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Perturbative renormalization group theory is developed as a unified tool for global asymptotic analysis. With
numerous examples, we illustrate its application to ordinary differential equation problems involving multiple
scales, boundary layers with technically difficult asymptotic matching, and WKB analysis. In contrast to
conventional methods, the renormalization group approach requires naithkoc assumptions about the
structure of perturbation series nor the use of asymptotic matching. Our renormalization group approach
provides approximate solutions which are practically superior to those obtained conventionally, although the
latter can be reproduced, if desired, by appropriate expansion of the renormalization group approximant. We
show that the renormalization group equation may be interpreted as an amplitude equation, and from this point
of view develop reductive perturbation theory for partial differential equations describing spatially extended
systems near bifurcation points, deriving both amplitude equations and the center maf#b063-
651X(96)00506-3

PACS numbeis): 47.20.Ky, 02.30.Mv, 64.60.Ak

I. INTRODUCTION required, sometimes involving delicate arguments that are
difficult to perform mechanically.

Asymptotic and perturbative analysis has played a signifi- Another class of related problems concerns partial differ-
cant role in applied mathematics and theoretical physics. lgntial equationgPDES describing nonequilibrium, spatially
many cases, regular perturbation methods are not applicablgxtended systems near bifurcation points. Such systems often
and various singular perturbation techniques must be use@ihibit spatial-temporal patterns modulated by an envelope
[1-6]. Examples of widely used techniques for ordinary dif- function (or amplitude which varies slowly compared with
ferential equation§ODES include[1,2] the methods of mul- the pattern |'_[self. Extracting the Ipng wavelength, S|OW time
tiple scales, boundary layers, or asymptotic matching, wkpgscale _behawor of such sy;tems is the task of reductive per-
stretched coordinates, averaging, the method of reconstitl,}lgrbe.mon methods[?]., which are themselves related to
tion [4], and center manifold theor{6]. Although these multiple-scale analysis.

o are el knoun,esch has i own cranpacks, e, 1 Burbose o s paver i 1o prsent 8 e, and
venting mechanicalor algorithmig application. Indeed, it is pny y P P '

) . X .. based upon the renormalization gro{liRG). The essence of
probably fair to say that the practice of asymptotic analysis 'She renormalization group method is to extract structurally

something of an art. _ stable features of a system which are insensitive to details
Multiple-scales analysis has proven to be a particularlyg 11 For example, field theories, critical phenomena,
useful tool for constructing uniform or global approximate holymers, and other statistical mechanical systems exhibit
solutions for both small and large values of independent variynjyersal scaling functions and critical exponents in the limit
ables. In this method a set of scaled variables, which arg /0, where A is some ultraviolet cutoff and is the
regarded as independent variabledthough they are ulti- (temperature-depend@ntorrelation length. The renormal-
mately related to one anotheis introduced to remove all ijzation group is the principal tool with which to elucidate
secular terms. The choice of the set is, in some cases, nothis universal behavior and is properly regarded as a means
trivial, and may only be justifieppost hoc Nevertheless, this of asymptotic analysis.
method is usually considered the most general, subsuming The usefulness of this point of view has been amply dem-
the others mentioned below. onstrated 12—15 by the relationship between the renormal-
Differential equations whose highest-order derivatives arézation group and intermediate asymptotjd$]. In particu-
multiplied by a small parameteroften yield solutions with  lar, the large-time asymptotic behavior of certain initial-
narrow regions of rapid variation, known as boundary layersvalue problems is given by a similarity solution of the
Boundary-layer techniques can be applied if the thickness afoverning PDE, where the similarity variable contains
these regions tends to zeroasO0; otherwise, WKB must be anomalous exponents which may not be determengdiori
used. The limitation of WKB is that it applies to linear equa- by elementary dimensional considerations. Nevertheless, the
tions only. Although boundary-layer methods apply to non-renormalized perturbation theory combined with the renor-
linear as well as to linear problems, the determination of thanalization group, gives an expansion for the anomalous ex-
expansion parameter can be subtle. Furthermore, matching pbnents and the solutidi.7].
outer and inner expansions via intermediate expansions is The similarities between the renormalization group and
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singular perturbation methods extend also to technical desut to a higher rather than a lowest order, then expanded in
tails: both perturbative renormalization group and convenin order to reproduce thé@nferior) conventional result. A
tional singular perturbation methods remove secular or diverrelated feature of the renormalization group seems to be the
gent terms from the perturbation series. These formalack of necessity to perform asymptotic matching. To illus-
similarities invite a natural question: what is the relation, iftrate this assertion, in Sec. lll we solve several ODEs with

any, between conventional asymptotic methods and thBoundary layers, and in Sec. IV we address the difficult tech-
renormalization group? nical problem of switchback terms.

In this paper, which is an extended version of our prelimi- Tht_a renormalization group methods for partial differential
nary report[18], we demonstrate that singular perturbation®duations such as the Barenblatt equafiod,15,16, and
methods may be naturally understood as renormalized pe ront propagation problems in reaction-diffusion equations

turbation theory, and that amplitude equations obtainable b 1] are, in rgtrospect, examples O.f the general approagh cys—
reductive perturbation methods may be derived as renormal ussed in this paper. We emphasue_ that our renormalization
roup method has no connection with the so-called method

ization group equations. The basic approach of our methogf lizati iformizatiofi] in th tional
uses the interpretation of renormalization found in the physp renormaiization or uniformizatioft.J in the conventiona
erturbation literature; the latter is a variant of the method of

ics literature on quantum field theory or statistical mechanic?t tched dinat d of limited
[10]. There, a quantity that is not directly observable, such as reLc t? coor 'mr::\tes, a.nt 0 tn?r:r?w |m|§ Use. thod uti
the bare charge on an electron, is renormalized by the inter- . astly, we wish 1o point out that recently, a metnod uti-
actions in the theory to yield an effective value, which can b izing an invariance condition in the solution of multiple-

directly observed under stated conditions, for example, a§cale singular perturbation problems was proposed indepen-

some energy or momentum scale of interest. In ourapproaclﬁ1erlt|y bY Woodruff [20], basgd on |d§§s related to the
the Cauchy data are the analogues of the bare quantities {ﬁnormallzatlon group. In add|t|on, Kunihif@1] has der_n- .
guantum field theory, and are renormalized by the perturbalgn":’tr""ted th_e general relation between Fhe _renormallzat_lon
tion [10,19.. Typically, this is most conveniently performed group equation and the envelope equation in the classical
by a multiplicative renormalization. In the examples that wetheory of envelopes.. .

study here, however, some which involve periodic motions The outline of this paper is as follows. In Sec. II, we

are formulated in such a way that the amplitude of the Vari_dlscuss the general relation between multiple-scale analysis

able of interest becomes multiplicatively renormalized and the renormalization group. In Sec ll, we show how the

whereas the phase is additively renormalized. In such prot}goundary layer and WKB problems can be solved using the

lems, use of a complex variable technique will always lead tdenormal!zat!on group. In partlc_ular, we comment on the
multiplicative renormalization. renormalization of Cauchy data in the context of boundary-

Our studies indicate that the renormalization groupIayer theory, using Wilson'’s RG procedure rather than the

method may have several practical advantages compar [I-Mann—Low procedure used elsewhere in this paper. In

with conventional methods. Although we recognize that our ec. IV'.We. demonstrate with several e>_<amp|es that the
analysis is at the formal, heuristic level, we suggest that éenormallzatlon group approach has technical advantages to

more careful mathematical analysis would be worthwhile,.conventlonal asymptotic methods. In Sec. V, the renormal-

given the potential usefulness of our central claim, ization group is applied as a reductive perturbation tool to

One advantage of the renormalization group method ighe derivation of global slow motion equations for partial

that the starting point is a straightforward naive perturbationd'fferent'al equations. Center manifold theory is also briefly

expansion, for which very littlea priori knowledge is re- considered from the same point of view. We conclude in
quired. That is, one does not need to guess or otherwisg®C: V!

introduce unexpected fractional power laws or logarithmic

functions of e in an ad hoc manner. It seems that these [l. MULTIPLE-SCALE THEORY AND RG

e-dependent space-time scales arise naturally during the In this section, we show that multiple-scale analysis is

anws's'.” h hat th lizati hequivalent to the RG, and that the solvability condition used
e will show that the renormalization group approach;," itinle scales to remove the secular divergences is

sometimes seems to be more efﬂmen; and accurate in F?rag'quivalent to the physical assumption of renormalizability in
tice than standard methods in extracting global mformanorhG theory

from the perturbation expansion. Standard methods often at-
tempt to represent an asymptotic solution in terms of asymp-
totic sequences of a few simple functions of the expansion
parameter, such as exp, log, powers, and so on. The renor- The example we consider below is the Rayleigh equation
malization group can generate its own problem-adapted a$22], closely related to the van der Pol oscillator
ymptotic sequence without matching: in the examples ) 3

given in Sec. 1V, these turn out to be complicated functions d_y+ _Jdy 1 d_y
conveniently defined by an integral representation. For small dt? y=¢ dt

¢, this asymptotic sequence can be expanded to reproduce

the solutions conventionally obtained by asymptotic matchdt is known that the method of uniformization or renormal-
ing, although in the examples that we have studied so far, thization[1] fails here, and this example is a textbook illustra-
conventional approximant is practically inferior to the onetion of multiple-scales analysis. We show here that from
obtained by the RG. Because we only utilize the inner exonly the simple-minded straightforward expansion, not only
pansion, the RG perturbation series may need to be carridd the RG capable of identifying automatically all different

A. Rayleigh equation

di 3 (2.9
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multiple scales required by multiple-scales analysis, but also . €
produces a uniformly valid asymptotic solution without en-  Y(t)=R(t)sin(t)+ & R(t)*{cog3t) —cogt)}+O(€?),

countering the ambiguity which often plagues higher-order 2.6
calculations in multiple-scales analysis.
A naive expansioty=y,+ ey, + 62y2+ .-+ gives which approaches a limit circle of radius 2 asce.
, The second-order RG calculation shows the assumption
Ro

. Ro
(1) =Resin(t+0o) + €| — gz codt+ o) + — guity arises at all. The corresponding amplitude and phase

