and B, respectively.
integer number of layers can be unstable to the growth of
capillary waves. Il. ISOTROPIC-LAMELLAR TRANSITION

In Sec. IV, we develop an approach to lamellar phases in
thin-film geometries based on writing the concentration vari-
ablec(r) as a slowly varying amplitudé(r) times a cosine The isotropic-lamellar transition in diblock copolymers
wave with a slowly varying phase(r), and performing a has been analyzed theoretically by Brazovsdkiil] Leibler,
gradient expansion of the Brazovskii-Fredrickson-Helfand12] and Fredrickson and Helfand3]. Leibler developed
free energy. This approach allows us to examine the formaand analyzed the mean-field theory of a melt of diblock co-
tion of strong ordefi.e., order of magnitude comparable to polymers, which in the case of symmetric diblocks takes the
that found in the bulk state near the bulk transition temperaform

A. Brazovskii model

ture) in any system in which botld and ¢ are significantly 1 o
larger than the bulk lamellar spacing. We check this ap- H . :_f I () D(—
proach first with a reexamination of the linear response re- AHLeivier= (2m)3v AQP(@P(—a)

gime. The simplest case beyond linear response is that of a I
strongly correlated film, witi€>d, and no surface field, for +-4 d3r[d(r)]4, (1)
which the amplitudey(r) is essentially uniform across the 4lv
film. Then the phase variable must “stretch” the wave num- ] )
ber away from the preferred value to make the layering comPIlus higher order terms whose effects are unimportant at
mensurate with the film thickness. This results in an oscillatifemperatures very near the transition temperature. Here
ing dependence of the ordering transition temperature ofP(r) is the volume fraction of one of the two monomer
thickness, as well as bands of thickness near half-integefPecies and is a monomeric volume. The quadratic coeffi-
values that are again unstable to capillary waves. cientl',(q)=S"%(q) =S; (a) — 2x is the random phase ap-

In Sec. V, we develop analogies to prewetting phenomengaroximation (RPA) inverse structure factor. The ideal
predicted by Cahn. Our gradient-expansion free energy re-y=0) inverse structure factd, 1(q) can be approximated
duces to a form similar to that of a binary fluid mixture, a near its minimum by
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. 1 [14] to approximating the probability distribution fafq) by
So (@)= [20.99+ 0.1481x—X0)?],x=q°R?/6, a Gaussian, with statistical weights determined by applying
the variational theorem.
Xo=3.785, (2) The inverse susceptibility obtained in this approximation

is, for both ordered or disordered states, of the form
whereR? is the mean-square end-to-end distance of the co-
polymer. The quartic term is approximated here by a local g Y@)=(sc(q)sc(—q)) t=r+(q—qo)>,  (6)
interaction, in whichl' ;=T"4(4o,—qo,0o, — Jo) = 156.56N _ _
denotes the value of the nonlocal quartic coupling approprivhere 6c(q)=c(q) —(c(q)). The self-consistent equations
ate to bulk lamellar order at the preferred wave number. for r and for the bulk free-energy density and its deriva-
Fredrickson and Helfan@13] put this effective Hamil- tive h=(1/2)df/sa are

tonian in the form of the effective Hamiltonian introduced by 9
r=r+an/\r+1a?

Brazovskii,
1 N h=ra+aal/\r+1a32, 7
Heﬁ=§J dal 7+ (d—do)*Jc(a)c(—a) + ZJ drfe(r)]®.
' 3) fe=2a\r—a®\/(2r)+ ra2+\a?/4.
For symmetric diblock copolymers, the various coefficientsH€re @ is the amplitude of the assumed periodic order,
are related to molecular parameters[g] <C(r)%:23COSQOZ)’ h is a field conjugate toa, and
a=qg/(4).

7=1.647Nx.—Nx)/N,
B. Scaling behavior

Nx.=10.495, Whenr, ¢, andfg are given in terms of the characteristic
_ units
q5=22.71N, @) ()
c(x)=1.102P(x) fr=p* (a*)2= o433

and all lengths are to be measured in terms of the microg,
scopic “packing lengthl ,=(N»)/R?, a length-independent iy in Egs.(7), but with A and a replaced by unity. Thus
parameter that is the ratio of the displaced volume of a chail\,o (esults in the scaled variablésr/r* a=a/a*. and
Nv and the mean-square end-to-end distance. The quantit¥:f/f* are “universal” in the sense that they do not de-
—p6 2 ; : o -
N=R"(N»)" is a measure of chain molecular weight. The yonq on how nearly second order the transition is.
quantity 7 varies linearly withy (which decreases with in- To compute the free energy densifyr,a), one may
creasing temperatur@nd may be assumed to increase lin-gqyye the first of Eqs(7) for r(r.a), and substitute into the
early with increasing temperature over the small range Of,gt of Egs (7). The resulting free energy develops a second
temperatures near the transition temperature upon which Weinimum for = less than the spinodal temperaturg and
will focus. This quantity will thus be used in what follows as undergoes a first-order transition at, with the amplitude

a measure Of. reduceq temperaturg. . _a jumping to a finite valuea,. Numerical calculations give
This effective Hamiltonian describes the lamellar orderlngthe results

of a scalar fieldc(r) at a finite preferred wave numbegg,

without preference for the direction of the lamellar normals. , — _1 88g* 1 (7)=0.224*, r,79)=0.630%,
Because of this degeneracy in layering direction, a mean-

field t_reatmen.t of Eq.(_3) goes dlsgstrou_sly wrong, in the 7o=—2.03T*, rgd7)=0.20T*, rors)=1.058%,
following way: neglecting the nonlinear interaction through 9)
the quartic term of independent lamellar fluctuations, the

mean-square fluctuation of concentration at a point in space a.=1.45%"*.

diverges as—0,

e self-consistent equations are of the same form as those

) For a given value of copolymer chain lengthand hence
2/ dqg o \, the various quantities associated with the first-order tran-
(c (O»_J' T(q—0qp)? 277 (5) sition are determined. From the mapping from the Leibler
Hamiltonian to the Brazovskii Hamiltonian, the following

Sincec(r) must remain finite, the different lamellar fluctua- results are obtainefd.3]:
tions must compete strongly through the quartic term as —
7—0, no matter how smakl is. Brazovskii showed that the r*=33.20"4
leading behavior for small was captured by the use of a _
self-consistent Hartree approximation, which is equivalent (a*)%2=0.31N" 13, (10)
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0.10 Surprisingly, this procedure gives a very close fit to the nu-
merically evaluated Brazovskii free energy throughout the
interesting range of temperatures and amplitudes. A typical

0.05 fitis shown in Fig. 1. In fact, in the vicinity of the transition
the following expressions suffice for tHe;}:
0 . . . . . .

0.5 1 15 ¢,=0.4411+0.752 7+ 7.)]/aZ,

fa(a)/f*

-0.05 c,=0.441—2+0.91Q 7+ 75)]/a?, (14)

a/a*

c3=0.4411+0.332 7+ 7)]/a$,

FIG. 1. The Brazovskii free energghown here in the reduced _ _ -
units defined in Sec. Il Bis very closely approximated by a cubic where 7.=—2.0305 anda,=1.445 are the transition tem-

polynomial ina?, with coefficients that vary linearly with through perature and the amplitude at thze transitionz. 2Note_that at

the relevant range of temperatures betwegand 7, . 7=7c, we havef,(a)=0.441@/a;)[1—(a/a;)"]*, which
clearly shows the double minima at=0 anda=a.. A

Note that in the limit of long copolymer chains, the ampli- Sixth-order polynomial approximation with slightly different

tude of order at the transition vanisheshisY3. This is the Coefficients has been used previously by Fredrickson and

measure of deviation from mean-field behavior; since théinder[10].

relevant scale for is = 10.495N, the relative size of the

non-mean-field region iy (or temperaturgis lll. LINEAR RESPONSE

v )  vee= 027N 13 11 In t.his section we use a Iinear-respor_lse approximation to
(Xe™ X3! X (D describe the formation of weak surface-field-induced order at
A particularly useful way of characterizing the degree oftemperatures above the bulk transition temperature. For this
first-order behavior is in terms ofjp*)2=q2/r*, the char- PUrpose, we expand the concentration field in terms of nor-
acteristic correlation lengtié* =1/\r* at the transition in Malized cosines
units of the layer spacingFrom Eq.(6) we see that has the

interpretation of¢é ™2, where¢ is a fluctuation renormalized c(x,2)= i c(m,k, ) fmk (X,2),
correlation length. From Eqgs.(10) and (4) we find Adik, T
(Go&*)?=0.68N"3, (12) Fok, (X,2)=2exiliK, -X)cog 7mzd).  (15)

* . . . . . o
_Thug doé™ becomes large in the !'m't of largh, _V_Vh'Ch Here the sum ovem runs over the positive integers, ard
implies nearly second-order behavior at the transition. For a

