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Dynamics of a curved flame propagating in a tube is investigated by means of two-dimensional numerical
simulations. The complete system of hydrodynamical equations including thermal conduction, viscosity, equa-
tion of chemical kinetics, and fuel diffusion is solved with the ideally adiabatic and slippery boundary condi-
tions at the tube walls. It is found that only a planar flame can propagate in a narrow tube of width smaller than
a half of the cutoff wavelength determined from the linear theory of the hydrodynamic instability of a flame
front. In a wider tube, stationary curved flames are obtained, which propagate with the velocities larger than the
corresponding velocity of a planar flame. The velocity of a curved flame front is studied as a function of the
tube width and the expansion coefficient of the fuel. The influence of viscosity on the velocity of a curved
flame front is found to be negligible. The configuration of a curved flame propagating upwards in a gravita-
tional field is also investigated. It is shown that gravity leads to an additional increase of the flame velocity due
to the effect of rising bubbles of light burning products. The analytical formulas for the velocity of a flame
front are proposed for the cases of both zero and nonzero grESitp63-651X%96)10010-6

PACS numbgs): PACS 47.20-k, 82.40.Py

I. INTRODUCTION evolution of the flame front is not complicated by the

thermal-diffusive instability, the instability growth rate has

The problem of flame dynamics in tubes is one of thethe form
most fundamental problems in combustion theory. The theo-
retical model of the flames in tubes reproduces the main

features of a common burning configuration in mdusmal_whereuf is the normal velocity of a planar flamk, is the

conditions, such as, for example, the combustion process 0 toff wavelength, and the coefficiefit depends upon the

gas turbines of aircrafts. Besid.es, a fIa_me front p.ropagatin_gatio of the fuel density and the density of the burning prod-
in a tube represents a typical situation in combustion experi-

ments[1—4]. As was observed experimentally, a flame front U8 @=pi/po>1,

in a tube propagates rather seldom as a planar stationary 0

front. Usually the flame acquires a curved sh&pgl] and N'=—(0+1-1/60-1). 2
sometimes transition to a turbulent regime of propagation ©+1

happeng2], which is accompanied by considerable amplifi- Perturbations of a wavelength shorter than the cutoff wave-

cation of the flame velocity. While the observed transition to o .

. . length A, are stabilized by thermal conduction. The cutoff
the turbulent regime may be sometimes accounted for by th\?vavelen th is proportional to the flame thickndssand it
interaction of the flow and rough tube wallg], the curved xceedsgessenit)iallp the flame thickness. Typically for flames
shape of a flame in tubes is a more common phenomenoﬁ. y - Lypically

The curved shape of the front appears even for flames propg] gas mixtures one has;~20L. For the case of the Lewis

gating in tubes with very smooth and adiabatic walls and itnumber equal'to u.nityequal coefficient_s Of. thermal diffusiv-
requires another explanation. A flame front may becomé'[y and fuel diffusion) and a large activation energy of the
spontaneously curved because of the hydrodynamic instabif?"“ct'on’E/RTb> >1 (T being the temperature of the burnt
ity first discussed by Landau and Darrids5,6], which is matteb the cutoff wavelength may be estimated by the ana-
the main reason for curved shapes of the flame fronts oblytIcal formula[7-10

served in many experiments.

The Landau-DarrieusLD) instability is inherent to all _ 7L(®—-1) 1+ 0InO O+i+2r
flames in gaseous mixtures since the instability is related to C rye+1—-1/0 (©-1)2 )
the gas expansion in exothermal reactions. On the linear
stage of the instability the perturbation amplitude grows ex+or the case of moderate values of the activation energy
ponentially with the growth rate- depending on the pertur- E/RT,=1 the cutoff wavelength can be calculated using the
bation wave numbek=27/\. For a simple case, when the method proposed ifiL0].

o=Tuk(1—knJ2m), 1)

()
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0.6 T T T T The purpose of the present paper is to investigate the non-
' 3 linear stage of the LD instability by means of two-
- 05 ¢ . 73 dimensional2D) numerical simulations of the complete sys-
= o4 F , 3 tem of hydrodynamical equations and equations of chemical
SO S ] kinetics. There have been several papers devoted to 2D nu-
= 03 [ ! ] merical simulations of LD instability of a flame front in a
I r ) ] laboratory or astrophysical environment, e[@0-23. Par-
=" 02 F 3 ticularly, the linear stage of the LD instability of a planar
e E ] flame has been studied thoroughly[22] by means of 2D
o1 p E simulations. However, when it comes to the nonlinear stage
0 Bt N of the LD instability, all these papers resulted only in quali-
0 0.2 0.4 0.6 0.8 1 tative descriptions of the simulated flows. Therefore careful
A TN guantitative investigation of the dynamics of curved flames

is necessary.

FIG. 1. The scaled velocity of a stationary cellular flame vs the N the present paper we study propagation of a curved
inverse cell sizex,/\ obtained in the limit of a small expansion flame front in a tube with ideally adiabatic and slip walls.
coefficient® —1<1 . The dashed lines of the curve correspond toSuch a configuration corresponds to the development of a
the unstable solutions. periodic cellular structure at a flame front as well, since the

