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Continuous limit of the Nagel-Schreckenberg model
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A generalized version of the Nagel-Schreckenberg model of traffic flow is presented that allows for con-
tinuous values of the velocities and spatial coordinates. It is shown that this generalization reveals structures of
the dynamics that are masked by the discreteness of the original model and thus helps to clarify the physical
interpretation of the dynamics considerably. It is shown numerically that the transition leading from the free
flow regime to the congested flow regime bears strong similarities with a first-order phase transition in
equilibrium thermodynamics. A similar behavior is observed in more complicated microscopic models and in
hydrodynamical descriptions of traffic flow, putting the model within a broader context of other models of
traffic flow. An additional advantage of this continuous model is that it is much easier to calibrate with
empirical data, only slightly decreasing numerical efficied§1063-651X96)08810-]

PACS numbd(s): 05.60+w

|. THE NAGEL-SCHRECKENBERG MODEL the original model Setting pmay to values smaller than 1
corresponds to a finer spatial resolution. Obviously the con-
There are many model approaches to describe traffic in inuous limit is performed letting n—% and pyax—0.
more or less detailed wajjl—5]. One approach that stands Since the product maomax determines the time scale to
out for its simplicity is the simulation of traffic using cellular which one time step in the model corresponds, the continu-
automatg6-11]. The idea behind this approach is that ex-ous limit has to be performed in such a way thakumax IS
tremely crude microscopic modeling, based on a caricaturRept constant.
of individual driver behavior, may be sufficient to capture |n the cellular automatofCA) noise is introduced by de-
the main macroscopic aspects of traffic, like the fundamentatelerating cars by an amount of (hich is equal to the
diagram, appearance of traffic jams, and so on. maximum accelerationrandomly with probability Pyraxe
The model proposed by Nagel and Schreckenber®Jn (usually set to 1/2 In the models with higher spatial resolu-
tries to model basically two properties of road traffi€)  tion (wherev,,, and consequently the maximum accelera-
Cars travel at some desired speed, unless they are forced §gn a,,,,, go to infinity) this is generalized to an equipartition
slow down to avoid collisions with other vehicle®) Inter-  petween zero and,,,. Although this generalization appears
actions are short ranged and can be approximated as beifg be straightforward, we will see that it does not yield an
restricted to nearest neighbors. In the model approach it igptimum agreement between successive models in the limit-
assumed that imperfections in the way drivers react can bgg process. The cellular automaton rules for the intermedi-
modeled as noise. ate models are given in the Appendix.
The velocity and consequently the positions of the cars  Figure 1 shows the fundamental diagrams for a succession

can only assume integer values between 0 @pg, where  of models and the continuous limit. The update rules used for
Umax itself is an integer. Comparisons with measured datahe continuous model are given as follows:

show thatv . Should be no larger than R2] to acquire
correct values for the density where the model displays its 0 des= MIN[U () + Armax U ma Sgad ) ],
maximum flow.

Clearly the discreteness of the model does not correspond
to any property of real traffic. Therefore the question comes
up naturally if there are any properties of the cellular au-
tomaton dynamics that can be identified as consequences of X(t+1)=x(t)+v(t+1),
the discrete structure of the model. To answer this question
we will present a model in which the state variables assumaheresg,{t) is the free space to the car aheagyg is the
real values. This model can be interpreted as the limitingnaximum acceleratiom,, 01 is @ random number in the
case of a series of cellular automaton models with differeninterval (0,1), and o is the maximum deceleration due to
resolutions. noise. For the continuous model that is reached as the limit
of the sequence of CA models the parameters are
amax=0=1, but they can, of course, have different values.

There are two features visible in Fig. 1 that arise from the

Before actually performing the continuous limit we first changes. The first one is that the system appears to become
have to consider the scale transformation between the modkdss sensitive against the noise, leading to a significantly in-
and reality to find out how the limit has to be performed. Letcreased flow. However, this increase is due to a difference in
us assume that there is a maximum density of ggs in  the statistics of the noise in the discrete and the continuous
the systemwhich was implicitly assumed to be equal to 1 in model, as will be shown below. Second, the behavior of the

v(t+1)=max 0 ges O'nran,o,]]v 1

II. NAIVE CONTINUOUS LIMIT
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FIG. 1. S f model ina t ds th i FIG. 2. Comparison between the fundamental diagram of the
limit - 1. Sequence of models converging towards the CoNiNUOUF;ete and the continuous version of the Nagel-Schreckenberg
imit. model. The parameters chosen for the continuous model correspond

to thepyae= 0.5,v max= 3 case of the discrete model. We have used

fundamental diagram changes for very high densities in such =(1+3)/2, 0=13 and v .,=2.56+ \3/2. The asymptotic
a way that the curve approaches the value zero with vanishsapavior is drawn from Eq3). e

ing slope.

