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Vortex-sink dynamics
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Interaction of a point vortex sinktwister) with an obstacle in a stationary and nonstationary flow is
considered. Classification of twister trajectories, depending on nondimensional parameters of the system, and
the probability of twister-obstacle collisions are presented. Equations for the sc{Basseéliantwisters are
presented and some solutions of these equations are discussed. More general situations and applications,
including screened twisters in a superconductor, are also discyS3163-651X96)07410-7

PACS numbes): 47.32-y

[. INTRODUCTION cylindrical boundary we have to place at the center of the
cylinder an additional source or sink with intensityu
A characteristic feature of quasilinear vortices of various(which has opposite sign2]. The case of a flat boundary
kinds is the convergent radial motion of the medium at theand screened twister is presented in Sec. Ill.
base of such a vortex. Good examples are the sink vortices Consider external flow with oscillating fluid velocity at
in bathtubs, whirlwinds, tornadoes, and typhoons. The coninfinity
vergence in such vortices can be simulated by means of sinks
(whose physical nature is not considered:; in case of typhoons u(t)=ug(1+ € sinwt), 1)
we have convection above the surface of the ogeamhe
problem is then reduced to the two-dimensional hydrody_wheree is the nondimensional amplitude of the oscillation
namics[1]. and w is the frequency. In the plane of motion the flow is
A simple model in such an approach is a combination of z2ssumed from top to bottom. The corresponding potential
point vortex and sink, which is called a helical Vort@mm motion of the fluid around the Cylinder is representEd by a
the shape of streamlines We will use a shorter name: dipole (see, for example, Ref3]).
twister. We will show first that twisters have a natural at-  In polar coordinategr,¢) with the origin in the center of
traction to any obstaclglepending on a scale of phenomena,the cylinder and with additional circulatior, around the
it can be a change in a relief, a man-made structure, or a tregylinder, the equations of motion for the twister have the
one of the authordE.N.) witnessed a relatively thin dust form
devil hitting a treg. Next we will present classification of

twister trajectories in a stationary flow for a variety of non-  df _ :‘Laz . 2.
dimensionJaI parameters of the S)):stem. Then we)\//vill calcu- dt 2mr(r?—a?) Up(1+ € sinwt)(1=a’r%)sing,
late probabilities of twister-obstacle collisions in a non- 2
stationary flow. Finally, we will turn to a more general
family of animals(screened twistejsn the context of vari- d¢ KT Ko
ous applications. P at T 2a07—ad) | 2ar

—Ug(1+ € sinwt)(1+a%r ~?)cosp. 3

II. ORDINARY TWISTERS

For an ordinary vortexwith ©=0) these equations were in-
vestigated in Refs[4,5] and chaotic behavior was discov-
ered.

In the absence of external flou,=0), we obtain, from

Consider a twister with the vortex intensig(for x>0 we
assume counterclockwise rotation of fluid The source
(sink) intensity is u (a sink corresponds ta<<0). As an
obstacle we choose a cylinder with the radius For a mo-
tion of ideal fluid, we must ensure a zero normal componen?q' 2),
of the velocity at the surface of a bodgenerally, in the
frame of refergnce moving Wiih the body, if it'is movi.n.g, IiI§e i (r3=rd)— } (r2—r2)=ut/2m, ()

a car or a ship For an ordinary vortex this condition is 3a 2

enforced by an image vortex placed inside the cylinder at the

distance from the Centazlr' wherer Corresponds to the Wherero is the initial distance of twister from the center of
position of the original twister. It is well known from vor- the cylinder ¢;,>a). We see that for an arbitrary initial

tex dynamics that the intensity of the image vortex—ig pOSition, the twister will hit the surface of the Cy“ndar (

(which has opposite signHowever, it is easy to see, in =4a) in a finite time, given by4).