. : and IZl represent vectors in they plane. The expansion in
typical COpS'%mer one might hawe on the order Of. 1band cosines automatically satisfies both the requirement that the
hence (yo£*)“~15, i.e., a characteristic correlation length

N . i . concentration field have zero integra@ymmetric diblocks
e ey 20 10 xcoss ofaiher ype o moromes el s e
§disE[rdis(Tc)/;*]7l/2§* which is 0.2012=2 23 times ?befl\i/ctlng bo;mdary condition appropriate to melts confined
’ : : etween surfaces.
larger. The Brazovskii free energy to quadratic ordercins of
o the form:
C. Polynomial fit to fg(a)
It is convenient to have an approximate form for the Bra- _ i -1 _

zovskii free energy that is more explicit than the solution of F= 2Adm,2kL g (mkje(mk,je(m,—k,), (16
the nonlinear equations Eq§). We might hope to represent

fs(4) as a polynomial iny, with coefficients depending lin- whereg(m,k, ) denotes the value of the bulk structure factor
early on the effective temperaturenear the transition. Since of Eq. (6) evaluated at a wave vectg=k, +zk,,, with
the Hamiltonian is invariant under the symmetry kj==m/d.

c(r)— —c(r) or equivalentlya— —a, one might expect the We write the structure factor here in a slightly more
following polynomial approximation to be a sensible startingelaborate form:

point: 2
fg(a)~f,(a)=c,a’— cra’+ca’ (13 Gk ) = 2, =K
g(@)=fy(a)=c,a"—cra"+cza’. ' 42+ (92— qd)?’ LT Kmy
Evidently, f,(a) has a minimum ata=0 with the value K= 7m/d. (17

f,(0)=0, corresponding to the disordered state. The three

coefficientsc; can be chosen so thdf(a) has a second This reduces to the Brazovskii expression
minimum at the correct ordered-state amplitidea, with g(q)=[r+(q—0qe)?] ! nearq=qy, but has two important
the correct valueg(a;), and a maximum with the correct properties missing from that simple expressi¢hy it is a
valuefg(a,,) at some lesser amplitude=a,, to be adjusted. function of g2, not of |q|, the analyticity of which makes
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c(z2)=(2¢&/qo)Re{ih kcosc(d— z)/sinkd
+ih,kcoscz/sinkd}, (22

F=—(A¢lqo)Reli (h?+h?) kcotkd + 2ih, h, kcsacd},

SN

c(z) (arb. units)

0 VA P with « given by
-0.25 o
K?=Q3+2iqot . (24)
-0.50
zZ/l This formula has several properties we expected of the

linear-response profilél) it evidently has zero integral over
FIG. 2. Linear-response concentration profile for a film of thick- the interval (0d); (2) it is invariant under the interchange of
nessd, with d/I =4 (I=2/d the lamellar periofand qo¢* =5.  the two interfacesh—h, andz—d—z. A typical profile for
T_he shaded curve is the appr_oximate profile neglecting phase vari?ﬂ' =10 andqeé=5 is shown in Fig. 2.
tions, and the dashed curve is the phase variation. In the limit §>q61, we can further simplify Eq(22) by

. . . . approximatin
subsequent arithmetic nicer; af®) it vanishes ag| tends to PP g

zero, which guarantees that there is no long-wavelength con- k~Qo+ié& L. (25)
centration variatior(impossible in a symmetric diblock co-

polymey. It has been pointed out by several authidrs,16| Using this approximation, and expanding to leading order in
that using an inverse structure factor of the form1/(qy€), we obtain for the case of a film of commensurate
g~ %(q)=Aq %2+Bg?+C, which is equivalent to that given thickness ¢od=n)

above, also captures the correct algebraic forms of the RPA

structure factor in the limits of very high and very lapand c(z)~[2¢/sinh(d/ §)]{h,cog q(d—2)]cosli (d—2)/¢]

yields a rather good fit to the full structure function over the

entire range ofy. Here, because we focus on behavior near +hrcogqzjcoshiz/¢)}. (26)

the critical temperature, where the composition field is domiy, 4 symmetric film, withh,=h, =h,, this yields

nated by Fourier modes with=q,, we fix the coefficients ' s

A, B, andC so as to give exactly the desired positipnfor c(z)={2¢&hg/sin d/(2¢&)]}cod q(z— d/2) ]coshi(z

the minimum ofg~1(q), and for the value and second de-

rivative with respect tay of g~*(q) at its minimum. —d/2)/&]. (27)

Coupling to surface fields takes the form ) . .
The behavior near a single interfacezat 0 can be ob-

tained by takingd> ¢,z andh, =0 in Eq.(22), which yields

Feurtace= — | d? ,0)h ,d)h,], 18 ,
" f KOO et (19 c(2)=(2&/qo)hRe{ke'*?}~2£hicog gez)e 7. (28)

which becomes upon Fourier expansion The first line in Eq.(28) is the exact linear-response expres-
sion for a single interface, derived previously by Fredrick-
J2 son,[16] while the second uses approximation E25) for
Fsurtace= — ?E c(m,0)[h;+(—=1)"h,]. (19 x, and shows that this profile is a damped exponential.
m Use of the linear-response results makes sense only as
. long as the induced amplitudg€z) remains small compared
Hereh, andh, are the surface fields at the=0 andz=d  to the amplitudea, of the ordered state at the transition
interfaces, respectively. The linear response to these fields {8mperature, so that the valuefef( ) can be approximated
by a harmonic expansion around the disordered minimum.
2 . .
-5 cotmmaamOtn - (-1 @0 LTI o . e urice ek

* ok ek _ 203 1/6_ - 5/6
The corresponding free energy is hg=hg=a*/£" =a®™\"P=3.228N""", (29)

A where the last relation expresses the scalingodnd¢ near
_ mp 12 the transition.

- dzm: 9(mOfhy+(= 1] @1 Assuming the linear-response regime can be achieved ex-
perimentally, Eq.(22) can be compared directly to experi-
mental concentration profiles obtained from reflectivity
[1,2,4]. One simple but important application of this com-

Using the form Eq(17) for the structure factor, it is pos- parison would be to measure the correlation length in a thick
sible to evaluate the linear response profile and free enerdjim just above the bulk transition temperature, by comparing
of Egs.(20) and(21) exactly. This calculation is presented in the experimental profile to Eg28). The large but finite
Appendix B, where we obtain the following results: value of the correlation length at the transition is a key sig-

A. Results for profile and free energy
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This sawtooth variation in the wave numHtder equivalently

0. 6 the layer spacingas the layer thickness is varied has been
& 0-44 observed in reflectivity experiments and discussed previ-
£ 0.2 ously[2].
= o I . . . . . , The corresponding expressions for the concentration field
g 0.2 2{ \7! \4 6 7 8 and the free energy in this strongly correlated limit are
,@ -0.4 2 coq[qo+ 8q(d)]z}
od || R T
-0.8 o
c A (h/+h,)? -
a T AT (32

FIG. 3. Linear-response free energy per area as a function of
film thicknessd, with goé=10. Regions unstable to capillary waves
are shaded. The variation of the linear-response free energy with film

thickness can induce instabilities to capillary waves even at

nature of the Brazovskii theory. Reflectivity should afford {€mperatures above the transition temperature. This phenom-

better resolution in determining the correlation length tharnOn has previously been considered theoretically by Shull
bulk small-angle neutron scattering. in numerical mean-field calculatiorid7]. As discussed in

Very crudely, a typical surface energy might be on thethe Introduction, the instability is analogous to spinodal de-
order ofy per monomeric area on the interface, without spe-cOMposition in the bulk; ordered films of even slightly in-
cial efforts to make the surface neutral with respect to thé@mmensurate uniform thickness can be thermodynamically
two blocks of the copolymer. In the vicinity of the order- Unstable towards the formation of a two-dimensionally
disorder transition, which is predicted in mean-field thory to Phase separated” state in which one “island” or “hole
occur whenyN=10.5, a typical surface energy might thus takes up the excess or missing material. The formation of

o . _.._such islands and holes may either be nucleated or grow spon-
be of order 10N. This is to be compared to the CharaCte”St'Ctaneously from capillary waves. The coarsening of these is-

surface energyhga* =f*¢£* =a=1.807N. This suggests |ands and holes has been extensively studied experimentally,
that without special efforts, surface fields at the transition1g 19| put the early stages of island-hole formation have
temperature might tend to be in the vicinity of the characterygceived less attention.
istic field hg . Existing neutron reflectivity experiments seem  The instability condition for the growth of capillary waves
to be close to this situation; in some cases, the surface f|e|q§1 the surface of the film is that the free energy per unit area
induce order with an amplitude comparable to that in thegs a function of film thickness be “concave downwards,”
bulk ordered state at the transitigi] whereas in other cases »2AF/9d2<0. Figure 3 shows\F(d) of Eq. (23), together
the surface fields induce order of distinctly weaker amplitudeyith the regions of instability, for a value @f,&= 10.
[4]. Perhaps with some care in treating surfaces, smaller or Note that the regions of stability are independent of the
larger fields can be achieved, so that both the linear-responsgrength of the surface field, which may at first sight seem a
and the saturation regime can be observed. Tunable surfaggrange result. Consider the stabilizing effects of gravity and
fields have been achieved in one copolymer system with suisyrface tension. The free energy per unit area of a capillary
Eaa:e layers of random copolymers of controlled compositionyaye h(x) =2h,cos@x) becomes
2].