96
equation to ordeD(é€) are

RS) of perturbative renormalizability is consistent and no ambi-
1— —
4

RS
X(t—to)sin(t+ O o)+ == cosIt+0,) | +O(€?). dR 1 1
(t—tg)sin( 0) 96 q 0) (%) e IR[1-2R?+0(e),
dt 2 4
(2.2
de €’ R* 3
whereR,, 0, are constants determined by the initial condi- gt 8 1733 Tole), 2.7

tions at arbitrant=t,. This naive perturbation theory breaks
down whene(t—tog)>1 because of the secular terms. Thefrom which the multiple time scale$,=et, T,=¢€%t, . ..
arbitrary timet, may be interpreted as thipgarithm of the¢  ysed in multiple-scale analysis appear naturélthough the
ultraviolet cutoff in the usual field theofyL 1]. To regularize  RG does not require such identificatiopng/henR=2, (2.7)
the perturbation series, we introduce an arbitrary timeplit  reduces to

t—ty ast— 7+ 7—ty, and absorb the terms containingt,

into the renormalized counterpafsand © of R, and 0,

— 3 — 2 3
respectively. This is allowed becau$® and ®, are no gt 0t0(€), Gr=— 1€ tOe). (29
longer constants of motion in the presence of the nonlinear
perturbation. In this simple example, it was straightforward to deter-

We introduce a multiplicative renormalization constantmine the multiple time scales. However, it is well known that
Z,=1+X7a,e" and an additive onZ,=X 7b€" such that in many cases, within multiple-scale analysis hidden inter-
Ro(to)=Z1(tg, 7)R(7) and Oy(ty) =0O(7)+Z,(tg,7). The  mediate scales must be included in the perturbation expan-
coefficientsa, andb,, (n=1) are chosen order by order é®1  sion so as to obtain the correct result. In the next example,
to eliminate the terms containing-t, as in the standard RG will show that the RG method is a more straightforward but
[23-28. The choicea;=—(1/2)(1-R%/4)(r—t,), b;=0  secure way to determine multiple slow time scales than the
removes the secular terms to orderand we obtain the fol- multiple-scale method.
lowing renormalized perturbation res(i9]

B. Mathieu equation

2
y(t)={R+e E (1_ R_) (t— r)]sin(t+ 0) The second illustrative example we examine using RG is
2 4 the Mathieu equatiofi30]
1, R® 5 d2y

(2.3
wherea and e are parameters.
whereR,® are now functions of. Sincerdoes not appearin _ The Floquet theory of linear periodic differential equa-
the original problem, the solution should not dependson tions [1] predicts that in theta,e) plane there are some re-
Therefore ¢y/dr),=0 for anyt. This is the RG equation, 9ions where the solutions t@.9) remain bounded for al
which in this case consists of two independent equations and stable, and others where the solutions are unstable. Per-
turbative investigation shows that for sufficiently smalhll
dr 1 1 de solutionsy(t) are stable fom>0, a#n?4, n=0,1,2 ... .
€3 R(l— 7 RZ) +0(€?), E=O(62). (2.4  Without loss of generality, we investigate the stability of
solutions nean=1/4 ande=0 to find the stability boundary
in the (a,e) plane. We treat the boundary curaeas a func-
tion of e and expanda in powers ofe. a(e)=1/4+a,
+a,e?+---. It is our goal to determine values of
a;,a,, ... perturbatively. Multiple-scale analysis can be ap-
plied to this problem, and the coefficieras=1, a,=—1/2
are determined. However it turns out that the introduction of
O(t)=0(0)+O(€?t) (2.5  multiple time scales,=et, m,=¢%, ... is notsufficient to
determine the second-order coefficiagteven after the first-
whereR(0),0(0) are constants to be determined by the initial order coefficient, is set to 1. Through careful analysis, it is
condition. Assuming the initial condition y(0)=0, found that a new hidden time scale=€>% must be intro-
y'(0)=2a, we find R(0)=2a, ©(0)=0, and the final uni- duced into the problem, and the perturbative expansion must
formly valid result reads be done in powers of*?, rather than the original expansion

Solving (2.4), and equatingr andt eliminates the secular
term; we get

R(t)=R(0)/[e” '+ :R(0)%(1—e~ ) ]¥2+ O( ),
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in powers ofe. It is necessary to go to the fourth order in Solving this and settinge=t, we get

powers ofe? to determinea,. Thus the procedure required )

to determine all necessary time scales is not mechanical: if B(t)= Klei“*aﬁ”zﬂ, (2.18

any hidden scales are omitted or cannot be determined, cor-

rect results will not be guaranteed. This represents a typicavhereK; is a constant, and the first slow time scaje- et

shortcoming of multiple scales analysis. has appeared automatically. Obviously, faf|<1, instabil-
Now we demonstrate how the unexpected time scaleBy sets in, where the solution grows exponentially with time

such aso=€7% appear automatically from the RG equation, t, while for |a;|>1, the solutions are bounded and stable.

starting only with a straightforward perturbative expansion.Therefore, near =0, the stability boundary is

Substitutinga= 1/4+ a, e+ a,e?+ - -- in (2.9 and expanding a=1/4=€+0(é).

in powers ofe (not €' asy=yo+ey;+ ey, +--, we get We now sefa;=1 and go to the second order to determine

a,. For orderé?, a special solution t62.12 is obtained

%+%y020' (210 yy(t)=—Ro(a;— 3c05B)(t—to)sin(t/2+ O )
dzy, 1 —$Rgsin204(t — to) cog t/2+ O )
W+ZY1=—(a1+2co$)yO- (2.1 —1Ry(1+cosP ) (t—to)sin(3t/2+0,)

dy, 1, + 3RoSiN20 ot — o) COg 3t/2+ O o)
W+Zy =—ayyo—(a;+2cog)y,, (2.12 —SRy(1+cosMg)cog 32+ Og)

) ) ! . —3Rysi i + + 3 +0,).
and so on. First, let us determine the first-order coefficient aRoSIN2D SIN(3U/2+ B ) + 13RoCOY 52+ Oo)

a,. The straightforward perturbation result, @), is given (2.19
b
y Extending the renormalization procedure to the second order,
y(1)=RoCogt/2+ Oy) + eRo{ — 3 cogt/2+O) we find all the secular divergences to this order can be re-
. _ moved completely, a sign of the consistency of perturbative
+3 €cog3t/2+0p) —ay(t—tg)sin(t/2+0) renormalizability. Keeping only the two lowest harmonics

with prime frequency and omitting other higher frequency
terms which are not important for determining the stability
boundary, we obtain the renormalized perturbation result, to
order &,

—(t—tg)sin(t/2—Oy)} + O(€?), (2.13

where R,,0, are constants dependent on initial conditions
given at some arbitrary timgg. Similarly, the secular diver-
gences can be removed by regardigeas a regularization
parameter and renormalizing the bare amplitAdgeand bare y(t)={ R(u)+ eR[ —1/2+ (t— w)Sin20 ()]
phase O Ro(te)=Zi(to,u)R(1), Oo(to)=Z5(to,u)

+0O(u), whereu is some arbitrary time scale, as was done

R
in previous problems. The renormalized perturbation result is — € > (t—w)sin20 { cogt/2+O)
y(t)={R(u)+ €eR[ — 1/2+ (t— u)sin20 (n) ]} cog t/2+ O) +{— eR(1+CosB)(t— u)+ €R(a,— } cos®)
—eR(a;+cos®)(t— u)sin(t/2+ O) X (t— w)}sin(t/2+ ©) +.7, (2.20
R .
+e§ coq3t/2+0)+O(€?). (2.14  where .7 represents all higher frequency terms. The RG

equation to ordeg” now reads

The RG equatioy/du=0 for anyt gives

dR ,
—=¢€R sin20 +0O(€%),
du

dR ) de
—=¢€R sin2®+0(€e?), —=e(a;+cosBD)+0(e?).
du du d

(2.19 £=6(1+COS@)+62(a2+ 1/2)+0(€%. (2.21)

For convenience, we introduce the complex amplitude _ )
A=Ré€® as A=B+iC, with its real and imaginary parts Accordingly, the equations fd8() andC(n) become

B=R co®, C=Rsin®. The equations foB andC ,
B a (w) and C(u) B/ (11) = — €(a,+ 12 C(p),

B'(u)=€(1-a)C(u), C'(n)=e(l+ay)B(u).
(216  Thus we get

C'(n)=[2e+e2(a2+1/2)]B().(2.22

Thus we have BH(M): _263(a2+ 1/2)B(u), (2.23

B"(n)=€3(1—a?)B(pu). (217 which gives
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B"(w)~—€3(2a,+1)B(u)+O(e%), (2.29 Solving (2.30 and settingu=t in (2.29 gives

which has the solutiofisetting u=t) R(t)=R(0)e*<'+ 0(€’),
B(t):Kzei\/me?’/Zt’ (225 @(t):—%GtZ‘F @(0)+O(62t) (231)
whereK, is a 0392?stant,gtand the second and the third sIowThus we obtain the uniformly valid result
time scalesr=¢€>4, 7,=€t appear naturally. We apparently H=R(t)codt+ O (1)]1+ LeR(t)[a,cogt+ O
have stable solutions fa,>—1/2 and unstable solutions for y(t=R(t)cod O]+ zeR()[acod )
a,<—1/2. Therefore, to orde#, the instability boundary is +b;sin(t+0)]+0(€?). (2.32
given by
Imposing the boundary conditiong0)=1, y'(0)=0 gives
ale)=2+e—3e+0(€?), €—0. (2.2  R(0)=1, ©(0)=0, a;=0, b,=—1. Therefore the final result
is
C. Oscillator with time-dependent spring constant y(t) :e(l/A)etcogt_ %etz)— %ee(”“)ftsin(t— %etz)-l—O(ez)
The third illustrative example is an oscillator governed by (2.33

the equatior{31
d 131l where the frequency defined as=d®/dt becomes time

d? dependent: w=1—(1/2)et+O(€). Rewriting et? as(e"%)?,
an ty-ety=0. (227 two slow time scale§,=¢€"%, T,=et are easily identified
2 from the RG resultbut these identifications are unnecessary

The initial conditions areg/(0)=1 andy’(0)=0. The regular N our approach . _ . _ .

perturbation theory breaks down for-, and multiple-scale Notglt/hat our solution to this problem is valid up to times
analysis can be applied to eliminate the secular behavioPf O(¢ ¥?). Incorporating higher-order terms into the naive
However it turns out that multiple time scales must be choPerturbation series will not generate a solution uniformly

sen asn=t, n,=€"%, m=et, ... . Since the frequency of Valid forlongertimes, in this particular case. To see why this
the oscillator is found to be time dependent, the method ofS S0, make the change of variables et:  (2.27) becomes
stretched coordinates or the so-called method of uniformiza- a2y

tion or renormalization(in the conventional applied math- €2 d_Xz+Q(X)y:O (2.34

ematics sengedoes not work here.

