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Perturbative renormalization group theory is developed as a unified tool for global asymptotic analysis. With
numerous examples, we illustrate its application to ordinary differential equation problems involving multiple
scales, boundary layers with technically difficult asymptotic matching, and WKB analysis. In contrast to
conventional methods, the renormalization group approach requires neitherad hoc assumptions about the
structure of perturbation series nor the use of asymptotic matching. Our renormalization group approach
provides approximate solutions which are practically superior to those obtained conventionally, although the
latter can be reproduced, if desired, by appropriate expansion of the renormalization group approximant. We
show that the renormalization group equation may be interpreted as an amplitude equation, and from this point
of view develop reductive perturbation theory for partial differential equations describing spatially extended
systems near bifurcation points, deriving both amplitude equations and the center manifold.@S1063-
651X~96!00506-5#

PACS number~s!: 47.20.Ky, 02.30.Mv, 64.60.Ak

I. INTRODUCTION

Asymptotic and perturbative analysis has played a signifi-
cant role in applied mathematics and theoretical physics. In
many cases, regular perturbation methods are not applicable,
and various singular perturbation techniques must be used
@1–6#. Examples of widely used techniques for ordinary dif-
ferential equations~ODEs! include@1,2# the methods of mul-
tiple scales, boundary layers, or asymptotic matching, WKB,
stretched coordinates, averaging, the method of reconstitu-
tion @4#, and center manifold theory@6#. Although these
methods are well known, each has its own drawbacks, pre-
venting mechanical~or algorithmic! application. Indeed, it is
probably fair to say that the practice of asymptotic analysis is
something of an art.

Multiple-scales analysis has proven to be a particularly
useful tool for constructing uniform or global approximate
solutions for both small and large values of independent vari-
ables. In this method a set of scaled variables, which are
regarded as independent variables~although they are ulti-
mately related to one another!, is introduced to remove all
secular terms. The choice of the set is, in some cases, non-
trivial, and may only be justifiedpost hoc. Nevertheless, this
method is usually considered the most general, subsuming
the others mentioned below.

Differential equations whose highest-order derivatives are
multiplied by a small parametere often yield solutions with
narrow regions of rapid variation, known as boundary layers.
Boundary-layer techniques can be applied if the thickness of
these regions tends to zero ase→0; otherwise, WKB must be
used. The limitation of WKB is that it applies to linear equa-
tions only. Although boundary-layer methods apply to non-
linear as well as to linear problems, the determination of the
expansion parameter can be subtle. Furthermore, matching of
outer and inner expansions via intermediate expansions is

required, sometimes involving delicate arguments that are
difficult to perform mechanically.

Another class of related problems concerns partial differ-
ential equations~PDEs! describing nonequilibrium, spatially
extended systems near bifurcation points. Such systems often
exhibit spatial-temporal patterns modulated by an envelope
function ~or amplitude! which varies slowly compared with
the pattern itself. Extracting the long wavelength, slow time
scale behavior of such systems is the task of reductive per-
turbation methods@7#, which are themselves related to
multiple-scale analysis.

The purpose of this paper is to present a unified, and
physically motivated approach to these classes of problems,
based upon the renormalization group~RG!. The essence of
the renormalization group method is to extract structurally
stable features of a system which are insensitive to details
@8–11#. For example, field theories, critical phenomena,
polymers, and other statistical mechanical systems exhibit
universal scaling functions and critical exponents in the limit
L/j→0, whereL is some ultraviolet cutoff andj is the
~temperature-dependent! correlation length. The renormal-
ization group is the principal tool with which to elucidate
this universal behavior and is properly regarded as a means
of asymptotic analysis.

The usefulness of this point of view has been amply dem-
onstrated@12–15# by the relationship between the renormal-
ization group and intermediate asymptotics@16#. In particu-
lar, the large-time asymptotic behavior of certain initial-
value problems is given by a similarity solution of the
governing PDE, where the similarity variable contains
anomalous exponents which may not be determineda priori
by elementary dimensional considerations. Nevertheless, the
renormalized perturbation theory combined with the renor-
malization group, gives an expansion for the anomalous ex-
ponents and the solution@17#.

The similarities between the renormalization group and
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singular perturbation methods extend also to technical de-
tails: both perturbative renormalization group and conven-
tional singular perturbation methods remove secular or diver-
gent terms from the perturbation series. These formal
similarities invite a natural question: what is the relation, if
any, between conventional asymptotic methods and the
renormalization group?

In this paper, which is an extended version of our prelimi-
nary report@18#, we demonstrate that singular perturbation
methods may be naturally understood as renormalized per-
turbation theory, and that amplitude equations obtainable by
reductive perturbation methods may be derived as renormal-
ization group equations. The basic approach of our method
uses the interpretation of renormalization found in the phys-
ics literature on quantum field theory or statistical mechanics
@10#. There, a quantity that is not directly observable, such as
the bare charge on an electron, is renormalized by the inter-
actions in the theory to yield an effective value, which can be
directly observed under stated conditions, for example, at
some energy or momentum scale of interest. In our approach,
the Cauchy data are the analogues of the bare quantities in
quantum field theory, and are renormalized by the perturba-
tion @10,19#. Typically, this is most conveniently performed
by a multiplicative renormalization. In the examples that we
study here, however, some which involve periodic motions
are formulated in such a way that the amplitude of the vari-
able of interest becomes multiplicatively renormalized,
whereas the phase is additively renormalized. In such prob-
lems, use of a complex variable technique will always lead to
multiplicative renormalization.

Our studies indicate that the renormalization group
method may have several practical advantages compared
with conventional methods. Although we recognize that our
analysis is at the formal, heuristic level, we suggest that a
more careful mathematical analysis would be worthwhile,
given the potential usefulness of our central claim.

One advantage of the renormalization group method is
that the starting point is a straightforward naive perturbation
expansion, for which very littlea priori knowledge is re-
quired. That is, one does not need to guess or otherwise
introduce unexpected fractional power laws or logarithmic
functions of e in an ad hocmanner. It seems that these
e-dependent space-time scales arise naturally during the
analysis.

We will show that the renormalization group approach
sometimes seems to be more efficient and accurate in prac-
tice than standard methods in extracting global information
from the perturbation expansion. Standard methods often at-
tempt to represent an asymptotic solution in terms of asymp-
totic sequences of a few simple functions of the expansion
parameter, such as exp, log, powers, and so on. The renor-
malization group can generate its own problem-adapted as-
ymptotic sequence without matching: in the examples
given in Sec. IV, these turn out to be complicated functions
conveniently defined by an integral representation. For small
e, this asymptotic sequence can be expanded to reproduce
the solutions conventionally obtained by asymptotic match-
ing, although in the examples that we have studied so far, the
conventional approximant is practically inferior to the one
obtained by the RG. Because we only utilize the inner ex-
pansion, the RG perturbation series may need to be carried

out to a higher rather than a lowest order, then expanded ine,
in order to reproduce the~inferior! conventional result. A
related feature of the renormalization group seems to be the
lack of necessity to perform asymptotic matching. To illus-
trate this assertion, in Sec. III we solve several ODEs with
boundary layers, and in Sec. IV we address the difficult tech-
nical problem of switchback terms.

The renormalization group methods for partial differential
equations such as the Barenblatt equation@12,15,16#, and
front propagation problems in reaction-diffusion equations
@11# are, in retrospect, examples of the general approach dis-
cussed in this paper. We emphasize that our renormalization
group method has no connection with the so-called method
of renormalization or uniformization@1# in the conventional
perturbation literature; the latter is a variant of the method of
stretched coordinates, and of narrow limited use.

Lastly, we wish to point out that recently, a method uti-
lizing an invariance condition in the solution of multiple-
scale singular perturbation problems was proposed indepen-
dently by Woodruff @20#, based on ideas related to the
renormalization group. In addition, Kunihiro@21# has dem-
onstrated the general relation between the renormalization
group equation and the envelope equation in the classical
theory of envelopes.

The outline of this paper is as follows. In Sec. II, we
discuss the general relation between multiple-scale analysis
and the renormalization group. In Sec III, we show how the
boundary layer and WKB problems can be solved using the
renormalization group. In particular, we comment on the
renormalization of Cauchy data in the context of boundary-
layer theory, using Wilson’s RG procedure rather than the
Gell-Mann—Low procedure used elsewhere in this paper. In
Sec. IV, we demonstrate with several examples that the
renormalization group approach has technical advantages to
conventional asymptotic methods. In Sec. V, the renormal-
ization group is applied as a reductive perturbation tool to
the derivation of global slow motion equations for partial
differential equations. Center manifold theory is also briefly
considered from the same point of view. We conclude in
Sec. VI.

II. MULTIPLE-SCALE THEORY AND RG

In this section, we show that multiple-scale analysis is
equivalent to the RG, and that the solvability condition used
in multiple scales to remove the secular divergences is
equivalent to the physical assumption of renormalizability in
RG theory.

A. Rayleigh equation

The example we consider below is the Rayleigh equation
@22#, closely related to the van der Pol oscillator

d2y

dt2
1y5eH dydt2 1

3 S dydt D
3J . ~2.1!

It is known that the method of uniformization or renormal-
ization @1# fails here, and this example is a textbook illustra-
tion of multiple-scales analysis. We show here that from
only the simple-minded straightforward expansion, not only
is the RG capable of identifying automatically all different
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multiple scales required by multiple-scales analysis, but also
produces a uniformly valid asymptotic solution without en-
countering the ambiguity which often plagues higher-order
calculations in multiple-scales analysis.

A naive expansiony5y01ey11e2y21••• gives

y~ t !5R0sin~ t1Q0!1eH 2
R0
3

96
cos~ t1Q0!1

R0

2 S 12
R0
2

4 D
3~ t2t0!sin~ t1Q0!1

R0
3

96
cos3~ t1Q0!J 1O~e2!.

~2.2!

whereR0, Q0 are constants determined by the initial condi-
tions at arbitraryt5t0 . This naive perturbation theory breaks
down whene(t2t0).1 because of the secular terms. The
arbitrary timet0 may be interpreted as the~logarithm of the!
ultraviolet cutoff in the usual field theory@11#. To regularize
the perturbation series, we introduce an arbitrary timet, split
t2t0 as t2t1t2t0 , and absorb the terms containingt2t0
into the renormalized counterpartsR andQ of R0 andQ0,
respectively. This is allowed becauseR0 and Q0 are no
longer constants of motion in the presence of the nonlinear
perturbation.