We now turn to the linear-response free energy, (£8). Feap=[F"(d)/A+pg+ yqz]hg. (33
This expression can be used to identify regions of layer
thicknessd that would be unstable to capillary waves, usingHence, whenF”(d)/A+ pg<0, spinodal instabilities will
the criterion#®F/3d%<0. A plot of this linear-response free occur for wave numbers satisfying
energy for a symmetric filnfwith h,=h,) as a function of
d/l (I1=27lqy), for qué=10, is shown in Fig. 3. q°<[F"(d)/A+pg]/y. (34)

An important limit is the strongly correlated film . . .
(d<§&), for which it is simplest to begin again with E¢&0) We now estimate the relative magnltuc_jeg of the curvature
and (21) for the concentration field and free energy. In theF"(d)/A of the free energy and the gravitational tepg. In
limit d<¢, the sums over modes are dominated by the ternthe strongly correlated limit, the scale Bf (d)/A from Egs.
with k,, closest toqg, i.e., for m=R(d/l), for which (30 , and (32 turns out to be F"(d)/A
g(m,0) is largest]The operationR(x) denotes the nearest ~(hs&?/d)(d/I)*(1/¢?). Note that the free energy per area
integer tox.] Here we are assuming an even number of lay-tself from Eq. (32) scales asF(d)/A~(hZg?/d). At the
ers, in response to fields of the same sign on both surfacesharacteristic valuess=h; and {= £*, the free energy per
The corresponding, is given byky,=do+6q(d), where  area is of ordefF (d)/A~f* £* (£*/d)=1.805N(£*/d). To
return to physical units(cg9, we multiply by kBT/Ip2
~5%10 (2% 10 8)%2=125.

Assuming typical values for a relatively thin, strongly or-
dered film ofd/1=5, ¢d=5, N=10% and|=300 A, we

B. Capillary-wave instabilities

R(d/) } 0

5Q(d)=%[T—
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find F(d)/A~1 erg/cn? and F"(d)/A=(25 erg/cnt)/ coefficientsB(#) and (i) are the smectic compressional
£2=5x10" erg/enmf. This is much larger tharpg=10°  and bending modulitaken at fixed amplitude). They arise
erg/cnt', so the effects of gravity can be completely ignored.from substituting the form Eq(35) into the Brazovskii free
Using the same values fat/l, £/d, andN and a typical —energyfg(a) and expanding the gradient terms; the absence
value of y=10 erg/cn? for the surface tension, we obtain a of a term (V, ¢)? is dictated by rotational invariande2].
critical value ofqupf(d)/(Ay):z_ng_ Hence the upper We are concerned in this paper only with variations along
cutoff to unstable capillary waves, for surface fields of thethe layering directiorz, sou, and« are not of interest.
order of the characteristic field? is of order the inverse It is easy to show, by considering the Brazovskii free
characteristic correlation lengthgt. energy for a state that is ordereg at a wave numpélffer—

Experimentally, there are no reports to date of capillary-Nd slightly fromqo, thatB(¢)= ¢~ exactly. The calculation
wave instabilities in advance of the ordering transition in theCf the coefficientu,(¢) is more involved, and is presented in
film. Simultaneous specular reflectivity and grazing inci-APPendix A by carrying out a gradient expansion of the
dence diffraction measurements would be required to loofBrazovskii (or Hartreg free energy of an inhomogeneous
for film ordering(or lack of it) and surface roughening due to System. The essential result is thg() varies by only 20%
capillary waves. There is general indirect evidence for &S ranges from zero ta., the amplitude at the bulk first-
spinodal route to the formation of islands and holes on thé@rder transition, and that,(0)=1. Having taken pains to
surface of copolymer thin films, in that films near a half- compute u,(¢) carefully, for simplicity we approximate
integer number of layers have been reported to take muchz(#)=#.(0)=1 in what follows. With this approximation
less time to exhibit islands and holes than is required foffor u., the free energy per unit area for a thin film can be
films near an integer number of laydfsr which island and ~ Written with surface field terms as
hole formation is presumably nucleajd@0]. v

z

dz

F/A=fdz{f8(|\lf|)+ d 2]—2 Reh;(0)

IV. GRADIENT EXPANSION
The behavior of thin films of diblock copolymer lamellar +h,(d)e'9od}, (37
phases is one of a class of problems in which spatial inho-
mogeneity is present, either because of the geometry or bevhere ¥ (z)=y(z)e'¢?@ is a single complex order param-
cause of imposed spatially varying fields such as surfaceter.
fields. In these problems, we expect the amplitude of mi- The gradient expansion is well controlled, for the varia-
crophase separation to vary in space, with distance from thiéoons of ¢ at least, for sufficiently weakly first-order transi-
surfaces or other localized disturbances. tions. The usual argument applies: successive terms in the
If the degree of microphase ordering varies slowly ingradient expansion are multiplied by additional powers of
space, we expect that the free energy is well represented bysame length, which should be of the order efqgl. Then,
gradient expansion, in which we represent the microphassince the transition is weakly first order, the first two terms in
separation in terms of its amplitudé(r) and phasep(r): the gradient expansion, of formr € g2) (q) (—q), deter-
mine a correlation lengtf=r ~*2, which is large compared
to |. Then asy varies on the scalé, higher-order terms in
the gradient expansion will be smaller by powers of

c(r)=uy(r)[e9ozte 1 cc]. (35

The fast spatial variation of(r) on the scalqul is con-

) . o -~ 1/(goé) <1.
tained in the oscillating phase factor exp(r); #(r) and  Recall that the application of the self-consistent Hartree
¢(r), respectively, represent slow variations in the ampli-nnroximation to the Brazovskii Hamiltonian E@) is only
tude or phase of the microphase separati@r). justified when the transition is nearly second order, for which
The free energy functiond[¢(r),¢(r)] then takes the the correlation length at the transitigpis large compared to
form the microphase period, apé.>1. Consequently, the use of
P a gradient expansion will be valid in almost all cases where
F['ﬂ(”-d’(f)]:f df( (i) + ual lﬂ)(— + () the use of Brazovskii's approximation for the free energy is
9z itself valid. For the self-consistent Hartree approximation to
ad\2 apply to a film of thicknesgl, we must have one of the
X(V )%+ B(:,//)(— + k() (V, 2¢)? following casesi(1) 1/qo<£<d, so the film is many layers
9z thick and the two surfaces of the film do not communicate,

+. =[N 8(2)+h,8(z—d)] and we have essentially a semi-infinite slalf2)
1/gp<<é~d, so the order extends across the middle of the
film, but is not uniform, and the film remains many layers
thick. (3) 1/gg=sd<¢, in which case the film may be only a
few layers thick but the entire film is strongly correlated and
Here fg(¢) is the Brazovskii free energy of a uniformly so the amplitude/(r) must be spatially uniform. If we con-
ordered state of amplitudg, i.e., the solution from Eqs7). sider the case of a film wit=<1/q,, such a correlation
The final term represents the surface fidhgsandh, on the  length is too short for the self-consistent Hartree approxima-
two interfaces. tion to apply. In the limit of very long polymers, however,
The coefficientsu(#), B(#), and«(#) can be calculated such short correlation lengths occur only at temperatures
systematically from the Brazovskii Hamiltonian E§). The  well above the ordering transition, at temperatures for which

X 2ycoqqez+ P) (. (36
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the effects of fluctuations become small. However, since th€37) by means of Lagrange multiplieks and\, multiplying
self-consistent Hartree approximation reduces to Leibler'she right-hand sides of E¢41) and subtracting fronf/A.
mean-field approximation in the limit of high temperatures, We then minimize the free energy with an added con-

this case can often be treated as well. straint term with respect toV (we vary with respect to
Note that the variableg(z) and ¢(z) must satisfy a con- ¥*, and take¥ and¥* to be independent variablegen-
straint, erating Euler-Lagrange equations
f dzqz)=0 (38) oy dfe) d 42
Z2Qz)=0, - d|\l,|2 dZZ . ( )

on the average composition of the film, which must vanishin terms ofy and ¢ these Euler-Lagrange equations take the
because we consider symmetric copolymers for which thereorm

can be no excess @ or B monomers. This constraint must

be added explicitly because the gradient expansion of the 0 %+ (d_fﬁ)z_zﬂ 43
free energyunlike the linear response approximation of Sec. Cdy dz dz2’