particular for the case of a flat boundary, that the intensity of From(2) and(3), with u,=0, we have

image source or sink ig, which has the same sign as for the 52

original twister. This causes a fatal attraction of twisters to _, _koTk Ko —2_ -2

any obstaclegnot only cylindrical or flat. In the case of a ¢~ bo= In(r/ro) + 2u (r 0%, ©
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FIG. 1. Classification of twister trajectories in
the parameter space: inside the funnel, two saddle
points and focus; outside, one saddle pdsae
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where ¢y is the initial angle. Equation@) and(5) give the  parametersn, o, anday, this equation has from one to three
whole trajectory of the twister. The place of collision is real roots. Figure 1 summarizes these data. Inside the indi-
determined by(5) with r=a. cated three-dimensional area in the parameter space we have
For stationary external flo\u,#0, e=0) we will have an  three roots; outside we have one root and on the boundary
area of initial conditions from which trajectories will hit the two roots. The cross section with=0 Corresponds to the

cylinder. Other trajectories will go away. The correspondingcase considered ii#,5]. Figure 2 presents a cross section of
separatrices will generally depend on three nondimensionghe parameter space with,=11.

parametersr=«/2muoa, o=~xo/2mUoa, andm= w/2musa. Linearization of the systert®) and(3) in the vicinity of a

In- particular, for a pure sink(o=0o=0, m<0) with  gasionary point shows that in the case of one root we have a
¢o=—ml2, the collisions occur only under the condition 5 4qie(hyperbolig point and in the case of three roots we
have two saddle points and one fodspiral). For m>0 the
focus is stable and fan<Q0 it is unstable. Fom=0 instead

of a focus we have an elliptic poifé,5]. On the boundary in

which follows from(2). h ; £ th 4dl it d the f
In order to study trajectories and separatrices systematF— € parameter space one ot he saddie points an € focus

) : ; into a node.
cally, we have to find first stationary points of the syst@n M€rge In _ o
and (3) with e=0. By putting zero on the left-hand sides of Let us note that the right boundary in Fig. 2 is curved. It

these equations and excludida we aet the algebraic equa- is more clear in Fig. 3, Where positions of stationary. points
q Hg we g ¢ a are presented fosy=11, discrete values af, and continu-

Im[>(r§—a??;*a"3, (6)

tion ous changes afh from —100 to 100.
m?z(z+1)%+ 2(z— 1) Y op(z— 1) + 0'Z]2 Consider the case withr=6.85, where we have four in-
tersections with the curved right boundary in Fig. 2. This
=(z—1)%(z°-1)?, (7)  case corresponds to curve 3 in Fig. 3. Fexm; =—3.08 we

have one saddle point. Far=m, (first intersectiomn an ad-
where z=p?, p=r/a, and we considep>1. Havingp, we ditional node appearéndicated by an asterigkwhich then
can find¢ from (2) or (3). Numerical analysis of Eq7) with splits into a focus and a second saddle point. The fat piece of
the conditiorz>1 shows that, depending on the values of thecurve corresponds to the coexistence of three stationary
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FIG. 2. Cross section of Fig. 1 witbg=11.
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points. Form=m,=—1.08 (second intersectigrthe focus For nonstationary external floye+0) there are no fixed
and the first saddle point merge into a nddelicated by a separatrices and the twister trajectory depends additionally
circle) and then disappear. Ferm,>m>m, we have only on the phase of the oscillating flow. Denote a discrete phase
one (secondl saddle point. Fom>0 we have two more in- by a,=2wk/n, wherek=0,...n—1 andn is the number of
tersections and the same events in reverse order. different phases. We adg, to the argumenit of the oscil-

For 0=6 (curve 4 in Fig. 3 ando=4 (curve 5 we have lations in Eqs(2) and(3) and consider a family of trajecto-
only two intersections and the corresponding curves consigies with different initial phases. The probability of a twister-
of loops (focus and second saddle, between intersectionsbody collision P for a fixed initial position is naturally
and separate lineffirst saddle. For =11 (curve ) and defined as the number of trajectories hitting the body, di-
=9 (curve 2 there is no intersection and only one saddlevided by the total number of trajectories Figure 8 presents
point. two families of trajectories with initial positions on two sta-