We will see that the RG is able to provide a uniformly o
valid solution for times less than, sa@(efl’z), but can With Q(x)=1—x. The transformed equation is in the ca-

never give results which are reliable for times of oreet, ~ nonical form for WKB problems, with a turning point at

due to a singularity att=1. Renormalized perturbation *=1. Such problems are treated in Sec. Ill G; note, in par-
theory techniques naively applied are no more able to solviicular, that the singularity arising from the large argument
this sort of problem than are multiple-scale techniq(ees behavior of the Airy function cannot be captured by a finite

the discussion in Ref1]). The problem must be treated as a humber of terms in the perturbative expansion given above.
WKB problem. The RG scheme given above is also applicable to quan-

To attempt to solve2.27), we assume a straightforward tum systems with di_scrgte or continuous energy spectrums,
expansion in powers af (not €9, Y=Yo+ ey + Xy, - . especially those which involve resonance phenomena, e.g.,

The bare perturbation result, to orderis given by the Rabi flopping, the Stark shift, the Bloch-Siegert shift
[32]. The multiple-time scale perturbation analysis has suc-

cessfully given a unified framework for all quantum reso-
nance[33]. In a similar way, the RG method simply recovers
+ Ht—to)}sin(t+Oy) + O(€?). (2.28 all resonance equations which turn out to be simply RG
equations. The application of RG to the time-dependent

As in the preceding examples, renormalizing the bare ampliSchralinger equation also reproduces the Fermi's golden
tude R, and phasé, removes the secular divergences. Therule[34]. Here we will not give detailed calculations of these

y(t)=Rocogt+ @)+ eRo{ 5 (t2—t3)

renormalized perturbation result is problems. In the next section, we will show that WKB prob-
lems can be easily solved using the RG method. Therefore
y(t)={R+3€R(t—u+a;)}cogt+0) many quantum problems which are usually solved using

WKB and/or multiple-scale analysis can also be studied us-
ing the RG approach.
(2.29 To summarize, it seems that the RG method is more effi-
cient and mechanical than the multiple-scale method in de-
whereR, © are functions of an arbitrary time scalg and  termining the multiple slow time scales. In the RG approach,

+2eR(t2— u?+by)sin(t+0)+ O(€?),

a;,b, are arbitrary constants. The RG equation reads the starting point is simply a straightforward naive perturba-
tion series, and all necessary multiple scales arise naturally
d_R_ E R+ O( €2 @_ _ } LO(e2 from the RG equations. The above examples reveal two im-
du 4 € (€9, du 2 eutO(e). portant points, demonstrated more generally belo{t) the

(2.30 results of multiple-scale, analysis can be obtained from the
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renormalized perturbation theory, af?) the RG equation renormalizing Ay,B, as Ay(7g)=Z;A(p), and
describes the long-time scale motion of the amplitude andB(7,)=2Z,B(w«). Hereu is an arbitrary time, and\,B are

the phase. the renormalized counterparts 8§,B,. The renormaliza-
tion constants Z,=3Za,(79,u)€", Zy;=2gb,(79,1)€"
IIl. BOUNDARY-LAYER THEORY, WKB, AND RG (ap=1, by=1) are chosen order by order &to eliminate the

secular divergences. Split- 7, as(7—u)+(u—17), and then

Another important class of singular problems is that forapsorb the divergent pagt—r7, in the limit 7p——o by re-
which the highest-order derivative of the equation is multi-gefining A, andB,,. Choosinga,=u— 7o, by=—(u—1y), we
p”ek()jl by a small parametet e.g., WKB and boundary-layer get the renormalized perturbation result
problems.

Boundary-layer theory and asymptotic matching are a col-y(7)=A(u) — €A(w)(7— w) +F[B(un) + eB(u)(7—u)le™ "
lection of singular perturbation methods for constructing a
uniformly and globally valid solution by calculating the +0(e). 3.4

separated outer and inner solutions and then matching the o . .
P 9 {owever it is impossible that the actual solutigr) can

across intermediate scale solutions. Quite often, the interm 2 q h bit " hich i ¢ tin th
diate matching is very lengthy and only some particular epend on he arbitrary img which 1S not present in the
matching method will work. WKB theory is well known to original problem. Thus we have the renormalization group

be a powerful tool for obtaining a global approximation to equationdy/du=0 for any 7, which gives

solutions of a linear differential equation whose highest de- dA dB
rivative is multiplied by a small parameter Many linear — +eA+|——€eB|e "+0(€?)=0, (3.5
problems often solved by the WKB theory can be solved by dp du

the boundary-layer theory; indeed, in these cases, the

boundary-layer theorythickness of the boundary layer goes

to zero ase—0) is a special case of WKBthickness of the A dB

boundary layer remains finite even as-0). The limitation —=—eA+0(€?), —=eB+0O(€). (3.6
of the conventional WKB method is that it applies only to du du

linear problems, while boundary-layer theory works for lin-
ear as well as nonlinear problems.

In this section we will demonstrate explicitly that many
boundary-layer problems, linear or nonlinear, can be solve d ¢ eq. the frequency. The question is a natural one. espe-
by the RG. The uniformly valid asymptotics of boundary- .~ 9. q Y- quest i one, esp
laver problems can actually be constructed from the inne?'a”y because the scaling of the time coordinate is used to

yer p y

expansion alone, with the aid of the RG, without the need for::? Qﬁgg v?/ﬁﬁ:urlaats ;?rr(ra’r;eénint?hee if,?rjiljlst(ijonrigzr?oagéer‘\trlloerc]:—
intermediate matching. '

tion with RG. The basic observation on which our approach
relies is a correspondence between time in the initial-value
problem and length scal@r rather the logarithm of length

Consider the following simple example, which describesscalg in field theory. Thus the Cauchy data can be regarded

Notice that what we have renormalized are parameters fixed
by the Cauchy data. In the oscillator examples in Sec. Il, the
crjeader may have asked wiR/and ® are renormalized and

A. Simple linear example

the motion of an overdamped linear oscillator as being analogous to the bare parameters of the field theory.
5 From this point of view, there is no ambiguity in the choice

d%y dy _ of parameters to be renormalized. Conditions in the far past

€ W+ a+y—0, e<l @D are hard to observe in the same way that bare quantities at

_ _ short distance scales are hard to observe. This perspective
wheree is a small parameter. A standard dominant-balancéias been explored and explained in our earlier work, espe-
argument shows that there exists a boundary layer of thickeially Refs.[10, 13 and[14].

nesso=0(e) att=0. Thus we set=er, and rewrite Eq(3.1) Which are the appropriate quantities to renormalize can
as be seen clearly from the following simple example of a Wil-
) son type RG approach. The naive perturbation solution of
d_y+ d_y+ -0 3.2 (3.2) gives
a2 " dr YT '
x(t)=A(0)e"'—etA(0)e '+ 0O(€?), (3.7

Naive expansion gives
which is useful wheret<<1. Thus forét satisfying est<1
Y(1)=Ap+Boe T+ e[ —Ag(7—75) + Bo(7—19)e" 7] we can rely on

+0(e), 3.3 x(8t)=A(0)(1—edt)e "+ O((edt)?). (3.9

where the coefficientd,, B, are constants of integration and Now we use this as the initial condition and sok&1) for
O(e) refers to all the regular terms of orderand higher,  gnotherst as

which are finite even in the limit—7y—oc. This naive per-

turbation theory breaks down due to the divergence of secu- x(268t)=x(8t)(1—edt)e” %+ 0O(6t?). (3.9
lar terms for larger—7,. However this divergence can be

removed by regarding, as a regularization parameter and In this way we eventually obtain
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X(1)=A(0)(1— edt) e t+0O(8t) —A(t)e™t, (3.10

X
Y(X)~Ag+ Bofo ds e 52+ eM2] A (X —Xq) +By(X—Xo)

with A(t) =A(0)expg—et), which is exactly the solution to
(3.5. Thus the example illustrates that the Cauchy data X , 1
should be renormalized, although it looks as if the decay rate X f dse® ’2+.%3] + e{ = Ag(X—X)?
has been renormalized from 1 te-& 0 2

Extending the RG calculation to the second order gives,

. T 1 X 2
without any ambiguity, +5 Bo(x—xo)ZJ'0 ds e 52— N Ao+ B,
dA ) 5, UB 2 3
a:—(6A+6 A)+0O(¢€’), EZGB-FE B+O(e). | X de 2/ 7 3.1
xIn| o se P+ 2, :
(3.1) Xo/ Jo 348

Solving them, settingu=7 and setting back=t/e in (3.4, where Ay,B, are integration constants, and represents

we finally obtain the uniformly valid solution regular terms finite even in the limiX—X,—% and
In(X/Xy)—<. The divergence can be controlled by renormal-

y(t)=Cre~ tTt4 CeVertati O(e?), (3.12  izing Ag=Z;A(r), Bo=Z,B(u), whereZ,(u)=2 oane"?,

ap=1 and Z,(u)=3;b,e"? by=1, are renormalization

where C,,C, are constants to be determined by the initial CONStants andu is some arbltr?ry position. The choice

conditions. Clearly, the RG result to ordef recovers ex- 21~ X0~ 4, a22=(1/2)(X0—,u,) and  b;=Xy—u,

actly that obtained by the standard singular mettadisNo- ~ 02=(1/2)(Xo— u) —(2mA+B)In(Xg/p) successfully re-

tice that the equations if8.11) are nothing but the equations Moves the divergences up to orderand the renormalized

of motion for a slow-time scale: the amplitude equations Perturbation result is

Thus amplitude equations are renormalization group equa-

tions. We announced this result previously, and derived the  Y(X)~{A(u)+ e’A(X—u)+ € 3 A(X— )%}

Burgers equation as a renormalization group equdtidn.