[II) does not by itself contain enough information about

chain stretching energies to rigorously exclude states that do d| ,d¢

not satisfy this constraint. We note, however, that when O=d—z<¢p E) (44)
¥(z) and ¢(z) are very slowly varying functiongas is as-

sumed in the use of a gradient expangitren the contribu- The boundary conditions arise from varying the surface

tions to Eq.(38) from regions far from the walls of the film field and Lagrange-multiplier terms, and from the boundary
will automatically be small due to the rapid oscillation of term in the variation ofdW¥/dz?, taking the form

c(2) and the resulting cancellation of regions of positive and .

negativec. The most important contributions to E¢398) 0="'(d)e 9%~ (h,+i\,), 0=W'(0)+(h—i\).

arise instead from regions within a half-period of either (49)

boundary, where this cancellation is destroyed by the PreSthe imaginary parts of these equations merely determine the

i ) = -1 i . .
ence of a s_harp wall. In the I|mq‘.0>_§ in which 4(z) and values of\| andX, ; the real parts give a physical boundary
¢(2) remain nearly constant over distances of ordgplthe condition

constraint can be satisfied only by taking the values of the
phase angle RV’ (d)e%d=h,, Rg¥'(0)]=—h,. (46

0(2)=qoz+ ¢(2) (39  From Egs.(46) and(41) we can derive the boundary condi-

_ ) tion on the concentration(z) = 2Re(W e'%?) itself, which is
at each boundary to be very close to some integer multiple ot

. c'(d)=4h,, c’'(0)=-—4h, 47
This observation can be made more precise by repeatedly
integrating Eq.(38) by parts to generate a power series which is the same as the result derived from the exact linear-
response solution of Eq22).

For simplicity, we will herafter focus on the case of a
. (40) symmetric film, with equal surface fieldg=h,=hg on ei-
z=d ther boundary. Cases in which the film has different, and
possibly competitive, surface fields are expected to produce a
somewhat richer set of phenomena, some of which have
been discussed previously in the context of confined binary-
fluid mixtures in Ref[21].

The coupled differential equatiori43) and(44) cannot in

general be solved analytically. The phagéz) can be ex-
pressed in terms ofi(z) by solving the linear differential

0=Reg¥'(0)—igy¥(0)}, equation(44), to obtain
O=Rel () ~iag¥ ()]e") 4D ¢(z)=0f:/2¢g(zz7)+¢(d/2), (48)

Here we have assumed that the contributions from each

boundary must vanish independently, since it is unphysicalvhere ¢ is an integration constant chosen to satisfy the

in a system of copolymers to satisfy the integral constrainboundary conditions og and ¢. [We have integrated from

by transferring excesa or B monomers from one side of the d/2 to z because in symmetric films we havgd/2)=0.]

film to the other. Qualitatively, the phase variation is required to give zero
Within the context of a gradient expansion fBg it is  concentration integral, and varies most rapidly where phase

sufficient to replace the full constraint E(B8) by the first  variation is cheapest, namely, whef€z) is small. If #(z)

few terms in the expansion E¢0), which constrains only vanishes or nearly vanishes somewhere in the middle of the

the surface values and derivatives @¥fz) and ¢(z). We  film (as can occur when™> 7. andd> £), then essentially all

introduce the constraints of E(11) into the free energy Eq. of the phase variation happens there, with the result that the

iqoz igqoz
0=Re—V(2)+ v (z)+---
e{Iqo @@

for the integral in powers of #jf, or, more precisely, in
powers of the operatar, 'd/dz acting on the complex vari-
able¥(2).

To lowest order in I, Eq. (40) is satisfied by taking
sin(@)=0 at both boundaries. At the next order irgd/Eq.
(40) yields boundary conditions at=0 andz=d:
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phase shift is nearly constant within each half of the film, We now consider the effect on these results of the terms
and changes rapidly in the middle. This is the limit of two in Egs.(43)—(44) involving the phase gradients. Combining
noninteracting wetting layers. If on the other hand the film isboundary condition Eqg41) and(48) yields
strongly correlated so that(z) is nearly uniform across the
film (as will occur if £&>d) then ¢(z) will vary essentially 5(2)= 29/ (0) [5dZ I[(2')]?
linearly with Z. _ . Qo(0) fgdz//w(zr)]z :
The magnitude of the total change ¢{z) from one side
of the film to the other depends strongly upon whether thdn practice, the effects on the concentration profile of phase
film thickness is commensurate or incommensurate with thehifts for commensurate films are always quite small, and
preferred lamellar spacing72qq. If the film is commensu- probably not observable. Figure 2 shows the exact linear-
rate, theng(z) is forced to be nonzero only by the effects of response profile for a four-layer film withh¢=5, compared
constraint Eq.(38), which by itself yields small boundary to the linear-response profile before phase correction, Eq.
values for¢(z), as given by Eq(41), of order 1/@y¢€). Ifthe  (51). As is evident from the figure, this is a very short cor-
film is incommensurate, however, then in order to obtainrelation length, for which the gradient expansion inq dhd
values of#(z) that are nearly integer multiples of at the  the zero-integral constraint on the uncorrected profile might
boundaries, we must have)(0)=0 and ¢(d)=z5q(d) be expected to be in error. The first phase correction, using
[where 5q(d) is defined in Eq.(30)], thus yielding a total the phase from Ed52) (integrated numerically is shown as
phase shift of order unity. the dashed line. Even for this case, the phase variation is less
In the next two subsections, we consider two cases ithan 0.2 rad. The concentration profile computed using the
which relatively simple approximations for the profile and amplitude variation Eq(51) and the phase correction Eqg.
free energy can be obtained analytically. In subsection A, wé52) would be indistinguishable from the exact profile in this
discuss the behavior of weakly ordered films, and recover théigure.

(52

basic results of the linear-response theory of Sec. Ill. In sub- If the film is incommensurate, there is a competition be-
section B, we discuss the case of a strongly correlatetiveen the constraints imposed upon the boundary values of
(&>d) incommensurate film. the phase by the integral constraint and the surface fields,

and the cost of distorting the wave number in the ordered

portions of the film. If¢ andd are of comparable magnitude,

this leads even in the linear response regime to coupled
The simplest applications of the gradient expansion occUgquations fory(d) and ¢(d) that cannot be solved analyti-

for weak surface fieldss, in which the effect ohs can be  cally. If ¢<d, so that ordered regions near both boundaries

computed perturbatively. In the case of a commensurate filnpre separated by a region of nearly vanishifigthan this

we take advantage of the expected smallness of the phag@stration can be relieved by allowing to take a rapid

variable ¢(z) by first solving for(2) in an approximation jump between its boundary values of(0)=0 and

in which we ignore the effects of a nonze¢qz), and then 4 (d)~dsq(d) over a region of width in the middle of the

consider the perturbative effects of the phase variation afteijim 1f ¢>d, so thaty(z) is nearly constant across the film,

ward. Within linear response, the order induced by surfacgue instead expect a linear variation

fields at temperatures above. in a film of thicknessd

(0<z<d), are then described by the solution of

A. Linear response revisited

R(d”)—l}

$(2)=200(d)=20 — 7

(53
0= — %Yl 9z%+ry—hJ 5(z) + 8(z—d)]. (49

. o . of the phase to “stretch” or “compress” the wave number

for simplicity equal left and right surface fields, found experimentally in Ref2], and reproduced in Sec. Il
h=h=hs.) _ _in the strongly correlated limit, Eq32).

The surface-field terms establish the boundary condition From Eq.(36), we see that such a phase variation imposes
on ¢(2) (to see this, integrate E9) over a small interval  an additional cost)?[ 5q(d)]? in the free energy density,

containing the surfageas which amounts to replacing the inverse susceptibilitpy
r+[8q(d)]2. So the induced spatially uniform amplitude
ol dz|,—o=—hs, Il 9z|,—g=hs. (50)  and linear-response free energy in this case become
The solution to Eqs(49) and (50) is simply y=hg/{r+[3q(d)]3}?
costi(z—d/2)/€] AF=—2hZ{r +[5q(d)]3}*, (54)

W(2)=hef — (51

sinh(d/2¢) which are precisely the results of E@2).
This solution corresponds to the approximate linear-response .
result Eq.(27) of Sec. Il (where phase effects were also B. T, shifts (£>d)
neglected, since a commensurate film wigg>1 was as- The simplest case in which to consider the effects of com-
sumed. In the limit that the film is very thick, the amplitude mensurability beyond linear response, as is required to ad-
reduces to a decaying exponential at each surfacaress shifts in the first-order transition temperature, is a
P(2) =~hgéexp(—2z/¢é). strongly correlated film in whicl¥>d. Then it is clear that
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. FIG. 4. In strongly correlated |ncpmmensurate filmes>(d) FIG. 5. The phase behavior of the Brazovskii model in the pres-
with no surface field, the phasg(z) varies linearly to enforce the ; . - .
ence of a nonzero field conjugates to the amplitadi the dimen-

zero-integral constraint. The result is thel(d) and ry(d) (upper . sionless units defined in Sec. Il B. The line of first-order transitions

22(2 lﬁvéfra?eag(sgiﬁ;ﬁ]s’ ]Pul gtctt?gnlsno?jlm,sgs\l/(;nltﬁzssﬂggse ddizrr]\(/es In(solid) and the corresponding spinoddtaetastability limits of the
' 9 ’ " ordered and disordered phasédotted meet at a critical point,

;heggrgered state where it exists is unstable to capillary waves. Herﬁ: 0.1141%, 7= —1.64*.
0 - .