responding continuous model assume the same values for the
mean acceleration and the mean velocity in the free flow.
We will only give qualitative explanations for the effects ~ Other statistical parameters, however, are still different.
and limit our attention to the continuous model. The most important parameters are the variance of the veloc-
The main difference between the continuous model andty and of the acceleration in the free flow, because they
the CA at high densities is that in the continuous case gaps afetermine the probability of interactions between the cars. In
a length smaller than 1 can appear in the system. Looselthe continuous model used so far these are much lower than
speaking those gaps are less likely to be used efficiently byn the CA. This reduces the number of interactions and the
the individual drivers than the larger ones. This is in factprobability that interacting cars cause a jam. Details on the
quite realistic and appears to be of great importance when thele that the variance plays in determining interaction param-
model is calibrated. For a quantitative analysis note that foeters are discussed in the next section.
very high densities a car having a gapin front of the To show that an adjustment of the continuous model to
bumper will assume a velocity of before the randomization the CA is possible in the maximum flow regime we choose
step. It is then deg_elerated -to. some velocity in the intervajpe parameters ., ana, and o in such a way that the
(0,9). The probability that it is decelerated to a nonzeroqaan velocity(v), the mean acceleratidf), and the accel-

value isg/o, where any of these values is assumed withg o400 variancéa?)—(a)? in the free flow are equal in both
equal probability. So the mean velocity of the car will be 4o

2 Choosing the parameters in this way yields a slightly
(2)  higher velocity variance in the continuous model because the
conditions requirer>a,,,x, SO some cars are decelerated to
a velocity that does not allow them to reagh,, within one
after the update. Now it is very plausible and confirmed byiime step again. An adjustment of the velocity variance
numerical calculations that the gap distribution becomegyqyig require the usage of a more complicated distribution
strictly exponential for very high densities. In that case W&, the randomization step.

know that 2\“"561;32,(591&1927 so Eq.(2) can be used to calculate N the discrete and the continuous model compare very

the mean velocity and tht_e flow |.n the system. For the ﬂowfavorably in the free flow and the maximum flow regime,

we thus get the asymptotic form: while the behavior is, as expected, still completely different
for high densitiegsee Fig. 2

3) The important result we have to keep in mind is that the
maximum flow is determined by the free flow statistics. This
fact may allow greatly simplified phenomenological theories

In Fig. 2 it can be seen that this is in excellent agreemengf the CA dynamics.

with the results of the numerical calculations.

The above mentioned increase of the maximum flow can
be traced back to differences in the statistics of the free flow.
Note that when performing the continuous limit we general-
ized the random deceleration by zero or 1 in the CA modelto We now try to get a rough quantitative idea of how the
a deceleration that is continuously equipartitioned betweestatistics of the free flow determine the maximum flow. For
zero and 1(this corresponds to setting the parameters tahis end we look at two neighboring cars that are assumed to
amax=1 ando=1). In this way the CA model and the cor- move freely without any interactions. It will be possible to

[ll. INTERPRETATION OF THE FEATURES

g
<U>gang:%

1— 2
q=( p) for p—1.

IV. FREE FLOW STATISTICS



54 CONTINUOUS LIMIT OF THE NAGEL-SCHRECKENBERG MODEL 3709

see which parameters determine the probability of interac-
tions.

If the cars do not interact with each other, their individual
velocity distributionsPUl(vl,t) and Pvz(vz,t) are uncorre-
lated and the time evolution of the distributi®g(x,t) of the

gap between the two of them can be described by the simple * *-*T
master equation

Pg(X,t+ 1): J' Pg(X+Ul_U2,t)PU1(U1,t)

!
0 500 1000 1500 2000

XPUZ(U21t)dvldUZ- (4) t
Taking moments of the gap distribution we find FIG. 3. Time evolution of the velocity of a randomly chosen car

slightly below the density of maximum flowpE&0.17).
O (t+ 1) =)0+ ((v2) = (v1)),
5 (V)(t+1)=(v)(t)+(a),

SX2(t+1) = 6x2(t) + Sv3(t) + sva(t), ®)
Sv2(t+1)=v?(t) + saZ.

where 8y? denotes the variance of the quantty

Now two simple cases will be looked at: The first case islf We assume that the two cars start frers ng,;=0 and the
that the last interaction of the cars has taken place a lon§UCCessor starts accelerating one time step gfter his predeces-
time ago, so the velocity distributions of both cars are equa$or[P.,(t) =P, (t—1)], we get for the evolution of the gap:
and stationary. The second case is that the cars are in the
phase of acceleration, so the distributions are not necessarily (X)) =(a, ©
equal and are certainly time dependent.

