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Landau—de Gennes theory of the chevron structure in a smectic liquid crystal
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The covariant form of the Landau—de Gennes free energy is used to study the chevron structure formed by
cooling from the SmA to the nonchiral Sn€ phase in a surface-stabilized cell with planar boundary condi-
tions. We show that the chevron is the thermodynamic equilibrium structure. The chevron structure is studied
depending on the liquid-crystal elastic properties, temperature, and the surface orientational anchoring strength.
We show that the bistability of the chevron structure results from the continuity of the molecular director over
the chevron tip of finite width, and is strongly dependent on the surface orientational anchoring. We estimate
analytically the threshold temperature for the chevron formation and show that above this temperature the
bookshelf geometry is stable. We show that the energy of the chevron interface follows a power-law depen-
dence on reduced temperature with the exponent $51063-651X96)09110-§

PACS numbd(s): 61.30.Jf, 64.70.Md

I. INTRODUCTION a model that takes into account dilatation and bending of the
layers and the director rotation about the cone. In this ap-
The chevron structure can be observed in thin cells oproach the sharp tip is replaced by a localized folding, asso-
Sm-C liquid crystal, either chiral or nonchiral, when a cell ciated with a solitonlike solution. His solution is valid when
filled with Sm-A liquid crystal is cooled into the Si6-phase  the anglesd, &, and¢ are small. A simplified form of Na-
[1,2]. It is a widespread feature in ferroelectric $M-cells  kagawa'’s expression for the free-energy den@iywas used
with optical device applications. The chevron is believed toby Sabateet al. to study the chevron structures in the case
be a consequence of the mismatch between the periodiciyf large angleg10]. In all the above models the molecular
imposed by the surface and the periodicity imposed by theone angle was kept constant and the bulk value of the layer
bulk liquid crystal. In many experimental conteX&] once tilt angle was assumed to be smaller than the molecular cone
the layers are formed in the SMphase, the surface posi- angle. De Meyere and co-workef$1,12] have used a re-
tional anchoring is frozen in and the layers do not movelated strategy, in which spatial variations of the molecular
along the glass plates. In this case the only way to simultacone angle were also taken into account. In their work the
neously maintain the periodicity of the Sfndiquid crystal ~ molecular cone angle and the layer tilt angle are coupled.
along the boundary plates and reduce the layer thickness is fde coupling parameter is defined by the way in which the
tilt the layers away from the normal to the bounding plates.transition from the Sn#A to the SmE phase occurred. Their
There has already been extensive work on the theory of
the layer and director structure in varying alignment and ap- z.
plied field conditions in ferroelectric Si@-liquid crystals.
The local liquid-crystal structure is described in terms of the
molecular cone angled), the layer tilt angle §), and the
angle describing the director rotation about the cogg (
[Fig. 1(b)]. Clark and co-workerEl,4] have assumed that the
chevron tip is sharp and have thus neglected the detailed

structure of the layers at the chevron tip. In their model the
molecular director is continuous over the cell. They have
assumed that the layer tilt angle is constay) (and smaller
than the molecular cone anglé}{). This leads to director
pretilt; the director at the surface becomes inclined with re-
spect to the cell plane at an angle ¢y, where
singg=tandy /tand,. As soon as the director tilts away from
the cell plane, there are two distinct stable director states
with the same free energy. This bistability is very important
and is used in optical applications, where the cell is switched
between the stable states, i.e., between a dark and a bright
state. The description has later been extended to include the
effects of the electric fielfi5—7].

question of the chevron tip structure. Nakagd®&pproposed
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FIG. 1. (a) The coordinate system in which the numerical cal-
However, treating the chevron tip as sharp leaves open thaulations were performedb) The coordinate system used to de-
scribe the chevron structure.
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expression is based on the Dahl-Lagerwall description of th@articular the transition from the Sh-phase.

Sm-C* elasticity[13,14. We emphasize that we need only four elastic constants to
Recently, Limat{15] proposed a simplified model of the describe the main features of the chevron structure. To de-

chevron structure based on a generalization of theécribe the effects of the surface an additional term is needed.