. o plicity assumed here that there is some surface field acting
t;](ez)a\gﬁt}t;iie’/’éﬁ)y :’S g:s:rﬁ)ebl;dggt%c))fz, and the phase that s_elects one of_the two blogks at the surface. If the sur-
In the absence of surface fields thé free energy per un?c ice field were strictly ZET0, either block could appear at
volume of Eq.(37) then becomes ' ither surface, and the film would be commensurate if it were
' a half-integer number of layers thick. Then E§3) would
f="fg(y)+ ¢y 5q(d)]?. (55  be replaced by a similar expression witheplaced byl/2.
The width of the unstable regions depends on the tem-
The stretching of the phase to give commensurability angberature, and can be defined for any temperature below the
thus zero concentration integral givesdedependent qua- spinodal temperaturg at which a second minimum in the
dratic shift in the free energy density. Recall tig{y) is  free energy first appears. In the region in the plane above
very well represented by the sixth-order polynontigly) of  the shaded curve in Fig. 4, thigetastablgordered state is
Eq. (13). If only the quadratic coefficient, of f, varied unstable to capillary waves.
significantly with temperature near the transitiomhich is Note that within the gradient-expansion picture, there is
the natural simplification for second-order transitions, sinceno spinodal instability of thelisorderedphase withhg=0,
there the quadratic coefficient vanishethen the commen- since the free energy is just that of the bulk disordered phase
surability effects would amount to a shift ih—T.. How-  independent ofd. This misses some interesting physics,
ever, at a first-order transition, none of the coefficidotsis  however, which can be recovered in a self-consistent Hartree
vanishing, and so we cannot argue that the temperatur@pproximation applied directly to a film of finite thickness:
variation of the quadratic term is dominant. capillary-wave instabilities can result from commensurability
Instead, we simply replaciks(y) with f () in Eq.(55), effects on the fluctuation spectrum and hence the free energy
and compute the resulting spinodal and transition temperasf the disordered phase even whk=0 [23].
tures as a function ofl. The size of the commensurability- The effects of commensurability remain qualitatively
induced shifts inr, and 7, depends on the near divergence in similar in the presence of a moderate surface field. The free
the correlation length, which can be characterizedify* as  energy per unit volume of a strongly correlated film with
discussed in Sec. Il B. The results are shown in Fig. 4, fosurface fieldshg=h,=h, can be written as
go&* =5. Note that the effects of commensurability are most
pronounced for the thinnest films, as one would expect; it is f=Tg(1h)+y’[5q(d)]*—4yhs/d, (56)

progressively easier for the phz;}se to adjust the film thiCknes\ﬁlhere the last term represents the contribution of the surface
by at most half a layer, as the film is made thicker. Note thaK‘ield. This is the free energy of a Brazovskii model with a

the vgrlatlon.s In the transition and spmodal emperatures asg,igqq quadratic coefficient in the presence of an effective
function of film thickness can be quite large on the scale o ulk field

the differencers— 7. In other words, if an experiment can

resolve the difference between the bulk spinodal and transi- hes=2hs/d (57)

tion temperatures, it has sufficient temperature resolution to

see the commensurability-induced shifts in the transitiorconjugate to the uniform amplitudg=a.

temperature. In a commensurate film, witdq(d)=0, the effect of
These commensurability effects also give rise tosuch aneffectivebulk symmetry breaking field is to produce

capillary-wave instabilities of the ordered phase, since itsa nonzero value foy in the disordered state and to decrease

free energy per unit area becomes an oscillating function athe value ofy in the ordered state just below the transition

the film thickness. The film free energy per area as a functionemperature, thus decreasing the discontinuityyirat the

of d can be shown to be concave down and hence unstable transition, and also to raise somewhat the transition tempera-

regions ofd near half-integer layer thickness. We have im-ture.
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For strong enough, the discontinuity disappears com-
pletely, thus causing the line of first-order transitions in the
(hes-7) plane to end at a critical point 0.3

hei=0.1140*, 74=—1.64* (59

with hei= h,;; of order the characteristic value effective bulk
field h*=a*/&*2. The corresponding phase behavior for a
commensurate field with a free energy density of f¢&®) is 0.1
shown in Fig. 5, where the first-order transition is shown as
a solid line and the corresponding spinoddilsits of meta-
stability of the ordered and disordered phase® shown as 0 0.250.5 0.75 1 1.25 1.5 1.75
dotted lines. The existence of a critical point implies that the a/a*
presence of a sufficiently large surface field, large enough so
that hgg(d) > hg,i, Will destroy the discontinuous transition, FIG. 6. A plot of the Cahn constructiofifg(¢)]Y2 vs ¢, in
leading instead to a smooth evolution of the degree of ordedimensionless units, for a reduced temperature
with decreasing temperature. T7.<7=—-2.0r*<r75, with values ofhg (horizontal line$ corre-

For 0<|heq| <hg, the transition temperature,(h) var-  sponding to the spinodals,,, andhg, of the wet and nonwet states,
ies almost exactly linearly with hg;  from  and to the prewetting transition fiefd. .
To(he=0)=—2.03* to 7¢(h¢it) =7¢it- This nearly linear
variation of 7, with the strength of the effective bulk field, corresponding chemical potential equal in the two phases,
together with the I dependence di upond suggests that allowing coexistence to occur over a nonzero range of tem-
the transition temperature for strongly correlated commensuperatures, and to thus be easily observ&tcond, the dy-

rate films with different numbers of layers should vary as namical behavior of our nonconserved order parameter is
qualitatively different from that of a conserved order param-

7o(d) — 2k h  /d (59  eter: Material does not have to be transported large distances
to relax a slowly varying amplitude profile, as it does for a
for her<hit. conserved order parameter. Finally, our free energy density
The d dependence of the critical temperature in a set ofs of a different form from the canonicak/?+ay>+by?

films with a fixed surface field, withg small enough so that considered in Ref[24], which leads to differences in the
hew<hgi for the thicknesses of interest, is given by a com-shape of interfacial profiles.
bination of the two effects described above. The transition
temperature oscillates witd in a manner similar to that A. A single interface
predicted forhg=0, but the maxima of, at commensurate
values ofd are always somewhat higher than the bulk tran-
sition temperature and less thag;, with a slow variation of
7. at consecutive maxima given by EG9).

We now review briefly Cahn’s results for a binary fluid
mixture with a single boundary at which a surface field is
applied. The free energy per unit area is that of B2f€)
without the phase terms,

V. WETTING ANALOGIES ©
F= | Cadtouan v @P-2hs2u@). 60

We return now to films of commensurate thickness, but

with surface fieldshg that may be strong enough so that . ) . i . )
linear response calculations are inadequate. Because of tRY measuring distances in units f, concentration ampli-

discussion and examples of Sec. IV, we neglect the phadedey in units ofa”, free energy density in units 6f, and
variable. Then we recover a variation on a classical problensurface field in units ohg we can reduce Eq60) to a
that of wetting phenomena in a finite slab between two sur-universal” form. Thus we can give a universal prewetting
faces of a mixture of liquids near the demixing critical point. Phase diagram, as a function of reduced temperaturer-
The amplitudey(z) plays the role of the concentration vari- malized surface field strengths/hy and film thickness
able in the two-fluid problem. The free energy density Eq.d/&* when we consider films of finite thickness.
(36) is of precisely the form considered by Cahn in his semi- The optimum profile minimize§,
nal works on prewetting phenomena near the liquid-liquid
critical poi_nt, [24,2&'3 a square-_gradie_nft term plus a free en- 0= ﬁ — 24/~ 2h.8(2). (61)
ergy function with two competing minima. A

There are several important differences between the case ) _ ) N
of copolymer thin films and the systems considered in Refsintegrating over thes function gives the boundary condition
[24,25. Our order parameteithe amplitudey(z)] is not ,
conserved, which has two immediate consequences. First, ¥ (2)|z=0= —hs. (62)
there can be coexistence between ordered and disordered Cﬂivay from the boundary, Eq61) has a first integral,
polymer phases only at a temperature exactly equal to the
transition temperature, making coexistence unlikely to be ob- c=[¢'(2)1?— fs(¥(2)), (63)
served in practice(ln the case of a two-fluid mixture, two
phases can coexist with different amounts of flaidand the  wherec is a constant to be determined.
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For a semi-infinite system above the bulk transition tem- ~  _ _ _ _ _ _ _ _ _ . _ _ . ______

perature, we havg= ' =0 far from the interface, and so -1.90f
c=0 in Eq. (63). Then we have _1.92k
*

V@ =D, e w0 nonwet
which can be used to compute the shape of the profile. This  -1.98¢f
result can also be used to eliminate the need to know the -2.00
shape of the profile if all we want is to compute the free _2 . 02b Ol o//
energy of the interface; using E(64) we have i 75

hs/h*
#(0)
F((0))= Zfo dy{Vfe(¥(2))—hs]. (65) FIG. 7. For a single interface, or an infinite film, the Cahn con-

struction with the Brazovskii free energy gives rise to the prewet-

. . ting phase diagram shown here, in dimensionless units. The solid

This key result of Ref|24] leads to a graphical represen- |ine represents the prewetting transition and the dotted lines the

tation of the possible amplitude profiles at the interface an@pinodals of the two competing surface profiles. The critical point is
their free energies. Figure 6 shows a typical graph ofy ;=7 hs=0.308%.