We introduce a multiplicative renormalization constant
Z1511( 1

`ane
n and an additive oneZ25( 1

`bne
n such that

R0(t0)5Z1(t0 ,t)R(t) and Q0(t0)5Q(t)1Z2(t0 ,t). The
coefficientsan andbn ~n>1! are chosen order by order ine
to eliminate the terms containingt2t0 as in the standard RG
@23–28#. The choicea152(1/2)(12R2/4)(t2t0), b150
removes the secular terms to ordere, and we obtain the fol-
lowing renormalized perturbation result@29#

y~ t !5HR1e
R

2 S 12
R2

4 D ~ t2t!J sin~ t1Q!

2e
1

96
R3 cos~ t1Q!1e

R3

96
cos 3~ t1Q!1O~e2!,

~2.3!

whereR,Q are now functions oft. Sincet does not appear in
the original problem, the solution should not depend ont.
Therefore (]y/]t) t50 for any t. This is the RG equation,
which in this case consists of two independent equations

dR

dt
5e

1

2
RS 12

1

4
R2D1O~e2!,

dQ

dt
5O~e2!. ~2.4!

Solving ~2.4!, and equatingt and t eliminates the secular
term; we get

R~ t !5R~0!/@e2et1 1
4R~0!2~12e2et!#1/21O~e2t !,

Q~ t !5Q~0!1O~e2t ! ~2.5!

whereR~0!,Q~0! are constants to be determined by the initial
condition. Assuming the initial condition y~0!50,
y8(0)52a, we findR(0)52a, Q~0!50, and the final uni-
formly valid result reads

y~ t !5R~ t !sin~ t !1
e

96
R~ t !3$cos~3t !2cos~ t !%1O~e2!,

~2.6!

which approaches a limit circle of radius 2 ast→`.
The second-order RG calculation shows the assumption

of perturbative renormalizability is consistent and no ambi-
guity arises at all. The corresponding amplitude and phase
equation to orderO~e3! are

dR

dt
5e

1

2
RS 12

1

4
R2D1O~e3!,

dQ

dt
52

e2

8 S 12
R4

32D1O~e3!, ~2.7!

from which the multiple time scalesT15et, T25e2t, . . .
used in multiple-scale analysis appear naturally~although the
RG does not require such identifications!. WhenR52, ~2.7!
reduces to

dR

dt
501O~e3!,

dQ

dt
52

1

16
e21O~e3!. ~2.8!

In this simple example, it was straightforward to deter-
mine the multiple time scales. However, it is well known that
in many cases, within multiple-scale analysis hidden inter-
mediate scales must be included in the perturbation expan-
sion so as to obtain the correct result. In the next example,
will show that the RG method is a more straightforward but
secure way to determine multiple slow time scales than the
multiple-scale method.

B. Mathieu equation

The second illustrative example we examine using RG is
the Mathieu equation@30#

d2y

dt2
1~a12e cost !y50, ~2.9!

wherea ande are parameters.
The Floquet theory of linear periodic differential equa-

tions @1# predicts that in the~a,e! plane there are some re-
gions where the solutions to~2.9! remain bounded for allt
and stable, and others where the solutions are unstable. Per-
turbative investigation shows that for sufficiently smalle, all
solutionsy(t) are stable fora.0, aÞn2/4, n50,1,2, . . . .
Without loss of generality, we investigate the stability of
solutions neara51/4 ande50 to find the stability boundary
in the ~a,e! plane. We treat the boundary curvea as a func-
tion of e and expanda in powers of e: a(e)51/41a1
1a2e

21••• . It is our goal to determine values of
a1 ,a2 , . . . perturbatively. Multiple-scale analysis can be ap-
plied to this problem, and the coefficientsa151, a2521/2
are determined. However it turns out that the introduction of
multiple time scalest15et, t25e2t, . . . is notsufficient to
determine the second-order coefficienta2 even after the first-
order coefficienta1 is set to 1. Through careful analysis, it is
found that a new hidden time scales5e3/2t must be intro-
duced into the problem, and the perturbative expansion must
be done in powers ofe1/2, rather than the original expansion
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in powers ofe. It is necessary to go to the fourth order in
powers ofe1/2 to determinea2. Thus the procedure required
to determine all necessary time scales is not mechanical: if
any hidden scales are omitted or cannot be determined, cor-
rect results will not be guaranteed. This represents a typical
shortcoming of multiple scales analysis.

Now we demonstrate how the unexpected time scales
such ass5e3/2t appear automatically from the RG equation,
starting only with a straightforward perturbative expansion.
Substitutinga51/41a1e1a2e

21••• in ~2.9! and expanding
in powers ofe ~not e1/2! asy5y01ey11e2y21••• , we get

d2y0
dt2

1
1

4
y050, ~2.10!

d2y1
dt2

1
1

4
y152~a112 cost !y0 , ~2.11!

d2y2
dt2

1
1

4
y252a2y02~a112 cost !y1 , ~2.12!

and so on. First, let us determine the first-order coefficient
a1. The straightforward perturbation result, toO~e!, is given
by

y~ t !5R0cos~ t/21Q0!1eR0$2 1
2 cos~ t/21Q0!

1 1
2 cos~3t/21Q0!2a1~ t2t0!sin~ t/21Q0!

2~ t2t0!sin~ t/22Q0!%1O~e2!, ~2.13!

whereR0,Q0 are constants dependent on initial conditions
given at some arbitrary timet0. Similarly, the secular diver-
gences can be removed by regardingt0 as a regularization
parameter and renormalizing the bare amplitudeA0 and bare
phase Q0: R0(t0)5Z1(t0 ,m)R(m), Q0(t0)5Z2(t0 ,m)
1Q(m), wherem is some arbitrary time scale, as was done
in previous problems. The renormalized perturbation result is

y~ t !5$R~m!1eR@21/21~ t2m!sin2Q~m!#%cos~ t/21Q!

2eR~a11cos2Q!~ t2m!sin~ t/21Q!

1e
R

2
cos~3t/21Q!1O~e2!. ~2.14!

The RG equation]y/]m50 for any t gives

dR

dm
5eR sin2Q1O~e2!,

dQ

dm
5e~a11cos2Q!1O~e2!.

~2.15!

For convenience, we introduce the complex amplitude
A5ReiQ as A5B1 iC, with its real and imaginary parts
B5R cosQ, C5R sinQ. The equations forB~m! andC~m!
are

B8~m!5e~12a1!C~m!, C8~m!5e~11a1!B~m!.
~2.16!

Thus we have

B9~m!5e2~12a1
2!B~m!. ~2.17!

Solving this and settingm5t, we get

B~ t !5K1e
6~12a1

2
!1/2et, ~2.18!

whereK1 is a constant, and the first slow time scalet15et
has appeared automatically. Obviously, forua1u,1, instabil-
ity sets in, where the solution grows exponentially with time
t, while for ua1u.1, the solutions are bounded and stable.
Therefore, near e50, the stability boundary is
a51/46e1O~e2!.

We now seta151 and go to the second order to determine
a2. For ordere

2, a special solution to~2.12! is obtained

y2~ t !52R0~a22
1
2 cos2Q0!~ t2t0!sin~ t/21Q0!

2 1
2R0sin2Q0~ t2t0!cos~ t/21Q0!

2 1
2R0~11cos2Q0!~ t2t0!sin~3t/21Q0!

1 1
2R0sin2Q0~ t2t0!cos~3t/21Q0!

2 3
4R0~11cos2Q0!cos~3t/21Q0!

2 3
4R0sin2Q0 sin~3t/21Q0!1 1

12R0cos~5t/21Q0!.

~2.19!

Extending the renormalization procedure to the second order,
we find all the secular divergences to this order can be re-
moved completely, a sign of the consistency of perturbative
renormalizability. Keeping only the two lowest harmonics
with prime frequency and omitting other higher frequency
terms which are not important for determining the stability
boundary, we obtain the renormalized perturbation result, to
ordere2,

y~ t !5HR~m!1eR@21/21~ t2m!sin2Q~m!#

2e2
R

2
~ t2m!sin2QJ cos~ t/21Q!

1$2eR~11cos2Q!~ t2m!1e2R~a22
1
2 cos2Q!

3~ t2m!%sin~ t/21Q!1T , ~2.20!

where T represents all higher frequency terms. The RG
equation to ordere2 now reads

dR

dm
5eR sin2Q1O~e3!,

dQ

dm
5e~11cos2Q!1e2~a211/2!1O~e3!. ~2.21!

Accordingly, the equations forB~m! andC~m! become

B8~m!52e2~a211/2!C~m!,

C8(m)5[2e1e2(a211/2)]B(m).~2.22!

Thus we get

B9~m!522e3~a211/2!B~m!, ~2.23!

which gives
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B9~m!'2e3~2a211!B~m!1O~e4!, ~2.24!

which has the solution~settingm5t!

B~ t !5K2e
6A2a211e3/2t, ~2.25!

whereK2 is a constant, and the second and the third slow
time scaless5e3/2t, t25e2t appear naturally. We apparently
have stable solutions fora2.21/2 and unstable solutions for
a2,21/2. Therefore, to ordere2, the instability boundary is
given by

a~e!5 1
41e2 1

2 e21O~e2!, e→0. ~2.26!

C. Oscillator with time-dependent spring constant

The third illustrative example is an oscillator governed by
the equation@31#

d2y

dt2
1y2ety50. ~2.27!

The initial conditions arey~0!51 andy8~0!50. The regular
perturbation theory breaks down fort→`, and multiple-scale
analysis can be applied to eliminate the secular behavior.
However it turns out that multiple time scales must be cho-
sen ast05t, t15e1/2t, t25et, . . . . Since the frequency of
the oscillator is found to be time dependent, the method of
stretched coordinates or the so-called method of uniformiza-
tion or renormalization~in the conventional applied math-
ematics sense! does not work here.

We will see that the RG is able to provide a uniformly
valid solution for times less than, say,O~e21/2!, but can
never give results which are reliable for times of ordere21,
due to a singularity atet51. Renormalized perturbation
theory techniques naively applied are no more able to solve
this sort of problem than are multiple-scale techniques~see
the discussion in Ref.@1#!. The problem must be treated as a
WKB problem.

To attempt to solve~2.27!, we assume a straightforward
expansion in powers ofe ~not e1/2!, y5y01ey11e2y21••• .
The bare perturbation result, to ordere, is given by

y~ t !5R0cos~ t1Q0!1eR0$
1
4 ~ t22t0

2!