“uniaxial” (or “nematic”) approximation of the orienta- We present a simple but thorough study of the effect of the

tional elasticity. Two parameters are introduced measuringurface anchoring conditions on the chevron structure, espe-
the departure from the uniaxial approximation, and the mocially on the pretilt of the molecular director. Our model also
lecular cone angle is taken to be constant. When the bulRnables us to study the temperature dependence of the chev-
value of layer tilt angle is small compared to the molecularfon structure. We show that the chevron structure is not
cone angle and in the case of the uniform states, this modéprmed immediately below the S—Sm-< transition tem-
reduces to Nakagawa’s soliton solution. The sharp chevroRerature and we shall estimate analytically the threshold tem-
tip discontinuity characteristic of the model of Clark and Perature for the chevron formation.
co-workers is obtained in the uniaxial limit. Spatial variations of the smectic order parameter can also
In this paper we use the Landau—de Gennes theory teeadily be taken into account using our model, but we post-
show that the chevron is the equilibrium structure of thePone this aspect to future work. In this paper we stay well
Sm-C phase in thin layers with planar boundary conditions.inside the smectic phase where spatial variations of the
The model is conceptually quite simple, but still allows us toSmectic order parameter are expected to be negligible.
study all the essential features of the structure. We describe The plan of the paper is as follows. In Sec. Il we intro-
the SmC phase in terms of the director fiel(r) and the —duce the model. In Sec. Il we show the numerical results for
complex smectic density waves(r), as proposed by de the spatial variation pf all the variational parameters and the
Genneg16] and Lubensky17]. In our view, with respect to  free-energy density in the chevron. We calculate the excess
other available models, our model has computational anff€e energy associated with the chevron interface. We also
conceptual advantages for describing the chevron structur@nalytically estimate the threshold temperature for the chev-
Conceptually we retain the simplicity of the model of Clark "on formation. Then we compare our results with other mod-
and co-workers. Computationally, we shall find that many ofels. In Sec. IV we draw some brief conclusions.
the simplifying assumptions employed in other models of

this phenomenon are no longer required in our model. Il. MODEL
The central assumption of the previous models is that the ) ) ) ) ]
equi“brium |ayer tilt ang|e 60) is smaller than the equ”ib_ The SmE phase is described in terms of the director field

rium molecular cone angled,). This has been a necessary N(r) and the complex smectic density wave(r)
condition to obtain a finite pretilt of the molecular director. = 7(r)exfi¢(r)]. The latter is related to the first harmonic
Optical bistability, which is necessary for switching in Of the density deviation from the homogeneous distribution.
surface-stabilized chevron liquid-crystal cells, requires a fi-The phase facto#(r) determines the position of the layers,
nite pretilt. By contrast, we show tha#,< 9, is not a nec- With »=V@/|V¢| the layer normal direction. The scalar
essary condition to obtain the pretilt of the director. smectic order parametey(r) describes the degree of layer

In our approach, all three relevant angles are treated a@rdering. Throughout the following work it is kept constant
variational parameters. In other modelss either kept con- and equal to its bulk valugg. We thus assume that local
stant or is coupled t& by cosy=wrcoss, v=const<1. By  smectic elastic distortions are not strong enough to cause
comparison with the results of other models of the saméignificant variation inz(r).

phenomenon, we find that The free energy of a Sr@-cell can be written as a sum of
(i) The model of Clarket al. works well deep in the Sm- the nematic, smectic, and surface contributipt®,17,20:

C phase.
(ii) We obtain results for the spatial variation of the layer 3 )

tilt angle similar to those of De Meyere and co-workers. F:f [fa(r)+fs(r)]d r+f fa(r)dr. D

(iii) Limat has shown that in the limit of his model Naka-
gawa's soliton solution is valid only whey< . We Show | the one-constant approximation the nematic free-energy
how Limat’s two parameters that measure the departure fromensity is given by
the uniaxial approximation can be expressed using the smec-
tic elastic constants entering our model. _1 2 2

(iv) Leslie and co-workergl8,19 have proposed a rather fa(r)=2KL(V-m=+ (VXn)7], @
general free-energy density expression for the Giphase. . _ . .
This expression is written in terms of tlaeb, ¢ vectors, and whereK is a nematic elastic constant. The smectic free-
contains all the invariants of the S@phase. This approach energy density is
is modeled on classical continuum mechanics, and is awk-
wardly generalized to discuss variations in the layer thick- fs(f)=¢jl(n-V—idg)¢|+c, [(nX V)#|?+D[(nX V)?y|?,
ness and changes in molecular tilt with respect to the layer 3
normal. It is rather comprehensive. The main advantage of
our approach is that it explicitly focuses on layer displace-wherecy, c¢,, andD are the smectic elastic constants. The
ment in a problem for which the boundary conditions arequantity ¢, is related to the compressibility smectic elastic
expressed in terms of zero layer displacement. We are alsnstanB: ¢= quzngz, as will be shown later. The cor-
able to treat the temperature dependence of the structure, iesponding term irf4(r) is zero if the layer thickness is the
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same as in the SA-phase, i.e.do=27/q,. The smectic tilt —tand sina sinB+ cose

