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Interaction of a point vortex sink~twister! with an obstacle in a stationary and nonstationary flow is
considered. Classification of twister trajectories, depending on nondimensional parameters of the system, and
the probability of twister-obstacle collisions are presented. Equations for the screened~Besselian! twisters are
presented and some solutions of these equations are discussed. More general situations and applications,
including screened twisters in a superconductor, are also discussed.@S1063-651X~96!07410-7#

PACS number~s!: 47.32.2y

I. INTRODUCTION

A characteristic feature of quasilinear vortices of various
kinds is the convergent radial motion of the medium at the
base of such a vortex. Good examples are the sink vortices
in bathtubs, whirlwinds, tornadoes, and typhoons. The con-
vergence in such vortices can be simulated by means of sinks
~whose physical nature is not considered; in case of typhoons
we have convection above the surface of the ocean!. The
problem is then reduced to the two-dimensional hydrody-
namics@1#.

A simple model in such an approach is a combination of a
point vortex and sink, which is called a helical vortex~from
the shape of streamlines!. We will use a shorter name:
twister. We will show first that twisters have a natural at-
traction to any obstacle@depending on a scale of phenomena,
it can be a change in a relief, a man-made structure, or a tree:
one of the authors~E.N.! witnessed a relatively thin dust
devil hitting a tree#. Next we will present classification of
twister trajectories in a stationary flow for a variety of non-
dimensional parameters of the system. Then we will calcu-
late probabilities of twister-obstacle collisions in a non-
stationary flow. Finally, we will turn to a more general
family of animals~screened twisters! in the context of vari-
ous applications.

II. ORDINARY TWISTERS

Consider a twister with the vortex intensityk ~for k.0 we
assume counterclockwise rotation of fluid!. The source
~sink! intensity ism ~a sink corresponds tom,0!. As an
obstacle we choose a cylinder with the radiusa. For a mo-
tion of ideal fluid, we must ensure a zero normal component
of the velocity at the surface of a body~generally, in the
frame of reference moving with the body, if it is moving, like
a car or a ship!. For an ordinary vortex this condition is
enforced by an image vortex placed inside the cylinder at the
distance from the centera2/r , where r corresponds to the
position of the original twister. It is well known from vor-
tex dynamics that the intensity of the image vortex is2k
~which has opposite sign!. However, it is easy to see, in
particular for the case of a flat boundary, that the intensity of
image source or sink ism, which has the same sign as for the
original twister. This causes a fatal attraction of twisters to
any obstacles~not only cylindrical or flat!. In the case of a

cylindrical boundary we have to place at the center of the
cylinder an additional source or sink with intensity2m
~which has opposite sign! @2#. The case of a flat boundary
and screened twister is presented in Sec. III.

Consider external flow with oscillating fluid velocity at
infinity

u~ t !5u0~11e sinvt !, ~1!

wheree is the nondimensional amplitude of the oscillation
andv is the frequency. In the plane of motion the flow is
assumed from top to bottom. The corresponding potential
motion of the fluid around the cylinder is represented by a
dipole ~see, for example, Ref.@3#!.

In polar coordinates~r ,f! with the origin in the center of
the cylinder and with additional circulationk0 around the
cylinder, the equations of motion for the twister have the
form

dr

dt
5

ma2

2pr ~r 22a2!
2u0~11e sinvt !~12a2r22!sinf,

~2!

r
df

dt
52

kr

2p~r 22a2!
1

k0

2pr

2u0~11e sinvt !~11a2r22!cosf. ~3!

For an ordinary vortex~with m50! these equations were in-
vestigated in Refs.@4,5# and chaotic behavior was discov-
ered.

In the absence of external flow~u050!, we obtain, from
Eq. ~2!,

1

3a
~r 32r 0

3!2
1

2
~r 22r 0

2!5mt/2p, ~4!

wherer 0 is the initial distance of twister from the center of
the cylinder (r 0.a). We see that for an arbitrary initial
position, the twister will hit the surface of the cylinder (r
5a) in a finite time, given by~4!.