. - . ideal walls may be considered as the symmetry axes. In the

Development of the LD instability causes an increase ofyresent paper we restrict ourselves to the case of tubes of a

the flame front surface which in turn leads to the acceIeratiorpnOderate width compared to the cutoff wavelength. By this

of the flame. However, there is a mechanism of non"ne.aFestriction we concentrate our study on the development and

stabilization preventing infinite acceleration of flames in propagation of stationary cellular flames. One of the goals of

tubes, as was pointed out fil]. If a flame propagates in a : : ; ; ;
' : the present paper is to investigate the maximal velocity of a
tube of moderate width comparable to the cutoff Wavelengthsttationary curved flame in tubes. We also consider the con-

then the growth of perturbations causes for_mation of cusps Eﬁguration of curved upward propagating flames and study
the flame front and leads to the configuration of the station-

ary curved flames observed experimentally[$4]. Such ﬂ}e effe”ctl of fcljraV|ty 03 :‘jlamel dynarrllc?. F;rob{elmst of ,{Stab'l't)(l
curved flames propagate with higher velocity compared ! @ celiular lame and development of a fractal structure wi

the planar flames. As is expected, in tubes of moderate widt € addressed. in the fprthcomlng Papers. :
a curved flame front consists of a few cells separated b The paper is organized as follows. In Sec. Il a basic set of

cuspg11,12. In much wider tubes such a configuration can—)(he equations Is mtroqluced and the pro_blem of a flame
not be stable any more. If the cell size is large enough i ropagating in a tube is formulated. Section IIl contains a

comparison with the cutoff wavelength, then the cellular fief description of the 2D numencall scheme. In Sec. IV
%Tults of several tests of the numerical code for the well

flame in turn becomes unstable against the LD instability o nown analytical solutions of flame dynamics are presented
a small scale. As a result of this secondary instability a fin > . : )
M y e found that the Zel'dovich-Frank-Kamenetski solution for

structure arises on large ce(l$3,14. Further development | ati f f dthe I ¢ fth
of the secondary LD instability is possible if the largest jn- & Planar stationary flame roft] and the finear stage ot the
D instability are reproduced with a very good accuracy.

stability length scale exceeds the cutoff wavelength by mam'ihe obtained results on the dvnamics of curved flames in
orders of magnitude. In this case a fractal structure develop ine " y : urved '
ubes and discussion of the results are presented in Sec. V. In

at the flame front which implies many cascades of small cell i . .
imposed on large cellfl5—18 ec. VI we present results of the numerical simulations of
: fupward propagation of slow flames in a tube. The analytical

Up to now there was mostly qualitative understanding o formulas are obtained for the velocity of a curved stationar
the nonlinear stage of the LD instability. Theoretical analysis, Y y

of the nonlinear stage of LD instability has been restricted a{lame .for both cases of zero and nonzero gravity. We con-
most by the investigation of flame behavior in the limit of the clude in Sec. VII.

small expansion coefficient) —1<<1 [12,14,16,17,1p

Particularly in the limit of a small expansion coefficient the

model equation for a curved flame front has been derived in Il. BASIC EQUATIONS

[12] and the analytical solution of this equation has been e solve, numerically, equations of hydrodynamics and
obtained in[19]. It follows from the analytical solutiof19]  chemical kinetic. For the sake of simplicity a single irrevers-

that velocity of a stationary curved flame front with periodic jbje reaction is admitted, so that the governing equations are
cellular structure depends on the cell size in a way shown ifhe following:

Fig. 1. The important feature of the dependence is existence

of a maximal possible velocity of a stationary cellular flame

front. For example, this maximum is achieved for the period J J

of the cellular structura ,= 2\ . which results from the fast- 2Pt 5 (pU) =0, (4)
est growing perturbations on the linear stage of the instability !

growth. Except for the study of the specific limit of small

expansion coefficients only semiqualitative analytic esti- P 9

mates of the velocity of a curved flame front are available —(pu) + = (puju) + &;P— 7; =0, (5)
[11,13. ot IX;
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1
—| pe+ EpUJU]

1 densities of the fuel and the burnt g&=p:/p,. For the
puih-+ EPUinUj —q—uj7; | =0, case of subsonic flames the flow is isobaric within the accu-
(6) racy M2< <1, so that the expansion coefficient is equal to
the ratio of temperatures of the fuel and the burning products
pY O®=T,/T;. For this reason the expansion coefficient may be
== T—exp(—E/RT), governed by alteration of the energy release in the reaction
R @) 0®=1+Q/CpT;. For given chemical parameters of the fuel
the expected velocity of a planar stationary flame has been
where Y is the fuel fraction,e=QY+C,T is the internal calculated by the method used[it0]. When the velocity of
energy,h=QY+CpT is the enthalpyQ is the energy re- a planar flame is known, the thickness of the flame front can
lease in the reaction. The specific he@ts, Cp are assumed be estimated by the formula
to be constant and unaffected by reaction. We consider a
reaction of the first order; the temperature dependence of the n

P
+ _
Ix;

m aY

J J
at (pY) IX; (pu,Y Sc dx;

reaction rate is given by the Arrhenius law with the activa- =50 (12)
tion energyE and the constant of time dimensiog. The Pt
stress tensor and the energy diffusion vector are given by the ) ) ] o
formulas Another parameter of our simulations is the activation en-
ergy of the reaction. For most of the laboratory flames the
au; au; 2 Uy activation energy is quite large/RT,= 10— 20. However, a
T T TR ok T 3% g (8 large activation energy implies a narrow zone of chemical
' ' reactions Lg compared to the total flame thickness
w dT w aY Lr~LRT,/E<L , which in turn requires the fine gridding to

9 resolve the reaction zone. By this reason we choose moderate
values of the activation energy to spread the reaction zone

where Pr is the Prandtl number and Sc is the Schmidt numVer 7-10 computational cells. For the flames with expan-
ber (their ratio gives the Lewis number kePr/Sc). We take Sion coefficients® =5,7,10 we chose the activation energy
the gas mixture under consideration to be a perfect gas df/RTo="5. For the flames with smaller expansion coeffi-
molecular weightn unaffected by reaction, so that the equa-CIENtS it IS necessary to take larger values of activation en-

Qi:CPFra_>(i+Q§:a_xi’

tion of state is ergy to avoid the undesirable effect of spontaneous reaction
ahead of the flame fron{1]. For example, we take
R E/RT,=7 for the flame with the expansion coefficient
P=pT, (100 ®=3. Luckily, development of the LD instability for the
case of the Lewis number equal to unity is not sensitive to
whereR~8.3 J(deg mo) is a gas constant. the .Value of the activation enerd)l,;l.O].. That'’s Why the
The flame is assumed to propagate in a tube of widith Cchoice of moderate values of the activation energy makes no
with ideally adiabatic and slip conditions at the walls restrictions on the obtained physical results.
aT
=0, u#0, —-=0, at x=0D. (12) lll. THE NUMERICAL SCHEME

