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We study the geometric structure of superlong chaotic transients which have been observed in a hybrid
optical bistable system, and demonstrate that the supertransients are due to the uncertainty exponent arbitrarily
close to zero. It is reported that the average lifetime of chaotic transients increases with an increase of the
Lyapunov dimension of the chaotic saddle.@S1063-651X~96!12107-3#

PACS number~s!: 05.45.1b, 42.65.Sf, 42.65.Pc

A phenomenon very common in dynamical systems is
that they seem to behave chaotically during some transient
period, but at last fall onto a periodic attractor. This phenom-
enon is said to be chaotically transient. It is observed in
many dynamical systems such as the He´non map@1,2#, the
Lorenz model@3#, and the Mackey-Glass delay equation
@4,5#. For those low-dimensional systems@1–3#, superlong
chaotic transients~referred to as ‘‘supertransients’’! can oc-
cur in the event of a boundary crisis where a chaotic attractor
is suddenly destroyed and is converted into a nonattracting
chaotic saddle as a system parameter passes through a criti-
cal value. In this sense, supertransients occur only in an ar-
bitrarily small parameter interval in the vicinity of the critical
value, but for high-dimensional systems, superlong chaotic
transients are common. It was observed in numerical experi-
ments by Cruchfield and Kaneko that spatially extended sys-
tems generically exhibit long chaotic transients@6#. Hastings
and Higgins@7# pointed out the existence of complex tran-
sient dynamics in simple discrete-time ecological models for
a species with alternating reproduction and dispersal. More
recently, Lai and Winslow@8# studied the geometric proper-
ties of the chaotic saddle responsible for supertransients in
spatiotemporal chaotic systems, and demonstrated that super-
transients are due to a nonattracting saddle whose stable
manifold measures have fractal dimensions that are arbi-
trarily close to the phase space dimension, and that the aver-
age lifetime of the chaotic transient induced by the chaotic
saddle is arbitrarily large. In experimental research, Valle´e
and Delisle@9# and Giacomelliet al. @10# showed the exist-
ence of long-lived transients in a dynamical system with a
delayed feedback. Ja´nosi, Flepp and Te´l @11# carried out a
time series analysis of transient chaos in a NMR laser ex-
periment, and determined characteristics such as dimension,
Lyapunov exponent, and correlation function.

In physical systems exhibiting transient chaos there exists
in phase space a nonattracting chaotic set and a chaotic
saddle, that in the dissipative case coexists with an attractor

@12–14#. Because the uncertainty exponent~which will be
discussed in the following! is very close to zero, the initial
condition randomly chosen in phase space is very close to
the stable manifold of the chaotic saddle. The trajector first is
attracted to the chaotic saddle along the stable manifold, and
wanders in the vicinity of the chaotic saddle for a long time
before settling into the final attractor.

Let G denote a nonattracting chaotic saddle, andL a non-
chaotic attractor in phase space. All initial conditions, except
for a set of measure zero, eventually asymptote toL. Trajec-
tories starting from random initial conditions typically wan-
der chaotically near the chaotic saddleG for a finite time
before setting intoL. The length of the chaotic transient
depends on its initial condition. LetM (t) denote the number
of trajectories staying still insideG after timet, and takeM 0
initial conditions so large thatM (t)@1. As t becomes large,
one observes, in general, an exponential decay in the number
of survivors, that is, one finds asymptotically@12# that

M ~ t !

M0
}e2t/t, ~1!

wheret is the average lifetime of the chaotic transient. The
dimension of the stable manifold of the chaotic saddle is
N211dS @8,13#, whereN is the phase-space dimension, and
dS is the fractal dimension of the set of intersecting points of
a one-dimensional line with the stable manifold of chaotic
set.dS can be computed using the uncertainty algorithm in-
troduced by McDonaldet al. @15# to calculate the dimension
of fractal basin boundaries for dynamical systems with mul-
tiple attractors. For a given perturbation«, a fraction of un-
certain initial conditionf ~«! can be computed by randomly
choosing many initial conditions. For fractal sets,f ~«! de-
creases with decreasing«, typically scaling with« as

f ~«!}«a, ~2!*Electronic address: jhdai@aphy02.iphy.ac.cn

PHYSICAL REVIEW E JULY 1996VOLUME 54, NUMBER 1

541063-651X/96/54~1!/371~5!/$10.00 371 © 1996 The American Physical Society



wherea is the uncertainty exponent. The fraction dimension
dS512a @15,16#. Reference@9# demonstrates numerically
thatdS is arbitrarily close to 1.