A much more complicated example illustrating this point

1/2, _ 1 —u)?
will be given in Sec. V. T Blu)+ e B(X—p)tez B(X—w)
B. Example with log e 2 X _ g2
P 9 —e|l —A+B|In(X/p) | | ds e
The second example we consideffg Jm 0
ey"+xy'—xy=0, y(0)=0y(1l)=e. (3.13 (3.17

] The RG equatioY/du=0 gives
A standard dominant-balance argument tells us that there

exists a boundary layer of thickness of or@&f (but not €)

at x=0. The complication in the conventional asymptotic j—A=61/2A+ 0(€%?), (31.18
matching stems from the fact that the inner expansion must K

contain not only powers of*2 but also those terms contain- 4B )

ing combinations ofe and Ine to make the intermediate o a2
matching successful. Here we explicitly show that the renor- du € B-e Jn A+B /“+O(€ )- (319
malized naive inner expansion in powersedf gives a uni-

formly valid asymptotic solution. This reveals that those Un-golving these two equations, we obtain
expected terms containing &in the conventional approach

are just an artifact of perturbative expansionsof. _ 12, 312
Assuming x=e€"?X, and y(x)=Y(X), we transform Alp)=Cee® F+0(eTp), 3.20
(3.13 into )
€
2 B(p)=— +—— —= Cyue® #+Cou™ e #+0(e¥2u),
LASRVLL ANV B o= 1+em
W'FX ax_ eXY=0, Y(0)=0, Y(1l/Ve)=e. (3.21

(3.19 _ .
where C,,C, are constants to be determined by the given

Naive expansion in €2 Y(X)=Y0(X)+el/2Y1(X) boundary conditions. Setting=X, we obtain
+€eY,(X)+--- gives
61/2)(

1/2 € 2
Y(X)~Cqe€ X4{ — —— — C;X+C,X €fe
Y5+XYe=0, Y'+XY,=XYy_1, (n=1). (X)~Cy [ 1+e [7 * 2
(3.19

. . . X f “ds &P, (3.22
Thus the naive perturbation result to ordeis 0



54 RENORMALIZATION GROUP AND SINGULAR.. .. 383
Imposing boundary condition¥(0)=0, Y(1/\/e)=e gives  Solving (3.30, we get
C,=0 andC,=\2/me ?=\[2/me (V2N 35 ¢ 0, . Set-

ting backX=x/€, we obtain the final uniformly valid as- A(M):m(
ymptotic result to ordek,

» B(n)=Cy, (331

6/.L+C1

% ) whereC,,C, are constants of integration to be determined
y(x)~exxf[1—\/%f dse’ /2]- (323 by the given boundary conditions. Equating and X in

Xl (3.29 and restoringk= eX, we obtain the uniformly valid
Thus the terms such asn €, which are present in the inner @Symptotic result
expansion given in, e.g., Rdfl], are relics of the expansion
of x™¢. It is worthwhile to note that the RG result is slightly y(x)~In
different from the asymptotic matching result given by
Bender and Orszag in their boR5]. To leading order, the
former is

2
—2xle
—x+C1) +Ce 21 0(e).  (3.32

Imposing boundary conditiong0)=0, y(1)=0 givesC,=1,
C,=-In 2 in the limit e—~0, . Therefore the final result is

yffG(x)~eX( 1-2/7 | ds eSZ’Z] , (3.24
X+1

I y(x)~In —(In2)e" ¢+ 0O(e). (3.33

while the latter is This RG result recovers the leading-order result from the

o , boundary-layer analysis.
Yoo (x)~e*—\2/m | ds e S (3.25

xl e D. Nonlinear problem of carrier

Comparing with the numerical result of the original Eq. |n this section, we consider a first-order nonlinear model
(3.13, we find that in the boundary-layer region, the RG problem of Carrief37],

result(3.24) is a better approximant than the standard result

(3.29. (x+ef )f'+f=1, f(1)=2, O0sx=<1l. (3.39

C. Nonlinear boundary-layer problem The exact solution can be obtained by integratii3g34)

once,
Boundary-layer analysis applies to nonlinear as well as to
linear differential equations. In this section and in the follow- X x?  2(x+1) 172
ing section, we will demonstrate that the RG method can be f(x,e)== et ¢ a4l (3.3

used to solve nonlinear boundary-layer problems.

Let us consider the following illustrative nonlinear prob- It becomes, however, a nontrivial singular perturbation prob-
lem [36] lem, if we pretend that we cannot obtain the exact solution.
The method of strained coordinates or the method of asymp-
ey"+2y'+e’=0, y(0)=y(1)=0. (326 totic matching can be applied with a rather lengthy matching.
We show here how to solve the problem using RG without
matching, and give the exact result, starting only from the

inner expansion.

There is only one boundary layer of thicknessat x=0.
SettingX=x/¢, Y(X)=y(x) in (3.26 gives

d2y dy First, we apply the usual dominant balance argument to
d_Xz+2d_X:_€eY' (3.27 make the structure of the equation clear. We introduce

X=75(e)x and F=46(¢€)f; the latter is needed because the
equation is nonlinear. The original equation reads-[( e n/
S)F]dF/dX+F=4. en/é6<1 corresponds to the outer
limit, and en/6~1 is the onl){ nontrivial alternative possibil-
_ COX gl oAy P 2 ity. Hence,5~¢€* and n~¢€* = with ae (0,1] are the useful
Y(X)~ Aot Boe e{z2670(X=Xo) +.7}+0(e )3’2 scalings. The expansion parameter becofes®. It turns
(328 out that any choice of is admissible in this case, and so we
whereA,,B, are integration constants and represents all adopt the simplest choice=1. N
regular terms in the expansion finite even in the limit Accordingly, we rescalé asF=ef to convert the origi-
X = Xg—. The renormalized perturbation result obtained ag"@l Ed.(3.34 to
in the previous examples is

Assuming an inner expansioi=Y,+e€Y,+--- gives the
following asymptotic result aX—oe,

(Xx+F)F'+F=e. (3.36
—-2X A 2
Y(X)~A(u)+B(p)e "~ eze (”)(X_M)‘Lo(f()?’- 29 ExpandingF asF=F,+eF;+--, we have
The RG equation gives, to order (x+Fo)Fo+Fo=0, (3.37
dA 1 dB whose general positive solution is
—+e-e*=0, —=0. (3.30

du 2 du Fo(X)=(x?+Ag) Y2, (3.38
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with Ay a constant of integration determined by the initial different separated regions to obtain a uniformly valid solu-

condition given at some arbitrary. The first-order equation tion. Again it turns out that the RG method manages to pro-

is given by duce the solution without any matching needed. Let us con-
sider the following initial-value problerf38]

(X+Fo)F1+FiFg+F—-1=1. (3.39
63/2ym+(61/2+ e+ 63/2)y"+(1+61/2+ e)y’+y=0,
This linear equation has a general solution (3.47
X~ Xo (3.40  With initial conditions y(0)=3y'(0)=—1—€ Y2—¢?,

Fal) (X*+Ag) % y"(0)=1+¢€ 1+ € 2 [1]. The exact solution ig(t)=e ¥
+e¥<"“+ e=¥¢ pretending we do not know how to solve it
exactly, we resort to conventional singular perturbation
methods. It turns out that the conventional perturbation cal-
X—Xg) culation is very tedious and rather challenging. By dominant
F(X)Z(X2+Ao)l/2—x+€m/fro(fz)- (3.4)  bpalance, this problem is found to have two distinguished
0 boundary layers at=0, of thickness of orde"? and e,
We see that this naive perturbati¢®.41) breaks down for- respectively. Therefore one outer solution and two inner so-
mally for x>x,. Actually, the domain of our problem is lutions must be calculated and two asymptotic matchings are
finite, and because& is not scaled, it is not possible that necessary, if boundary layer theory is used. Starting only
X>X, can occur within the domain. A better argument is aswith the thinnest or innermost boundary layer by rescating
follows. Since the boundary conditionf{1)=2¢, nearx=1 by t=€T, and expandingy=Y(T), e.g., in €% the RG
the O(¢€) term dominates; this is a singular perturbation, andmethod successfully recovers the exact solution without any
indeed the perturbation term diverges relative to the zerothmatching.

Thus the straightforward perturbation result, @(¢), is
given by

order term.
The secular divergence can be removed by renormalizing F. Linear boundary-layer and WKB problems I:
Ao by Ao(Xo)=ZA(u), and the renormalized perturbation No turning points
result obtained is ) ) )
To conclude this section, we show how linear boundary-
) 1 (X— ) ) layer and WKB problems in general forms can be treated
FOX)=[x"+A(u)]"—x+e [x2+A(,u)]12+o(6 ). using RG in a unified fashion. This relationship between
(3.42 boundary-layer theory and WKB is explained in Bender and
Orszag's book[1]. The boundary-layer type problem we
The RG equation gives, t0(e), wish to study using RG has the following general form:
dA/du=2e 3.4 d? d
g (343 25 +al) S-b(x)y=0, 0=x<1, 0.
with solution (3.489
A(u)=A(0)+2epu. (3.49

where we assume thai(x) is differentiable and(x) is an
Settingu=x andf=F/e, we obtain the uniformly valid as- arbitrary, not necessarily continuous function. This equation
ymptotic result covers all linear examples we presented earlier in this sec-
tion. A simple dominant-balance argument determines that in
(3.49 general, the boundary layer lies a0 whena(x)=0 for
: 0=x=<1, and that the boundary layer lies a1 when
a(x) <0 for O=x=1. Without loss of generality we will con-
Imposing the boundary condition f(1)=2 gives sider only the former case.
A(0)=2¢+4¢€. Therefore, the uniformly valid result to order Although in a number of cases we could perform pertur-
€, is given by bative RG analysis on the original general E2j48), often it
is wiser to start with the canonical form of E(.48 under

x2 . 2x . A(0)\ 12
e e €2 ’

X
f(X’G):_E+

2 1/2
X [x5 2(x+1 i
f(x,e)=—2+ =+ ( )+4) _ (3.46 the transformation
1 X
This happens to be the exact solution to the problem. A y(x):exﬁ{_ﬁf a(x)dx’' |u(x), (3.49
further calculation demonstrates that all the higher-order cor- €
rections vanish. The conventional methods can also recover _
the exact result, but clearly the RG is simpler. converting(3.48 to
. . 2
E. Problem with multiple-boundary layers d°u
€ 42 = Qxu(x), (3.50