From ~2! and ~3!, with u050, we have

f2f05
k02k

m
ln~r /r 0!1

k0a
2

2m
~r222r 0

22!, ~5!
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wheref0 is the initial angle. Equations~4! and~5! give the
whole trajectory of the twister. The place of collision is
determined by~5! with r5a.

For stationary external flow~u0Þ0, e50! we will have an
area of initial conditions from which trajectories will hit the
cylinder. Other trajectories will go away. The corresponding
separatrices will generally depend on three nondimensional
parameterss5k/2pu0a, s05k0/2pu0a, andm5m/2pu0a.
In particular, for a pure sink~s5s050, m,0! with
f052p/2, the collisions occur only under the condition

umu.~r 0
22a2!2r 0

21a23, ~6!

which follows from ~2!.
In order to study trajectories and separatrices systemati-

cally, we have to find first stationary points of the system~2!
and ~3! with e50. By putting zero on the left-hand sides of
these equations and excludingf, we get the algebraic equa-
tion

m2z~z11!21z~z21!2@s0~z21!1sz#2

5~z21!2~z221!2, ~7!

wherez5r2, r5r /a, and we considerr.1. Having r, we
can findf from ~2! or ~3!. Numerical analysis of Eq.~7! with
the conditionz.1 shows that, depending on the values of the

parametersm, s, ands0, this equation has from one to three
real roots. Figure 1 summarizes these data. Inside the indi-
cated three-dimensional area in the parameter space we have
three roots; outside we have one root and on the boundary
two roots. The cross section withm50 corresponds to the
case considered in@4,5#. Figure 2 presents a cross section of
the parameter space withs0511.

Linearization of the system~2! and~3! in the vicinity of a
stationary point shows that in the case of one root we have a
saddle~hyperbolic! point and in the case of three roots we
have two saddle points and one focus~spiral!. Form.0 the
focus is stable and form,0 it is unstable. Form50 instead
of a focus we have an elliptic point@4,5#. On the boundary in
the parameter space one of the saddle points and the focus
merge into a node.

Let us note that the right boundary in Fig. 2 is curved. It
is more clear in Fig. 3, where positions of stationary points
are presented fors0511, discrete values ofs, and continu-
ous changes ofm from 2100 to 100.

Consider the case withs56.85, where we have four in-
tersections with the curved right boundary in Fig. 2. This
case corresponds to curve 3 in Fig. 3. Form,m1523.08 we
have one saddle point. Form5m1 ~first intersection! an ad-
ditional node appears~indicated by an asterisk!, which then
splits into a focus and a second saddle point. The fat piece of
curve corresponds to the coexistence of three stationary

FIG. 1. Classification of twister trajectories in
the parameter space: inside the funnel, two saddle
points and focus; outside, one saddle point~see
the text!.
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points. Form5m2521.08 ~second intersection! the focus
and the first saddle point merge into a node~indicated by a
circle! and then disappear. For2m2.m.m2 we have only
one ~second! saddle point. Form.0 we have two more in-
tersections and the same events in reverse order.

For s56 ~curve 4 in Fig. 3! ands54 ~curve 5! we have
only two intersections and the corresponding curves consist
of loops ~focus and second saddle, between intersections!
and separate lines~first saddle!. For s511 ~curve 1! and
s59 ~curve 2! there is no intersection and only one saddle
point.

Twister trajectories for the case of one saddle point and
s,s0.0 are presented in Fig. 4. Fat lines indicate separa-
trices. Figure 5 presents the case with one saddle point and
s.0, s0,0. A more complex situation with two saddle
points and one unstable focus is presented in Fig. 6. A series
of twister trajectories with the same starting point and differ-
ent values of parameterm are depicted in Fig. 7.

For nonstationary external flow~eÞ0! there are no fixed
separatrices and the twister trajectory depends additionally
on the phase of the oscillating flow. Denote a discrete phase
by ak52pk/n, wherek50,...,n21 andn is the number of
different phases. We addak to the argumentvt of the oscil-
lations in Eqs.~2! and ~3! and consider a family of trajecto-
ries with different initial phases. The probability of a twister-
body collision P for a fixed initial position is naturally
defined as the number of trajectories hitting the body, di-
vided by the total number of trajectoriesn. Figure 8 presents
two families of trajectories with initial positions on two sta-
tionary separatrices andn520. The dependence of the prob-
ability on the position along the horizontal line intersecting
stationary separatrices is depicted in Fig. 9. This figure is
obtained withn5103 for each of the 103 initial points. We
see that probability changes sharply when approaching 0 and
1. In the case of smalle, the limiting points are determined
by the stationary separatrices, corresponding to external

FIG. 2. Cross section of Fig. 1 withs0511.