elastic constant, measures the cost of tilting the director cosd=

away from the Igyer normal. We assume tha% it is tempera- Vl+tarts
ture dependent, =c, o(T/Tac— 1), whereT 5¢ is the tran- d

sition temperature from the S#-to the SmE phase in the an

bulk. In the SmA phasec, >0 and the corresponding term sina cosB
forces the molecules to align perpendicular to the smectic COSp=

layer. In the SmE phasec, <0 and the corresponding term sind

final term stabilizes an intermediate ilt ofwith respect to Thege are the following:
the normal to the layer in the S@-phase. In addition, it 0) 7\L=[K/(|CL|Q%77§)]1/2 and )\”=[K/(c”q§n§)]“z

contains the second derivative of the phase faehfr),  measuring the penetration of locally induced nematic bend or
a term that resists the bending of the smectic layers. Iqyist deformation into the smectic phase in the layer plane

Fhe bu_Ik. SmC phase the elastic smectic contribution (\.) and along the layer normah(); we regard these as
is  minimized for the molecular cone angle g pclasses of the same phenomenon.

¥g=arctan/[c, |/(2Dqp). We emphasize that the above  (jj) \.=K/Ws, the surface extrapolation length.
four elastic constant®ne nematic and three smegtare the (iii)) )\ch=2\/§D%(CH|CL|)_m, the chevron tip length
minimum set of parameters to describe the major qualitativgge.

features of chevron cells. o We shall find it convenient to introduce the following
The surface energy is modeled by the Rapini-Papoulagimensionless parametersa) the reduced temperature,
term describing tangential homogeneous anchoring t=T/Tpc—1; (b) e, |lei=aplt|= (A /N L)% (©)
— 2 .4 ,2 . _ | 2.2 . | J__ ' .
D.:=D#ngqoL/K; (d) D,=Dngai/K; () p=x/L; (f)
w=du/dx. The bulk value of the molecular cone

In the limit of strong orientational anchoringMg— =) the angle and t.he ch_evron tip width can be expressed in terms
molecules align along the easy axisClearly the model can of the dimensionless parameter®; and D, as
be trivially modified to take into account surface treatmentd@Ys=L/\|Vaoltl/(2D1) andhgy=2)VD,/tands.

that favor finite pretilt for technological reasons, though Weth Fg_r computrlzltlona;l purp_lc_)rs;esdv_ve expreTs thef free ergrgy n
do not address this question in this paper. e dimensionless form. The dimensionless free en&gy

per unit surface is defined as

fa(r)=—3Wg(n-2)% (4)

Details of the calculation L 1/2
. . . . G==F= + dp+ =1/2
The calculations are performed in the Cartesian coordi- K f_l/z[gn(p) 9s(p)1dp+ Galp )
nate system. The Si@-liquid crystal is confined between the
plates located at= —L/2 andx=L/2, as shown in Fig. (B). +da(p=—1/2). (7)

The layers are running in thedirection. The director orien-

tation can be writien as The quantities in Eq(7) have the following meaning&he

subscriptp denotes the derivative with respectdp:
gn(p)=3(a’+ Bisirta) ®

is the dimensionless nematic free-energy density;

n=(sina sinB,sina cos3,cosx), (5)

wherea is the angle between thedirection andh, andg is
the angle between the direction and the projection af to
the xy plane. L2 o L2 .