In many situations, there exist multiple-boundary layers at
one side, for which multiple calculations of inner and outer
solutions and their asymptotic matchings have to be made iwith
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1, 1 d?u du
Q(x)= 12 as(x)+ > a’'(x)+b(x). (3.5 W—UZZeS(x) a0 (3.52

This form is just the Scfidinger form, which can be solved WhereS(x)=—(1/4)Q *%Q’(x) is assumed to be a slowly

by the WKB methods. Consequently, we can treat both th&/arying function on the time scalg of order unity, and

linear boundary-layer and the WKB problems in a unifiedS(x) #0 for O=x<1.

way. Naively expandingu as u(t)=ug(t)+euq(t)+---, we
In the remainder of this section and in the following sec-get the bare perturbation result

tion, we will show how to solve Schdinger equations using ‘

RG. Our strategy is to first introduce a natural change of they(t) =e‘[AO+ erf S(x(t"))dt’ — eAge %

independent variable which allows one to obtain efficiently to

the nonperturbative part of the solution. The transformation ¢ ‘

is identical to the independent variable portion of the stan- ><J S(x(t'))ezt'dt’] +e—t{ Bo+ EBoJ S(x(t"))dt’

dard Liouville-Green transformatidf89] or its natural gen- to to

eralization used by Lang¢40], but the crucial difference is ¢

that we do not introduce the new dependent variable. This is — eBOeth S(x(t’))e‘”'dt’} +0(€?), (3.53

the analogue of the geometrical-optics approximation in the to

WKB theory[17], and is the starting point of a renormalized

perturbation series, which reproduces the physical-optics a

higher-order WKB approximations. Although it may be pos-

sible to derive even the geometric-optics approximation us- t

ing RG, we have not succeeded in so doing. WIGx) U(t):et[A(M)JFEA(M)f Sde

vanishes, its zeros lead to turning points in the standard .

WKB approach. The simplest WKB approximations break "

down there, and connection formulas are required in the con- +e

ventional procedure in order to match approximations on ei-

ther side. Langef40] found that a suitable generalization of (3.59

the Liouville-Green transformation can produce a uniformlywhereo(e) refers to all regular terms of orderwhich re-

valid approximation across the turning point. Again for the.main finite even as—t,—. The RG equationiu/du=0
cases with turning points, we transform the independent vari-

able only with a straightforward generalization of the no-9'ves

turning point case. We emphasize that we are able to avoid dc 3o 5

the need to perform matching, and that the transformation of MJF € 1Q7¥Q'[x(1)]C=0(€?), (3.59
the dependent variable is produced naturally by RG. The use

of RG isnotresponsible for the choice of the transformationwhereC=A or B. Again, Eq.(3.55 corresponds to the am-
of the independent variable, but our choice not to introduceplitude equation or slow motion equation. Setting-t and
the transformation of dependent variables in contrast to thesingdt=QY%dx/e, we get

approaches by Liouville and Green and Langer is motivated _ _

by the RG. This allows us to choose a better transformation A ~Q Y(x),  B(X)~Q (). (3.5
of the dependent variable, which agrees with the convenrpis js exactly the adiabatic invarianiA(x)QY4(x)
tional result in the smalé limit. The corrections and prefac- — A(0)Q4(0)=const. The physical-optics approximation
tors which accompany the zeroth-order Langer-type solutiofor the WKB Eq.(3.50 is recovered

are calculated by the RG, and do differ from and improve

upon those obtained by the standard analysis. Furthermore, _ 1 y
P y y u(x)~C4Q 1’4(x)exp[;f dx’ Ot )}

here Ay,B, are integration constants. The corresponding
normalized result is

B(M)+eB(M)fts dt’]+0(e),
N

we can expand our asymptotic sequenceto reproduce the
standard textbook results.

The remainder of this section concerns Sclimger prob- 1 1 (x
lems with no turning points. The following section discusses +CQ T(xjexp — 2 dx’VQ(t') .
the case with one-turning point, and gives an outline of how

the methods can be generalized for higher numbers of turn- (357
ing points and for multiple-boundary-layer linear problemsas e—0.
as well. The uniformly valid asymptotic reswt(x) for the general

We will first rederive the well-known physical-optics ap- linear boundary-layer problei8.48 is given by(3.49. For
proximation using the RG theory, valid when the function numerical evaluation 0f3.33, we do not need any further
Q(x) has no zeroes in the interval of interest. Following expansion, becaus@®.49 is the uniformly valid result we
Liouville and Green, we introduce a new independent variwant. To compare, however, with the conventional results
able t=f(x) implicitly determined asdt= JQdxe. The dueto asymptotic matching methods, let us make asymptotic
choice is natural from the perturbation point of view, be-expansions of)(x).
cause even whedu/d(x/e€) is significant,dQ(x)/dx is not, As a simple check, let us assume théx),b(x) are some
soQ(x) can be regarded as a constant to o@é). Equa-  analytic functions, anda(x)>0 for 0<x=<1, anda(0)#0.
tion (3.50 is thus converted to Obviously, in the whole region9x=<1, ase—0, the term
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a?(x)/4€ is the dominant term, compared & (x)/2 and G. WKB analysis II: Turning points
b(x). Simply Taylor expanding as In order to complete this section, we begin by presenting
ax) ea'(x) b(x) a general discussion of Scliioger equations and one-
JO(x)= + = +e , (3.589 turning-point WKB problem, and at the end of this section,
2¢ 2 a(x) a(x) we generalize the case to multiple-turning-point and

multiple-boundary-layer problems.
The Schrdinger equation which we will consider in this
section is

and imposing boundary conditiong0)=A,y(1)=B, we
obtain

a0
y(x)~Be/1lb(ra®de a0 , d%u

a(x) € W=Q(x)u(x), u(+)=0. (3.63
X [A—Be/11b(&/a@)1dé)gIilale) <)+ [b(&)a) lide,
whenQ in (3.63 vanishes or changes its sign, the approach
(3.59 in the preceding subsection fails as can easily be seen from

—1/4 ;
This expression can be simplified further, because the secor%ge presence of the fact@ . If Q has an isolated zero at

. . x=0 of ordera>0, we can write locallyQ(x) = x“¢(x) with
%ﬁ:ums contributes appreciably only wheri=O(¢") (e~0). a positive definite functiony without any loss of generality.

A natural choice of the counterpart of the Liouville-Green
;{ x b(£) transformatiorx—t is to remove the zeros fromit/dx: we
y(x)~B ex f — dg} introduce a new independent varialbte f(x) implicitly de-
1 aé) termined agdt=(Q/t%)*dx/e giving

0b
+|A-B epr (—g)dg e 20X (360 24 a [x 2@+
1 acd) t(x)= ?J' dX,[Q(X,)]l2 (3.69
0
This is exactly the same as the uniformly valid leading
boundary layer or WKB result. The original Eq.(3.50 is transformed into
It is known that the case with(0)=0 is subtle. For sim- ,
plicity, we consider only the casegx) =x%b(x)=1, where d-u e du
a>—1 so that there exists a boundary layexatO. gz~ tutesStx) 5 (3.69

When a>1, the thickness of boundary layer is of order

5=0(e). When x>¢, the terma®(x)/4€® dominates over \here S=d[(t/Q)¥]/dx. Since t~x as x—0, S is a
other two termsa’(x)/2 andb(x), in Q(x). However, when  pounded function even near=0. Notice that in contrast to
x~O(e), we have to be careful with the asymptotic expan-ihe conventional approaches due to Liouville and Green or
sion of Q(x), since the dominant term nowgx) =1. Thus, | anger, we do not introduce the transformation for the de-
ase—0, the leading term of/Q(x) is 1. The final uniformly  pendent variable, because it will be produced by the RG
valid approximation is procedure. Here we work out the simplest casel.

Expanding naively u in powers of e as
+A exd —x/e]. U=Ugy+ €U+ €?U,+ -+ , we obtain the bare perturbation re-

sult to ordere,
(3.61

When|a|<1, it is straightforward to check that the bound- u=Cgq Ai(t)— Ecoﬂ[ Ai(t)ftdt’S(t’)Ai '(t)Bi(t))
ary layer is of thickness of ordet~€e?**®, and that the first to
and second term iQ(x) are of the same order, when

1 1-a
y(x)~B ex 1 (1-x79%

x~&(€). The uniformly valid expression turns out to be —Bi(t)ftdt’S(t')Ai(t’)Ai’(t’)], (3.66)
to
~ x b(£) 0 b(¢)
y(x)=B ex L a(d) d¢|+|A—B exp L ad) d¢ where Ai,Bi are two linearly independent Airy functions, and

the Bi(t) function is already discarded in the zeroth-order
Qo) | x [a(&) Qo solution, since it does not satisfy the physical condition

X Q%) ex _fodf 22" . u(+%)=0. In the limitt—ty,—+o%, the second term of the

first-order perturbation Bt()f{odt’S(t’)Ai(t’)Ai’(t’) re-

(362 mains finite. However, the terf{_dt'S(t")Ai’(t")Bi(t') di-

Expanding the above leading uniformly valid result obtainedverges and must be renormalized, giving the renormalized

with the aid of RG recovers the outer and inner solutions dugerturbation series

to boundary-layer theory and asymptotic matching. Note that

the above results are obtained from the “inner expansion” _ et Nt et e

alone without ever having to perform any asymptotic match- “:A'(t)( Clp)— EC(I““)”J dt'S(t)AI" (t")BI(t")

ing. This is practically important as we will see in the next g

section. +0(e), (3.67)

€
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whereC(u) is the counterpart of the bare amplitu@g(t,),
and O(e) refers to all finite regular terms of ordereven in
the limit t—ty;—oc. The RG equatiomu/dw=0 gives

dC
d(: !} eClu) mS() Al (w)Bi() =O(D).
(3.68
Integrating(3.68 and settingu=t, we get
C(t)=C(0)exp[ —wftdt’Ai’(t’)Bi(t’)
0
d
XGr {In[(t’/Q)l’Z]}], (3.69

whereC, is a constant of integration to be determined by the

boundary condition at=0. Thus we have arrived at the adia-
batic invariant

C(t)exp[ wf;dt'Ai'a')Bi(t') % {In[(t’/Q)l’ZJ}],
(3.70

which differs from that usually obtained, leading to the final

uniformly valid solution
t d
u:C(O)exp[ —wf dt'Ai’ (t")Bi(t') =
0 dt

x(ln[(t’/Q)llz])]Ai(t), (3.70)

wheret(x) = ([3/2¢][5dx'VQ(x")) %3

The RG result(3.69 differs from the standard Langer
formula, since(3.69 involves Airy functions Ai and Bi.
Note that the new variabkegiven in(3.64) is a function ofe,
and that ag—0 for fixedx, t—oe. In this limit, we can resort
to the asymptotic properties of the Airy functions 8i@nd
Bi(t) for t—oo, and find that Al(t)Bi(t) ~—1/2m, ast—o,
Thus(3.69 recovers the standard result

C(t(x))=C(0)(t/Q) ¥4 (3.72

However, the RG Eq(3.68 is valid not only for rela-
tively large u, but also for smallu. For this reason, we
expect that(3.71) is a better uniformly valid approximant

than the standard Langer formula, for small and intermediat

values oft, or for relatively larggor not small e cases. This

is verified and can be clearly seen in Fig. 1, where we com

pare the RG resulf3.71), the standard Langer formula, and
the exact numerical solution of E(B.50 for several values
of e. Thus the RG resul#8.71) without asymptotic matching
improve upon those obtained by the standard analysis.