' =fg(y) as a function ofyy for some temperaturéor

effective temperature) below the spinodal temperature at F(,(0)), while the other states correspond to local minima.

which a second metastable minima appearginand hence  The valueh, is special in that the free energies of these two
in fg (i.e., 7<), but above the bulk transition tempera- states are equal,

ture (i.e., =>17.). A horizontal line represents a value of
surface fieldhg; the intersections with the curve give pos- F(¥nonwed = F (e - (66)
sible values ofiy(0) for which Eq.(62) is satisfied.

For hg,<h<hg,, there are three such intersections, cor-Graphically, this corresponds to the zero total area between
responding to three values @f(0) and hence to three dis- the line and curve from¥,gnwett0 Ywet- Thushg(7) is a line
tinct profiles ¥(z) for which the free energy is stationary of first-order phase transitions between the wet and nonwet
under perturbations. The largest value f0) is slightly  states; foth,>h, (hs<h.) the wet(nonwe} state is stable.
larger than that of ordered-phase minimaf g{«), and cor- The surface fieldkg,, andhg, correspond, respectively, to
responds to a profile that as the temperatures approaches e limits of metastabilityspinodal$ for the wet and nonwet
bulk transition temperature evolves into one in which therestates, since fdn>hg, (h<hs,) the nonweiwet) state does
exists a well-defined “wetting layer” of bulklike lamellar not exist. As the temperature is increased to the spinodal
order near the boundary, in which the value gpfremains temperaturerg, the maximum and minimum ifiy and hence
near that in the bulk ordered phase, with a thickness thah \/f5 merge, as the values df,, hg,, and hg, become
diverges continuously as the transition temperature is apequal. This is the prewetting critical point.
proached from above. The middle intersection can be shown The values ofhg, and hg,, can be found explicitly as
to correspond to a local maximum in the free energy, rathex/f;(y.) and \fg(isy), With (5,2 and (¥s,)? the solu-
than a local minima, and is thus not a physically relevantions of
state. The smallest value @f{0) is similar in magnitude to
that which would be predicted by linear-response theory, and 0="fpa(¢h)=2¢{c,+2¢,4%+3c39*, (67)
corresponds to a profile in which(z) decays to zero within
about a bulk correlation length of the boundary even at thevhere we have approximated the bulk free energy density
transition temperature. We will refer to the two solutions f;(y) by the polynomialf ,(4) given in Eq.(13). The inte-
corresponding to local free energy minintiiroughout the  gra| dy\/f, () can be done analytically, and the value of
range of reduced temperaturgs< 7< s for which two such  h (7) found by solving Eqs(66) and (62) numerically. The
solutions exist as the “wet” (i.e., interface is wet by the regyiting phase diagram is shown in Fig. 7. The critical end
ordered lamellar phag@nd “nonwet” (interface is not wet  hgint is ocated at= 7, hs=0.30eh% .
by the ordered phagstates, and to the corresponding values
of ¢ at the boundary ag,,e; and ,onwet- OUr use of “wet”
and “nonwet” to describe states at temperatures slightly
above the transition temperature is adopted for simplicity, Sadly, much of this elegant analysis is no longer possible
but, it should be noted, is a slight generalization of convenwhen a film of finite thickness is considered. The reason is
tional nomenclature for wetting, which holds that a state carthat the argument following Eq63) that the constant ap-
be described as “wet” only when there exists a macroscopipearing there vanishes, no longer applies, because the ampli-
cally thick wetting layer, which can occur only exactly at the tude need not vanish at the center of the s{@his situation
transition temperaturg25]. has been considered previously by Nakanishi and Fisher,

Twice the integrated area between the cug/éy) and [26] in the context of thin films of binary fluid mixtures.
the horizontal line, fromy=0 to = (0), is exactly the  Since we do not know the value af(d/2) a priori, we
free energy of Eq(65). From this, it is easy to confirm that cannot compute the free energy without knowing a bit more
the middle intersection point corresponds to a maximum irabout the profile/(z).

B. Two interfaces
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EI_G‘ 8. Wetting phase diagram for a film of finite thickness g o Typical nonwetting, wetting, and film-ordered profiles
d/¢* =25, to be compared to Fig. 7. Note the presence of @ “Cappait of full profiles shown, d/l =20), for parameter values
illary condensation” transition between the ordered and wet stateS_ _ 5 + gnqh.=0.225*

: s=0.225* .

at anh-independent temperature higher than that of the bulk order-
ing temperature, and of the essentially linear surface-field depe

2 of films in the presen f two interf r
dence of the ordered to nonwet transition temperature. 5 S the presence of two interfaces separated by a

distanced, as the first-order transition is approached from
Lo . . . above. Consider the case whetds several times., the
ti 0;— h\(/evgl::;)?:(t:lgeElqs(&)Tv?trﬁ intensively numerical Calcma_bulk correlation Ie_ngth at the t_ransition. Whe_n the interfaces
' are nonwet, the induced profiles have a thickness of order
o' (2)={[fp((2)) +c]}? (68 &, and thus do not interact appreciably across the film. When
the prewetting transition line is crossed and the interfaces
wherec is a constant whose value must be determined nubecome wet, their thickness is at first still of ordgrthough
merically. In principle, we adjust the values af(0), perhaps a finite factor larger.
#(d/2), andc for a givenr, hg, and film thicknessl so that But as7— 7., the wet interfaces become thicker. Equa-
the profile ¢(z) has the(1) proper boundary condition at tion (64) gives some idea of how this occurs, since from it
z=0 andz=d, (2) zero slope in the middle a&=d/2, and the profile can be computed as

(3) the proper thickness: )
#'(0)=hg implies hZ="f,(y(0))+c, Z(tﬂ)=—f¢(o)d¢/\/f8(¢)

o (69
W'(d12)=0 implies O=Tfy(y(di2))+c, - j dul (- o) T oonsK (J— 2. (7)
#(0) #(0) . .
d:gf dw/,/,r(z)zzj' dydl{[ fo(¢)+c]}Y2 The last crude approximation reflects the fact that as
Wdr2) ¥(di2) 7— 7., the free energy of the ordered minimum approaches

zero, and saJyl 9z very nearly vanishes in the vicinity of
.. Thus the wet profile thus becomes very thick: the small

for some values of, h, andd. In practice, to find these difference 7— 7. cuts off a logarithmic divergence in Eq.

states requires sensible initial guesses and a lot of numerichfY» SO We conclude that the wet layer thicknésgrows

root finding. ogant.hmlcally' asl~—¢&In(r—7,), and the two wet layers
The free energy per area for a film of finite thickness therfMe€t in the middle when

becomegwe have assumed equal surface fields on both sur-

faces for simplicity T— 1~ exp(—d/§). (72)

Multiple states(wetting, nonwetting, and orderednd
hence multiple values of/(0), (d/2), andc are expected

#(0) On the other hand, we may compare the free energy of the

F=4f dy [fe(¥)+c]Y2—cd—4hgy(0), (70) state consisting of two prewetting layers with a state that is
y(di2) ordered across the entire film, to ask when the thin-film ana-

@g of the bulk ordering transition occurs. If we replace the

which can be evaluated numerically for the several state \ . . .
once the values of/(0), 4(d/2), andc are known, to deter- state with two prewetting layers and a disordered middle
’ ' ' with a state ordered across the film, we give up two inter-

mine the location of the various transitions in the phase dia: ) i
gram. The resulting phase diagram is shown in Fig. 8, for a{aces between ordered and disordered material at the cost of

. ; * _ ordering the interior of the film(See Fig. 9.