Twister trajectories for the case of one saddle point andionary separatrices ant=20. The dependence of the prob-
0,00>0 are presented in Fig. 4. Fat lines indicate separaability on the position along the horizontal line intersecting
trices. Figure 5 presents the case with one saddle point arglationary separatrices is depicted in Fig. 9. This figure is
>0, 0,<0. A more complex situation with two saddle obtained withn=10® for each of the 1dinitial points. We
points and one unstable focus is presented in Fig. 6. A seriesee that probability changes sharply when approaching 0 and
of twister trajectories with the same starting point and differ-1. In the case of smal, the limiting points are determined

ent values of parameten are depicted in Fig. 7. by the stationary separatrices, corresponding to external
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FIG. 4. Twister trajectories with one saddle pdiag=11, 5=6, FIG. 6. Twister trajectories with two saddle points and focus
andm=—2). Fat lines indicate separatrices. (0p=11, 0=6, andm=—0.5).

flows with velocitiesUy(1*¢).

Let us note that fom+0, the systen{2) and (3) is gen-
erally non-Hamiltonian. The system of twistdkgithout ob-
staclg with equal ratios of the sink and vortex intensities is : . ! : ;
Hamiltonian[1]. Quasilinear vortices with a finite core can mef‘“o”e‘?' above, but also in othe_r flelds_of science, Just as
be approximated by a system of point twisters. Obstacles qudlnary linear and screenéBesseliaj vortices are impor-

various shapes can be considered by using the correspondimj1t objects o.f-investigation in. the theory of superﬂuidity,
Green’s functions. stperconductivity, and magnetized plasféa7]. In particu-

lar, it was suggestefl7] that the dynamics of vortices in a
superconductor of a second kind, as well as a finite-
dimensional model of magnetized plasma, can be described
by the Hamiltonian system

Ill. SCREENED TWISTERS

Twisters could find applications not only in the cases
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FIG. 7. Twister trajectories with a common poimty=15 and
0 1.0 5.0 o=9. Curve 1(m=0), twister is moving frome to oo; dotted curve
X 2 (m=-0.2), from the focus(which is not showhto «; curve 3
(m=-0.5), from the focus to the body; curves 4—6, fromto the

FIG. 5. Same as in Fig. 4, but witlyy=—2. body.
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8+ Herek, and ,,y,) are the intensity and Cartesian coordi-
nates of the vortices, respectively, afgis the Bessel func-
tion of the imaginary argument. The Hamiltonié®) corre-
sponds to an unbounded domain. The schlefor the

64.
superconductor is the London penetration de@8]; the
corresponding scale for the plasma is the effective Larmor
4l radius of iong(calculated from the electron temperafur@].

L Z e _ In the geophysical hydrodynamics the appropriate scale is
' the Rossby deformation radii40]. It is always amazing
when several quite different physical phenomena are de-

Y, ';x\\\\‘/-:l scribed by the same equations.
D %{{li})}\fil "‘-w The functionK, has asymptotes
ANV
AN
v “'ﬁﬂm‘l{ Ko(p)=—C+In2—Inp, p<1, (10)
3 b
“\
WA | Ko=(ml2p)Y%e™P, p>1, (12)

where C=0.577 is the Euler constant. If all the distances
between vortices are far smaller thanthen all the results
derived for ordinary vortices are applicable to screened vor-
tices as well. If the distances between the vortices are
greater thanL, then the vorticeqor a group of vortices
interact weakly; thus the terracreened vortexame into
being. The interaction and the collapse of a system of three
screened vortices were considered in Réf.