In the first case the mean gap between the cars is constant, ()= (2t+1)6a%.

while the width of the gap distribution increases\dsHav- g the probability that the cars interact again during the

ing two cars with a mean gax) we can estimate the mean Phase of acceleration is determined by the ratio
time between interactions as the time it takes for the width o

the distribution to reach a threshold where interaction takes (a)?
place, say{X)—vmax- Averaging over all cars we get the ra:5_a2'- (10

mean timer between interactions:
) This parameter is in fact the most important parameter in the
}_1_0 ) maximum flow region. This can be seen if we perform the
max ©) following limit in the continuous model:

(H—(v)*
: , oc—0, (a)—0, with =
wherea is a parameter of order 1 anpddenotes the density (a)

of cars in the system. , . T,
From this expression we see that the number of interact Fig. 4 the fundamental diagram for this limit is shown. To

tions in the homogeneous flow is proportional to the velocityc@lculate the limit a sequence of models with decreasing but
variance. On the other hand, inserting the value for the meafionzeroo was considered. We see that the amount by which
gap yields a value of, for instance~20 in the region of the maximum flow changes When the limit is performed is
maximum flow. This means that even though we know tha€omparatively small, becausg is kept contant. Note that
interactions are of great importance in this regime they ardhis limit is different from the deterministic limit
still rare in a homogeneous flow. In addition it can be shown

that interactions between at least three cars are needed to . r

T~a
o

2. (12)

c=1,{a)=1/2—

decelerate the cars to a velocity close to zero. Such events 061 7= 0, {a) = 0o ]
are extremely rare, as can be seen in Fig. 3. This already os | o= 0,({a) = N
gives us a hint that the decrease of the flow cannot appear . .
due to interactions in the homogeneous flow but must be a q 0.4 ' T
consequence of the appearance of jams. sl )
Next we look at two accelerating cars. If the acceleration .
distribution is denoted by,, the master equation for the 0.2r T
velocity distribution reads: o1l |
o : . ; .
P,(v,t+1)= f P,(v—a,t)P,(a)da, 7 ° o2 O sty o8 !

from which we get FIG. 4. The limito—04{a)—0,0/(a)=2.
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FIG. 5. Probability distribution of distances for different densi-  FIG. 6. (a) Probability distributions for the free flow and the
ties. Parameters chosen arg,=3, 8ma—=1, 0=1. congested flow phases, respectively, obtained from the separation
ansatz.(b) Probability distributions obtained from a microsimula-

(o/(a)—0), which is also depicted in Fig , in spite of the tion compared with the distributions shown(&. The microscopic
fact that thére is no more noise in the freé flow. criterion used to construct the distributions) iz v /2 (free flow).

P (x)=nPD(x)+(1—n ) PH(x), (12)
V. PHASE SEPARATION

Looking at the fundamental diagram we see that the flowvherePt andP(" are the gap distributions of the jammed
density relation can be remarkably well approximated by d€910NS anfd the free regions, respectively. We assume that
linear function over a wide range of densities in the con-P"’ andP(") are independent of the density. Then, are
gested flow region. The most obvious explanation for this ig'ot independent variables, but are instead determined by the
that the system decomposes into two phases, a phase of fri&€t that the sum of all gaps has to be equal to the length of
flow and a phase of congested flow. The two phases are intQ€ system minus the space occupied by the cars. The corre-
kind of dynamical equilibrium with each other, which Sponding equation for they is derived multiplying Eq(12)
closely resembles the thermal equilibrium between a liquid®y X and integrating over the whole range of possible gaps.
and a vapor in their coexistence regime. This picture will beThe integration yields
exploited subsequently, but note that we have a system far
from equilibrium here without any thermodynamic potential. ()= (XD
Because of the equilibrium between the congested flow k=m,
phase and the free flow phase any changes in the overall
density of the system simply result in changes of the fraction :
of cars that can be found in either of the two phases, Where[v-;htehrsg?sft’rii))ggk’)r?;%;( ),l;((dj()ang:]edtge mEe an gtqap Witg resgect
reas the properties of the phades., mean flow and mean ’ ’ k- Equations( .) and

. . : . (13) can now be used to compute the unknown distributions
density remain unchanged. To support this very suggestiv . .
. o ; " i and P . Note that Eq(12) is basically a system of non-
picture we look at the gap distribution for different densltles.l.J i for the 12 K B (x).