1 1
4 ~ t2t0!%sin~ t1Q0!1O~e2!. ~2.28!

As in the preceding examples, renormalizing the bare ampli-
tudeR0 and phaseQ0 removes the secular divergences. The
renormalized perturbation result is

y~ t !5$R1 1
4 eR~ t2m1a1!%cos~ t1Q!

1 1
4 eR~ t22m21b1!sin~ t1Q!1O~e2!,

~2.29!

whereR, Q are functions of an arbitrary time scalem, and
a1 ,b1 are arbitrary constants. The RG equation reads

dR

dm
5
1

4
eR1O~e2!,

dQ

dm
52

1

2
em1O~e2!.

~2.30!

Solving ~2.30! and settingm5t in ~2.29! gives

R~ t !5R~0!e~1/4!et1O~e2t !,

Q~ t !52 1
4 et21Q~0!1O~e2t !. ~2.31!

Thus we obtain the uniformly valid result

y~ t !5R~ t !cos@ t1Q~ t !#1 1
4 eR~ t !@a1cos~ t1Q!

1b1sin~ t1Q!#1O~e2!. ~2.32!

Imposing the boundary conditionsy~0!51, y8~0!50 gives
R~0!51, Q~0!50, a150, b1521. Therefore the final result
is

y~ t !5e~1/4!etcos~ t2 1
4 et2!2 1

4 ee~1/4!etsin~ t2 1
4 et2!1O~e2!,

~2.33!

where the frequency defined asv5dQ/dt becomes time
dependent: v512~1/2!et1O~e2!. Rewritinget2 as~e1/2t!2,
two slow time scalesT15e1/2t, T25et are easily identified
from the RG result~but these identifications are unnecessary
in our approach!.

Note that our solution to this problem is valid up to times
of O~e21/2!. Incorporating higher-order terms into the naive
perturbation series will not generate a solution uniformly
valid for longer times, in this particular case. To see why this
is so, make the change of variablesx5et: ~2.27! becomes

e2
d2y

dx2
1Q~x!y50 ~2.34!

with Q(x)512x. The transformed equation is in the ca-
nonical form for WKB problems, with a turning point at
x51. Such problems are treated in Sec. III G; note, in par-
ticular, that the singularity arising from the large argument
behavior of the Airy function cannot be captured by a finite
number of terms in the perturbative expansion given above.

The RG scheme given above is also applicable to quan-
tum systems with discrete or continuous energy spectrums,
especially those which involve resonance phenomena, e.g.,
the Rabi flopping, the Stark shift, the Bloch-Siegert shift
@32#. The multiple-time scale perturbation analysis has suc-
cessfully given a unified framework for all quantum reso-
nance@33#. In a similar way, the RG method simply recovers
all resonance equations which turn out to be simply RG
equations. The application of RG to the time-dependent
Schrödinger equation also reproduces the Fermi’s golden
rule @34#. Here we will not give detailed calculations of these
problems. In the next section, we will show that WKB prob-
lems can be easily solved using the RG method. Therefore
many quantum problems which are usually solved using
WKB and/or multiple-scale analysis can also be studied us-
ing the RG approach.

To summarize, it seems that the RG method is more effi-
cient and mechanical than the multiple-scale method in de-
termining the multiple slow time scales. In the RG approach,
the starting point is simply a straightforward naive perturba-
tion series, and all necessary multiple scales arise naturally
from the RG equations. The above examples reveal two im-
portant points, demonstrated more generally below:~1! the
results of multiple-scale, analysis can be obtained from the
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renormalized perturbation theory, and~2! the RG equation
describes the long-time scale motion of the amplitude and
the phase.

III. BOUNDARY-LAYER THEORY, WKB, AND RG

Another important class of singular problems is that for
which the highest-order derivative of the equation is multi-
plied by a small parametere, e.g., WKB and boundary-layer
problems.

Boundary-layer theory and asymptotic matching are a col-
lection of singular perturbation methods for constructing a
uniformly and globally valid solution by calculating the
separated outer and inner solutions and then matching them
across intermediate scale solutions. Quite often, the interme-
diate matching is very lengthy and only some particular
matching method will work. WKB theory is well known to
be a powerful tool for obtaining a global approximation to
solutions of a linear differential equation whose highest de-
rivative is multiplied by a small parametere. Many linear
problems often solved by the WKB theory can be solved by
the boundary-layer theory; indeed, in these cases, the
boundary-layer theory~thickness of the boundary layer goes
to zero ase→0! is a special case of WKB~thickness of the
boundary layer remains finite even ase→0!. The limitation
of the conventional WKB method is that it applies only to
linear problems, while boundary-layer theory works for lin-
ear as well as nonlinear problems.

In this section we will demonstrate explicitly that many
boundary-layer problems, linear or nonlinear, can be solved
by the RG. The uniformly valid asymptotics of boundary-
layer problems can actually be constructed from the inner
expansion alone, with the aid of the RG, without the need for
intermediate matching.

A. Simple linear example

Consider the following simple example, which describes
the motion of an overdamped linear oscillator

e
d2y

dt2
1
dy

dt
1y50, e!1 ~3.1!

wheree is a small parameter. A standard dominant-balance
argument shows that there exists a boundary layer of thick-
nessd5O~e! at t50. Thus we sett5et, and rewrite Eq.~3.1!
as

d2y

dt2
1
dy

dt
1ey50. ~3.2!

Naive expansion gives

y~t!5A01B0e
2t1e@2A0~t2t0!1B0~t2t0!e

2t#

1O~e!, ~3.3!

where the coefficientsA0, B0 are constants of integration and
O~e! refers to all the regular terms of ordere and higher,
which are finite even in the limitt2t0→`. This naive per-
turbation theory breaks down due to the divergence of secu-
lar terms for larget2t0. However this divergence can be
removed by regardingt0 as a regularization parameter and

renormalizing A0 ,B0 as A0(t0)5Z1A(m), and
B0(t0)5Z2B(m). Herem is an arbitrary time, andA,B are
the renormalized counterparts ofA0 ,B0 . The renormaliza-
tion constants Z15( 0

`an(t0 ,m)e
n, Z25( 0

`bn(t0 ,m)e
n

~a051, b051! are chosen order by order ine to eliminate the
secular divergences. Splitt2t0 as~t2m!1~m2t0!, and then
absorb the divergent partm2t0 in the limit t0→2` by re-
definingA0 andB0. Choosinga15m2t0, b152~m2t0!, we
get the renormalized perturbation result

y~t!5A~m!2eA~m!~t2m!1@B~m!1eB~m!~t2m!#e2t

1O~e!. ~3.4!

However it is impossible that the actual solutiony~t! can
depend on the arbitrary timem which is not present in the
original problem. Thus we have the renormalization group
equation]y/]m50 for anyt, which gives

dA

dm
1eA1FdBdm

2eBGe2t1O~e2!50, ~3.5!

or

dA

dm
52eA1O~e2!,

dB

dm
5eB1O~e2!. ~3.6!

Notice that what we have renormalized are parameters fixed
by the Cauchy data. In the oscillator examples in Sec. II, the
reader may have asked whyR andQ are renormalized and
not, e.g., the frequency. The question is a natural one, espe-
cially because the scaling of the time coordinate is used to
remove secular terms in the so-called renormalization
method, which as stressed in the introduction has no connec-
tion with RG. The basic observation on which our approach
relies is a correspondence between time in the initial-value
problem and length scale~or rather the logarithm of length
scale! in field theory. Thus the Cauchy data can be regarded
as being analogous to the bare parameters of the field theory.
From this point of view, there is no ambiguity in the choice
of parameters to be renormalized. Conditions in the far past
are hard to observe in the same way that bare quantities at
short distance scales are hard to observe. This perspective
has been explored and explained in our earlier work, espe-
cially Refs.@10, 13# and @14#.

Which are the appropriate quantities to renormalize can
be seen clearly from the following simple example of a Wil-
son type RG approach. The naive perturbation solution of
~3.1! gives

x~ t !5A~0!e2t2etA~0!e2t1O~e2!, ~3.7!

which is useful whenet!1. Thus fordt satisfyingedt!1
we can rely on

x~dt !5A~0!~12edt !e2dt1O„~edt !2…. ~3.8!

Now we use this as the initial condition and solve~3.1! for
anotherdt as

x~2dt !5x~dt !~12edt !e2dt1O~dt2!. ~3.9!

In this way we eventually obtain
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x~ t !5A~0!~12edt ! t/dte2t1O~dt !→A~ t !e2t, ~3.10!

with A(t)5A(0)exp~2et!, which is exactly the solution to
~3.5!. Thus the example illustrates that the Cauchy data
should be renormalized, although it looks as if the decay rate
has been renormalized from 1 to 11e.

Extending the RG calculation to the second order gives,
without any ambiguity,

dA

dm
52~eA1e2A!1O~e3!,

dB

dm
5eB1e2B1O~e3!.

~3.11!

Solving them, settingm5t and setting backt5t/e in ~3.4!,
we finally obtain the uniformly valid solution

y~ t !5C1e
2~11e!t1C2e

2t/e1~11e!t1O~e2!, ~3.12!

whereC1 ,C2 are constants to be determined by the initial
conditions. Clearly, the RG result to ordere2 recovers ex-
actly that obtained by the standard singular methods@1#. No-
tice that the equations in~3.11! are nothing but the equations
of motion for a slow-time scale: the amplitude equations.
Thus amplitude equations are renormalization group equa-
tions. We announced this result previously, and derived the
Burgers equation as a renormalization group equation@11#.
A much more complicated example illustrating this point
will be given in Sec. V.

B. Example with log e

The second example we consider is@5#

ey91xy82xy50, y~0!50,y~1!5e. ~3.13!

A standard dominant-balance argument tells us that there
exists a boundary layer of thickness of ordere1/2 ~but not e!
at x50. The complication in the conventional asymptotic
matching stems from the fact that the inner expansion must
contain not only powers ofe1/2 but also those terms contain-
ing combinations ofe and lne to make the intermediate
matching successful. Here we explicitly show that the renor-
malized naive inner expansion in powers ofe1/2 gives a uni-
formly valid asymptotic solution. This reveals that those un-
expected terms containing lne in the conventional approach
are just an artifact of perturbative expansions ofx2e.

Assuming x5e1/2X, and y(x)5Y(X), we transform
~3.13! into

d2Y

dX2
1X

dY

dX
2AeXY50, Y~0!50, Y~1/Ae!5e.

~3.14!