Trajectories starting from points of a chaotic saddle~or of
its stable manifold! never leave the saddles, and exhibit cha-
otic motion forever. It is, however, completely unlikely to hit
such a point by random choice, since the saddle is a set of
zero measure~a fractal! and is globally not attractive. Tra-
jectories starting close to the saddle can stay in its neighbor-
hood for a long time, and show chaotic properties. In this
case, if the largest Lyapunov exponent is calculated during
the transient, it is positive. Sooner or later trajectones escape
the neighborhood, and tend toward the periodic attractor.
Physically, let us note that in experimental situations one
never has infinitely long time intervals. In fact, what is
needed for an experimental observation of chaos is a well
defined separation of time scales.

In this paper, we first investigate the geometric structure
of the chaotic saddle for supertransients in a hybrid optical
bistable system, which can be described by a delayed differ-
ential equation@17#

dx~ t !

dt
52x~ t !1A sin2@x~ t2tR!2xb#, ~3!

where x(t) is the output intensity of the system,tR is the
delay time of the feedback loop, andA andxb are the input
intensity and bias voltage, respectively. The relaxation time
of the system is 1. It is an infinite-dimensional system be-
cause an infinite set of independent numbers are required to
specify an initial condition. For simplicity, we choose the
initial condition x(t) to be constant in the interval@2tR ,0#.
This equation can be solved numerically, and a Runge-Kutta
algorithm of fourth order is particularly suitable for that.
Equation~3! is solved by keeping the parameterstR andxb
fixed at 10 and 3, respectively. The numberN of the phase
space was fixed to 100. For a large enoughN, the simulation
gives the same results. At the end of this paper, we will give
a numerical result forN5200 to verify it.

In order to eliminate the long-lived transients, we dis-
carded the first 13105 steps, and calculated the first ten
Lyapunov exponents@5# for parameters fromA52.0 to 4.0.
The Lyapunov spectrum diagram is shown in Fig. 1. As pa-
rameterA increases, the system goes to a chaotic state at
A'2.25 through period-doubling cascades, and becomes a
superchaos atA'2.30. There are two boundary crises, one at
Ac152.465 948 5, and the other atAc253.699 970 5, and the
attractor in these two periodicity windows is frequency
locked.

To determine the average transient lifetimest1 andt2 for
A152.47 andA253.75, we chooseN053400 initial condi-
tions. Evolve these initial conditions under Eq.~3!, and ob-
tain the number of trajectories that have not settled into a
frequency-locked attractor at timet. Figure 2 shows the
number of chaotic trajectories ln„N(t)… vs t in a semiloga-
rithmic plot for A152.47, where a trajectory is counted as
chaotic at timet. The plot can be fitted by a straight line,
indicating that the decay of a number of chaotic trajectories
is exponential. The slope of the fitted line is
5.703102563.6031027, which gives the average lifetime

t1'1.80310460.13104. Using the same method for
A253.75, we obtaint251.303105, a very long transient. In
the window shown in Fig. 1, choosing a suitable initial con-
dition, we find a very long chaotic transient motion, and
calculate its Lyapunov diagram during the transient. Using
the Kaplan-York conjecture@5#, we can estimate the
Lyapunov dimensions of the chaotic saddle to be 5.7 and
10.6 forA1 andA2, respectively.

Two attractors coexist in a system in which it is common
for boundaries to exhibit a fractal structure@15#. From the
practical point of view@14#, we can suppose transient chaos
to be a chaotic attractor within a large timetc . Figure 3~a!
shows the set of initial conditions drawn from 200 points in
the region 1.0<x0<2.0 ~«5531023! at tc5t1~18 000!. C de-
notes initial conditions from which trajectories still wander
chaotically during a long timetc , andP denotes initial con-
ditions from which trajectories settle into a final attractor
during the timetc . Figure 3~b! is blowup of Fig. 3~a! in the
region 1.42<x0<1.43 ~«5531025!. Figure 3~c! is a blowup

FIG. 1. First ten Lyapunov spectra for Eq.~3! from A52.0–4.0
and fixed parameterstR510 andxb53. Two boundary crises take
place at bothAc152.465 948 5 andAc153.699 970 5.

FIG. 2. The semilogarithmic plot ofN(t), the number of chaotic
trajectories at timet. The average lifetime is 1.80310460.103104.
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of Fig. 3~b! in the region 1.4221<x0<1.42212~«51027!.
We find that, they are similar in structure. For
tc'2.7t1~48 000!, the results are shown in Fig. 4. Like Fig.
3, the parts of Fig. 4 have similar geometric structures. Fig-
ure 5 shows a similar result atA53.75, takingtc to be its

average lifetimet2. They indicate that arbitrarily long tran-
sient chaos still exists in any interval.