To conclude this section, we briefly outline the recipe to
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T T T T T T T
14
0.9
> 04
-0.1
—— Numerical Solution for e=0.5
— - - Langer’s Approximation
-0.6 -  First Order RG Result 7
_1 . 1 1 1 1 1 1 i 1
1.4 +
09 r
- 04 r
01
—— Numerical Solution for e=1.0
— - - Langer’s Approximation
-0.6 « First Order RG Result 1
1 R 1 1 | 1 1 1 1 1
-2.0 -1.0 0.0 1.0 2.0

FIG. 1. Comparison of the RG res(8.71), the standard Langer
formula, and the numerical solution of E.50 for e=0.5 and
e=1.0.

f(X)=(X—X%Xq)(X—X%y) - (x—x,), n>1is a polynomial ofx

with n zerosx;<x,<---<X,, and {x)>0 has no zeros.
The general strategy is first to introduce a new independent
variablet defined implicitly asdt/\Q/f(t)dx/e, wheref is
chosen to cancel all the zeros @. Then we develop the
straightforward perturbation series for the resultant equation,
and renormalize the integration constant to absorb the secu-
lar divergence. This procedure avoids performing multiple
connection formulas matching and leads to a uniformly valid
approximation. For higher-order WKB problems or linear
boundary-layer problems, the generalization of the methods
given here is straightforward.

IV. SWITCHBACK PROBLEMS

In previous sections, we have already seen that the RG
approach not only has conceptual, but also technical advan-

?ages compared with various conventional methods. In this

section, we will demonstrate this further, by studying, with
the aid of the RG more complicated problems which involve
the so-called “switchback.” In switchback problems, as con-
ventionally treated, only through subtle analysis in the course
of actually solving the problem is it possible to realize the
need for, e.g., unexpected order terms to make asymptotic
matching consistent.

generalize the methods for multiple-turning-point and linear

multiple-boundary-layer problemgFor linear cases, with

the help of the transformatio(8.49 both problems can be

transformed into the canonical form and can be treated in
unified way] We need only consider the case in whiglix)

A. Example 1: Stokes-Oseen caricature

a A model example is a caricature of the Stokes-Oseen
singular-boundary-layer problem, which describes the low

in (3.50 has multiple-turning points. Without loss of gener- Reynolds number viscous flow past a sphere of unit radius.

ality, we assumé) has the form: Q(x)=f(x) ¢(x), where

The main result of this problem has been presented in Ref.
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[18], and in the following, we will only briefly summarize 1.0 e \ .
the final results and make some additional comments. , ,
. . 08 * Numerical solution for e=0.5
The equation |$5] ; Matched asymptotics at fixed
08| T peemeeate
d’u 2 du du = #
_ _ _ 04 ]
d—rz'l'ra'f'éu a—o, u(1)=0, u(x)=1, (4.1 7’
02 f 17
wheree, the Reynolds number, is a small hon-negative con- 0.05 m 50 0
stant. This is a very delicate singular boundary-layer prob- ' ' r '
lem, with complicated asymptotic expansions and matching,
involving unexpected orders such ak(1/e). 10— — e
Since there exists a boundary layer of thicknés<O(e) sl y
nearr =oo, settingx= er transforms(4.1) into the following ) + Numerical solution for 6=0.1
[T 1 H . L M
inner” equation: i/ Z— Matched aeymplotios at ied peer )
= I — — First order RG result
04 |
du 2du du ;
+——4y—= =€)= =0)=1. 0.2 +
o2 T x dx udx 0, u(x=¢€)=0, u(x=cw)=1
(4.2 %00 10.0 20.0
. , . . . r
Using RG theory, the final uniformly valid result is found
to be, to ordein;=1/e,(e), 10 S
u(rie)=1—ey(er)ley(e)+O{[1ley(e)]?), (4.3 08 |
06 I -:lﬂum:ggal soluiion'forw'('los
where the exponential integrab(t)=;dpp %e”*, whose SR U S — Malched seymptots o xed peer
asymptotic ~ expansion as t—0 is given by 041 T Firstorder RG resul
e,(t)~1it+Int+(y—1)—t/2+O(t?) with Euler's constant 02|}
y=0.577... . 0.0 , ,
The result from asymptotic matching is given by the fol- 0.0 10.0 20.0 30.0
lowing expression [5]. For r fixed, we have, to r

2
0(62 In“(1/e)), FIG. 2. Comparison between the numerical solution of (B®)

1 1 for several values 0§, the first-order RG result e,(er)/es(e),
u(r)~| 1- _) +€ In(l/e)( 1— _) and two matched asymptotic expansidgose at fixed, the other at
r r fixed p=r¢), as derived in Ref[5].
+e —Inr+(1- 'y)( 1- T T” (4.4  that our result is not even an asymptotic series in any sense.
Recall, however, that the asymptotic expansion of a function
while for p=er fixed, to O(& In(1/e)), i; unique only _when an asymptotic sequence of func_tion_s is
fixed. The choice of the sequence is a question of vital im-
u(p)~1—eeyp). (4.5  portance, if one wishes to have a useful asymptotic series. In

the conventional singular perturbation methods, an asymp-

Accordingly, examining the asymptotic result @.3) in  totic sequence is selected by the matching conditions. How-
the limit e—0, by expanding botte,(er) and e,(e) for r ever there is no compelling reason to believe that the se-
fixed, ande,(e) only for p=er fixed, respectively, it is found lected sequence is practically the best asymptotic sequence
that the resulting asymptotic solution using RG is correct to(of course, it should be the most convenient one for the
OleIn(1/e)] and agrees with that obtained by asymptoticmatching procedude As we have seen, the RG approach
matching. Note that in our method, thedne term appears also produces an asymptotic sequefkge): from the re-
naturally from the asymptotic expansion ej(e), whereas quirement to satisfy the boundary condition order by order.
some artistry is required to obtain this term conventionally.Therefore we propose the point of view that a consistent and
To recover th@[ €] term with(In r)/r, we have to extend the presumably better asymptotic expansidatarting with
RG calculation to orde®([1/e,(€)]%). Thus the result t@(e) Ni=1/e,(e) in the present problepmay be obtained by the
given by asymptotic matchinép] is obtained from the renor- RG. The standar@ expansion may well be an inferior as-
malized perturbation expansion @(1/e,(e)]?). ymptotic expansion to our expansion. In addition, the supe-

This fact may suggest that our RG result is inferior to theriority to the RG approach can also be seen from the fact that
conventional one. It is important to notice, however, thata closed expression uniformly valid for the whdiafinite)
neither the asymptotic expansigd.4) augmented with the interval has been obtained for the problem, which is not the
(Inr)/r term of ordere nor (4.5 is uniformly valid in its  case for the standard asymptotic matching method.
variabler or p, respectively. In contrast, it seems that our full
result 1-e,(er)/e,(e) to order A;=1/e,(e) is uniformly
valid as is clearly seen in Fig. 2.

As discussed in the preceding paragra@hd) is not an To illustrate that the RG method is generally simpler to
asymptotic series in powers @f thus one might conclude use, and yields practically better approximants than other

B. Example 2: Difficulty with asymptotic matching
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methods, let us next consider a “terrible” problem whose uy(x)=A,+ \(€)Ajq €1(AgXe) —e1(AgX) ]+ A2(€)
model equation can be written p&l]

X{A[€1(AgXo) —e1(AgX)]— a2 A2 [ e (ApX

2y 1du du! 2 u . B {Asle1(AgXo) —1(Agx) | — a3 Ald €1(AgXo)
aztrartelar) T g =0 uD=0, uC=)=1, —e1(Ag) 12— AdAg '[eo(Agx)e1(Agx)

4.6

“9 — 2€,(2A0X) — €3(AgXo) €0l AgX) + Eo( Agko) €1(AgX)
wheree is a small non-negative constant, asgO or 1. For —eg(AgXg)€1(AgXo) +2€1(2A0X%0) 1} + O[N3(€) ],
a=1, the asymptotic matching is notoriously difficult, be- 411
cause an infinite number of terms must be calculated before )

even the leading order can be matched successfully. We Wiu/here the exponential integrah(t)=/7p te . \(e) is

see how the RG avoids such difficulties in obtaining thealready replaced by(e), andAy, A, are constants of inte-
leading-order result uniformly valid for the entire interval

ration. Wherx, is very small andk— X, is large, the diver-
l<r<w. g 0 Y 0 g

. . . gence arises from those terms containieg(Ayx) or
Smiiother?. eX|s_ts a tbounfdary Iiner'o: t?r']Ck?élf"Qge) e1(AgXg), but not g(Agx) or eg(AgXg). To remove the di-
Dier}]?]gr: eQJLSJZ':i(I)nngX_ er transforms(4.6) into the following vergence from these cross termsegfand e;, presumably

both Ay andA; must be renormalized. The renormalized per-
turbation result reads

d?u 1du du)?2 du N
a2 T xax ¥ ax) TUgx=9% ux=e=0, ) =A(p) + N (€)A()[e1(Au) —e1(AX)]
W(x=)=1. @7 +FNZ({Aler(Au) —es(AX)] - azAfley(An)

—e;(AX) ]~ AJA [ eg(Ax) (e1(AX) — €1(Au))