We have performed the numerical simulations using a 2D
We choose the axig directed along the tube wall and the hydrodynamic Eulerian code which accounts for chemical
axis x perpendicular to the walls. An infinite length of the reactions. The code is based on the cell-centered finite-
tube is assumed which is achieved in simulations by an aprolume scheme. This numerical method appears to be quite
propriate choice of the computational intervals. effective when used to model different kinds of complex

The initial temperature of the fuel §=300 K and the hydrodynamic flowg20,24-27.
pressure i=10° Pa. The viscosity coefficient of the fuel To construct the cell-centered finite-volume scheme any
is u=1.7x10"3N s/n?, with the molecular weight being equation of the systen4)—(7) should be rewritten in the
m=2.9x10"3 kg/mol and the specific hea,=7R/3m.  form of the conservation law
The velocity of a planar stationary flanug is determined by
the chosen values of the chemical parameters of theEuel G 9Eg dFg
Q, 7r. We are interested in the dynamics of the flames with -t =
the velocitiesu; much less than the sound sperd For this
reason we adjusted parameters of the fuel in such a way that
the Mach number i$1=u;/c,=0.01<1. where G stands for any of the variables, puy, pu,,

To investigate the development of the LD instability with- pe+ (1/2)p(u2+u?), pY; Eg, andFg stand for the corre-
out influence of the thermal-diffusion instability we keep al- sponding fluxes andHg gives a source term. The cell-
ways Le=Pr/Sc=1. In most of the calculations we take centered finite-volume spatial discretization is obtained by
Pr=Sc=0.3, still the influence of viscosity on the dynamics integrating the conservation law in the for(@3) over a
of a curved flamedifferent Prandtl numbeyds also inves- given grid cell. As an example, we present here the result of
tigated. The main parameters of the simulations are the tubiategration for an interior cell with indicesj. We assume
width and the expansion coefficient defined as the ratio ofhat purely integer indicesi(j) denote a grid cell, mixed

Tt X ez He, (13
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fractional-integer indices denote the cell walls and purelySimulations start from the initial state which corresponds to
fractional indices denote the grid nodes. Within this notationthe planar flame front in the vicinity af=0. The size of the
we have fine mesh in the vicinity ok=0 is adjusted to the structure
of the flame front and the energy release zone. To maintain
the flame front neaz=0 on the fine mesh adjusted to the
flame thickness we impose the following boundary condi-
tions on the incoming flow of the unburnt matter at

d—
aGi,j +(Eg)it12j=(Eg)i—12j T (Fo)ij+12— (Fo)ij-1

=(Hg)ij 14 z=—z.:
where T:Tf’ pP=pPt, u;=Uus, UX:O, Y=1. (16)
G_i,:i GdS(He); J:LJ HdS, Similar boundary conditions for the outgoing uniform flow
oaijJa; ' i of the burnt matter Y=0) follow from the conservation

laws of mass, momentum, and energy. These conditions are
imposed az=+2,,.
@ij= fQ_ dS (Eglivirn= fB_ (EenytFenydl, To eliminate the influence of the particular valueZof on
i,j i+1/2, . . . .
the results of numerical simulations this value should be
large in comparison with any other length scale. The charac-
(FG)”H,Z:J (Eghy+Fgny)dl. (15 teristic length scales of the problem can be estimated from
Bij+12 the linear stability analysi7, 24]. They are: the flame thick-
nessL, the hydrodynamical length scale, which is about the
tube widthD, and the length scale of vorticity dissipation
behind the flame front

; ; is the greed celli(j); Bi;12; andB; ;4 are the cell
walls between the current cell,{) and the cellsi(+1,j) and

(i,j+1), respectivelyn=(ny,n,) is the normal to the cor-
responding cell wall.

— 1 I'L
By choosing the cell averages of the state ve@oy as L,=L \/W-F(?TL/D)Z-F (:)TPID_ P a7
the unknowns of the discretized problem and introducing "

approximations of the fluxestg)i.12j and Fe)ij+128nd  Another restriction on the tube length comes from the re-