Naive expansion in e1/2, Y(X)5Y0(X)1e1/2Y1(X)
1eY2(X)1••• gives

Y091XY0850, Yn91XYn85XYn21 , ~n>1!.
~3.15!

Thus the naive perturbation result to ordere is

Y~X!;A01B0E
0

X

ds e2s2/21e1/2H A0~X2X0!1B0~X2X0!

3E
0

X

ds e2s2/21RJ 1eH 12 A0~X2X0!
2

1
1

2
B0~X2X0!

2E
0

X

ds e2s2/22S 2

Ap
A01B0D

3 lnS XX0
D E

0

X

ds e2s2/21RJ , ~3.16!

where A0 ,B0 are integration constants, andR represents
regular terms finite even in the limitX2X0→` and
ln~X/X0!→`. The divergence can be controlled by renormal-
izing A05Z1A(m), B05Z2B(m), whereZ1(m)5( 0

`ane
n/2,

a051 and Z2(m)5( 0
`bne

n/2, b051, are renormalization
constants andm is some arbitrary position. The choice
a15X02m, a25(1/2)(X02m)2 and b15X02m,
b25(1/2)(X02m)22(2ApA1B)ln~X0/m! successfully re-
moves the divergences up to ordere, and the renormalized
perturbation result is

Y~X!;$A~m!1e1/2A~X2m!1e 1
2 A~X2m!2%

1H B~m!1e1/2B~X2m!1e 1
2 B~X2m!2

2eS 2

Ap
A1BD ln~X/m!J E

0

X

ds e2s2/2.

~3.17!

The RG equation]Y/]m50 gives

dA

dm
5e1/2A1O~e3/2!, ~31.18!

dB

dm
5e1/2B2eS 2

Ap
A1BD Ym1O~e3/2!. ~3.19!

Solving these two equations, we obtain

A~m!5C1e
e1/2m1O~e3/2m!, ~3.20!

B~m!52
e

11e

2

Ap
C1me

e1/2m1C2m
2eee1/2m1O~e3/2m!,

~3.21!

whereC1 ,C2 are constants to be determined by the given
boundary conditions. Settingm5X, we obtain

Y~X!;C1e
e1/2X1H 2

e

11e

2

Ap
C1X1C2X

2eJ ee1/2X

3E
0

X

ds e2s2/2, ~3.22!
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Imposing boundary conditionsY~0!50, Y(1/Ae)5e gives
C150 andC25A2/pe2e/25A2/pe2(1/2)e lne as e→01 . Set-
ting backX5x/e1/2, we obtain the final uniformly valid as-
ymptotic result to ordere,

y~x!;exx2eH 12A2/pE
x/Ae

`

ds e2s2/2J . ~3.23!

Thus the terms such ase ln e, which are present in the inner
expansion given in, e.g., Ref.@1#, are relics of the expansion
of x2e. It is worthwhile to note that the RG result is slightly
different from the asymptotic matching result given by
Bender and Orszag in their book@35#. To leading order, the
former is

y0
RG~x!;exH 12A2/pE

x/Ae

`

ds e2s2/2J , ~3.24!

while the latter is

y0
BO~x!;ex2A2/pE

x/Ae

`

ds e2s2/2. ~3.25!

Comparing with the numerical result of the original Eq.
~3.13!, we find that in the boundary-layer region, the RG
result ~3.24! is a better approximant than the standard result
~3.25!.

C. Nonlinear boundary-layer problem

Boundary-layer analysis applies to nonlinear as well as to
linear differential equations. In this section and in the follow-
ing section, we will demonstrate that the RG method can be
used to solve nonlinear boundary-layer problems.

Let us consider the following illustrative nonlinear prob-
lem @36#

ey912y81ey50, y~0!5y~1!50. ~3.26!

There is only one boundary layer of thicknesse at x50.
SettingX5x/e, Y(X)5y(x) in ~3.26! gives

d2Y

dX2
12

dY

dX
52eeY. ~3.27!

Assuming an inner expansionY5Y01eY11••• gives the
following asymptotic result asX→`,

Y~X!;A01B0e
22X2e$ 1

2e
A0~X2X0!1R%1O~e2!,

~3.28!

whereA0 ,B0 are integration constants andR represents all
regular terms in the expansion finite even in the limit
X2X0→`. The renormalized perturbation result obtained as
in the previous examples is

Y~X!;A~m!1B~m!e22X2e 1
2e

A~m!~X2m!1O~e2!.
~3.29!

The RG equation gives, to ordere,

dA

dm
1e

1

2
eA50,

dB

dm
50. ~3.30!

Solving ~3.30!, we get

A~m!5 lnS 2

em1C1
D , B~m!5C2 , ~3.31!

whereC1 ,C2 are constants of integration to be determined
by the given boundary conditions. Equatingm and X in
~3.29! and restoringx5eX, we obtain the uniformly valid
asymptotic result

y~x!; lnS 2

x1C1
D1C2e

22x/e1O~e!. ~3.32!

Imposing boundary conditionsy~0!50, y~1!50 givesC151,
C252ln 2 in the limit e→01 . Therefore the final result is

y~x!; lnS 2

x11D2~ ln2!e22x/e1O~e!. ~3.33!

This RG result recovers the leading-order result from the
boundary-layer analysis.

D. Nonlinear problem of carrier

In this section, we consider a first-order nonlinear model
problem of Carrier@37#,

~x1e f ! f 81 f51, f ~1!52, 0<x<1. ~3.34!

The exact solution can be obtained by integrating~3.34!
once,

f ~x,e!52
x

e
1S x2e2

1
2~x11!

e
14D 1/2. ~3.35!

It becomes, however, a nontrivial singular perturbation prob-
lem, if we pretend that we cannot obtain the exact solution.
The method of strained coordinates or the method of asymp-
totic matching can be applied with a rather lengthy matching.
We show here how to solve the problem using RG without
matching, and give the exact result, starting only from the
inner expansion.

First, we apply the usual dominant balance argument to
make the structure of the equation clear. We introduce
X[h(e)x and F5d(e) f ; the latter is needed because the
equation is nonlinear. The original equation reads [X1(eh/
d)F]dF/dX1F5d. eh/d!1 corresponds to the outer
limit, and eh/d;1 is the only nontrivial alternative possibil-
ity. Hence,d;ea andh;ea21 with aP ~0,1# are the useful
scalings. The expansion parameter becomesd;ea. It turns
out that any choice ofa is admissible in this case, and so we
adopt the simplest choicea51.

Accordingly, we rescalef asF5e f to convert the origi-
nal Eq.~3.34! to

~x1F !F81F5e. ~3.36!

ExpandingF asF5F01eF11••• , we have

~x1F0!F081F050, ~3.37!

whose general positive solution is

F0~x!5~x21A0!
1/22x, ~3.38!
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with A0 a constant of integration determined by the initial
condition given at some arbitraryx0. The first-order equation
is given by

~x1F0!F181F1F081F2151. ~3.39!

This linear equation has a general solution

F1~x!5
x2x0

~x21A0!
1/2. ~3.40!

Thus the straightforward perturbation result, toO(e), is
given by

F~x!5~x21A0!
1/22x1e

~x2x0!

~x21A0!
1/21O~e2!. ~3.41!

We see that this naive perturbation~3.41! breaks down for-
mally for x@x0. Actually, the domain of our problem is
finite, and becausex is not scaled, it is not possible that
x@x0 can occur within the domain. A better argument is as
follows. Since the boundary condition isF~1!52e, nearx51
theO(e) term dominates; this is a singular perturbation, and
indeed the perturbation term diverges relative to the zeroth-
order term.

The secular divergence can be removed by renormalizing
A0 by A0(x0)5ZA(m), and the renormalized perturbation
result obtained is

F~x!5@x21A~m!#1/22x1e
~x2m!

@x21A~m!#1/2
1O~e2!.

~3.42!

The RG equation gives, toO(e),

dA/dm52e ~3.43!

with solution

A~m!5A~0!12em. ~3.44!

Settingm5x and f5F/e, we obtain the uniformly valid as-
ymptotic result

f ~x,e!52
x

e
1S x2e2

1
2x

e
1
A~0!

e2 D 1/2. ~3.45!

Imposing the boundary condition f ~1!52 gives
A~0!52e14e2. Therefore, the uniformly valid result to order
e, is given by

f ~x,e!52
x

e
1S x2e2

1
2~x11!

e
14D 1/2. ~3.46!

This happens to be the exact solution to the problem. A
further calculation demonstrates that all the higher-order cor-
rections vanish. The conventional methods can also recover
the exact result, but clearly the RG is simpler.

E. Problem with multiple-boundary layers

In many situations, there exist multiple-boundary layers at
one side, for which multiple calculations of inner and outer
solutions and their asymptotic matchings have to be made in

different separated regions to obtain a uniformly valid solu-
tion. Again it turns out that the RG method manages to pro-
duce the solution without any matching needed. Let us con-
sider the following initial-value problem@38#

e3/2y-1~e1/21e1e3/2!y91~11e1/21e!y81y50,
~3.47!

with initial conditions y(0)53,y8(0)5212e21/22e21,
y9(0)511e211e22 @1#. The exact solution isy(t)5e2x

1e2x/e1/21e2x/e. Pretending we do not know how to solve it
exactly, we resort to conventional singular perturbation
methods. It turns out that the conventional perturbation cal-
culation is very tedious and rather challenging. By dominant
balance, this problem is found to have two distinguished
boundary layers att50, of thickness of ordere1/2 and e,
respectively. Therefore one outer solution and two inner so-
lutions must be calculated and two asymptotic matchings are
necessary, if boundary layer theory is used. Starting only
with the thinnest or innermost boundary layer by rescalingt
by t5eT, and expandingy5Y(T), e.g., in e1/2, the RG
method successfully recovers the exact solution without any
matching.

F. Linear boundary-layer and WKB problems I:
No turning points

To conclude this section, we show how linear boundary-
layer and WKB problems in general forms can be treated
using RG in a unified fashion. This relationship between
boundary-layer theory and WKB is explained in Bender and
Orszag’s book@1#. The boundary-layer type problem we
wish to study using RG has the following general form:

e2
d2y

dx2
1a~x!

dy

dx
2b~x!y50, 0<x<1, e→01

~3.48!

where we assume thata(x) is differentiable andb(x) is an
arbitrary, not necessarily continuous function. This equation
covers all linear examples we presented earlier in this sec-
tion. A simple dominant-balance argument determines that in
general, the boundary layer lies atx50 whena(x)>0 for
0<x<1, and that the boundary layer lies atx51 when
a(x),0 for 0<x<1. Without loss of generality we will con-
sider only the former case.

