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Average lifetime and geometric properties for superlong chaotic transients
in a hybrid optical bistable system
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We study the geometric structure of superlong chaotic transients which have been observed in a hybrid
optical bistable system, and demonstrate that the supertransients are due to the uncertainty exponent arbitrarily
close to zero. It is reported that the average lifetime of chaotic transients increases with an increase of the
Lyapunov dimension of the chaotic saddl81063-651X96)12107-3

PACS numbgs): 05.45+b, 42.65.5f, 42.65.Pc

A phenomenon very common in dynamical systems i§12—-14. Because the uncertainty expondnthich will be
that they seem to behave chaotically during some transiemtiscussed in the followingis very close to zero, the initial
period, but at last fall onto a periodic attractor. This phenom-condition randomly chosen in phase space is very close to
enon is said to be chaotically transient. It is observed irthe stable manifold of the chaotic saddle. The trajector first is
many dynamical systems such as thenbte map[1,2], the  attracted to the chaotic saddle along the stable manifold, and
Lorenz model[3], and the Mackey-Glass delay equation wanders in the vicinity of the chaotic saddle for a long time
[4,5]. For those low-dimensional systerfik—3|, superlong before settling into the final attractor.
chaotic transientgreferred to as “supertransients’¢an oc- Let I denote a nonattracting chaotic saddle, and non-
cur in the event of a boundary crisis where a chaotic attractochaotic attractor in phase space. All initial conditions, except
is suddenly destroyed and is converted into a nonattractinfpr a set of measure zero, eventually asymptota tdrajec-
chaotic saddle as a system parameter passes through a critifies starting from random initial conditions typically wan-
cal value. In this sense, supertransients occur only in an ader chaotically near the chaotic saddlefor a finite time
bitrarily small parameter interval in the vicinity of the critical before setting intoA. The length of the chaotic transient
value, but for high-dimensional systems, superlong chaoticlepends on its initial condition. Léd (t) denote the number
transients are common. It was observed in numerical experbf trajectories staying still insidE after timet, and takeM
ments by Cruchfield and Kaneko that spatially extended sysnitial conditions so large tha¥l(t)>1. Ast becomes large,
tems generically exhibit long chaotic transief#$ Hastings one observes, in general, an exponential decay in the number
and Higgins[7] pointed out the existence of complex tran- of survivors, that is, one finds asymptoticalli2] that
sient dynamics in simple discrete-time ecological models for
a species with alternating reproduction and dispersal. More

recently, Lai and Winslow8] studied the geometric proper-

. . . ! . M(t)

ties of the chaotic saddle responsible for supertransients in e tT (1)
spatiotemporal chaotic systems, and demonstrated that super- Mo

transients are due to a nonattracting saddle whose stable

manifold measures have fractal dimensions that are arbi-

trarily close to the phase space dimension, and that the ave\(ﬁ'{rféﬁ;c')sntg? %V:rsigilgferagrifgr dth; iﬂ:oé'ﬁ;ézgsggalz hies
age lifetime of the chaotic transient induced by the chaoti

saddle is arbitrarily large. In experimental research, \éallecr\l_l+d5[8’l3]’ whereN is the phase-space dimension, and

and Delisle[9] and Giacomelliet al. [10] showed the exist- dg is the fractal dimension of the set of intersecting points of

ence of long-lived transients in a dynamical system with & one-dimensional line with the stable manifold of chaotic

delayed feedback. dasi, Flepp and Tle[11] carried out a tsritdggecgg b&gg?ﬁ;i?aﬁ'?% igec:{:;ﬁ;tg?% egiﬂ;@iﬂr‘]ﬂ_
time series analysis of transient chaos in a NMR laser X0t fractal bZ\Sin boundaries; for dynamical systems with mul-
periment, and determined characteristics such as dimensioﬁ . ynam ystel

iple attractors. For a given perturbatiena fraction of un-

Lyapunov exponent, and correlation function. ertain initial conditionf(e) can be computed by randoml
In physical systems exhibiting transient chaos there exist§ . S &) e P y y
goosmg many initial conditions. For fractal sef$g) de-

in phase space a nonattracting chaotic set and a chaoti eases with decreasing tvoically scaling withe as
saddle, that in the dissipative case coexists with an attractot 3 typically 9 ©

*Electronic address: jhdai@aphy02.iphy.ac.cn f(g)oce”, (2
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whereq is the uncertainty exponent. The fraction dimension
ds=1—a [15,16. Referencel9] demonstrates numerically
thatdg is arbitrarily close to 1.