FIG. 3. Positions of stationary points~s0511
and 100.m.2100!: curves 1–5 correspond to
s511,9,6.85,6,4 and dashed curve indicates the
focus ~see the text!.
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flows with velocitiesU0~16e!.
Let us note that formÞ0, the system~2! and ~3! is gen-

erally non-Hamiltonian. The system of twisters~without ob-
stacle! with equal ratios of the sink and vortex intensities is
Hamiltonian@1#. Quasilinear vortices with a finite core can
be approximated by a system of point twisters. Obstacles of
various shapes can be considered by using the corresponding
Green’s functions.

III. SCREENED TWISTERS

Twisters could find applications not only in the cases
mentioned above, but also in other fields of science, just as
ordinary linear and screened~Besselian! vortices are impor-
tant objects of investigation in the theory of superfluidity,
superconductivity, and magnetized plasma@6,7#. In particu-
lar, it was suggested@7# that the dynamics of vortices in a
superconductor of a second kind, as well as a finite-
dimensional model of magnetized plasma, can be described
by the Hamiltonian system

FIG. 4. Twister trajectories with one saddle point~s0511,s56,
andm522!. Fat lines indicate separatrices.

FIG. 5. Same as in Fig. 4, but withs0522.

FIG. 6. Twister trajectories with two saddle points and focus
~s0511, s56, andm520.5!.

FIG. 7. Twister trajectories with a common point,s0515 and
s59. Curve 1~m50!, twister is moving from̀ to `; dotted curve
2 ~m520.2!, from the focus~which is not shown! to `; curve 3
~m520.5!, from the focus to the body; curves 4–6, from̀to the
body.
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ka

dxa

dt
5

]H

]ya
, ka

dy

dt
52

]H

]xa
, ~8!

H5
1

2p (
a,b

kakbK0~ l ab /L !,

l ab5@~xa2xb!21~ya2yb!2#1/2. ~9!

Hereka and (xa ,ya) are the intensity and Cartesian coordi-
nates of the vortices, respectively, andK0 is the Bessel func-
tion of the imaginary argument. The Hamiltonian~9! corre-
sponds to an unbounded domain. The scaleL for the
superconductor is the London penetration depth@6,8#; the
corresponding scale for the plasma is the effective Larmor
radius of ions~calculated from the electron temperature! @9#.
In the geophysical hydrodynamics the appropriate scale is
the Rossby deformation radius@10#. It is always amazing
when several quite different physical phenomena are de-
scribed by the same equations.

The functionK0 has asymptotes

K0~r!'2C1 ln22lnr, r!1, ~10!

K0'~p/2r!1/2e2r, r@1, ~11!

whereC.0.577 is the Euler constant. If all the distances
between vortices are far smaller thanL, then all the results
derived for ordinary vortices are applicable to screened vor-
tices as well. If the distances between the vortices are
greater thanL, then the vortices~or a group of vortices!
interact weakly; thus the termscreened vortexcame into
being. The interaction and the collapse of a system of three
screened vortices were considered in Ref.@7#.

Now consider screened twistersby introducing sinks
~sources!. For the vortex in a superconductor we can imag-
ine phenomenologically that there is some sort of convection
in the core of such a vortex that creates an attraction to a
boundary or to a defect. The equations for screened twist-
ers are a generalization of~8! with an additional potential

dxa

dt
5

1

ka

]H

]ya
1

1

ma

]F

]xa
,

dya

dt
52

1

ka

]H

]xa
1

1

ma

]F

]ya
,

~12!