Although in a number of cases we could perform pertur-
bative RG analysis on the original general Eq.~3.48!, often it
is wiser to start with the canonical form of Eq.~3.48! under
the transformation

y~x!5expF2
1

2e2 E
x

a~x8!dx8Gu~x!, ~3.49!

converting~3.48! to

e2
d2u

dx2
5Q~x!u~x!, ~3.50!

with
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Q~x![
1

4e2
a2~x!1

1

2
a8~x!1b~x!. ~3.51!

This form is just the Schro¨dinger form, which can be solved
by the WKB methods. Consequently, we can treat both the
linear boundary-layer and the WKB problems in a unified
way.

In the remainder of this section and in the following sec-
tion, we will show how to solve Schro¨dinger equations using
RG. Our strategy is to first introduce a natural change of the
independent variable which allows one to obtain efficiently
the nonperturbative part of the solution. The transformation
is identical to the independent variable portion of the stan-
dard Liouville-Green transformation@39# or its natural gen-
eralization used by Langer@40#, but the crucial difference is
that we do not introduce the new dependent variable. This is
the analogue of the geometrical-optics approximation in the
WKB theory @17#, and is the starting point of a renormalized
perturbation series, which reproduces the physical-optics and
higher-order WKB approximations. Although it may be pos-
sible to derive even the geometric-optics approximation us-
ing RG, we have not succeeded in so doing. WhenQ(x)
vanishes, its zeros lead to turning points in the standard
WKB approach. The simplest WKB approximations break
down there, and connection formulas are required in the con-
ventional procedure in order to match approximations on ei-
ther side. Langer@40# found that a suitable generalization of
the Liouville-Green transformation can produce a uniformly
valid approximation across the turning point. Again for the
cases with turning points, we transform the independent vari-
able only with a straightforward generalization of the no-
turning point case. We emphasize that we are able to avoid
the need to perform matching, and that the transformation of
the dependent variable is produced naturally by RG. The use
of RG isnot responsible for the choice of the transformation
of the independent variable, but our choice not to introduce
the transformation of dependent variables in contrast to the
approaches by Liouville and Green and Langer is motivated
by the RG. This allows us to choose a better transformation
of the dependent variable, which agrees with the conven-
tional result in the smalle limit. The corrections and prefac-
tors which accompany the zeroth-order Langer-type solution
are calculated by the RG, and do differ from and improve
upon those obtained by the standard analysis. Furthermore,
we can expand our asymptotic sequence ine to reproduce the
standard textbook results.

The remainder of this section concerns Schro¨dinger prob-
lems with no turning points. The following section discusses
the case with one-turning point, and gives an outline of how
the methods can be generalized for higher numbers of turn-
ing points and for multiple-boundary-layer linear problems
as well.

We will first rederive the well-known physical-optics ap-
proximation using the RG theory, valid when the function
Q(x) has no zeroes in the interval of interest. Following
Liouville and Green, we introduce a new independent vari-
able t5 f (x) implicitly determined asdt5AQdx/e. The
choice is natural from the perturbation point of view, be-
cause even whendu/d(x/e) is significant,dQ(x)/dx is not,
soQ(x) can be regarded as a constant to orderO~e0!. Equa-
tion ~3.50! is thus converted to

d2u

dt2
2u52eS~x!

du

dt
, ~3.52!

whereS(x)[2(1/4)Q23/2Q8(x) is assumed to be a slowly
varying function on the time scalet, of order unity, and
S(x)Þ0 for 0<x<1.

Naively expandingu as u(t)5u0(t)1eu1(t)1••• , we
get the bare perturbation result

u~ t !5etHA01eA0E
t0

t

S„x~ t8!…dt82eA0e
22t

3E
t0

t

S„x~ t8!…e2t8dt8J 1e2tHB01eB0E
t0

t

S„x~ t8!…dt8

2eB0e
2tE

t0

t

S„x~ t8!…e22t8dt8J 1O~e2!, ~3.53!

whereA0 ,B0 are integration constants. The corresponding
renormalized result is

u~ t !5etHA~m!1eA~m!E
m

t

S dt8J
1e2tHB~m!1eB~m!E

m

t

S dt8J 1O~e!,

~3.54!

whereO~e! refers to all regular terms of ordere which re-
main finite even ast2t0→`. The RG equation]u/]m[0
gives

dC

dm
1e 1

4Q
23/2Q8@x~m!#C5O~e2!, ~3.55!

whereC5A or B. Again, Eq.~3.55! corresponds to the am-
plitude equation or slow motion equation. Settingm5t and
usingdt5Q1/2dx/e, we get

A~x!;Q21/4~x!, B~x!;Q21/4~x!. ~3.56!

This is exactly the adiabatic invariantA(x)Q1/4(x)
5A(0)Q1/4(0)5const. The physical-optics approximation
for the WKB Eq.~3.50! is recovered

u~x!;C1Q
21/4~x!expF1e Ex

dx8AQ~ t8!G
1C2Q

21/4~x!expF2
1

e Ex

dx8AQ~ t8!G ,
~3.57!

ase→0.
The uniformly valid asymptotic resulty(x) for the general

linear boundary-layer problem~3.48! is given by~3.49!. For
numerical evaluation of~3.33!, we do not need any further
expansion, because~3.49! is the uniformly valid result we
want. To compare, however, with the conventional results
due to asymptotic matching methods, let us make asymptotic
expansions ofQ(x).

As a simple check, let us assume thata(x),b(x) are some
analytic functions, anda(x).0 for 0<x<1, and a~0!Þ0.
Obviously, in the whole region 0<x<1, ase→0, the term
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a2(x)/4e2 is the dominant term, compared toa8(x)/2 and
b(x). Simply Taylor expanding as

AQ~x!.
a~x!

2e
1

e

2

a8~x!

a~x!
1e

b~x!

a~x!
, ~3.58!

and imposing boundary conditionsy(0)5A,y(1)5B, we
obtain

y~x!;Be*1
x
@b~j!/a~j!#dj1

a~0!

a~x!

3 @A2Be*1
0
@b~j!/a~j!#dj#e2*0

x$@a~j!/e2#1@b~j!/a~j!#%dj.

~3.59!

This expression can be simplified further, because the second
term contributes appreciably only whenx5O~e2! ~e→0!.
Thus

y~x!;B expF E
1

x b~j!

a~j!
djG

1FA2B expE
1

0 b~j!

a~j!
djGe2a~0!x/e2. ~3.60!

This is exactly the same as the uniformly valid leading
boundary layer or WKB result.

It is known that the case witha~0!50 is subtle. For sim-
plicity, we consider only the casesa(x)5xa,b(x)51, where
a.21 so that there exists a boundary layer atx50.

Whena.1, the thickness of boundary layer is of order
d5O~e!. When x@e, the term a2(x)/4e2 dominates over
other two terms,a8(x)/2 andb(x), in Q(x). However, when
x;O~e!, we have to be careful with the asymptotic expan-
sion ofQ(x), since the dominant term now isb(x)51. Thus,
ase→0, the leading term ofAQ(x) is 1. The final uniformly
valid approximation is

y~x!;B expF 1

a21
~12x12a!G1A exp@2x/e#.

~3.61!

Whenuau<1, it is straightforward to check that the bound-
ary layer is of thickness of orderd;e2/~11a!, and that the first
and second term inQ(x) are of the same order, when
x;d~e!. The uniformly valid expression turns out to be

y~x!5B expF E
1

x b~j!

a~j!
djG1FA2B exp E

1

0 b~j!

a~j!
djG

3H Q~0!

Q~x! J 21/4

expF2E
0

x

dj H a~j!

2e2
1

AQ~j!

e J G .
~3.62!

Expanding the above leading uniformly valid result obtained
with the aid of RG recovers the outer and inner solutions due
to boundary-layer theory and asymptotic matching. Note that
the above results are obtained from the ‘‘inner expansion’’
alone without ever having to perform any asymptotic match-
ing. This is practically important as we will see in the next
section.

G. WKB analysis II: Turning points

In order to complete this section, we begin by presenting
a general discussion of Schro¨dinger equations and one-
turning-point WKB problem, and at the end of this section,
we generalize the case to multiple-turning-point and
multiple-boundary-layer problems.

The Schro¨dinger equation which we will consider in this
section is

e2
d2u

dx2
5Q~x!u~x!, u~1`!50. ~3.63!

whenQ in ~3.63! vanishes or changes its sign, the approach
in the preceding subsection fails as can easily be seen from
the presence of the factorQ21/4. If Q has an isolated zero at
x50 of ordera.0, we can write locallyQ(x)5xac(x) with
a positive definite functionc without any loss of generality.
A natural choice of the counterpart of the Liouville-Green
transformationx→t is to remove the zeros fromdt/dx: we
introduce a new independent variablet5 f (x) implicitly de-
termined asdt5(Q/ta)1/2dx/e giving

t~x!5S 21a

2e E
0

x

dx8@Q~x8!#1/2D 2/~21a!

. ~3.64!

The original Eq.~3.50! is transformed into

d2u

dt2
5tau1eS„t~x!…

du

dt
, ~3.65!

where S[d[( ta/Q)1/2]/dx. Since t;x as x→0, S is a
bounded function even nearx50. Notice that in contrast to
the conventional approaches due to Liouville and Green or
Langer, we do not introduce the transformation for the de-
pendent variable, because it will be produced by the RG
procedure. Here we work out the simplest casea51.

Expanding naively u in powers of e as
u5u01eu11e2u21••• , we obtain the bare perturbation re-
sult to ordere,

u5C0 Ai ~ t !2eC0pHAi ~ t !E
t0

t

dt8S~ t8!Ai 8~ t8!Bi~ t8!

2Bi~ t !E
t0

t

dt8S~ t8!Ai ~ t8!Ai 8~ t8!J , ~3.66!

where Ai,Bi are two linearly independent Airy functions, and
the Bi(t) function is already discarded in the zeroth-order
solution, since it does not satisfy the physical condition
u~1`!50. In the limit t2t0→1`, the second term of the
first-order perturbation Bi(t)* t0

t dt8S(t8)Ai( t8)Ai 8(t8) re-

mains finite. However, the term* t0
t dt8S(t8)Ai 8(t8)Bi( t8) di-

verges and must be renormalized, giving the renormalized
perturbation series

u5Ai ~ t !SC~m!2eC~m!pE
m

t

dt8S~ t8!Ai 8~ t8!Bi~ t8! D
1O~e!, ~3.67!