Figure 5a) shows the gap distribution of the continuous inear- equations for the B, uhknown (X'){:l ----- Np’
model for different overall densities. Each of the distribu-P?(X)i=1,. . n,, WhereNy is the number of bins used to
tions clearly exhibits two maxima. The positions of the describe the distributions. In order to solve this system of
maxima do not change significantly over a wide range ofequations, one has to provide at least two data sets for dif-
densities. Note that the lower maximum of the distribution isferentP,(x). If more data sets are provided, there will not be
assumed at a nonzero value. This means that the equilibriusmn exact solution to the problem any more and only the best
state of congestion in the two-phase region is not that of @pproximate solution with respect to some appropriately de-
“densely packed” queue of cars but rather a state with in-fined distance measure can be found. This distance measure
termediate density. will be defined below.

This contrasts with the behavior of the original cellular It is also possible to decompose the gap distribution into a
automaton. In the CA model the maximum of the gap distri-distribution for a jammed state and a free state using certain
bution of the congested regime is assumed for the value zermicroscopic information about the individual events instead
which means that the jam is densely packed. This behavior isf a great number of different experiments. A simple guess
clearly unrealistic. In reality the spontaneously formed jamswould be to attribute cars to the jammed state if their veloc-
have a density significantly lower than for instance the denity is below some threshold, say,./2, and to the free state
sity of a jam building up behind a blockage. if it is above the threshold. The very details of the criterion

The qualitative picture described above can also be quanised to separate the distributions do not seem to be crucial;
tified. For this end we look at a seriesMfsimulations in the  many different criteria work with sufficient accuracy.
range of densitiep, (k=1, ... N) where we expect phase Figure 6 shows the gap distributions arising from the two
separation to take place. For these simulations we get gagecomposition methods. We see that they agree reasonably
distributionsP,(x). Now assume that the,(x) can be writ-  except for the small gaps in the free phase. The microscopic
ten in the form method attributes less cars to the free phase in this region,

(13



54 CONTINUOUS LIMIT OF THE NAGEL-SCHRECKENBERG MODEL 3711

which is not surprising, because a simple threshold criterioperimental distributions was computed using the above
is not able to distinguish between slow cars in a jam andlistance measure. For the discrete model the distance was
slow cars in the free phase. approximately four times as large as for the continuous
The distributionsP(Y and P() are worth a closer look. model, the order of magnitude being 0
First, what may be a little unexpected is the fact that the The result again is not too surprising. The distance is
distribution of the free phase(") assumes nonvanishing val- considerably smaller in the continuous case due to the fact
ues down to gaps of size zero. In this sense the “free” phasthat the system has more degrees of freedom, but the picture
is different from really free conditions at very low densities, of the separating phases is justified very well in both cases.
where there is a sharp cutoff at nonvanishing values for the
gap size. The small gaps originate from interactions between
the cars that do not suffice to finally cause a jam. Clearly the