We assume thar and 8 are functions ofx only. The  9s(p)= 12(W sina sing+ cosy—1)*+ Faot[smza
smectic density wave enforces the periodicity in thdirec- I I

tion and is expressed agr) = ngexpligz+u(x)]}. The dis- +Ww2(sirfa co€B+coga)—w sin2a sing]
placement vectou(x) describes departures from the planar . 0
layer configuration. The periodicity enforced in thelirec- +Dy[sifa+w(sifa cosf+cosa)
tion is qp=2m/dy and is established in the SAphase. —w sin2a sing]?
In the coordinate system chosen for numerical calcula-
tions the variables are/(x), B(x), andu(x). The chevron +Dy[(a,cosx sing+ B,sina copB)

structure is usually described in the local coordinate system . : . . >
by the molecular cone anglé¥(x), the layer tilt angle X (W sina sing+cosy) —(1-sirfa szﬁ)wp]
8(x), and the rotation about the corgx) [Fig. 1(b)]. In 9)

terms of these anglasis expressed as ) ) . )
is the dimensionless smectic free energy; and

n=(coss sinY sing—sind cosy,sind cosp,sind sind sing

L
+ COSICOS)). (6) Oalp)=— Ksco§a (10)

Comparing expressiong5) and (6) and observing that is the dimensionless surface orientational anchoring free en-
du/dx= —tand, we find the following relations: ergy.
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The minimization of the free energ® yields three bulk  with ¢¢= 8¢/[ 9g(1+2D5)]. Since =I5 andD, is usu-

equations: ally much smaller than 1, the amplitude @fis not small and
the approximationp<<1 is not justified. Nevertheless, from
d(gntgs) d d(gnt9s) —0 (1  the above result we expect that the typical lengths that de-
da dp  da, ' scribe relaxation of the layer tilt angle and the rotation about

the cone are the same. Assumibg<<1, we define the char-

5(9n+gs)_iﬁ(9n+gs):0 acteristic chevron tip length scale asp=2\\D,/ 9z,

B do 9B, ' (12 which in the limit of small<9g coincides with our original
definition.
dgs d dgs We also need a length that describes angular relaxation to
ow @ ow, =Y (13 the cone angle. The Euler-Lagrange equationfds
and three surface equations for each boundary L2 L2
— (9= ) —2— I+ 34 (14 2
pfere ), R TTATTR R
I —4Dy¢,9,¢—(1+2D5¢?) 9,,+8,,0=0.
a(gn+ d (18)
L 99nt9y +&} o, 15
0ﬁp &ﬂ p==1/2 . . . . .
This differential equation cannot be solved analytically. In
( 99s 16 the bookshelf geometryg(= §=0), it reduces to
=0. 16
&Wp p=*1/2

The Euler-Lagrange equations are solved numerically using
the relaxation methof21]. The layer displacement(p) can
be obtained fronw(p) by integration.

The expression for the free-energy density is expressellext we assume that= J,+ A J(p) and finally obtain
more simply in terms of the angles, B, andw rather than

L2 L2
— 3-2—59-9,,=0
)\ﬁ+4D1 9 "2 2p=0.

with 8, ¥, ande. However, in the limit of small angles it is L2 2(L2N2)
rather easy to reexpress the free-energy density in terms of 24— A9—(A®), =0 and ﬂg:2_2;< 2
the local coordinate system. We now use this set of param- L e L%/Nj+4D,

eters in order to identify the physical meaning of the dimen-
sionless parameters and length scales that we have intr
duced. For simplicity we assume no orientational surfac
anchoring {s—=). We express the nematj&qg. (8)] and
smectic[Eq. (9)] dimensionless free-energy densities as an
expansion in the angle$ 9, andg for t<0. In the spirit of
Landau, we include second- and fourth-order terms in these
angles. We then obtain for the total free-energy density:

Brom this, the perturbations i should die out on the length
&cale ofn 2.

9=3(8+ B0t 9292 — 25,9 ,0—2¢,5,9) 10
2 2 1 0(p)/0,
o (92— 82)2— — 92 e R YS VI
4 )\” )\L ]
0.6 "'(g(P)'gB)/|gB|
+D 0%+ Dy( 2%+ @2 07). 17

(We have neglected the fourth-order termsjirand § in the 7

A\, term, because here the quadratic termjimlominates.
First we consider the cas&= 9g=const and write out
the Euler-Lagrange equations férand ¢:

0.2 4

0.0 e T —— mmant
2 0,07 -0.06 -0.05 -0.04 -0.03 20,02

L 2 2
N2 98+ a3, =0.