Now consider screened twistersyy introducing sinks
(sources For the vortex in a superconductor we can imag-
ine phenomenologically that there is some sort of convection
in the core of such a vortex that creates an attraction to a
boundary or to a defect. The equations for screened twist-
ers are a generalization @) with an additional potential

FIG. 8. Nonstationary twister trajectoridsy=11, 0=6, m=
-2, e=0.7, =1, andn=20) intersecting stationary separatrices at
yo=3.5(see the tejt

dx, 1 H 10> dy, 10H 100
dx, _ dH dy  oH AU Ky o Ra 0% AU Ky OXy | e Y
Ka e =5 Kage=""—" ® (12
dt é,ya dt &Xa
! PR > Ko(l,5/Ls) (13)
H:—E Kok gKo(l og/L), T on a<BMmU«ﬁ ollap/Ls),
27T a<p

B ) 211/2 whereu, are sink(sourcg intensities. The screening scale
lap=[(Xa=Xp) "+ (Yo=Y p) 1™ ©) L, for sinks (sourceg generally can be different from
L. Forl,g<min(L,Ls) we return to ordinary twisters. For
the interaction of two screened twisters we obtain i@,
(13), and(9)

I S S —

5 ' T ,
i dt~ 2aL, (L) me=pmatua, Kilp)==Kolp),
o6 [+ 14
P | E
04 }----- E 4: dé Ky
s s I a__ 27T|_ Kl(I/L), K*_K1+K2,
02 }---- R A | A-oee-
L S N ' 0=arctar6 _yl—yz), (15)
H : ! Xl_X2

20 00 20 0 &0 80 wherel is the distance between twisters. This system is

obviously integrable. It follows that for, =0 the distance
FIG. 9. Probability of a twister-body collision with the same between the screened vortices does not changey.for0
parameters as in Fig. 8, but with=10%, calculated for 1®initial ~ they move apart, while fop, <0 they approach each other
points (see the text in a finite time

b3
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2mL2 [lo/Ls dp traction (repulsion rather than simple rotation. This sup-
- J Ki(p)' (16) ports the idea that sinksource$ can play an important role
0 ! in the description of such vortices. Moreover, the asymp-

wherel is the initial distance. Further, for, =0 the vec-  totic analysig12] of the Ginzburg-Landau modgs] leads to

tor distance between vortices preserves its direction, fothe potential, similar tq13), whereLs equals the London

«, <0 the vortices rotate clockwise, and foy >0 the vorti-  penetration depth.  As far as we know, the full syst¢h2),

ces rotate counterclockwise. Knowing the relative motion(9), and(13)] has not been studied before.

from (14) and (15), we can readily calculate the absolute = We also became aware of earlier works on ordinary vor-

motion of screened twisters using Eq%2) (compare with  tex sink[13,14]. In particular, in Ref[14] the fluid motion

the similar analysis of ordinary twistef&]). The interac- around an immobile vortex sink was considered and it was

tion of the screened twister with a boundary can also béndicated that the influence of a cylindrical body on fluid

calculated similarly to the case of ordinary twisters. In par-motion is negligible for large distances because of the dipole

ticular, the attraction of a screened twister to a flat boundargharacter of this influencén comparison with the monopole

is described by(14) and (15 with |=2y, wherey is the vortex sink. The motion of the vortex sink, induced by the

distance from the boundary, and wifl,=u;, x,=—x;, presence of a boundary, was not considered in these works.

where the index 2 refers to the image screened twister. AbWe would like also to indicate Ref§15,16 in which a

solute motion includes the component of velocity source was used for a description of jet flows. The main goal

v=(k1/2wL)K(I/L), parallel to the boundary. of the present work was to bring the attention of the scientific
From the simple analytical and numerical solutions pre<community to the rich dynamics of the simple systems of

sented we can see that the twister dynamics is a rich field thardinary and screened twisters with expected applications in

deserves further exploration. The classical vortex dynamicgarious fields of contemporary physics.

is a particular case of twister dynamics when sink intensities

are zero and all distances are much smaller than Iminy.

Moy
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