film of thicknessd/¢™ =25. The interfacial tension between the ordered and disor-

dered phases is finite at the transition temperatyreand is

of orderAf¢., whereAf~f* is the height of the barrier in
Apart from direct numerical calculations, we can give the double-well free energy density. The bulk ordering of the

some simple arguments that clarify the prewetting behaviomiddle of the film costs a free energy per area of order

C. Capillary condensation
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(7—7)f*d, since the region to be ordered is rougldy second-order lamellar transition, namely, the correlation
thick, and the difference between the ordered and disorderddngth ¢ at the transition. Because this length may be quite
state free energy densities scales as- ¢;)f*. Equating long (many lamellar periods, and hence several thousand
these two free energies per area, we find that it pays to ordeingstromy it is difficult to measure using bulk small-angle
the film to get rid of the interfaces at#,, given by neutron scattering with the customary resolution limits. A
reflectivity experiment is likely to give better resolution for
Two™ 7o~ ¢/d. (73 £. Such measurements applied to a series of materials of

This ordering of the film in advance of the transition is “cap- different x value and hencéN value, which according to
illary condensation,” since ultimately it derives from the theory governs the magnitude of first-order behavior, could
presence of surface fields on the boundaries. Feg the  provide a sensitive test of whether the mean-field limit is
capillary condensation condition E§73) is less stringent approached abl— . There is some indication of puzzling
than the condition Eq(72) that the wetting layers begin to experimental results in this respect: judging from existing
overlap. reflectivity data, the correlation length from reflectivity in the
Note that the strength of the surface fields does not entagjatively ~ highy  system  polystyrene-palsnethyl
thg estimate of th_e shift im., for the case of wet inten_‘aces. methacrylate (PS-PMMA) is longer than that in the suppos-
This is because in both the ordered and the wet-interfacgqly more  mean-field-like  polgthylene-propylene

states, thg structure; near the boundaries are basically.t %Iy(ethylethylené (PEP-PEE system. This correlates with
same, being essentially linear response to the surface fielgl, Jiher unexplained feature of the experimental phase dia-

?rour)t(j thE ?rderedthstatéstee Sig. dg. TZust Te firr?t—olzjd%r %rams, that the bicontinuous\3d phase, which is predicted
ransition between the wet and ordered states should be € ) appear in the mean-field limit, is only observed in systems

sentially independent of surface field, which is observed in . ,
the numerically computed phase diagram Fig. 8. _such as PS-Rpolyisoprengwith smallvalues ofN, and not

Now consider the case where nonwet interfaces make % PEP-PEE. o )
transition directly to the ordered state. The nonwet interface 1 "€ second effect of the thin-film geometry is what has
consists basically of linear response around the disorderdien termed “frustration” in Refl.2]: the lamellar period is
state, while the ordered state is essentially the same as tfrced to be commensurate with the film thickness. Even in
bulk ordered state with a linear-response increase in concefilar response in the disordered phase, there are regions of
tration amplitude at the interfaceSee Fig. 9. Thus the free layer thickness near half-integer values we then predict to be

energy per area difference between these two states is appStable to capillary waves. There is a strong analogy here
proximately — hea,+ (7— o) f*d, which leads to a nonwet- with spinodal decomposition, in which the thickness of the

ordered transition at & of film plays the role of a conserved variable, and the free en-
ergy per unit area must be a convex function of thickness for
— 1e~hg&* [(h¥d). (74)  thefilm to be stable. The essential physics is that the system

can have a stronger response to the surface fields if the

Thus the nonwet-ordered transition temperature is shifted uglamped oscillatory concentration profiles from the two sur-
wards from the bulk ordering temperaturg by an amount faces meet in the middle of the film with the same phase,
that varies linearly witths. without adjusting the wavelength of the oscillation away

To summarize, we expect fat=¢ the structure of the from the preferred value. To test this prediction would re-
prewetting phase diagram for a thin film should be similar toquire determination of both the state of film orderiftoy
that of a semi-infinite sample, except that the bulk orderingspecular reflectivity and the surface roughneéisy grazing
transition is replaced by a capillary condensation line at dncidence diffractiop under the same conditions.
slightly higher temperature, with the nonwet-ordered transi- We have treated copolymer thin films beyond the linear
tion depending linearly oh, and the wet-ordered transition fesponse regime by means of a gradient expansion, justified
approximately independent bf.. This is consistent with the when the lamellar transition is nearly second order. We write

numerically computed phase diagram of Fig. 8. the oscillating concentration profile as a product of a slowly
varying amplitude times a cosine with a slowly varying

phase. If the phase can be negledted., for films of com-
mensurate thicknegsthe resulting effective Hamiltonian is
We have considered a variety of interesting effects thastrongly analogous to that used by Cahn in his treatment of
occur when symmetric diblock copolymer melts are confinedvetting and especially prewetting phenomena. In the pres-
to a thin film. The thin film has two main influences on the ence of a single interface, we can have either a “nonwet”
melt. First, surface fields create a layer of the preferrednduced profile, of small amplitude, or a “wet” induced pro-
monomer at the surface, which then induces some degree &fe, of amplitude similar to the eventual bulk-ordered state.
layering away from the surface, extending at least a bulklhere is a line of first-order transitions in the temperature-
correlation length into the film. When the surface fields aresurface field plane, terminating in a critical end point, pre-
sufficiently weak, their effects may be considered in linearcisely analogous to the prewetting line and critical point of
response. For this case, the induced concentration profil€ahn. This prewetting line has been elusive, predicted in
may be computed exactlfwithin the Brazovskii theory of 1977 and observed only in 1992 by Taborek and Rutledge
the bulk lamellar ordering transition [27]. The copolymer system may afford advantages for
Even for thick films, this result provides a useful route to studying this transition(1) the order parametdthe ampli-
measuring a fundamental quantity characterizing the nearljude of the concentration wayvés not conserved, so trans-

VI. DISCUSSION
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FIG. 11. Diagrammatic equation for the self-consistent propaga-
tor g (thick line) in terms of the bare propagator
ergy. Thick lines represent the self-consistent propaggtaspen 9go=[7+(q—do)?]"* (thin line) and the ordered-state concentra-
circles represent factors af; (q), and thick dots represent the ton field (thick dod.
expectation value of the concentration field. Signs, combinatorical _
factors, and factors of the quartic couplingare indicated. C(X)=cq(X) + dc(x)

[ TR

FIG. 10. Diagrammatic expansion for the Brazovskii free en-

— ik-X —ik-x igq-Xx —iq-x
port of material is not an issu¢?) the underlying concen- =latb(e™ +e (e 8,
tration oscillation serves as a “marker” to help interpret the lk|<<]|q|,b<a. (A1)
reflectivity data;(3) the calculation of the location of the
prewetting line in terms of the interaction parameteand ~ The amplitude modulation produces “sidebands” in the
chain lengthN is well controlled, does not involve any Fourier representation @f(x), which are just the new plane
liquid-state theory, angt can be extracted from other experi- waves exp=i(q+K)-x]. We determine the lowest-order
ments. terms in the gradient expansion E@6) by computing the

In the thin film geometry, we have the additional possi-free energy of the modulated concentration profile to
bility of “capillary condensation,” previously considered by O(b?) and toO(k?). We do not assume that the amplitude
Nakanishi and Fishef26] and by Evanset al. [9] in the a of the unmodulated pattern is small, so we work to extend
context of binary fluid mixtures. The middle of the film or- the self-consistent Brazovskii calculation to this modulated
ders above the bulk ordering transition in order1p elimi- pattern.
nate two interfaces between the “wet” state and the disor- If we simply insert Eq(75) into Eg.(36), we obtain to the
dered middle of the film, if the surface field and temperaturg€levant order a free energy density
are such that the two interfaces are wet{2rto take advan-
tage of the increased order at the surface and resulting favor- f~fg(a)+{fs'(a)+2u(a)k?b?+- .. (A2)
able surface field energy, if the two interfaces are “nonwet.”We now perform the corresponding explicit calculation to
This capillary condensation transition preempts the bulk or-

dering of the film; we have computed a phase diagram Show(jetermmeu(a). Our starting point is the diagrammatic ex-

ing th ¢ ¢ and fil dered ph ¢ il 1pression for the Brazovskii free energy of an arbitrary or-
Ing the honwet, wet, and Tim-ordered phases for a im Olye ey state, Fig. 10, with the corresponding self-consistent
typical thickness.