Trajectories starting from points of a chaotic saddleof
its stable manifolginever leave the saddles, and exhibit cha-
otic motion forever. It is, however, completely unlikely to hit
such a point by random choice, since the saddle is a set of
zero measuréa fracta) and is globally not attractive. Tra-
jectories starting close to the saddle can stay in its neighbor-
hood for a long time, and show chaotic properties. In this
case, if the largest Lyapunov exponent is calculated during
the transient, it is positive. Sooner or later trajectones escape
the neighborhood, and tend toward the periodic attractor.
Physically, let us note that in experimental situations one 20—t .1
never has infinitely long time intervals. In fact, what is 20 25 3.0
needed for an experimental observation of chaos is a well Parameter A
defined separation of time scales.

In this paper, we first investigate the geometric structure £ 1 First ten Lyapunov spectra for E®) from A=2.0—4.0

of the chaotic saddlle for supertransients in a hybrid opFicagnd fixed parameters,=10 andx,=3. Two boundary crises take
bistable system, which can be described by a delayed diffefsjace at botm, =2.465 948 5 and\.; =3.699 970 5.

ential equatiorf17]

Ten Lyapunov exponents

T
3.5 4.0

7~1.80x10°+0.1x10%. Using the same method for
A,=3.75, we obtainr,=1.30x 10°, a very long transient. In
the window shown in Fig. 1, choosing a suitable initial con-
dition, we find a very long chaotic transient motion, and

where x(t) is the output intensity of the systerty, is the calculate its Lyapunov_ diagram during the traqsient. Using
delay time of the feedback loop, aRdandx, are the input the Kaplan-York conjecture{5], we can estimate the
intensity and bias voltage, respectively. The relaxation timé-yapunov dimensions of the chaotic saddle to be 5.7 and
of the system is 1. It is an infinite-dimensional system be-10-6 forA; andA,, respectively. o

cause an infinite set of independent numbers are required to WO attractors coexist in a system in which it is common
specify an initial condition. For simplicity, we choose the for boundaries to exhibit a fractal structure5]. From the
initial condition x(t) to be constant in the intervi-tg,0].  Practical point of view/14], we can suppose transient chaos
This equation can be solved numerically, and a Runge-Kutt}0 be a chaotic attractor within a large time. Figure 3a)
algorithm of fourth order is particularly suitable for that. Shows the set of initial cond|t|o_nss drawn from 200 points in
Equation(3) is solved by keeping the parameté¢gsandx,  the region 1.&x,<2.0(¢=5x10"") att.=7,(18 000. C de-
fixed at 10 and 3, respectively. The numbérof the phase notes_lmtlal co.ndmons fro.m which tra]ectorles.s_n_ll wander
space was fixed to 100. For a large enodgtihe simulation ~ chaotically during a long time;, andP denotes initial con-
gives the same results. At the end of this paper, we will givéj|thns from which trajectories settle into a final attractor
a numerical result foN=200 to verify it. dur!ng the timet. . Figure 3b) |§5blovyup of Flg. 3a) in the

In order to eliminate the long-lived transients, we dis-egion 1.42<x,<1.43(¢=5X10"). Figure 3c) is a blowup
carded the first X10° steps, and calculated the first ten
Lyapunov exponentE5] for parameters from=2.0 to 4.0.

The Lyapunov spectrum diagram is shown in Fig. 1. As pa-
rameterA increases, the system goes to a chaotic state at
A~2.25 through period-doubling cascades, and becomes a
superchaos a&~2.30. There are two boundary crises, one at
A;1=2.465 948 5, and the other At,=3.699 970 5, and the
attractor in these two periodicity windows is frequency
locked.

To determine the average transient lifetimgsnd 7, for
A;=2.47 andA,=3.75, we choos&,=3400 initial condi-
tions. Evolve these initial conditions under E§), and ob-
tain the number of trajectories that have not settled into a
frequency-locked attractor at time Figure 2 shows the 2 J l ,
number of chaotic trajectories (N(t)) vst in a semiloga- 0 30000 60000 90000
rithmic plot for A;=2.47, where a trajectory is counted as
chaotic at timet. The plot can be fitted by a straight line, t
indicating that the decay of a number of chaotic trajectories
is exponential. The slope of the fitted line is  FIG. 2. The semilogarithmic plot df(t), the number of chaotic
5.70x107°+3.60x10 ’, which gives the average lifetime trajectories at time. The average lifetime is 1.8010°+0.10x10%

dx(t)
dt

=—X(t)+A sirf[x(t—tg) —Xp], ()

In[N(t)]
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FIG. 3. The set of initial conditions drawn from 200 points at  FIG. 5. The set of initial conditions drawn from 200 points at
t.=7,(1.80x10% for A=2.47, whereC denotes the initial condi- t.=7 (1.30x10% for A=3.75. (@) For 1.40<x,<1.50
tions from which trajectories still wander chaotically during a long (e=5x10"3). (b) Blowup of the interval of 1.458x,<1.460 in(a)
time t., and P denotes initial conditions from which trajectories (¢=5x10"°). (c) Blowup of the interval of 1.45055x,<1.45056
settle into a final attractor during the tintg. (8) For 1.0<x,<2.0 in (b) (e=5%1079).