386 54LIN-YUAN CHEN, NIGEL GOLDENFELD, AND Y. OONO



whereC~m! is the counterpart of the bare amplitudeC0(t0),
andO~e! refers to all finite regular terms of ordere even in
the limit t2t0→`. The RG equationdu/dm[0 gives

dC~m!

dm
1eC~m!pS~m!Ai 8~m!Bi~m!5O~e2!.

~3.68!

Integrating~3.68! and settingm5t, we get

C~ t !5C~0!expH 2pE
0

t

dt8Ai 8~ t8!Bi~ t8!

3
d

dt8
$ ln@~ t8/Q!1/2#%J , ~3.69!

whereC0 is a constant of integration to be determined by the
boundary condition att50. Thus we have arrived at the adia-
batic invariant

C~ t !expH pE
0

t

dt8Ai 8~ t8!Bi~ t8!
d

dt8
$ ln@~ t8/Q!1/2#%J ,

~3.70!

which differs from that usually obtained, leading to the final
uniformly valid solution

u5C~0!expH 2pE
0

t

dt8Ai 8~ t8!Bi~ t8!
d

dt8

3~ ln@~ t8/Q!1/2# !JAi ~ t !, ~3.71!

wheret(x)5(@3/2e#*0
xdx8AQ(x8))2/3.

The RG result~3.69! differs from the standard Langer
formula, since~3.69! involves Airy functions Ai and Bi.
Note that the new variablet given in~3.64! is a function ofe,
and that ase→0 for fixedx, t→`. In this limit, we can resort
to the asymptotic properties of the Airy functions Ai(t) and
Bi( t) for t→`, and find that Ai8(t)Bi( t);21/2p, as t→`.
Thus ~3.69! recovers the standard result

C„t~x!…5C~0!~ t/Q!1/4. ~3.72!

However, the RG Eq.~3.68! is valid not only for rela-
tively large m, but also for smallm. For this reason, we
expect that~3.71! is a better uniformly valid approximant
than the standard Langer formula, for small and intermediate
values oft, or for relatively large~or not small! e cases. This
is verified and can be clearly seen in Fig. 1, where we com-
pare the RG result~3.71!, the standard Langer formula, and
the exact numerical solution of Eq.~3.50! for several values
of e. Thus the RG results~3.71! without asymptotic matching
improve upon those obtained by the standard analysis.

To conclude this section, we briefly outline the recipe to
generalize the methods for multiple-turning-point and linear
multiple-boundary-layer problems.@For linear cases, with
the help of the transformation~3.49! both problems can be
transformed into the canonical form and can be treated in a
unified way.# We need only consider the case in whichQ(x)
in ~3.50! has multiple-turning points. Without loss of gener-
ality, we assumeQ has the form: Q(x)5 f (x)c(x), where

f (x)5(x2x1)(x2x2)•••(x2xn), n.1 is a polynomial ofx
with n zerosx1,x2,•••,xn , and c(x).0 has no zeros.
The general strategy is first to introduce a new independent
variablet defined implicitly asdt/AQ/ f (t)dx/e, where f is
chosen to cancel all the zeros ofQ. Then we develop the
straightforward perturbation series for the resultant equation,
and renormalize the integration constant to absorb the secu-
lar divergence. This procedure avoids performing multiple
connection formulas matching and leads to a uniformly valid
approximation. For higher-order WKB problems or linear
boundary-layer problems, the generalization of the methods
given here is straightforward.

IV. SWITCHBACK PROBLEMS

In previous sections, we have already seen that the RG
approach not only has conceptual, but also technical advan-
tages compared with various conventional methods. In this
section, we will demonstrate this further, by studying, with
the aid of the RG more complicated problems which involve
the so-called ‘‘switchback.’’ In switchback problems, as con-
ventionally treated, only through subtle analysis in the course
of actually solving the problem is it possible to realize the
need for, e.g., unexpected order terms to make asymptotic
matching consistent.

A. Example 1: Stokes-Oseen caricature

A model example is a caricature of the Stokes-Oseen
singular-boundary-layer problem, which describes the low
Reynolds number viscous flow past a sphere of unit radius.
The main result of this problem has been presented in Ref.

FIG. 1. Comparison of the RG result~3.71!, the standard Langer
formula, and the numerical solution of Eq.~3.50! for e50.5 and
e51.0.
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@18#, and in the following, we will only briefly summarize
the final results and make some additional comments.

The equation is@5#

d2u

dr2
1
2

r

du

dr
1eu

du

dr
50, u~1!50, u~`!51, ~4.1!

wheree, the Reynolds number, is a small non-negative con-
stant. This is a very delicate singular boundary-layer prob-
lem, with complicated asymptotic expansions and matching,
involving unexpected orders such ase ln~1/e!.

Since there exists a boundary layer of thicknessd5O~e!
nearr5`, settingx5er transforms~4.1! into the following
‘‘inner’’ equation:

d2u

dx2
1
2

x

du

dx
1u

du

dx
50, u~x5e!50, u~x5`!51.

~4.2!

Using RG theory, the final uniformly valid result is found
to be, to orderl151/e2~e!,

u~r ;e!512e2~er !/e2~e!1O$@1/e2~e!#2%, ~4.3!

where the exponential integrale2(t)5* t
`drr22e2r, whose

asymptotic expansion as t→0 is given by
e2(t);1/t1ln t1(g21)2t/21O(t2) with Euler’s constant
g.0.577 . . . .

The result from asymptotic matching is given by the fol-
lowing expression @5#. For r fixed, we have, to
O„e2 ln2~1/e!…,

u~r !;S 12
1

r D1e ln~1/e!S 12
1

r D
1eF2 ln r1~12g!S 12

1

r
2
lnr

r D G , ~4.4!

while for r5er fixed, toO„e2 ln~1/e!…,

u~r!;12ee2~r!. ~4.5!

Accordingly, examining the asymptotic result of~4.3! in
the limit e→0, by expanding bothe2(er ) and e2~e! for r
fixed, ande2~e! only for r5er fixed, respectively, it is found
that the resulting asymptotic solution using RG is correct to
O@e ln~1/e!# and agrees with that obtained by asymptotic
matching. Note that in our method, thee lne term appears
naturally from the asymptotic expansion ofe2~e!, whereas
some artistry is required to obtain this term conventionally.
To recover theO@e# term with~ln r !/r , we have to extend the
RG calculation to orderO„@1/e2~e!#2…. Thus the result toO~e!
given by asymptotic matching@5# is obtained from the renor-
malized perturbation expansion toO„@1/e2~e!#2….

This fact may suggest that our RG result is inferior to the
conventional one. It is important to notice, however, that
neither the asymptotic expansion~4.4! augmented with the
~ln r !/r term of ordere nor ~4.5! is uniformly valid in its
variabler or r, respectively. In contrast, it seems that our full
result 12e2(er )/e2(e) to order l151/e2~e! is uniformly
valid as is clearly seen in Fig. 2.

As discussed in the preceding paragraph,~4.3! is not an
asymptotic series in powers ofe; thus one might conclude

that our result is not even an asymptotic series in any sense.
Recall, however, that the asymptotic expansion of a function
is unique only when an asymptotic sequence of functions is
fixed. The choice of the sequence is a question of vital im-
portance, if one wishes to have a useful asymptotic series. In
the conventional singular perturbation methods, an asymp-
totic sequence is selected by the matching conditions. How-
ever there is no compelling reason to believe that the se-
lected sequence is practically the best asymptotic sequence
~of course, it should be the most convenient one for the
matching procedure!. As we have seen, the RG approach
also produces an asymptotic sequence$li~e!% from the re-
quirement to satisfy the boundary condition order by order.
Therefore we propose the point of view that a consistent and
presumably better asymptotic expansion~starting with
l151/e2~e! in the present problem! may be obtained by the
RG. The standarde expansion may well be an inferior as-
ymptotic expansion to our expansion. In addition, the supe-
riority to the RG approach can also be seen from the fact that
a closed expression uniformly valid for the whole~infinite!
interval has been obtained for the problem, which is not the
case for the standard asymptotic matching method.

B. Example 2: Difficulty with asymptotic matching

To illustrate that the RG method is generally simpler to
use, and yields practically better approximants than other

FIG. 2. Comparison between the numerical solution of Eq.~4.2!
for several values ofe, the first-order RG result 12e2(er )/e2(e),
and two matched asymptotic expansions~one at fixedr , the other at
fixed r[r e!, as derived in Ref.@5#.

388 54LIN-YUAN CHEN, NIGEL GOLDENFELD, AND Y. OONO



methods, let us next consider a ‘‘terrible’’ problem whose
model equation can be written as@41#

d2u

dr2
1
1

r

du

dr
1aS dudr D

2

1eu
du

dr
50, u~1!50, u~`!51,

~4.6!

wheree is a small non-negative constant, anda50 or 1. For
a51, the asymptotic matching is notoriously difficult, be-
cause an infinite number of terms must be calculated before
even the leading order can be matched successfully. We will
see how the RG avoids such difficulties in obtaining the
leading-order result uniformly valid for the entire interval
1<r,`.

Since there exists a boundary layer of thicknessd5O~e!
nearr5`, settingx5er transforms~4.6! into the following
‘‘inner’’ equation:

d2u

dx2
1
1

x

du

dx
1aS dudxD

2

1u
du

dx
50, u~x5e!50,

u~x5`!51. ~4.7!

As in other boundary-layer problems, let us first look for
the general form of the solution, and then impose the re-
quired boundary conditions to determine the constants of in-
tegration left in the solution. To do so, we solve~4.2! as an
initial-value problem, given an initial conditionu(x0)5A0 at
some arbitrary pointx5x0 , whereA0 is a finite constant.
Assuming a naive expansionu(x;e)5u0(x)1l1(e)u1(x)
1l2(e)u2(x)1••• with initial conditions u0(x0)5A0 ,
ui(x0)50, i51,2,... , where the asymptotic sequenceli~e!,
i51,2,... are to be determined later, we obtain

d2u0
dx2

1
1

x

du0
dx

1aS du0dx D 21u0
du0
dx

50. ~4.8!

The finite uniform solution can be guessed asu0(x)5A0 ,
because the uniform field should not be affected appreciably
by the distant disturbance source. Thus, the goal is to find out
the small perturbation effect on this uniform field in the pres-
ence of a distant disturbance.

The equation foru1 is

d2u1
dx2

1S 1x1A0D du1
dx

50. ~4.9!