. _ equation for the propagatay, represented diagrammatically
The effects of commensurability beyond linear response, Fig. 11[11,14. [The thin and thick lines represent the

can be treated in the case of a strongly correlated film. It i$)5re and self-consistent propagatayg and g, the open
evident that the “frustration” of Ref[2] must give rise 0 jrcles represent factors gf, 1(q), and the thick dots repre-
shifts in the ordering transition temperature; as the film iSsent the ordered concentration figllote that for nonperi-
obliged to order at a nonoptimal wave number, the transition,gic concentration fields, the propagatpis not diagonal in
temperature is suppressed. We may once again in this situgpyrier space.
tion ask whether or not the film in the ordered state is un- p systematic expansion of these diagram®id®?) gives
stable with respect to capillary waves, and compute regionfor the change in the free energy the diagrammatic expres-
around the half-integer values of film thickness for which thesjon of Fig. 12, in which the legs ending in a “T” represent
film would be unstable to capillary waves. factors of the perturbatiodc to the concentration fieldThe

set of diagrams of Fig. 12 could almost have been written
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Imagine an ordered lamellar phase, with a sinusoidal con- FIG. 12. Diagrammatic expansion of the Brazovskii free energy

centration  variation Co(X) = a[e_xpdd-i)freXp(—id’i)], to second order in the perturbatids(z) of the concentration field
which is then weakly modulated in amplitude on a muchaway from that in a bulk equilibrium state. Diagrammar as in Figs.
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1 _ EG
pa)=

=1+ ,
/_\ 4?5/2[ L+ (2 3/2]2

wherer is implicitly a function ofa and r through Eq.(7).
The mild amplitude dependence pf(a) is shown in Fig.
13; u,(a) varies by only about 20% from the naive value
u,(a)=1 [arising from the straightforward expansion of the
second term in Eq79)] asa varies over the relevant range.
Having carefully computed this fluctuation contribution, we
neglect it in the remainder of our calculations of film pro-
0 0.5 1 1.5 2 files.
a/a* However, our treatment here of the effect of fluctuations
on the square-gradient coefficient has broader implications,
FIG. 13. The square-gradient coefficient(a) depends only ~When long-wavelength variations of the amplitude with wave
mildly on the ordered-state amplitudeover the relevant range of vector perpendicular to the ordering directions are consid-
a (curve shown for the transition temperaturersf —2.03%*, at  ered. To see this, we examine the three terms of(E9).in
which the ordered-state amplitudeds- 1.45%*). turn. First, the term proportional tég"(a) simply results
from the fact that in a modulated state, the amplitude varies
_ . _ in space, so that the local free energy density becomes
dpwn as a .startlng point, as the obvious set qf Con”eCtegB[awL2bcos(2-)Z)]~fB(a)+2b2fB”(a)cos(Z~>Z)2, which spa-
d|agrams_ with no external lines, __secon_d or_der(Scn using tally averaged become‘SB(a)+fB”(a)b2.
the quartic vertex of the Brazovskii Hamiltonian and the self- Next, if the amplitudea of the unmodulated pattern is

consistent propagator. _ itself small, we may evaluate the free energy to quadratic
The series of bubble diagrams represented by the first tWgqer in all the Fourier components of the concentration

terms in brackets can be summed in terms of the singlefag e to quadratic order in both andb. When we do

(A8)

pz(a)
o O o O B =

bubble integral, given by that, the dependence on wave vector of the modulation
d3q comes from evaluating1/2)fdq[r + (q—go)?]c(a)c(—q),

H(E)Ef L [r+(a-0q0)2] r+(p—ao)?] L, and depends only on the wave number of each Fourier com-

(2m) ponent separately. In this approximation, the modulated pat-

s s o tern is a sum of Fourier modes each of which contributes
p=g+Kk. (A3) separately to the free energy. As a result, longitudinal
(kl|lq) and transversek(.q) modulations ofweak patterns

In terms of the bubble-sung(k)=[1+\TI(K)/2] %, the  ¢cqe differently, since

diagrams of Fig. 12 give
k*(49), kiLg
. e 3 . ot al— a2~
5f=2{ r+(|k+q|—qo)2+—a+—)\a2+2)\azx(k)]bz. L
r ! ’

2

(A9)

A4 . . . . . .
(A4) This leads to thicknesses and interfacial tensions for inter-
Using Eq.(7) for the self-consistent propagator and the equafaces parallel and perpendicular to the layering direction that
tion of state of a uniformly ordered system, we simplify our scale differently as the transition becomes more weakly first

result as order. This result is the origin of the claim in a recent paper
by Hohenberg and Swift28] that the interfacial tension be-
5f={fB"(a)+2(||Z+ 6I—qo)2+4>\a2[x(lz)—x(0)]}b2. tween ordered and disordered lamellar phases is highly an-

isotropic, being much smaller for interfaces perpendicular to
the layers(corresponding to transverse modulation of the

For smallr such thatq?/r>1 (the nearly second-order Concentration wave

Brazovskii transitiol the integraIH(IZ) can be evaluated for . However, COF‘S'def now the third term of _E(q’.9), which
smallk as is only present if we go beyond the quadratic order calcula-

tion, i.e., for strong initial concentration patterns. This term
N(K)~TI[1-K2/(4r)], Tg=ar-32  (A6) is O(k?) regardless of the angle betwekrandq. Further-
more, at the first-order transition, using the scaling results

which leads to Eq. (8), the coefficients\I1,, xo, anda®\/r in the ordered
state are all of order unity. By the same approach leading the
X(K) = xo[ 1+ NToxok?/(8r)], xo=(1+\IIy/2)" L. Eq. (82), we can extract the square-gradient coefficient for

(A7) arbitrary direction ok as

In this paper, we only consider longitudinal modulations
of the concentration wave amplitude, for which case we find

- a?
oV (kA2
[using Eq.(81) in Eq. (79) and comparing to Eq(76)], ri(@)= (K- Go) Jr4r5’2[1+(1/2)r*3’2]2’ (AL0)
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where the second, isotropic term arises from the sum oHence we may transform an infinite sum from direct space to
bubble diagrams, which is the origin of the third term of Eq.Fourier space. For the sums of interest here, the Fourier
(79). transforms of the original summands turn out to be exponen-

In the ordered state at the transitiquy(a) = 0.215 fork tialljgrrlfrt\igrriile\ia\lrr]irzz acr)ﬁsseim‘r)cl)?ilg) ivuemﬁave
perpendicular t(ﬁ. In other words, for the uniform ordered P P '

state near the transition, the square-gradient term and hence > 4K2

the interfacial tension between the ordered and disordere@(z):_Rﬂ’E (h,e'*m?+ hreikm(dfn)ﬁm22 ,
states is only mildly anisotropic. The conclusion of Hohen- d % 4qgr + (ki —dp)

berg and Swift that the nucleation droplets of lamellar phase (BS)
are increasingly anisotropic for more weakly first-order tran-

sitions would appear then to be incorrect. where k,=7m/d. Note how the terms in response to the

fields at z=0 and z=d are related by the symmetry
z—d—z. Because the summands are evenmmpwe may
extend the sum to negativa and divide by two(no contri-
bution fromm=0).

Recall from the main text that the linear-response results We use the following Fourier transform:
for the concentration and free energy can be written as

APPENDIX B: LINEAR RESPONSE

dk 4k2e!x ,
| - £1Re{ kexpti x|X))}.

o2)= 33 cogTmaA)gMO[h+(~1),], (B 27 dagr (o) (B6)
Here k is the solution with positive real part to the equation
F=—%§ g(m,0)[h+(—1)h 1% (B2) k2= 2+ 2ot L. (B7)
Our task is to evaluate the sums appearing in(B§). and Using Eq.(88) with A=2d, we have

(86), which we do with the use of the identity

2 : .
c(2)= _gR% KE (hleIK|Z+Yj+hre|K|d—Z+yj|)] ,
E —ixy 2772 S( ) KA 2l do ]
e W= — - y X = s = —
K A 0w~ w k W=7 yj=2d]. B8
(B3)

Here both sums are taken over all integers. This identity ca;‘—akIng Z ranging from Zero tal, we can easily separate the
be understood as follows: the set of plane WaVesabsolute-value exponents into cases, and perform the result-

{expCixw)} is a complete set on the interval Ing infinite geometric sums, with the final result

w:(—m/A,7/A), and hence proportional t6(w) on that 5
interval. Since each summand is periodic on this interval, the c(z)= 28 : _
entire sum must be periodic, so the sum outside the interval Qo sinkd sinkd
must be the periodic continuation of th® function. The
proportionality constant is found by integrating both sides
with A/(27) ’I’ﬁ,Adweprij) and using orthogonality of
the plane waves.

Integrating the identity Eq. (87) with [dw/
(2m)f(w) [f(w) denotes the Fourier transform d¢{x)]
gives

ihjkcox(d—2z) ih kcoxz

(B9)

Now consider the sum for the linear-response free energy,
Eq. (86). Expanding the factor [h+(—1)"h,]?
=(hZ+h?)+2(—1)"h;h,, we see that the free energy is a
sum of the same form as the concentration profileg=aD,
with h,—h?+h? and h,—2h;h,. Hence we read off the
result as

F=- q—Re[| (hi+h?)kcoted + 2ih h, kcsoed} .
0

1 ~
; f(xk)=K2| flw). (B4) (B10)
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