As in other boundary-layer problems, let us first look for
the general form of the solution, and then impose the re- —2€,(2A%) +2e,(2Ap) ]} 0N (e)), (4.12
quired boundary conditions to determine the constants of in\-Nhere A().An) are finite counterparts  of
tegration left in the solution. To do so, we sol¢&2) as an A A M) A1 'g i< some arbitrary le thp . The
initial-value problem, given an initial conditiam(x,) = A, at o(Xo), 19():%)’/3n K IS some arbitrary fength scale.
some arbitrary poink=x,, where A, is a finite constant. RG equatiordu/du =0 gives
Assuming a naive expansion(X;e)=Uq(X)+A1(€)us(X) dA
+tAy(€)up(x)+--- with initial - conditions ug(Xo) =Ao, e . —Me)aA2u e M +0(0N%(e)), (413
ui(xg)=0, i=1,2,..., where the asymptotic sequenGée), du
i=1,2,... are to be determined later, we obtain

dA
e — M)A e M\ (e)AZA Ly le2Am

d?uy 1 dug dug)? dug
ﬁ-f-—d— o d_ +U0d—=0. (4.8
X ox X X +A%(€)An e A+ OMN(e)). (4.14
The finite uniform solution can be guessed ag(x) =A,, Now we discuss thee=0 anda=1 cases separately. For

because the uniform field should not be affected appreciably=0 (4.13 suggests thaA, can be treated as a constant and
by the distant disturbance source. Thus, the goal is to find ouhere is no need to renormalize it. Solvi.14 to order
the small perturbation effect on this uniform field in the pres-\(e) and settingu=x andx=er in (4.12, we obtain

ence of a distant disturbance.

The equation fou, is u(r)=1—x(e)Ae.(er)+r%(e), (4.19
d?u; (1 du; where use is already made of the boundary conditién
WJF(; o) ax o (4.9  =o0)=1. Imposingu(r =1)=0 determines () A; = 1/e;(¢)

from which \(e) can be chosen as(e)=1/e;(e), whose as-
ymptotic expansion in the limit—0,, is \(e)~1/In(1/e)
+4ln%(1/e)+-++ , giving all necessary orders required in the
asymptotic matching. AccordinghA;=1. Thus the uni-
formly valid asymptotic result can be written in a single
expression as

We easily see that the equation satisfiedupywhich is sig-
nificantly different from(4.9) (i.e., with a forcing term ap-
pears only ifA2/A,=0(1). We will show that indeed the
choiceh,=\% works. The nontrivial equation at ordks=\?
can be written as

u(ry~1—es(er)le;(e)+0([1le(e)]?). (4.16
d?u, (1 du, du;\? du,
WJ’(E"" 0) ax _“(W) Ve For =1 solving(4.13 and(4.14) to orderi(e), we get
(4.10
Aq()

A= T (OA=)er ()

+0(\%(€)), (4.17

The perturbation result is given by
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A(M):|n{1—)\(g)Al(oo)el(M)}—{—A(oc)+O()\2(5)), merical constant. We expand around this solution as
(4.18 u=Ae**+ eu, +---+complex conjugate. The first-order cor-

rection obeys
whereA;(«),A(«) are constants of integration to be deter-

. .. . 2 2 2
mined by the boundary conditions. Settipg=x andx= er L Y RSP R
in (4.12 we have a Tl ﬁy2+k u1=(1-3AHAE (53
u(n)=In{1—\(e)Ay(®)ey(er)}+A(=)+OM2(e)). Here, to study only the singular behavior of, e*** and
(4.19  similar nonresonant terms are ignored. We rewrite this equa-
tion as
Using boundary conditiong(r =«)=1 andu(r=1)=0 pro- o ik
ducesA()=1 and A(€)A(x)=(1—1/e)/e;(€). Again we [LitLo+LlatLlyJu=(1-3|A[)AE™, (5.9
may choose\(e)=1/e;(e), and therA,()=1—1/e. Finally ] ]
the uniformly valid asymptotic result is given by where the operators are given defined as
(1) ~In[1+(e—1)e,(er)/e(€)]+O( Lley(e)]?) J e * )
u(r)~ - € € € . = _ = =2 _
1 1 1 (420 L,= o0 L, ax2+k , Lg 2(6x2+k Py d
Comparing the RG resultg.16) and (4.20 and the cor- B a*
responding asymptotic matching results, again we find the L= (9_y4' (5.9

RG results are more accurate.

We must look for space-time secular terms in the solution.
V. REDUCTIVE PERTURBATION THEORY AND RG Secular terms which modify the global system behavior ap-
. ) pear only in the special solution of the equation consistent
In previous examples, we have already mentioned thyith the innomogeneous term. In order to fifgpace-time
idea that amplitude or phase equations are RG equations. Wcylay special solutions of5.4) we have only to solve
will demonstrate that the RG theory is a general and system-. .= (1—3|A|?)Ae€** separately, and to make the linear
atic method to derive slow motion equations, even for thosgompination of their solutions a8 u;ug; with Su; =1. This
complicated problems for which no explicit analytic zeroth- s pecause all four operatots commute, and_je”(xzo, so
order solutions are known. In previous reports we alreadyhat ;L ug;=0. Thus the space-time secular behavior of
discussed the one—dlmenslonal Swﬁt—Hohenbe_rg equat|onju$i is less severe than that of;;, so that we may ignore
[18] and the Burgers equatidi 1] as renormalization group  this. That is, without affecting the divergence structure of the

equations. Center manifold theory can be considered fronhhomogeneous solution, we may $etig;=0. A trivial cal-
the reductive perturbation point of view, because it also exgyation gives

tracts slow motion equations on the manifold. Thus we may
expect that the center manifold theory can also be interpreted ug =tA(1—3|A|?) e, (5.6)
as an application of the renormalization approach as well.

Ug, is governed by

A. Newell-Whitehead equation

2 2

J 29 2
The example we consider here is the two-dimensional (9—2+k2 Ugy= (9_+ik (ﬁ——ik) Usy

Swift-Hohenberg equation widely used as a simple model of X X X
Rayleigh-Benard convectigm2]. =(1-3|A[D) A (5.7

au ? & 2 .

R TN BT TN )57 That is,

S Teu-u (ax2+ (9y2+k u, (5.9

i i ’ 'k2 AL 3[AP e 5.8

wheree is a control parameter or a reduced Rayleigh num- ox K| U= 7 52 (1-3|A[%)e™™ (5.9

ber, a measure of the degree of convective instability of the

stationary state=0. For small positiveg, the system exhib- Here we do not pay attention to inhomogeneous terms non-

its a supercritical bifurcation. Since we wish to treat-u®  resonant with the operator. Hence, thestsingular part is
as a perturbative term, to be consistentandu® must be of

the same order. We scaleas yeu, and denote the new X2 e iy
with the same symbol. Then, the original equation reads Us2=~ gp2 A(1-3[A]H)e"™. (5.9
Ju (92 (92 2 S .
e u—ud - o L2 imilarly, we get
P e(u—u) (&x2+ ay2+k u. (5.2
Xy2 2\ aikx
We consider this in the whole plane for all positizeAs a Uss =gy AL=3IA[e™, (5.10

zeroth-order solution, we choose the roll solution alongythe
axis: A€**+complex conjugate, wher& is a complex nu- and
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4 _ like x— €, y— €Y is needed. Furthermore, the expan-
Usa= 77 A(1-3|A%)e", (5.1)  sion is a straightforward one in terms efinstead ofée
' That is, the result is almost automatically obtained from the
In this way we get the fo||owing perturbation result, global well definedness of the perturbation result.

If there are no spatial degrees of freedom, each step of the

ik x2 xy? y* standard reductive perturbatign| using the solvability con-
U=AET+ €| ml=pa grat i3 g Ma gy dition and that in the RG derivation above are in one-to-one
A correspondence. However, if there are spatial degrees of
XA(1-3|A]?) e +cct - . (5.12  freedom, the standard reductive perturbation regards the spa-
. KX 1 2 3 tial derivatives as a perturbation if the zeroth-order solution
Here all the less singular ternie™” times 1X,y,Xy,y%Y"),  ig space independent, or uses the multiple-scale analysis if

higher-order terms and nonsecular terftitose terms which 5 7eroth-order solution is spatially varying. In contrast, in

do not grow indefinitely far away or in the long futyrare ., rG approach, spatial and time coordinates are treated on

omitted. These terms will not contribute to the final result, asyn, equal footing, and the correct scalings of variables are
shown in the argument below. Now, the secular terms argiven automatica,lly.

absorbed into the redefinition of the amplitulleas follows. As the reader may have realized, kinetic equations are
We introduce regularization poind, ¥ andT and split, for  oynected to be derivable as slow motion equations from the
exampig,x asx h_x + X (for some exponent), and ab-  gqqqjiubov-Born-Green-Kirkwood-Yvon hierarchy. For ex-

sorbX® into A. Thus we get, ample, the Boltzmann equation can be derived by an RG
method. Thus we suggest that it is a rule that slow motion

2 2
: —X ! .
u=A(X,Y,T)e*+ 6( wi(t—=T)— o % equations are RG equations.
(xyZ—XYz) (y4—Y4) B. Center manifold and RG
T us 8ik K47 ) In this section, we discuss briefly the general relationship

, between RG theory and center manifold thef8y. In the
XA(1-3|A[P)e %+ (513 general theory of reduction, we wish to know the slow mani-
fold (e.g., inertial manifold, center manifgldvhich attracts
all the long-time asymptotic solutions, and the equation of
motion on the manifold. It is well known that the center
manifold reduction and normal form thedi§] have played a
significant role in studying instabilities and bifurcations en-
"Countered in dynamical systems and fluid dynamics. In many
circumstances, this approach provides a greatly simplified
picture of complicated dynamics by reducing the dimension

Sinceu should not depend oX, Y or T, the renormalization
group equation, t®(e), readsd® A" "u/gT*9XPaY =0 for
any positive integersy,3,y with aBy#0, where values of
a,B,y are chosen in such a way that the universal slow mo
tion equation we are seeking is independent of any syste
details. Thus we have

i e A(1-3|A|?)=0, of the system without losing essential information concern-
Al ing the instability and bifurcation. In addition, the local dy-
2 1 nami_cs on thel center_manifold constructed in this way is
o+ ey —s A(1—3|A]?)=0, invariant or umve_rsgl, in the sense that _the struqture of the
axX 4k reduced system is independent of specific physical models
under consideration. Thus a variety of different phenomena
A 1 N can have the same type of bifurcation, belonging to the same
axaY? M3 ik A(1=3JA%=0, universality class in the parlance of RG. Although the center
manifold fits in the RG picture clearly, the general corre-
d*A ) spondence between them has not yet been established. In
N ensA(1-3|A[%)=0. (5.149  certain cases such as the weakly nonlinear stability of fluid

motion, the equivalence of the method of center manifold,

Obviously, x4 are still almost arbitrary and must be fixed by the method of multiple scales, and the method of amplitude
the auxiliary conditions. Therefore, to get an auxiliary con-€xpansion has been established explicitly by applying these
dition free equation of motion, we u&u; =1 to arrive at the methods to the derivation of the Landau equation from the

following RG equation after equating,Y,T andx,y,t, re-  Navier-Stokes equation to the seventh oridef].
spectively: To illustrate the relevance of RG, let us consider the fol-
lowing set of equations:
dA @ & ot
—+| —4K? 22 T4k

v A=eA(1-3|A]?). dx

iyt oy —=fxy)
(5.15 dt o

Thus we have arrived at the Newell-Whitehead equation.