We easily see that the equation satisfied byu2 which is sig-
nificantly different from~4.9! ~i.e., with a forcing term! ap-
pears only ifl1

2/l25O~1!. We will show that indeed the
choicel25l1

2 works. The nontrivial equation at orderl25l1
2

can be written as

d2u2
dx2

1S 121A0D du2
dx

52aS du1dx D 22u1
du1
dx

.

~4.10!

The perturbation result is given by

u~x!5A01l~e!A10@e1~A0x0!2e1~A0x!#1l2~e!

3$A2@e1~A0x0!2e1~A0x!#2a 1
2A10

2 @e1~A0x0!

2e1~A0x!#22A10
2 A0

21@e0~A0x!e1~A0x!

22e1~2A0x!2e1~A0x0!e0~A0x!1e0~A0x0!e1~A0x!

2e0~A0x0!e1~A0x0!12e1~2A0x0!#%1O@l3~e!#,

~4.11!

where the exponential integrale1(t)5* t
`r21e2r,l1(e) is

already replaced byl~e!, andA10, A2 are constants of inte-
gration. Whenx0 is very small andx2x0 is large, the diver-
gence arises from those terms containinge1(A0x) or
e1(A0x0), but not e0(A0x) or e0(A0x0). To remove the di-
vergence from these cross terms ofe0 and e1, presumably
bothA0 andA1 must be renormalized. The renormalized per-
turbation result reads

u~x!5A~m!1l~e!A1~m!@e1~Am!2e1~Ax!#

1l2~e!$A2@e1~Am!2e1~Ax!#2a 1
2A1

2@e1~Am!

2e1~Ax!#22A1
2A21@e0~Ax!„e1~Ax!2e1~Am!…

22e1~2Ax!12e1~2Am!#%1O„l3~e!…, ~4.12!

where A(m),A1(m) are finite counterparts of
A0(x0),A10(x0), andm is some arbitrary length scale. The
RG equationdu/dm50 gives

dA1
dm

52l~e!aA1
2m21e2Am1O„l2~e!…, ~4.13!

dA

dm
52l~e!A1m

21e2Am2l2~e!A1
2A21m21e22Am

1l2~e!A2m
21e2Am1O„l3~e!…. ~4.14!

Now we discuss thea50 anda51 cases separately. For
a50 ~4.13! suggests thatA1 can be treated as a constant and
there is no need to renormalize it. Solving~4.14! to order
l~e! and settingm5x andx5er in ~4.12!, we obtain

u~r !512l~e!A1e1~er !1l2~e!, ~4.15!

where use is already made of the boundary conditionu(r
5`)51. Imposingu(r51)50 determinesl(e)A151/e1(e)
from which l~e! can be chosen asl~e!51/e1~e!, whose as-
ymptotic expansion in the limite→01 , is l~e!;1/ln~1/e!
1g/ln2~1/e!1••• , giving all necessary orders required in the
asymptotic matching. AccordinglyA151. Thus the uni-
formly valid asymptotic result can be written in a single
expression as

u~r !;12e1~er !/e1~e!1O„@1/e1~e!#2…. ~4.16!

For a51 solving ~4.13! and ~4.14! to orderl~e!, we get

A1~m!5
A1~`!

12l~e!A1~`!e1~m!
1O„l2~e!…, ~4.17!
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A~m!5 ln$12l~e!A1~`!e1~m!%1A~`!1O„l2~e!…,
~4.18!

whereA1(`),A(`) are constants of integration to be deter-
mined by the boundary conditions. Settingm5x andx5er
in ~4.12! we have

u~r !5 ln$12l~e!A1~`!e1~er !%1A~`!1O„l2~e!….
~4.19!

Using boundary conditionsu(r5`)51 andu(r51)50 pro-
ducesA~`!51 and l(e)A1~`!5~121/e)/e1(e). Again we
may choosel~e!51/e1~e!, and thenA1(`)5121/e. Finally
the uniformly valid asymptotic result is given by

u~r !; ln@11~e21!e1~er !/e1~e!#1O„@1/e1~e!#2….
~4.20!

Comparing the RG results~4.16! and ~4.20! and the cor-
responding asymptotic matching results, again we find the
RG results are more accurate.

V. REDUCTIVE PERTURBATION THEORY AND RG

In previous examples, we have already mentioned the
idea that amplitude or phase equations are RG equations. We
will demonstrate that the RG theory is a general and system-
atic method to derive slow motion equations, even for those
complicated problems for which no explicit analytic zeroth-
order solutions are known. In previous reports we already
discussed the one-dimensional Swift-Hohenberg equation
@18# and the Burgers equation@11# as renormalization group
equations. Center manifold theory can be considered from
the reductive perturbation point of view, because it also ex-
tracts slow motion equations on the manifold. Thus we may
expect that the center manifold theory can also be interpreted
as an application of the renormalization approach as well.

A. Newell-Whitehead equation

The example we consider here is the two-dimensional
Swift-Hohenberg equation widely used as a simple model of
Rayleigh-Benard convection@42#.

]u

]t
5eu2u32S ]2

]x2
1

]2

]y2
1k2D 2u, ~5.1!

wheree is a control parameter or a reduced Rayleigh num-
ber, a measure of the degree of convective instability of the
stationary stateu50. For small positivee, the system exhib-
its a supercritical bifurcation. Since we wish to treateu2u3

as a perturbative term, to be consistenteu andu3 must be of
the same order. We scaleu asAeu, and denote the newu
with the same symbol. Then, the original equation reads

]u

]t
5e~u2u3!2S ]2

]x2
1

]2

]y2
1k2D 2u. ~5.2!

We consider this in the whole plane for all positivet. As a
zeroth-order solution, we choose the roll solution along they
axis: Aeikx1complex conjugate, whereA is a complex nu-

merical constant. We expandu around this solution as
u5Aeikx1eu11•••1complex conjugate. The first-order cor-
rection obeys

]u1
]t

1S ]2

]x2
1

]2

]y2
1k2D 2u15~123uAu2!Aeikz. ~5.3!

Here, to study only the singular behavior ofu1, e
3ikx and

similar nonresonant terms are ignored. We rewrite this equa-
tion as

@L11L21L31L4#u15~123uAu2!Aeikx, ~5.4!

where the operators are given defined as

L1[
]

]t
, L2[S ]2

]x2
1k2D 2, L3[2S ]2

]x2
1k2D ]2

]y2
,

L4[
]4

]y4
. ~5.5!

We must look for space-time secular terms in the solution.
Secular terms which modify the global system behavior ap-
pear only in the special solution of the equation consistent
with the inhomogeneous term. In order to find~space-time
secular! special solutions of~5.4! we have only to solve
LiuSi5(123uAu2)Aeikx separately, and to make the linear
combination of their solutions as(m iuSi with (mi51. This
is because all four operatorsLi commute, andL je

ikx50, so
that LiL juSi50. Thus the space-time secular behavior of
L juSi is less severe than that ofuSi , so that we may ignore
this. That is, without affecting the divergence structure of the
inhomogeneous solution, we may setL juSi50. A trivial cal-
culation gives

uS15tA~123uAu2!eikx. ~5.6!

uS2 is governed by

S ]2

]x2
1k2D 2uS25S ]

]x
1 ik D 2S ]

]x
2 ik D 2uS2

5~123uAu2!Aeikz. ~5.7!

That is,

S ]

]x
2 ik D 2uS252

1

4k2
A~123uAu2!eikx. ~5.8!

Here we do not pay attention to inhomogeneous terms non-
resonant with the operator. Hence, themostsingular part is

uS252
x2

8k2
A~123uAu2!eikx. ~5.9!

Similarly, we get

uS35
xy2

8ik
A~123uAu2!eikx, ~5.10!

and
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uS45
y4

4!
A~123uAu2!eikx. ~5.11!

In this way we get the following perturbation result,

u5Aeikx1eS m1t2m2

x2

8k2
1m3

xy2

8ik
1m4

y4

4! D
3A~123uAu2!eikx1c.c.1••• . ~5.12!

Here all the less singular terms~eikx times 1,x,y,xy,y2,y3!,
higher-order terms and nonsecular terms~those terms which
do not grow indefinitely far away or in the long future! are
omitted. These terms will not contribute to the final result, as
shown in the argument below. Now, the secular terms are
absorbed into the redefinition of the amplitudeA as follows.
We introduce regularization pointsX, Y andT and split, for
example,xa asxa2Xa1Xa ~for some exponenta!, and ab-
sorbXa into A. Thus we get,

u5A~X,Y,T!eikx1eS m1~ t2T!2m2

~x22X2!

8k2

1m3

~xy22XY2!

8ik
1m4

~y42Y4!

4! D
3A~123uAu2!eikx1••• . ~5.13!

Sinceu should not depend onX, Y or T, the renormalization
group equation, toO~e!, reads]a1b1gu/]Ta]Xb]Yg50 for
any positive integersa,b,g with abgÞ0, where values of
a,b,g are chosen in such a way that the universal slow mo-
tion equation we are seeking is independent of any system
details. Thus we have

]A

]T
2em1A~123uAu2!50,

]2A

]X2 1em2

1

4k2
A~123uAu2!50,

]3A

]X]Y22em3

1

4ik
A~123uAu2!50,

]4A

]Y42em4A~123uAu2!50. ~5.14!

Obviously,mi are still almost arbitrary and must be fixed by
the auxiliary conditions. Therefore, to get an auxiliary con-
dition free equation of motion, we use(mi51 to arrive at the
following RG equation after equatingX,Y,T and x,y,t, re-
spectively:

]A

]t
1S 24k2

]2

]x2
14ik

]3

]x]y2
1

]4

]y4DA5eA~123uAu2!.

~5.15!

Thus we have arrived at the Newell-Whitehead equation.
Let us compare this derivation with the conventional

method, for which a summary may be found in the Appendix
to the review article by Cross and Hohenberg@43#. Perhaps
the most notable point is that no scaling of spatial variables

like x→e1/2x, y→e1/4y is needed. Furthermore, the expan-
sion is a straightforward one in terms ofe instead ofe1/2.
That is, the result is almost automatically obtained from the
global well definedness of the perturbation result.

If there are no spatial degrees of freedom, each step of the
standard reductive perturbation@7# using the solvability con-
dition and that in the RG derivation above are in one-to-one
correspondence. However, if there are spatial degrees of
freedom, the standard reductive perturbation regards the spa-
tial derivatives as a perturbation if the zeroth-order solution
is space independent, or uses the multiple-scale analysis if
the zeroth-order solution is spatially varying. In contrast, in
our RG approach, spatial and time coordinates are treated on
an equal footing, and the correct scalings of variables are
given automatically.