FIG. 2. Numerical results for the spatial variations of the mo-
(1+2D2)<Ppp"3|3_ 5pp=0- lecular cone angle, the layer tilt angle, and the free-energy density.
. . . Dotted line, the molecular cone angfg full line, the layer tilt
This is the coupled set of equations alreadyangies: dashed line, the free-energy density): andgg , the bulk
discussed by Nakagawa. The solutions fér and ¢ value of the free-energy density. The parameter values are
are 6= optanhpl/\;),  where  So=¥g and LZx\P=1C°, a,=1, |t|=0.01, D,=4x10', D,=0.01, and
Ns=2N|[D2/{93(1+2D2)}1¥% and ¢=ggtanhpl/\y),  L/ng=0.
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FIG. 3. The rotation of the molecular director about the cdake.
The Qirector rotation about the cone)( for different surface ori- 224F_ [5x10° Jm? .
entational strengths. Dotted line, strong anchorini,s= 10%; full €
line, medium anchoringL./Ag=1; dashed line, weak anchoring, 207
L/Ng= 1073; inset, thec-director rotation about the cone at an in- 18- . ©
termediate value of the surface anchoring strength. Two stable Lo
states, both with the same total free energy, are shdnThe -
value of ¢ at the surface as a function of the surface orientational 141 -
anchoring strength. In all cases?/\f=10°, ap=1, [t|=0.01, 12 .
D,=4x10% andD,=0.01. .
1.04 .
ll. CHEVRON STRUCTURE sl "
A. Parameter values 12 14 s 3 2 2 2
. . 0_[d
Typical values for the parameters entering the model are o [dee]

L~2um anddy~\j=3nm [22]. We do not know of any
experimental measurementsagt| deep in the Sn€ phase,
i.e., far from the SmMA—-Sm-C or N—Sm-<C phase transition.
As an estimate we use McMillan[23] estimate that deep in perature.L=2 um, K=10"1 J/m. In all casesL?\?=10P
the SmA phaseaqy|t| is of the order of the ratio between the ao=1,|t|=0.1, and,L/)\s:O. | '
molecular diameter and the molecular length, and we take
ag|t|~0.1. The values of, , ¢, andD have been measured
close to theN-SmA-Sm<C multicritical point [24]. From > _ _ _ _
those measurements (i, |/c; at different|t| we estimate L.Z/M\_los’ ao=1, |t|=0.01, D,1_4Xl04’ andD,=0.01.
thatay~o0(1). TheparameteD; is calculated using the val- F|g_ur(_a 2 shows the numerical results for the spatial
ues forag|t| and\| and assuming a value for the bulk mo- variations of the molecular cone angi and the layer
lecular cone angle. For the materials showing MeSm- tilt angle & at a very weak surface orientational anchoring
A—SmC phase transitiondg~20°. D, is obtained from (L/As—0). The anglesd and & are equal to the bulk
D, by noting thatD, =D, /(L2q?). value of the molecglar cone an_gle everyw_here except

! 2 0 around the chevron tip. This area is enlarged in the figure.
Around the chevron tigh is reduced significantly ané goes
to zero.

We have calculated the director structure using the fol- In Figs. 3a) and 3b) the director rotation about the cone
lowing representative values of the parametersis shown. In the middle of the cef(0)=0 or 7 [Fig. 3@)].

FIG. 4. (a) The width of the chevron tipp) the reduction of the
molecular cone angle at the chevron tip, dodthe energy of the
chevron interface as a function @fg at a constant reduced tem-

B. Director structure
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This is expected, as these two positions are the only onemxes of the molecules are considerably smaller than the layer
with 9(0)#0 where the director remains continuous overthickness and so the number of molecules in the deformedre-
the symmetric cell. Another possibility would b 0)=0,  gion of each layer is still reasonably large. The energy of the
but the corresponding free energy is greater than in thehevron interface is plotted in Fig.(@ as a function of
case of(0)=0 or 7 with finite {%(0). The director ro- 5. The energy increases for narrower chevron tips and
tates about the cone when moving towards the surfaceshows linear dependence diy at a constant reduced tem-
While the changes in the spatial variation of and § perature. This dependence can also be obtained from Eq.
caused by the variation of the surface anchoring strength ard7), where the leading term in the chevron energy is
small, the rotation about the cone strongly depends on thE =K G,/Loxc, A3 5.

surface orientational anchoring strength as shown in Fig.
3(a). In the case of very strong anchoring the director rotates
about the cone byr/2 so that it is along the axis at the
surface, while with weak anchoring# /2 at the surface. Lo _
The rotation of the projection of the director to the smectic =~ | 77—
plane € directon is shown in the inset to Fig.(8). Thus, R . \
althoughs= = 93 everywhere in the cell except around the
chevron tip, the director tilts away from the cell plane 0381
(x,2). As soon as the director tilts away from th&, %) N
plane, there are two distinct stable director states with the 1
same free energjthe inset to Fig. @)]. This bistability is

very important and is used in optical applications, where the
cell is switched between these states, i.e., between a dark and
a bright state.