the cell averaged source vectdt ); ;. 1, in terms of these  yirement to eliminate the chemical-acoustic instability. This
unknowns, we arrive at the final spatial discretizatiold. jnstapility arises as a result of the resonant interaction of the
A key feature of the cell-centered finite-volume discreti- 5coystic oscillations in a tube of finite length and the energy
zation of(13) given by (14) is the numerical approximation rejease in the reaction. It was pointed out[#9] that the
of the fluxes €g)i+12j and Fg)i j+12 in terms of the cell  chemical-acoustic coupling does not lead to the instability if
averagess; ;. The usual approach is to treat the convectivea characteristic acoustic tim. /c; is large compared to the
flux approximations and the diffusive flux approximations characteristic chemical time scaléu;. Therefore in order
separately because of the different nature of these fluxes. Feo suppress the instability the tube length must be chosen
the convective fluxes we use a characteristic-upwind fluxconsiderably larger thah/M. In our calculations we use
schemd 28] in which the propagation directions of the vari- Z.,=500L to satisfy all the restrictions mentioned above.
ous characteristic variables control a user-given degree of up We use a rectangular grid with the grid walls parallel to
winding. Here it turns out to be advantageous to work withthe coordinate axis. When choosing the grid step we take
the hydrodynamical variablgs uy, u,, P, Y instead of the into account the characteristic scales of the flow under con-
conservative variables in the state vec®r;. The numeri-  sideration. The characteristic length scale alongxtfais is
cal errors introduced by using this approximation are of thehe distancé® between the walls. Therefore along thaxis
second order in the grid spacing assuming a smooth solutiothe grid is uniform with the grid stem,=D/N,, with
For problems where all spatial scales are adequately resolvedl,= 16 for D<A /2 andN, =32 for D>\ /2 (the last case
in the computational grid, an extremely small amount of upcorresponds to the situation when perturbations with the
winding may be used giving an almost centered scheme witlwavelengtha\ =2D and A =D are both unstabje To per-
minimal numerical dissipation and dispersion. form all the calculations in a reasonable time we use a non-
Boundary conditions at the tube wall$1) are approxi- uniform grid along thez axis: the space step of the grid is
mated in a traditional manner providing an approximation ofconstant(aboutL/10) in the area— 6L <z<6L, where the
the second order in the grid spacing. At the same time on#lame front is maintained and the grid step gradually grows
should pay special attention to the boundary conditions imeutside the area with 18% change in size between adjacent
posed at the ends of the tube. Though we are interested ells, as recommended jB0].
flame dynamics in a tube of infinite length, a finite compu- To avoid spurious reflections from the artificial bound-
tational domain requires the boundary conditions to be imariesz= = Z,, the boundary conditions were used in the form
posed at finite displacemenis==*Z, instead ofz=* oo, of a far-field dumping operator, analogous [81]. The
Therefore the value oZ,, must be chosen large enough so boundary conditions are based on the characteristic variables
that the flow atz=*=Z, can be treated as uniform. In our and the characteristic speeds normal to the boundary. A local
modeling we use an Eulerian resting grid, therefore the unlinearization of the governing equations in the fofb3) was
burnt matter flows into the calculation domainzat —Z,,  done to obtain a linear advection problem normal to the
and the burnt matter flows out of the domainzat +Z,, . boundaries at=*+Z7,:

1—1
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9G | 96 _
at Foz

-
[\8)

0, (18

—

whereJe=0dF/dG is the Jacobian of the flux vectdtg
with respect to the solution vect@. As is seen, the bound-
ary conditions(18) include only the direction normal to the
boundary, which means that only disturbances in the form of
a planar wave traveling in the direction normal to the bound-
ary are present. Equatiqi8) may be transformed into a set
of scalar equations in the form

reaction rate
< o o
> o o0

scaled temperature, pressure,
e
[ %]

(=]

IWh IWh 6 4 ‘-2‘ '0""2" 4‘H6
o T han =0, (19 L

where), , is then th eigenvalue ojlthe matrliF, W '$ the FIG. 2. Profiles of the hydrodynamical variables for a planar
n th component of the vectW=T; °G andT, is the diago-  fame front with the expansion coefficieft=5. Curve 1 corre-
nalizing matrix: T;'JeT,=diag(\;1,M52...). Equation  sponds to the scaled temperatufie{T;)/(T,—T;), the solid line
(19 expresses the transfer of each characteristic variablgives the solution of the eigenvalue problgh®], and the markers
W, by the flow with the characteristic spead ,. Then the  show the result of numerical simulatiémesh points curve 2 cor-
sign of the characteristic speed determines if the correspondesponds to the scaled pressuRe-P)/(P¢— Py,); curve 3 corre-
ing characteristic variable is traveling out of the calculationsponds to the reaction rate scaled by it's maximal value.

domain or into the domain. The principle we used serves t(\)/vhere
impose the boundary conditiori$6) only on those charac-

teristic variables that travel into the domain and to extrapo- E2(®—1)2

late (from the interiof those that travel out of the domain. = WEXD(E/ ORT). (24
This way of treating the boundary conditions &t +Z,, f

results in complete suppression of spurious reflected sourithe important feature of the analytical solution is the pres-
waves, which present in a numerical modeling if the speciabure difference between the ends of the tube

precautions are not applied. [P]1=(®—1)psu? given by Eq.(22). This pressure differ-
ence was taken as initial boundary conditions at the ends of
IV. SIMULATIONS OF A PLANAR FLAME the tube. After a time interval comparable to the time neces-
AND THE LINEAR STAGE sary for a sound wave to propagate from one end of the tube
OE THE LANDAU-DARRIEUS INSTABILITY to another, the stationary flow was formed. The flow corre-

sponded to a planar flame front propagating with a constant

The numerical code has been tested on well known soluvelocity u; respective to the fuel. The real velocity of the
tions of the problems of flame dynamics and stability. Parflameu; was slightly different from the estimaie,r given
ticularly, it was verified whether the numerical simulation by Eq(23), and therefore in the laboratory reference frame
reproduces properly propagation of a planar stationary flaméhe stationary flame front moved with a small speed
front and the linear stage of the LD instability. Us—uzg. For this reason the pressure differerid®| was

To study propagation of a planar flame the analytical soadjusted until a steady front at rest in the laboratory reference
lution obtained by Zel'dovich and Frank-Kamenetski]j frame (relative to the grigl was obtained in simulations. In
was chosen as an initial state. In the coordinate system cdPis reference frame the fresh fuel flows towards the flame

moving with the flame front the solution can be written in the ront with the velocityu; . Inside the flame front the fuel
burns and the gas temperature increases to the final value.

form The burnt products are drifted away from the flame front in
T+T(®—1)expz/L), z<0 the downstream ﬂoyv. The resulting pr_ofiles of temperature,
= (20 pressure, and reaction rate for the stationary flame front with
T=0T;, z>0 the expansion coefficie®=5 are presented in Fig. 2. A
7 very good agreement of the simulations and the solution of
) — he ei | lem f I fl f i
U lug=plp=TIT,, Y= f, 21) the eigenvalue problem for a planar flame froh@] is seen

in Fig. 2: curve 1 shows solution of the eigenvalue problem
for the temperature of a planar flame fr¢ad], the markers
give the result of the numerical simulation. The pressure
jump is seen on curve 2 for the scaled pressure. At the same

0-1

b [Pf+(%Pr—l)((@—l)pfufzexp(z/L), z<0

Pi—(®—1)pu?z, z>0. time we would like to emphasize that the absolute value of
(22)  the pressure jump is negligibl®]/P¢=5.3x 10"4, which is
aboutM?.
The starting estimate for the velocity of the planar stationary = Another test of the numerical code was simulation of the
flame is given by the formula linear stage of the LD instability for a planar flame front. The

1 velocity componenti, of the obtained stationary solution for
:( H 23) a planar flame front was perturbed as,(z)—u,(2)
ZF\ PrpgrpA ) +To(z,x), where
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__ FIG. 3. Time evolution of the temperature perturbations -~z
T/(T,—T;) of a flame front with the expansion coefficigdt=5 in

a tube of widthD=\..The curves 1, 2, 3 correspond to the time
us(t—tg)/L=0;9.3;18.6, respectively.