Let us compare this derivation with the conventional qi- Yraxy), (5.19
method, for which a summary may be found in the Appendix
to the review article by Cross and Hohenb@4@]. Perhaps wheref andg are higher order in the sense tliékx,\y) or
the most notable point is that no scaling of spatial variableg(Ax,\y) is O(\?) for small \. Thus the variablg decays
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quickly butx does not. Hence, the long-time behavior of the X, =A%t — f1,A0Boe = Lf B2 2+ Ay,
system is expected to be confined close to a local one mani-
fold near the origin. This local manifold is the center mani-y, =g, A2+g,,A.Bote ' —gg,B2e 2+ Be ", (5.22

fold (not unique, and the long-time behavior of the system is

governed by the equation of motion defined on this manifoldwhere A,,B,,B; are numerical constants dependent on the
Thus, as discussed at the beginning of this section, the prolnitial data. The exponentially decaying terms do not contrib-
lem of finding a center manifold and the equation on it is aute to the secular behavior of perturbation series. We absorb
problem of extracting slow motion behavior of the system. Inthe secular terms proportional to the powersTofnto the

this sense, this problem and the general reductive perturbaedefinedA by splitting t ast*—T*+T¢, where « is an

tion can be treated in a unified fashion. Since we are interappropriate integer. That this can be achieved consistently
ested in the local center manifold, we may rescale the varimust be checked order by order. The simplest way may be to

ables ax—Ax andy—A\y, and may assume thatis small.  introduce the renormalized counterpasr of A as
Therefore, instead of the original systét16), we study A=Ag(1+ w;+ N0+ 3ws+-++), where w; are determined
to remove the powers of from the perturbation result for
d_X _ after splittingt. The renormalization condition can be written
AM(x,y),
dt as
dy Ar(1+ N1+ N2wy+ N3wg+ )+ A fof(1+ oy
qi- YY) (5.17

+)\2w2)2A2t+)\2(f§0t2+ f11920t+ f30t)A3(1+)\(,01)3

We assume the following formal expansions: A ]=Ag. (5.23

— 2 2 2 2 2

FOX,y) = foox™+ FaaXy+ fooy ™+ M(faox™+ Ty + Faoxy From this, order by order in powers af we can fixw; as
w1= — fzop\t,

wy=F3A%?— f110,0A%t — F3oA%t,

+f03y3)+"‘ y

9(X,Y) = g20¢*+ 911Xy + Jogy 2+ N (9a0<3+ 9212y + g1Xy?

ooy (°18 A3 — 1343+ 5 (f Faof o) t2+ [ 2 o0f
wz=A3— 315+ 3 J20t t2+[2g t
The standard approach goes as follows: yeth(x) be the s 200 7 21 Aremma0T 0T 207204
formula for a center manifold. Then we get the following —fllgzogll—fllg3o—fzoggo—f21gzo—f40]t}. (5.29

differential equation foih: o )
The renormalization group equation reads

—h(x)+Ng(x,h(x))=Nh"(x)f(x,h(x)). (5.19

Ar
This equation is usually solved by perturbation: g7 = g7 (AR(T(1+H e+ Mwy+N3wz+--+)}=0,
h(x) =XNhx?+\2hyx3+--- . The result is (5.25
Y=Ng20<¢" + N[ o0(g11~ 2 f20) + Gaalx®+ O(A3). Introducing the explicit forms ofy, into this equation, we

experience almost miraculous cancellations of all the terms

The equation of motion on the center manifold is obtained b)pontalnmg powers of explicitly to have
substitutingy with h(x) in the equation fodx/dt.

dA
Our RG program starts with the construction of a power d—tR=)\A§f20+ N2A(f 11920+ F30) + N3AR(F 11030+ F20050
series expansizon of the solution f5.17) in terrr215 of\ as
X=XotAXp+NXp+-o-,and y=yg+Ay;+Ay,+ e +f + f 40— Foof +0O(\Y), (5.26
Paguette has also pursued the same line independdsily 2920* Fao~ a0l 1020 + O
A lengthy but straightforward calculation gives wheret is identified withT. This agrees with the conven-
) 5 02 n3e2 3 3 tional result. Fory, after renormalization, all the explicitly
X= A+ M pATT+ N (FoA T+ f11020A°t + F3A”T) dependent terms disappear to oraérand
343¢3 A4 5 4:2
FNHFA 3(Fraf o020+ Faof 20 A™+[ = 2920f 20f 11 Y=N020AR+ A(920011+ 930~ 2 T 200200 AR+ O(A3).
+f 11020011+ 11030+ F20950T f 21920+ Facl A%t +CT} (.29
+0(\% This also agrees with the result given above.
' The formal solution(5.21) is order by order in\ obtained
Y= NG20A2+ N[ 200f 20A3(1— 1) + GoeG11A%+ gaoAl], from the true solution by discarding the transcendentally

(5.21) small terms in the large limit. Notice that inx,, the highest
power oft is n (for y, it is les9, so that up to a given order
where CT denotes the constant terms aAdis the initial  n, by choosing\ such thata\t=1, we can make the contri-
condition forx. Here we have discarded all the exponentiallybution of the sum of the transcendental terisisch ae N
decaying terms. For example, to the first order the full soludess than any small positive number for sufficiently latge
tion reads In this way, locally up to any finite order in, the series
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obtained as the singulér nondecayingterms describes the sequently, we do not have even a hint as to how to rigorize,
asymptotic behavior of the system. Therefore, if the systenor estimate the errors of our approach.
has a unique solution to the initial value problénear the The Wilson-style RG 10,47 and Bricmont and Kupiain-
origin), then we can uniquely determine these series, andn’s related constructive renormalization group approaches
they give a parametric representation of an approximate cefi15] can be implemented numerically. We have examined
ter manifold. In the present context, renormalizability meanssimilarity and traveling wave solutiorjg8] and have devel-
that the motion on the approximate center manifold is auoped an interpolation-resampling scheme which produces a
tonomous. The renormalization reorganizes the expansion stirtual continuum” to allow smooth scaling of any func-
thatdx/dt is not explicitly time dependent. tion on a discrete grid49]. Finally, a completely different
The RG procedure given above is actually much moreapproach to the numerical solution of a PDE is to construct a
tedious than the conventional approach. However, the obsequence of coarse-grained approximations to the solution as
tained center manifold by RG need not be expandable impposed to the conventional method of constructing a se-
terms ofx. Thus the RG method works in some cases evemuence of sampled points from the solution. Whereas the

when the conventional approach is not applicddie. sequence of sampled points obey the usual finite-difference
equations, and are supposed to converge to the solution in
VI. SUMMARY the continuum limit, the sequence of coarse-grained approxi-

mations obey a renormalized version of the original PDE,

In this paper, we have demonstrated that various singulgfhich can in some cases be found explicitly using the RG
perturbation methods and reductive perturbation methodgchniqueg50]. We hope to report on these developments in
may be understood in a unified fashion from the renormalfyyre publications.
ization group po!n_t of view. Am_plitude equ.atio_ns and phg\_se Note added in proofR. Graham has recently shoR.
equations describing slow motion dynamics in nonequilib-graham, Phys. Rev. Leff6, 2185(1996] that a rotationally
rium phenomena are RG equations. The RG method seemgariant form of the amplitude equation proposed by
to be more efficient and simpler to use than standard methgynaratneet al. [G. H. Gunaratneet al, Phys. Rev. B50,
ods in the sense that it avoids the necessity to perform a$gp2(1994)] can be derived using the methods of Sec. V, by

ymptotic matching, and generates its own problem-adapteghtaining all singular terms rather than the most singular
asymptotic sequence. The approximations generated by thgyms.

RG work well over the entire interval of interest, and better
than the conventional approximations in the cases that we
have studied. Formally expanding the approximation ob-
tained by the RG yields a conventional perturbation expan- The authors are grateful to Paul Newton for valuable dis-
sion, but one that is of lower order than that obtained by theussions. Y.O. used material finished at the Mittag-Leffler
standard techniques, because the latter uses both inner amdtitute, Sweden. The hospitality of the Institute and useful
outer expansions. However, as is demonstrated by an exonversations with Edriss Titi there are gratefully acknowl-
ample in Sec. IV, the RG result, which is apparently loweredged by N.G. and Y.O. We are pleased to acknowledge the
order than the standard one, may be numerically much supeeontribution of Glenn Paquette, who participated in the early
rior to the latter. Also, as in this example, if we wish, we canstages of the center manifold study. L.Y.C. was in part sup-
recover the conventional perturbation expansion result by exported by the National Science Foundation Grant NSF-
pansion of the appropriate order of the RG expansion. DMR-89-20538 administered by the University of lllinois

Probably the most outstanding question is to justify math-Materials Research Laboratory and in part supported by the
ematically the general renormalized perturbation approacinstitute for Theoretical Physics through National Science
developed in this paper. The rigorous and constructive renof~oundation Grant PHY89-04035. N.G. and Y.O. gratefully
malization group approaches of Bricmont and Kupiainen andicknowledge the National Science Foundation Grant NSF-
our formal perturbative approaches have almost no commoBMR-93-14938 and the Mittag-Leffler Institute for partial
technical ground, although their philosophy is identical. Con{financial support.
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