The value ofe at the surface as a function of the surface 04 , ,
orientational anchoring strength is shown in Fi§o)3A rea- 05 04 2, 02 01 00
sonable value ofWs=10° J/n? [25,26 gives with
K~10 % J/mt the surface extrapolation lengths~1um,

0.6

which is just the range of a typical cell thickness used in 1o
displays. From Fig. @) we deduce thahs~1um corre- 8(p) /0y 1
sponds to an intermediate value of the surface orientational 08 prmmmmme e
anchoring. T

The free-energy density variatig{p) is shown in Fig. 2. 06
As expected the free-energy density takes its bulk value
everywhere except close to the chevron tip. In that ]
region it increases significantly. Assuming=2 um and 041
K=10"11 J/nt, the excess energy associated with the chev-
ron interface is 3.8107 J/nf. The free-energy density 02
even becomes positive around the chevron tip, which sug- ;
gests that local smectic elastic distortions might be strong 00 . ' . —
enough to cause a substantial decrease in the smectic order -05 -04 03, 02 01 00
parameters.

We also examine the length scale defining the chevron tip, 129
the excess energy of the chevron interface, and the reduction @ ®
of the molecular cone angle at the chevron tip as a function Lo

of the elastic constar at|t|=0.1, i.e., well inside the Sm-
C phase. The parametecs (T) and D determine the bulk
value of the molecular cone angle and the characteristic
chevron interface width. We therefore plot the numerical re-
sults as a function o)z at constant reduced temperature.
The chevron tip length scalé€ig. 4(a)] is obtained by com-
parison with the hypothetical fori= S;tanhpL/\.), where

8 is the value of§ at the cell surface. In practice we use as
a criterion for chevron width that distance over whighises
from O to §stanhl. The ratio between the numerically calcu-
lated chevron tip length scale angy, is essentially constant

for all 9 and equal to 1.180.05. The approximation FIG. 5. Temperature dependence of the chevron structure. Thick
o= dstanhpL/\) is thus quite good. From Fig(# we also  fyj line, |t|=0.01; dotted line|t|=0.001; dashed lingt|=10"5;

see that far from the SA—Sm<C transition temperature the and thin full line,|t|=2.6x 10"®. Spatial variations of théa) mo-
chevron tip length scale is of the order of the layer thicknessecular cone angle(b) layer tilt angle, andc) rotation about the
and of the order 10° of the cell thickness. Our continuum cone. In all cased,’/\f=10°, a;=1, D, =4x10%, D,=0.01, and
model should be valid even for such smajl,, as the short L/\g=0.
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60 % 1 (b) shelf geometry above the threshold temperature
08 9 /6 for the chevron formation and below the Sm-
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0.6
n - ™ a
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El t |Cl‘
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C. Temperature dependence the SmA-Sm<C phase transition the angles and 8 and

The results for temperature dependencé,of, ande for the variablew are small. The symmetric chevron struc-
a chosen value ofD, corresponding tod9g=19.5° at ture requiresB(0)=0 and w(0)=0. We consider only

|t|=0.1 in Fig. 4a), are shown in Figs.(®-5(c). The plots free su.rfaces ap==*1/2 (no-orientational, only positional
show that the chevron tip width is increased when tempera@nchoring: - L/As=0), which leads to «a,(+1/2)
ture approaches the SA-Sm-< transition temperature. =B,(£1/2)=w,(+1/2)=0. In addition, the variabler is

The temperature dependence of the chevron tip width an@YMmetric around the chevron interface, whiteand 8 are
the ratio between the numerically calculated chevron tintiSymmetric. Then the variables can be written as

width (\gi™) and the characteristic lengity,, are shown in .
Fig. 6a). We observe that close to the phase transition tem- ' F, [5x10° Jm"] .
perature the chevron tip width is smaller thag,. In the o

following we show that close to the phase transition the ap- -
proximation 6= &ssin(mp) is better thans= SstanhpL/\y). 10°

The temperature dependence of the decrease in the molec- .

ular cone angle at the chevron tip is shown in Figb)6 10°

In Fig. 7 the energy of the chevron interface is plotted. |

It shows a power-law dependence on the reduced temp-IO .