To(2X) = U(2)Agcog mx/D) p( ”Z(Z_Z°)2>
Up(Z,X)=UxZ Ccog X exp ————=—|.
0 z 0 D? FIG. 4. The temperature of the cellular flame front with the

expansion coefficient®@ =5 propagating in a tube of width

(29

D=2\..
The initial dimensionless perturbation amplitude was taken ¢
_ _4 . . . .

Aﬁ_ 10 ar;]d the_ ma?(|mrl11m of the initial pert#rbaﬂons WaS tions of the linear theor}10]. Particularly for the flame front
chosen g.:,ft € pomT.O Ihnlt € rfeactlon Zﬁne' V\; erle templera- with the expansion coefficien® =5 and the tube width
#"ie_l_ 1 ' F\?'rI'S/E Sllghty | rom t tf . mad \(/ja ue =\. (A is the cutoff wavelength calculated by solution of

=Ty(1-RT,/E). The velocity perturbation induced per- o gigenvalue problenild]) the theoretically predicted
turbations in density, temperature, pressure, and concentra-row,[h rate iso-=0.0881, /L, while the numerical simula-
tion. When the amplitude of the velocity perturbation be-g;, gives the growth rate:,0.084jf/L. The perturbations
came ten times larger than_the initial amphty,elg (at the grow in agreement with the linear theory until the dimen-
time instantty) all perturbations developed in accordanceSionless amplitude becomés~ 10. At this time the dimen-
with the e|gen_mode of t_he solution of the elgenvaIL!e prOb'sional amplitudes of perturbations are approximately hun-
lem[10]. The time evolution of temperature perturbations fordred times smaller than the corresponding values of the
a flame front with the expansion coefficie@t=5 in a tube

) T A _ unperturbed flow. On the later stage the nonlinear effects on
of width D=\ is shown in Fig. 3. All perturbations have a the growth of perturbations become noticeable.

well pronounced maximum. The temperature perturbations

as well as density and concentration perturbations are local-

ized around the flame front on the length scale of about flame V. CURVED FLAME PROPAGATION IN THE CASE

thicknessL. The perturbations of velocity and pressure are OF ZERO GRAVITY

iv%fﬁ% o;néh; rgﬁrz(iy\?g?gzclf:gg ;C?Aisp?écae%?ﬁé tsuebe_ Dynamics qf a curved flame front hgve been investigated

tion. The amplitudés of all perturbations were measured b(%Or d|ﬁgrent Wld-th-s of the tube and Q|fferent values of the

the .ratio of the perturbation maximum to the value of this Xpansion co_eff|C|en_t. One of the main parameters that_ affect
: S . the propagation regime of a curved flame in a tube is the

maximum at the time instang. For example, the amplitude

. t turbati d ratio of the tube width and the cutoff wavelength. The
ot temperature perturbations was measured as exact values of the cutoff wavelength are calculated by the
~ method used i10]. Because of the ideal boundary condi-
A= maxz[j(z,t)cos( 7x/D)] . (26) tions at the walls Eq11) the tube widthD determines a half
max[ T(z,ty)cog wx/D)] of the largest possible wavelength of permitted perturbations

A=2D/n, n=1,2,3, etc. For perturbations of a wavelength
In agreement with the linear theory all perturbations grewshorter than the cutoff wavelength development of the LD

exponentially with the same instability growth rate, so thatinstability is suppressed by thermal conduction. If a tube is
the equality sufficiently narrowD <A /2, then all permitted perturbations
belong to the stable part of the dispersion relation(Bqln
agreement with the theory the numerical simulation demon-
strates that flame evolution in narrow tuld@s<\ /2 always

o =const (270  leads to a planar flame front. Even in a case of a rather large

amplitude of imposed initial perturbationsA{=0.1) the
was fulfilled with 0.5% accuracy. The instability growth rate flame front returned to the planar configuration.

o obtained from(27) is in good agreement with the predic- In wider tubesD >\ /2, the hydrodynamic instability de-

INA7(t) =InA, (1) = INA, (1) =InA, ()= o (t—to),
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FIG. 6. The scaled vorticitywL/u; behind the curved flame
FIG. 5. The velocity field for a curved flame front with the front with the expansion coefficiefd =5 propagating in a tube of
expansion coefficier® =5 obtained in numerical simulations for a width D=2\...

tube widthD=2\.. The solid line shows the isotherii=400 K.