(e=5%1079). (b) Blow up of the interval of 1.4&x,<1.43 in(a)
(e=5%1079). (c) Blowup of the interval of 1.422%&x,<1.42212 in

(b) (£=1x107"). average lifetimer,. They indicate that arbitrarily long tran-

sient chaos still exists in any interval.
We have calculated the uncertainty exponantn order

of Fig. 3(b) in the region 1.422&x,<1.42212(e=10"").  to do this, we computed a fraction of the uncertain initial
We find that, they are similar in structure. For condition f(e) for a given perturbatiors [15] by choosing
t;~2.77,(48 000, the results are shown in Fig. 4. Like Fig. 1000 initial conditions. Figure 6 shows g (¢) vs log;o ¢
3, the parts of Fig. 4 have similar geometric structures. Figin a logarithmic plot. The uncertainty exponents are esti-
ure 5 shows a similar result #=3.75, takingt. to be its  mated to bea;=0.0003:0.001 for A=2.47 andt.=n
[shown in Fig. 6a)]. This indicates that the fraction
of the uncertain initial condition is independent af
So we can abtain an average fraction of the uncertain initial
condition f. In this case, f;=0.4860.009. Similarly,
a,=0.0000-0.0022 forA=3.75 andt.=, [shown in Fig.
6(b)], and its average valub,=0.482+0.022 which is con-
sistent withf, within error. ForA=2.47 andt,~2.7r;, a;
=0.00170.0024{shown in Fig. &c)], and its average value

L : f1=0.164+0.011, which is smaller thafi,. The above re-
1.0 1.2 1.4 1.6 1.8 2.0 1.420 1.425 1.430 sults indicate that the uncertainty exponenis independent
Xo Xo of t;.

To affirm that the above results are the same for enough
large numbers of dimensions, we calculatgdor N=200,
The results are shown in Fig. 7. The average lifetinje
=5.6x10°+2.1x10"’ [shown in Fig. Ta)], so rj~1,.

We also calculated the uncertainty exponesnt0.0002
+0.0013[shown in Fig. Th)]. This indicates that our results
do not change with calculated dimension. For an infinite-
dimensional system, phase space is infinite, and the stable
manifold of the chaotic saddle is also infinite. It is meaning-
less to discuss the dimension of the manifold of an infinite
0 system like a finite-dimensional system. However, we can
still discuss the uncertainty exponent of the manifold. This

FIG. 4. Taket,~2.77; (4.80x10%, and the other parameters are uncertainty exponent is arbitrarily close to zero. This means

the same as in Fig. 3. that f(e) is independent of perturbatian In any scale and
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FIG. 6. Plot of the fraction of uncertain initial conditiof&) vs
the perturbatiore on a base-10 logarithmic scal@) The uncer-
tainty exponenta;=0.0003:0.001 for A=2.47 andt.=7. (b)
a,=0.0000:0.0022 for A=3.75 and t;=7. (c) «;=0.0017
+0.0024 forA=2.47 andt ~2.77,.

any interval of initial conditiongexcept exactly on the cha-
otic saddle or its stable manifold, which measure gefrG:)
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FIG. 7. Take the phase-space number of dimenbier200 and
parameterA=2.47. (a) The average lifetimer;=5.6x1075+2.1
X107 7. (b) The uncertainty exponenis=0.0002+0.0013.

Lyapunov dimension, we can find trajectories for the chaotic
saddle or attractor which are random. This is different from
the usual fractal basin boundary whose uncertainty exponent
a is not zero. For this case, there is some interval of the
initial condition in which any initial condition settles onto a
certain attractof16].

From the above results, our conclusions are as follows.

(a) Supertransients in delayed feedback optical bistable
systems are due to an uncertainty exponeanarbitrarily
close to zero, and we believe this conclusion is also correct
for a class of delayed differential equations.

(b) The higher the Lyapunov dimension of a chaotic
saddle, the longer its average lifetime, and the increase in the
rates of the average lifetime is larger than that of its
Lyapunov dimension. As the number of degrees of freedom
tends to infinity, the average lifetime also tends to infinity,
more quickly

(c) The fractions of the uncertain initial conditidite) are
the same ift. is the average lifetime for different chaotic
saddles with different Lyapunov dimensions.

(d) The uncertainty exponeni is independent of ;. .
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