number of such events in the system is proportional to the The dynamics of the Nagel-Schreckenberg model bears
number of cars in the free phase as long as the density in theéynsiderable structure. Many of the interesting features of
free phase does not change significantly. So it is not surprishis model, however, are masked by the limitations of its
ing that the ansat¢l2) brings out these events automatically. discrete state space. It has been shown that an analogous
The time evolution of the velocity of a randomly chosen carmodel with continuous state variables can be constructed as
in Fig. 3 also shows events of this kind. Again the picture ofthe limit of a series of discrete models with different spatial
a liquid and its vapor may be helpful: The interactions thatresglutions.
do not cause macroscopic jams are an analog to randomly |n the continuous model the dynamics of the system for
generated aggregations of gas molecules that do not reagfi¥ferent densities can be nicely resolved into the following
the critical size allowing them to evolve into a macroscopicstages.
droplet. o . 0<p=p,,: Free flow. Interactions between the cars are
Next we l.OOI.( at'the 9ap Q|str|but|oﬁ(l) for thg jammed rare, leading to the formation of small “droplets” which
state. The distribution exhibits a peculiar behavior near gap mediately dissolve. Each car travels approximately at its
of SIZ& U max, where more events are .counted thr_m expecteQyeagired spee(physical analog: dilute gas
The addltlonallevents cc_)unted in this range originate from p..<p=p..: Phase separation. The system decomposes
the outflow region of the jams. As the number of such events " "1 ° 2 e . . .
is proportional to the number of jammed cars as long as thito reQ'O”S of “free ﬂO.W and' .Jammed.regllon'éphyswal
length distribution of the jams does not change too much, thgnalog. saturated vapor n eqylhbnum with liquid ph)gse
ansatz(12) therefore attributes them to the jammed phase. Pc,~P=1: Rehomogenization. The whole system is con-
The assumption of a constant length distribution of the jamgestedphysical analog: compressible liquid without coexist-
is justified, because direct interactions between the jams af@g vapoy. Because of the exponential tail of the distance
rare. distribution it is possible that fast cars can exist, but such
One important thing we have to keep in mind is the factcars get immediately dissolved in the “liquid.”
that different phase§.e., spontaneously formed macroscopic ~ Spontaneously formed jams can only exist for densities
inhomogenetigs can only exist in a range of densities p betweenp, andp . This is in fact a well known feature
pe,<p<pc,, Wherep. andp., are the densities in the free of hydrodynamical models of traffic flofl] and of micro-
and the jammed phases, respectively. scopic models with more complicated, deterministic dynam-
After having understood how phase separation takes pladés[4,5,13. So far it was not clear whether or not there is an
in the continuous model we can compare this to the cellulapnalog for that in the CA model. Note that the lower critical
automaton. We can again use the same “decomposition arflensity pc, is not identical with the density of maximum
satz” (12) and find the discrete distributio?) and P(Y)  flow, but slightly lower. It has been fourfd4] that the time
that fit the ansatz best. Defining an appropriate distance me#he system needs to relax into an equilibrium state diverges
sure we can then compute the distance between the vectat this density.

VI. CONCLUSIONS

space spanned by the ansét2) and the simulation results. Using continuous variables also allows one to adjust dif-
A reasonable measure for the distance between twéerent statistical parameters of the free flow and of the highly
binned distributionsy; and p; is congested flow independently, whereas in the original model
one parameter determines the complete statistics. This is a

d _2i(g— pi)? highly desirable feature when it comes to the calibration of

(a.p)= >i0ipi (14 the model to empirical data. First experiences with the cali-

bration of the mode[12] also seem to indicate that the be-

The denominator is needed in this case to make sure th&éavior of the continous model for high densities is essential
d(q,p)=~d(q,p) if (g,p) and @,p) are binned distributions to reproduce spontaneous jamming and dense jamming be-
with different resolutions corresponding to the same underhind a blockage, for instance, quantitatively within one
lying continuous distribution. Otherwise the continuousmodel.
model and the cellular automaton could not be compared It has been shown that much of the dynamics of the model
directly. in the region of maximum flow can be understood looking

To compare the continuous and the discrete models thenly at the statistics of the free flow region. This may be a
decomposition was performed using experiments with densbasis for simplified theories of the cellular automaton and
ties ranging in an interval oAp=0.1. Then the mean dis- related models. As a first simple example of this the impor-
tance between the space spanned by the ansatz and the &t role of the acceleration noise could be elucidated look-
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ing at the statistics of two noninteracting cars. U des= MN[0 (1) + Bmax: U max: Ngad ) 1,
The main differences between the CA model and the con-
tinuous model arise in the limit of very high density. Apart v(t+1)=max{ 0 ges Nran,0a,,l- (15
from that limit the dynamics in both models are not substan-
tially different. So despite the great advantages that the con- X(t+1)=x(t) +o(t+1),

tinuous model bears, its investigation has confirmed the va-

lidity of the calculations performed within the framework of \I/:viherf all vsvr;asbl:ehsogl; Ip;elg: rasn Ii::treth; L?j::ilt?edl)sfplsay'?gem
the original CA model. 9. L umax g p .

maximum acceleration,,, was set tw /3, Nran .0z, de-

APPENDIX: THE INTERMEDIATE MODELS notes an integer random r!umber between 0 amg( The
gap is calculated as the difference of the positions that the

The intermediate models used for the fundamental diaeenters of the cars have minus the length of one car, which is
grams in Fig. 1 are defined as follows: equal to 1pmax-
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