velops and results in a stationary curved shape of a flame uW=uf+4[Um(®)—uf]2)\—5< 1- 2)\—5) (29
front. We found that the first harmonic with the wavelength
A =D induces the growth of harmonics with smaller wave- ) ) ) )
lengths\ =D/2,D/3, etc., due to the nonlinear interaction. WhereUn(©) is the maximal velocity depending upon the
The amplitudes of all harmonics grow with time until the €XPansion coefficient. The calculated velocity of a curved
final amplitudes corresponding to the stationary curved flamf@me is plotted in Fig. 7 versus the inverse tube width for the
front to be achieved. The resulting shape of the stationar)‘?Xpa”S',on_Coeﬁ'c'e”t®:5 (curve 3 and® =3 (curve 2.
curved flame with the expansion coefficigdt=5 is shown he solid lines correspond to the formula Eg9) with the
in Fig. 4. The numerical simulation confirms the qualitative CO€fficientsU, and\ providing the best fit of the numerical
idea of a curved flame front composed of cdlld], which results. The _cutoff wavelengths, calculated in such a way
are separated by cusps pointing to the products of burningdree well Wl_th the cutoff wavelengths found _from the solu-
However, unlike the qualitative picture obtained[itt,13  ton of the eigenvalue problerfl0]. The obtained depen-
on the basis of the model of an infinitely thin flame front, the d&nce of the velocity of a curved flame upon the tube width
cusps in Fig. 4 are smoothed by thermal conduction. ThéS S|m|_Iar to the_flrst parabola piece in Fig. 1 r.epresentlng the
velocity field for the curved flame front with the expansion @nalytical solution for the velocity of a stationary cellular
coefficient® =5 is shown in Fig. 5. An interesting phenom- flame front with a small expansion coefficieft—1<<1.
enon one can observe is the generation of vorticityTN€ velocity maximumu,=Un(®) is achieved for the tube
w=3u,/dz— du,/dx behind the curved flame froiFig. 6) width D=\ .Because of the ideal boundary conditions Eg.
which is an important feature of the flame dynamijds.
Vorticity is produced, at most, close to the cusp points of the 02 T T T T T T T T T
flame front, while near the humps the flow remains irrota-
tional. The produced vorticity is drifted by the downstream
flow and dissipates because of the viscous effects, so that the
flow at the exit of the tube is uniform again.

A curved flame front propagates with the velocity,
larger than the corresponding velocity of a planar flame 2
front. The velocity of a curved flame was calculated as

015 |

/uf—l

01 F

u
T

0.05 F
pfU1—ppu -
UW:M, (28) F
Pt~ Pb 0 oo
0 0.2 0.4 0.6 0.8 1
whereu, is the fuel velocity at the entrance of the tube and A, /2D

U, is the velocity of the products of burning at the tube exit.

Dependence of the velocity of a curved flame front on the g 7. The scaled velocity of a curved stationary flame
tube width was investigated for different expansion coeffi-y, ju,—1 with the expansion coefficient® =5 (curve 3 and
c_ients. For any expansion_ coefficiemtthe calcule}ted v_eloci- ®=3 (curve 2 vs the inverse tube width /2D.The markers cor-
ties of the curved flames in tubes of different widibwith a  respond to the results of the numerical simulation; the solid lines
very good accuracy may be described by the formula give the best analytical fit in the form of E¢R9).
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0.5 e e T 0 <5. For larger expansion coefficients there is no quantita-
3 ] tive agreement any more between the increase of the flame
: front velocity and the increase of the surface of the flame
1 front, still a very good correlation remains.
h It is worth comparing the obtained velocities with the ana-
] lytical estimateq13], where velocity of a curved stationary
b flame of zero thickness has been considered. The direct com-
] parison of these results is difficult, since an infinitely thin
stationary flame front is inherently unstable and cannot be
observed in numerical simulations. However, it can be seen
L from Fig. 1 that in the limit of small expansion coefficients
1 the velocity of an infinitely thin stationary flame
(Ac/A—0) coincides with the local velocity maximum of
the first parabola piece at=2\.. If we assume that this
FIG. 8. Increase of the flame velocity and the length of the frontfeature holds for any expansion coefficient, then comparison
vs the expansion coefficierd for curved flames propagating in of the obtained results and the results of R&B] becomes
tubes of the widthD=\.. Filled triangles show the velocity in-  straightforward. The comparison shows that the increase of
creaseU,,/u;—1 obtained in the numerical simulations, curve 1 the flame velocity due to the curved shape of the front has
presents the analytical formula E@O). Curve 2 and filled circles peen overestimated in R4fL3]. The difference between the
show the increase of the length of the curved flagsD — 1. estimate of13] and the results obtained in numerical simu-
o ] lations is more pronounced for smaller expansion coeffi-
(11) in this case the curved stationary flame results from thients. For example, fo =3 the estimate of the velocity
development.of t.he perturbation mode with the wavelengthncrease U,/u;—1) proposed in[13] is approximately
Am=2A\., which is the fastest mode on the linear stage ofyyice |arger than the velocity increase obtained in numerical

the instability according to Eq1). _ simulations. For larger expansion coefficients the difference
One of the main characteristics of the dynamics of curvedg ot 5o pronounced: for example, fr=10 the estimated

flames is the dependence of the maximal velotifyon the  ye|ocity increase i#J ,/u;— 1~0.4 according td13], while
expansion coefficientt) ,=Un(®).The maximal velocity of  the numerically obtained valu®l,,/u;—1=0.31. Still in

a curved stationary flame was calculated for the expansiogyite of some quantitative disagreement with the obtained
coefficients®=3,5,7,10. Results of the numerical simula- nymerical results the estimafd3] predicted qualitatively

tions are presented in Fig. 8, where the triangles show thggrrect dependence of the velocity of a curved stationary
scaled maximal velocityJ,/u;—1 obtained in the simula- figme front upon the expansion coefficient.