As the reader may have realized, kinetic equations are
expected to be derivable as slow motion equations from the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. For ex-
ample, the Boltzmann equation can be derived by an RG
method. Thus we suggest that it is a rule that slow motion
equations are RG equations.

B. Center manifold and RG

In this section, we discuss briefly the general relationship
between RG theory and center manifold theory@6#. In the
general theory of reduction, we wish to know the slow mani-
fold ~e.g., inertial manifold, center manifold! which attracts
all the long-time asymptotic solutions, and the equation of
motion on the manifold. It is well known that the center
manifold reduction and normal form theory@6# have played a
significant role in studying instabilities and bifurcations en-
countered in dynamical systems and fluid dynamics. In many
circumstances, this approach provides a greatly simplified
picture of complicated dynamics by reducing the dimension
of the system without losing essential information concern-
ing the instability and bifurcation. In addition, the local dy-
namics on the center manifold constructed in this way is
invariant or universal, in the sense that the structure of the
reduced system is independent of specific physical models
under consideration. Thus a variety of different phenomena
can have the same type of bifurcation, belonging to the same
universality class in the parlance of RG. Although the center
manifold fits in the RG picture clearly, the general corre-
spondence between them has not yet been established. In
certain cases such as the weakly nonlinear stability of fluid
motion, the equivalence of the method of center manifold,
the method of multiple scales, and the method of amplitude
expansion has been established explicitly by applying these
methods to the derivation of the Landau equation from the
Navier-Stokes equation to the seventh order@44#.

To illustrate the relevance of RG, let us consider the fol-
lowing set of equations:

dx

dt
5 f ~x,y!,

dy

dt
52y1g~x,y!, ~5.16!

wheref andg are higher order in the sense thatf (lx,ly) or
g(lx,ly) is O~l2! for small l. Thus the variabley decays

54 391RENORMALIZATION GROUP AND SINGULAR . . .



quickly butx does not. Hence, the long-time behavior of the
system is expected to be confined close to a local one mani-
fold near the origin. This local manifold is the center mani-
fold ~not unique!, and the long-time behavior of the system is
governed by the equation of motion defined on this manifold.
Thus, as discussed at the beginning of this section, the prob-
lem of finding a center manifold and the equation on it is a
problem of extracting slow motion behavior of the system. In
this sense, this problem and the general reductive perturba-
tion can be treated in a unified fashion. Since we are inter-
ested in the local center manifold, we may rescale the vari-
ables asx→lx andy→ly, and may assume thatl is small.
Therefore, instead of the original system~5.16!, we study

dx

dt
5l f ~x,y!,

dy

dt
52y1lg~x,y!. ~5.17!

We assume the following formal expansions:

f ~x,y!5 f 20x
21 f 11xy1 f 02y

21l~ f 30x
21 f 21x

2y1 f 12xy
2

1 f 03y
3!1••• ,

g~x,y!5g20x
21g11xy1g02y

21l~g30x
31g21x

2y1g12xy
2

1g03y
3!1••• . ~5.18!

The standard approach goes as follows: Lety5h(x) be the
formula for a center manifold. Then we get the following
differential equation forh:

2h~x!1lg„x,h~x!…5lh8~x! f „x,h~x!…. ~5.19!

This equation is usually solved by perturbation:
h(x)5lh2x

21l2h3x
31••• . The result is

y5lg20x
21l2@g20~g1122 f 20!1g30#x

31O~l3!.
~5.20!

The equation of motion on the center manifold is obtained by
substitutingy with h(x) in the equation fordx/dt.

Our RG program starts with the construction of a power
series expansion of the solution for~5.17! in terms ofl as
x5x01lx11l2x21••• , and y5y01ly11l2y21••• .
Paquette has also pursued the same line independently@45#.
A lengthy but straightforward calculation gives

x5A1l f 20A
2t1l2~ f 20

2 A3t21 f 11g20A
3t1 f 30A

3t !

1l3$t3f 20
3 A41 5

2 ~ f 11f 20g201 f 30f 20!A
4t21@22g20f 20f 11

1 f 11g20g111 f 11g301 f 20g20
2 1 f 21g201 f 40#A

4t1CT%

1O~l4!,

y5lg20A
21l2@2g20f 20A

3~ t21!1g20g11A
31g30A

3#,
~5.21!

whereCT denotes the constant terms andA is the initial
condition forx. Here we have discarded all the exponentially
decaying terms. For example, to the first order the full solu-
tion reads

x15 f 20A0
2t2 f 11A0B0e

2t2 1
2 f 02B0

2e22t1A1 ,

y15g20A0
21g11A0B0te

2t2g02B0
2e22t1B1e

2t, ~5.22!

whereA0 ,B0 ,B1 are numerical constants dependent on the
initial data. The exponentially decaying terms do not contrib-
ute to the secular behavior of perturbation series. We absorb
the secular terms proportional to the powers ofT into the
redefinedA by splitting t as ta2Ta1Ta, wherea is an
appropriate integer. That this can be achieved consistently
must be checked order by order. The simplest way may be to
introduce the renormalized counterpartAR of A as
A5AR~11lv11l2v21l3v31•••!, wherevi are determined
to remove the powers ofT from the perturbation result forx
after splittingt. The renormalization condition can be written
as

AR~11lv11l2v21l3v31••• !1l f 20~11lv1

1l2v2!
2A2t1l2~ f 20

2 t21 f 11g20t1 f 30t !A
3~11lv1!

3

1l3@•••#5AR . ~5.23!

From this, order by order in powers ofl, we can fixvi as

v152 f 20At,

v25 f 20
2 A2t22 f 11g20A

2t2 f 30A
2t,

v35A3$2 f 20
3 t31 5

2 ~ f 11f 20g201 f 30f 20!t
21@2g20f 20f 11t

2 f 11g20g112 f 11g302 f 20g20
2 2 f 21g202 f 40#t%. ~5.24!

The renormalization group equation reads

dAR
dT

5
d

dT
$AR~T!~11lv11l2v21l3v31••• !%50.

~5.25!

Introducing the explicit forms ofvi into this equation, we
experience almost miraculous cancellations of all the terms
containing powers oft explicitly to have

dAR
dt

5lAR
2 f 201l2AR

3~ f 11g201 f 30!1l3AR
4~ f 11g301 f 20g20

2

1 f 21g201 f 402 f 20f 11g20!1O~l4!, ~5.26!

where t is identified withT. This agrees with the conven-
tional result. Fory, after renormalization, all the explicitlyt
dependent terms disappear to orderl2, and

y5lg20AR
21l2~g20g111g3022 f 20g20!AR

31O~l3!.
~5.27!

This also agrees with the result given above.
The formal solution~5.21! is order by order inl obtained

from the true solution by discarding the transcendentally
small terms in the larget limit. Notice that inxn the highest
power of t is n ~for yn it is less!, so that up to a given order
n, by choosingl such thatlt51, we can make the contri-
bution of the sum of the transcendental terms~such ase21/l!
less than any small positive number for sufficiently larget.
In this way, locally up to any finite order inl, the series
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obtained as the singular~or nondecaying! terms describes the
asymptotic behavior of the system. Therefore, if the system
has a unique solution to the initial value problem~near the
origin!, then we can uniquely determine these series, and
they give a parametric representation of an approximate cen-
ter manifold. In the present context, renormalizability means
that the motion on the approximate center manifold is au-
tonomous. The renormalization reorganizes the expansion so
thatdx/dt is not explicitly time dependent.

The RG procedure given above is actually much more
tedious than the conventional approach. However, the ob-
tained center manifold by RG need not be expandable in
terms ofx. Thus the RG method works in some cases even
when the conventional approach is not applicable@46#.

VI. SUMMARY

In this paper, we have demonstrated that various singular
perturbation methods and reductive perturbation methods
may be understood in a unified fashion from the renormal-
ization group point of view. Amplitude equations and phase
equations describing slow motion dynamics in nonequilib-
rium phenomena are RG equations. The RG method seems
to be more efficient and simpler to use than standard meth-
ods in the sense that it avoids the necessity to perform as-
ymptotic matching, and generates its own problem-adapted
asymptotic sequence. The approximations generated by the
RG work well over the entire interval of interest, and better
than the conventional approximations in the cases that we
have studied. Formally expanding the approximation ob-
tained by the RG yields a conventional perturbation expan-
sion, but one that is of lower order than that obtained by the
standard techniques, because the latter uses both inner and
outer expansions. However, as is demonstrated by an ex-
ample in Sec. IV, the RG result, which is apparently lower
order than the standard one, may be numerically much supe-
rior to the latter. Also, as in this example, if we wish, we can
recover the conventional perturbation expansion result by ex-
pansion of the appropriate order of the RG expansion.

Probably the most outstanding question is to justify math-
ematically the general renormalized perturbation approach
developed in this paper. The rigorous and constructive renor-
malization group approaches of Bricmont and Kupiainen and
our formal perturbative approaches have almost no common
technical ground, although their philosophy is identical. Con-

sequently, we do not have even a hint as to how to rigorize,
or estimate the errors of our approach.

The Wilson-style RG@10,47# and Bricmont and Kupiain-
en’s related constructive renormalization group approaches
@15# can be implemented numerically. We have examined
similarity and traveling wave solutions@48# and have devel-
oped an interpolation-resampling scheme which produces a
‘‘virtual continuum’’ to allow smooth scaling of any func-
tion on a discrete grid@49#. Finally, a completely different
approach to the numerical solution of a PDE is to construct a
sequence of coarse-grained approximations to the solution as
opposed to the conventional method of constructing a se-
quence of sampled points from the solution. Whereas the
sequence of sampled points obey the usual finite-difference
equations, and are supposed to converge to the solution in
the continuum limit, the sequence of coarse-grained approxi-
mations obey a renormalized version of the original PDE,
which can in some cases be found explicitly using the RG
techniques@50#. We hope to report on these developments in
future publications.

Note added in proof.R. Graham has recently shown@R.
Graham, Phys. Rev. Lett.76, 2185~1996!# that a rotationally
invariant form of the amplitude equation proposed by
Gunaratneet al. @G. H. Gunaratneet al., Phys. Rev. E50,
2802~1994!# can be derived using the methods of Sec. V, by
retaining all singular terms rather than the most singular
terms.
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