erature with an exponent of 3/2 that can be obtained g
from Eq. (17), where the leading term in the energy of the

chevron isFg=KGen/LoxcC;, 95 cnt Cogh e [t]¥2 since 10 .

c, «|t], 9g|t|}2, and\ g, 95 to<|t| ~¥2 The plot of numeri- =

cally computed values in Fig. 7 gives an exponent of i e aer o 00 |t 10
1.52+0.02, which gives a check on the consistency of cal-

culation. FIG. 7. Temperature dependence of the excess free energy as-

To estimate the threshold temperature for the chevrosociated with the chevron interfaced;=4x10% D,=0.01,
formation we have used the following procedure. Close td.=2 um, K=10"*J/m, L%/ \f=10°, andL/\s=0.
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* a, B, andw. After integration we obtain the following ex-
a(p)= 2 acosKmp~ ay, (29 pression for the total free energy of the cell:
k=0
2 1 2
* i i G: —Zaot a%-i—— 7T2D2+ —Zaot Wi
Bp)= 2, Bisinkmp~Bysinmp, (20) A 2 A
L2
o +Z F+4Dl aé+%D1Wi+ D]ﬁl’éW%
W(p)= D, W, Sinkmp~w,sinmp. (21) I
k=0 L2 2

1/2+D,) adps.

_2a0t+ ’ﬂ'ZDz) (10W1ﬁ1+

We now use the fact that the leading term dominates close to Aj 7(

the phase transition.
To obtain the amplitudes,, B8;, andw; the free-energy This expression is minimized for the following nonzero val-
density[Eqg. (7)] has to be expanded up to the fourth order inues of the amplitudea,, w,, and 8;:

L4 L2 2 1 L2
__ _ .2 2
, )\ﬁlaot‘l' 1y D2+ ant'f'ﬂ DZ) p (1/2+D2) 7\7+4D1)
Wl: L2 y (22)
2D3+3D;—
Aj
L2
_2 }\_|2a0t+D1W1)
ag=—"2 : (23
—+4D;
A
L2
Do+ —apt
pra MW (24)
7 (124 D) 72 ay”
|
A real value forw, is obtained only fot<t®, wheret® is D. Comparison with other models of chevron behavior
obtained from Eq(22): First we shall compare our model with the Limat free-
energy density. For that purpose we rewrite the dimension-
4 L2 2 1 less free energyEq. (17)] in the dimensional form and as-
— —ant+ ! — 72D, + | = antS+ 72D ) S — sume that 9= d,=const. For the nematic free-energy
N 2N ?) @(1/2+D,) density we obtain
2
|5 +4p,| -0 fo= K[ S5+ D3ef 2008008l (25
A
H and for the smectic free-energy density,
For L2/\f=10°, a;=1, D;=4x10%, and D,=0.01 this P (‘93 2)2 e, |q2n2 92+ Dl n2 o
’ ’ ’ ' = cl—=—=] —|c +
value ist=—2.5x10®. The critical temperature for the s~ 978%| 377 119078 Y0 P08 V0
chevron formation increases for materials with a smaller
+Da3nez05c0Se. (26)

compressibility constant or a smaller value of the bulk mo-
lecular cone angle deep in thg Stnphase. The trapsmon Considering only the nonconstant contributions, the total
temperature to the Si@-phase is not shifted from its bulk free-energy density is

value. As soon a$<0, the bookshelf geometry, where the

molecules are tilted byx0=ﬁB/[1+(L2/)\ﬁ)/(z}p1)]ll’2 in f=3K[ 62+ (1+D,c08p) 02— 2005,@,COSp]

the (x,y) plane, becomes stable. The transition is second

order. The chevron structure can exist belfv The book- 2. 2 95 6%\*
shelf structure with tilted molecules remains metastable, +doC) 78 o 2
while the chevron structure is the structure with the mini-

mum total free energy. We have checked that the numericalhis expression can now be compared with the Limat free-
results confirm the analytical predictions. energy density:

(27)
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52 52) 2 changes with temperature. At the chevrondip0; therefore
2 2

cosd=v. If v=1, as in our modely should be zero at the
chevron tip. But we treaty and § as independent variables.