U /u-1,D /D-1

tions as a_function of the expansion coefficiéht_The maxi.- The influence of viscosity on the velocity of a curved
mal velocity of a curved flame may be approximated with aflame front was also investigated. All results reported above
good accuracy by the analytical formula were obtained for the Prandtl number=R9.3. Numerical
1712 2 simulations of the dynamics of a curved flame front propa-
Up/u=1+= _( 1+ —|, (30 9atingina fuel of different viscosity (Pr0.1,0.3,1) were
20 G performed for the expansion coefficieBt=5 and the tube

o ) . width D=\.. The simulations showed that velocities of the
where the coefficierif appears in the linear theory of the LD curved stationary flame fronts are independent of viscosity.
instability Eq.(2). Curve 1 in Fig. 8 shows the velocity of & The last result can be anticipated if one takes into account

curved flame front according to E¢30). In the limit of a  that the perturbation growth on the linear stage of the LD
small expansion coefficien® —1<1 the velocity of a instability is independent of viscosif®,32].

curved flame Eq(30) coincides with the analytical theory

[12,19. The main tendency of the calculated flame velocities

is that the larger the expansion coefficient, the larger the VI- CURVED FLAMES PROPAGATING UPWARDS:
velocity of a curved flame. This tendency is physically rea- THE EFFECT OF GRAVITY

sonable since larger expansion coefficients imply a stronger propagation of a low speed flame in tubes can be affected
hydrodynamic instability Eq(1). Besides, the larger the ex- py gravity. It is well known that gravity plays a stabilizing
pansion coefficient the more the curvature of the flame frontole for downward propagating flames and it is destabilizing
and the larger the length of the curved front. The. increase Ofor upwards propagating flamés,5,7,32—3% If the gravity
the surface of a curved flame frobt, /D is shown in Fig. 8  acceleration is directed opposite to the flame velocity, than
(curve 2 and the filled circlgsHere the cold fresh fuel of higher density is supported by the com-
5 bustion products of lower density, so that the condition for
D. — J’D /1~|— %) dx (31) the Rayleigh-TaylofRT) instability to develop at the flame
Y Jo dx front is fulfilled. For the upward propagating flames the RT
instability at the flame front amplifies the effect of the LD
andZ1(x) corresponds to the isotherm=0.8T,. As is seen instability. The value of the dimensionless acceleration
from Fig. 8, the dependence of the flame velocity and they=gL/uf2 shows the relative contribution of the RT and LD
length of the flame front upon the expansion coeffici®nt instabilities to the perturbation growth rate for upward
are the same within the accuracy of simulations untilpropagating flameg32,35. In Fig. 9 the instability growth
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(34
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®O—-1 )1/2

Similar to the linear stage of the hydrodynamic instability
of an upward propagating flame, one may expect that for the
case of a large acceleration and a wide tgt®u?>1 the
flame dynamics in tubes resembles in a sense the nonlinear
stage of the RT instability in the classical configuration. The
interesting point is that even in the case of a small accelera-
tion (y<<1) the RT instability can strongly influence the
flame propagation in a tube if the tube is sufficiently wide.
The nonlinear stage of the RT instability in the classical
configuration may be described as the stationary rising
bubbles of the light matter and falling spikes of the heavy

FIG. 9. The scaled instability growth rate of an upward propa-matter. In the two-dimensional case an open bubble in a tube
gating flame with the expansion coefficiédt=5 vs the dimension-  of width D with ideally slippery walls rises with the velocity
less wave numbekL. The curves 1, 2, 3 correspond to the dimen-[37]
sionless accelerationgL/ufz0,1,3.The dashed lines show the
instability growth rate calculated from E(B2).

GL/W

0-1 1/2
mZQD) , (35

URT: o
rates for the case of an upward propagating flame of the
expansion coefficier® =5 are shown for different values of where the coefficientr has been estimated as=0.2—0.3.
the dimensionless acceleration=0;1;3. One can sethat When the RT instability develops at a flame front the
an increase of the dimensionless acceleration results in agonfiguration of falling spikes is no longer possible. The
increase of the instability growth rate and extension of thelame front consumes the falling fuel — the so called “fire
interval of possible unstable perturbations. Particularly forpolishing” effect happens. The numerical simulations show
the upward propagating flames the cutoff wavelengthis that in the case of a flame in tubes of moderate width the
diminished in comparison with, for the case of zero grav- competition of the bubble formation and the fire polishing
ity determined by Eq(3). The shape of the dispersion curve €ffect results in a curved stationary shape of the flame front.
changes as well. Unlike the case of zero gravity the waveThe flame shape is similar to the shape of a flame in the
length of the fastest perturbations for an upward propagatingbsence of gravity, but with larger amplitude and larger front
flame is larger than the doubled cutoff wavelength. For thiscurvature. The shapes of the curved stationary flames are
reason one may expect stronger interaction of modes on tHghown in Fig. 10 for a flame with the expansion coefficient
nonlinear stage of the instability. For long wavelength per-©=>5 propagating in a tube of width =\ for the dimen-
turbations the instability growth rate of the flame front cansionless gravitational accelerations=0,1,3. The curvature

be estimated by the analytical formu5] and the length of the flame front increase with the increase of
the gravitational acceleration. Because of the strong correla-
1 Ouck 201InO tion of the flame velocity and the length of the flame front,
o=09— kL o i i i i itati _
0" 2% (@+1)op+0Ouk] ©6—1 7° discussed in the preceding section, a larger gravitational ac

celeration leads to the larger velocities of curved upward
propagating flames. The velocity of a curved flame with the
expansion coefficier® =5 propagating upwards in a tube of
width D=\ is shown in Fig. 11 versus the dimensionless
where o is the instability growth rate of an infinitely thin gravitational acceleratioy=gL/uZ. The effect of the ve-
flame propagating upwards: locity increase of the curved flames propagating upwards can
be described as a combined action of the LD and RT insta-
bilities in the form of a simple analytical formula
———uk.