We have calculated the uncertainty exponenta. In order
to do this, we computed a fraction of the uncertain initial
condition f ~«! for a given perturbation« @15# by choosing
1000 initial conditions. Figure 6 shows log10 f ~«! vs log10 «
in a logarithmic plot. The uncertainty exponents are esti-
mated to bea150.000360.001 for A52.47 and tc5t1
@shown in Fig. 6~a!#. This indicates that the fraction
of the uncertain initial condition is independent of«.
So we can obtain an average fraction of the uncertain initial
condition f̄ . In this case, f̄ 150.48660.009. Similarly,
a250.000060.0022 forA53.75 andtc5t2 @shown in Fig.
6~b!#, and its average valuef̄ 250.48260.022 which is con-
sistent with f̄ 1 within error. ForA52.47 andtc'2.7t1, a18
50.001760.0024@shown in Fig. 6~c!#, and its average value
f 1850.16460.011, which is smaller thanf̄ 1. The above re-
sults indicate that the uncertainty exponenta is independent
of tc .

To affirm that the above results are the same for enough
large numbers of dimensions, we calculatedt1 for N5200,
The results are shown in Fig. 7. The average lifetimet18
55.63102562.131027 @shown in Fig. 7~a!#, so t18't1.
We also calculated the uncertainty exponenta50.0002
60.0013@shown in Fig. 7~b!#. This indicates that our results
do not change with calculated dimension. For an infinite-
dimensional system, phase space is infinite, and the stable
manifold of the chaotic saddle is also infinite. It is meaning-
less to discuss the dimension of the manifold of an infinite
system like a finite-dimensional system. However, we can
still discuss the uncertainty exponent of the manifold. This
uncertainty exponent is arbitrarily close to zero. This means
that f ~«! is independent of perturbation«. In any scale and

FIG. 3. The set of initial conditions drawn from 200 points at
tc5t1~1.803104! for A52.47, whereC denotes the initial condi-
tions from which trajectories still wander chaotically during a long
time tc , and P denotes initial conditions from which trajectories
settle into a final attractor during the timetc . ~a! For 1.0<x0<2.0
~«5531023!. ~b! Blow up of the interval of 1.42<x0<1.43 in ~a!
~«5531025!. ~c! Blowup of the interval of 1.4221<x0<1.42212 in
~b! ~«5131027!.

FIG. 4. Taketc'2.7t1 ~4.803104!, and the other parameters are
the same as in Fig. 3.

FIG. 5. The set of initial conditions drawn from 200 points at
tc5t2 ~1.303104! for A53.75. ~a! For 1.40<x0<1.50
~«5531023!. ~b! Blowup of the interval of 1.450<x0<1.460 in~a!
~«5531025!. ~c! Blowup of the interval of 1.45055<x0<1.45056
in ~b! ~«5531028!.
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any interval of initial conditions~except exactly on the cha-
otic saddle or its stable manifold, which measure zero!, f ~«!
is a constant. Thus for a very long average lifetime which
can occur in a chaotic saddle system with a very high

Lyapunov dimension, we can find trajectories for the chaotic
saddle or attractor which are random. This is different from
the usual fractal basin boundary whose uncertainty exponent
a is not zero. For this case, there is some interval of the
initial condition in which any initial condition settles onto a
certain attractor@16#.

From the above results, our conclusions are as follows.
~a! Supertransients in delayed feedback optical bistable

systems are due to an uncertainty exponenta arbitrarily
close to zero, and we believe this conclusion is also correct
for a class of delayed differential equations.

~b! The higher the Lyapunov dimension of a chaotic
saddle, the longer its average lifetime, and the increase in the
rates of the average lifetime is larger than that of its
Lyapunov dimension. As the number of degrees of freedom
tends to infinity, the average lifetime also tends to infinity,
more quickly

~c! The fractions of the uncertain initial conditionf ~«! are
the same iftc is the average lifetimet for different chaotic
saddles with different Lyapunov dimensions.

~d! The uncertainty exponenta is independent oftc .

This work was supported by the National Natural
Science Foundation of China, and the Nonlinear Project
of China.

FIG. 6. Plot of the fraction of uncertain initial conditionsf ~«! vs
the perturbation« on a base-10 logarithmic scale.~a! The uncer-
tainty exponenta150.000360.001 for A52.47 and tc5t1. ~b!
a250.000060.0022 for A53.75 and tc5t2. ~c! a1850.0017
60.0024 forA52.47 andtc'2.7t1.

FIG. 7. Take the phase-space number of dimensionN5200 and
parameterA52.47. ~a! The average lifetimet1855.63102562.1
31027. ~b! The uncertainty exponentsa50.000260.0013.
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