+ (chiral term, (28)  In the expression for the free-energy density there are two

competing terms that determine the cone angle value: the

where n and m measure the departures from the uniaxialcompression energy and tieg term. In the small-angle ap-
approximation. Comparing the free-energy density expresproximation the first one is proportional &y(5°— 92)? and
sions(27) and (28) we find the following relations: the second to-|c, |92 [see Eq.(26)]. So, although the,
elastic constant is about ten times smaller toarfar from
the SmA-Sm<C phase transition the second term is more
important. This explains why the molecular cone angle de-
creases at the chevron tip; it does not, however, go com-
pletely to zero.

fLm = 3K(85+n9505— 2mdoS,p.cosp) +B

n=1+ DZCO§(,D, m=1, B=C\|CIS7725-

The model of Clark and co-workef4,4] can be obtained
from the Limat model in the limith=m=1, that is, for
D,=0. This, however, is an unphysical value. In realistic
casedD, is small(about 0.0]1 and far from the SnmAk—Sm-

C phase transition the chevron tip width is small compared

to the cell thicknessXgy™~107°L). In that region the as-  we have used Landau—de Gennes theory to describe the

Sumptions of Clark and co-workers are justified. But thiSChevron structure in uniform and Symmetric achiral 8m-
model essentially loses the information on the energy of theells. The model is conceptually extremely simple. We find
chevron interface. It also predicts that there is no directothat the chevron is a thermodynamical equilibrium structure.
rotation on the cone away from the cell plaftee (x,z2)  The model has permitted calculation of the essential proper-
plane in our coordinate systérii the layer tilt angle equals ties of the chevron. Among such properties are the existence
the molecular cone angle. In their model the pretilt of theof bistability of the optical axis, the energy and thickness of
director results from the fact that the layer tilt angle isthe chevron interface, and the threshold condition for chev-
smaller than the molecular cone angle. We have shown thabn formation. In our calculations the effect of layer mis-
the continuity of the molecular director over a chevron tipmatch between the bulk and the surface has been ignored,
with finite thickness is a sufficient condition for the director and for this reason the layer ti and the cone anglég are
pretilt and that the degree of pretilt strongly depends on theery closely equal. Relaxing this condition alters this conclu-
surface treatmeritFigs. 3a) and 3b)]. sion.

Nakagawa’s solution can also be obtained from the Limat There are a number of other related models that treat
model in the limit of smalle. Limat has shown that the chevron properties in Sr@- liquid-crystal cells. Many of
Nakagawa model can be applied only in the limit of these models require simplifying assumptions in order to de-
9o/ D9<<1, whered is the layer tilt angle far from the chev- rive a tractable set of equations. These simplifying assump-
ron tip. We have shown that far from the S\-Sm< phase tions are not required in the model we have used. We have
transition and at zero orientational surface anchoring the spajaborated the connection between the Landau—de Gennes
tial dependences of§ and ¢ are described well by theory and other models that may be regarded as special
o= dptanhpL/\) and o= gotanhpL/\y). But the ampli-  cases within this more general paradigm.
tudes 6, and ¢, need not be small and the condition We have also studied the influence of surface orienta-
o< Uy is not necessary to obtain a finite pretilt of the mo-tional anchoring on the pretilt of the molecular director. By
lecular director. Our results also show that far from the phaseontrast with the work of other authof4,9-11 we have
transition the chevron tip width is of the order of layer thick- shown that pretilt is obtained even when the molecular cone
ness. It can be argued, therefore, that the reduction of thengle equals the layer tilt angle. In this special case the pretilt
molecular cone angle at the chevron tip can be neglecteds a consequence of the fact that at the chevron tip a finite
since it happens on such a small length scale. We havengle between the layer normal and the director is favored.
checked that the approximation with constahtdoes not This tilt propagates to the cell boundary. Finally we note that
affect the amplitudes of and ¢ significantly. It does affect, in practice the chevron tip is very sharp—its width is ap-
though, the free energy of the chevron interface, which iproximately 103L, far from the SmA-SmC phase
about twice as great if we assuniieto be constant. transition—and there is a significant increase in the free-

De Meyere and co-workefd 1,12 have considered spa- energy density around the tip. It seems possible, therefore,
tial variations of the molecular cone angle. They have asthat the local smectic elastic distortions might be strong
sumed the following relation betweens and ¥:  enough to cause a substantial variation of the smectic order
cosd=wvcoss, where v=I14/l,, |y is the layer thickness parameter. We plan to investigate this and other chevron
along thez direction, andl, is the molecular length that properties in future work.
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