(33 U= VU{p+Ugr=| Ufp+2a? —~gD| , (39

In the case of zero gravity E@32) goes over to the disper-

sion relation for a free|y propagating flame Hq_) As is wherea=0.27 anduLD is the velocity of the curved flame
seen from Fig. 9, the analytical formula E@2) provides a  for the case of zero gravity. The empirical form(&6) com-
very good approximation of the instability growth rate for bines the effects of flame propagation and the bubble rising.
long wavelength perturbations up to the fastest perturbationds is seen from Eq(36) the relative influence of the RT
of maximal growth rate. For a sufficiently long perturbation instability on the flamez shape is determined by the dimen-
wavelength or for a large acceleratighu?k>1 the gravity —sionless parametgyD/u; . Still we would like to emphasize,
dominates and the instability growth rate coincides with thethat even for quite large values @fD/uf the relative in-
classical expression for the growth rate of the RT instabilitycrease of the flame velocity is rather moderate, see Fig. 11.
at the interface separating two incompressible fluids with thd=or example, forgD/u?=60 (y=3, D=\.) the velocity
densities ratidd increases only by the factor 2.64. The weak effect of gravity

®+1®|® ®—-1|ufk
+m ne+06 — UK,

(32

Op=

®-1 ®2+®—1® 22 v
019" @1z OU

0+1
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FIG. 10. The isotherm&temperature is given in Kof the curved stationary flames with the expansion coeffictrt5 propagating
upwards in a tube of widtld =\ for the dimensionless acceleratiof@ gL/u?=0, (b) gL/u?=1, (c) gL/u?=3.

may be attributed to the small numerical factdiwhich ap- An important conclusion follows from Fig. 11 and Eq.
pears in the theory of bubble motion, see E2p). (36) that the effect of terrestrial gravity on the upward propa-
Unlike the flames without gravity, the velocity of a curved gating flames is much weaker than is usually assuf3&d
flame propagating upwards in tubes increases with the inFor example, for the experimental installation used3d]
crease of the tube width even fbr>\.. Dependence of the with the tube radiuR=2.5 cm the gravity is much more
flame velocity on the inverse tube width is shown in Fig. 12important than the LD instability only for very slow flames
for a curved flame with the expansion coefficigfit=5  with the velocities less than 20 cm/s such as the flame in the
propagating in a gravitational field with the dimensionlessmixture 6% CH + Air.On the contrary, the effect of gravity
accelerationgy=0;0.1;1. The effect of gravity is especially is expected to be small even for flames of the moderate ve-
interesting in the case of a small dimensionless acceleratidiocities, like a flame in the mixture 7.7%8,0 + Air
vy=0.1. For the tubes of moderate widih<\. the flame (u;=70 cm/s). Finally, for the case of fast hydrogen-
velocities in the cases of zero and small accelerations arexygen flames with the velocities up to 1000 cm/s the influ-
quite close. However, for wider tub&> \ . the increase of ence of gravity on the flame velocity is negligiiless than
the flame velocity for the upward propagating flames is con9.1%. Unlike the laboratory flames the effect of gravity is
siderably larger even for the case of a small acceleratiowritical for flames in astrophysics, such as the thermonuclear
v=0.1. For the case of a large acceleratipa 1 the differ-  reaction front in Supernova ever36,39—-42.
ence between the cases of zero and nonzero gravity becomes
much more pronounced. As is seen from Fig. 12, the con-
figuration of a curved upward propagating flame is possible
for much narrower tubes compared to the case of zero grav- In the present paper we studied formation and stationary
ity No/2>D>\4/2. For sufficiently narrow tubes the propagation of curved flames in tubes. The maximal velocity
growth rate of both the RT and LD instabilities is strongly of a curved stationary flame in the absence of gravity is
reduced or even suppressed by thermal conduction, see Figbtained for the flame propagating in a tube of width
9. For such tubes the shape of a curved flame differs onlyhich allows the growth of the fastest perturbations on the
slightly from a planar one and the flame velocity is close tolinear stage of the LD instability. The analytical formula for
the velocity of a planar flame front. For slightly curved the velocity of a curved flame is proposed. One of the im-
flames the similarity between the flame dynamics and theortant results of the simulations is that development of the
“bubble” rising breaks down. For this reason E§6) is not LD instability on the length scales comparable to the cutoff
applicable for flames in narrow tubes, when the hydrody-wavelength leads to a moderate increase of the flame veloc-
namic instabilities are almost suppressed by thermal condudty. The velocity is not doubled as was expected earlier on
tion, see Fig. 12. At the same time Figs. 11, 12 demonstratthe basis of the study of model equations see, for example,
that for wider tubes the analytical formula E§6) provides [14]. Even for the flames with a large expansion coefficient
a very good approximation of the velocity of an upward ® =10 the flame velocity increases only by 30%. A much
propagating flame. larger increase of the flame velocity is expected for a flame

VIl. DISCUSSION
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FIG. 11. The scaled velocity of a curved stationary flame gjG. 12, The scaled velocity of a curved stationary flame
uy/us—1 with the expansion coefficien® =5 propagating up- /. —1 with the expansion coefficief = 5propagating upwards
wards in a tube of widthD =\, vs the dimensionless acceleration g the inverse tube width /2D . The markers show the results of
gL/uf .The markers correspond to the results of the numericabp simulations and the solid lines show the estimate of the flame
S|mulqt|on, the solid line shows the fit of the flame velocity by the velocity according to Eq(36) for the dimensionless accelerations
analytical formula Eq(36). y=gL/u?.Curve 1 and the filled squares correspongtel, curve

2 and the filled circles correspond 46=0.1, curve 3 and the filled

front with a well pronounced fractal structuf#5,18, when  triangles correspond tg=0.

the LD instability develops on a length scale e_xceeding thernfluence of gravity on the flame velocity is much less im-
cutoff wavelength by several orders of magnitude. In th'sportant than was generally believed.

sense the flame cells obtained in the present numerical simu- In the present paper we studied the dynamics of curved

lations may be co_nsidered as the first step in the cascade ﬂtfames in the two-dimensional case, however, a real physical
cellfc,hof dlfffe_rent t;lzesfexpecteccij ]:fl)r a fractal ﬂa?le]. d situation is, as usual, three dimensional. It is expected that
€ configuration of a curved lame propagaling upward§y, e i, ree-dimensional geometry leads to an additional in-

In a gravnauonall field was |nvest|gat_eq as \(vell. It was Ob'crease of the flame velocity, both for the cases of zero and
tained that gravity leads to an additional increase of th onzero gravity

flame velocity due to the effect of the rising of the light
“bubble” of burning products inherent to the nonlinear stage

of the RT instability. For the case of slow flames and wide ACKNOWLEDGMENTS
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