F52
1

2p (
a,b

mambK0~ l ab /Ls!, ~13!

wherema are sink~source! intensities. The screening scale
Ls for sinks ~sources! generally can be different from
L. For l ab!min(L,Ls) we return to ordinary twisters. For
the interaction of two screened twisters we obtain from~12!,
~13!, and~9!

dl

dt
5

m*
2pLs

K1~ l /Ls!, m*5m11m2 , K1~r!52K08~r!,

~14!

l
du

dt
52

k*
2pL

K1~ l /L !, k*5k11k2 ,

u5arctanS y12y2
x12x2

D , ~15!

where l is the distance between twisters. This system is
obviously integrable. It follows that form

*
50 the distance

between the screened vortices does not change, form
*

.0
they move apart, while form

*
,0 they approach each other

in a finite time

FIG. 8. Nonstationary twister trajectories~s0511, s56, m5
22, e50.7,v51, andn520! intersecting stationary separatrices at
y053.5 ~see the text!.

FIG. 9. Probability of a twister-body collision with the same
parameters as in Fig. 8, but withn5103, calculated for 103 initial
points ~see the text!.
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T52
2pLs

2

m*
E
0

l0 /Ls dr

K1~r!
, ~16!

wherel 0 is the initial distance. Further, fork
*

50 the vec-
tor distance between vortices preserves its direction, for
k
*

,0 the vortices rotate clockwise, and fork
*

.0 the vorti-
ces rotate counterclockwise. Knowing the relative motion
from ~14! and ~15!, we can readily calculate the absolute
motion of screened twisters using Eqs.~12! ~compare with
the similar analysis of ordinary twisters@1#!. The interac-
tion of the screened twister with a boundary can also be
calculated similarly to the case of ordinary twisters. In par-
ticular, the attraction of a screened twister to a flat boundary
is described by~14! and ~15! with l52y, where y is the
distance from the boundary, and withm25m1, k252k1,
where the index 2 refers to the image screened twister. Ab-
solute motion includes the component of velocity
v5(k1/2pL)K1( l /L), parallel to the boundary.

From the simple analytical and numerical solutions pre-
sented we can see that the twister dynamics is a rich field that
deserves further exploration. The classical vortex dynamics
is a particular case of twister dynamics when sink intensities
are zero and all distances are much smaller than min(L,Ls).

IV. CONCLUDING REMARKS

After this paper was prepared for publication, we become
aware of recent work@11# in which it was concluded that
vortices in a superconductor have a tendency of mutual at-

traction ~repulsion! rather than simple rotation. This sup-
ports the idea that sinks~sources! can play an important role
in the description of such vortices. Moreover, the asymp-
totic analysis@12# of the Ginzburg-Landau model@6# leads to
the potential, similar to~13!, whereLs equals the London
penetration depth. As far as we know, the full system@~12!,
~9!, and~13!# has not been studied before.

We also became aware of earlier works on ordinary vor-
tex sink @13,14#. In particular, in Ref.@14# the fluid motion
around an immobile vortex sink was considered and it was
indicated that the influence of a cylindrical body on fluid
motion is negligible for large distances because of the dipole
character of this influence~in comparison with the monopole
vortex sink!. The motion of the vortex sink, induced by the
presence of a boundary, was not considered in these works.
We would like also to indicate Refs.@15,16# in which a
source was used for a description of jet flows. The main goal
of the present work was to bring the attention of the scientific
community to the rich dynamics of the simple systems of
ordinary and screened twisters with expected applications in
various fields of contemporary physics.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of En-
ergy under Grant No. DE-FG03-91ER14188 and by the Of-
fice of Naval Research under Grants Nos. ONR-N000-14-92-
I-1610 and ONR-14-94-1-0040.

@1# E. A. Novikov and Yu. B. Sedov, Izv. Akad. Nauk SSSR
Mekh. Zhidk. Gasa No. 1, 15~1983! @Fluid Dyn.18, 6 ~1983!#.

@2# H. Lamb,Hydrodynamics~Cambridge University Press, Cam-
bridge, 1993!, p. 71.

@3# L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon,
Oxford, 1959!, p. 26.

@4# E. A. Novikov, Phys. Lett. A152, 393 ~1991!.
@5# J. B. Kadtke and E. A. Novikov, Chaos3, 543 ~1993!.
@6# E. M. Lifshitz and L. P. Pitaevsky,Statistical Physics~Perga-

mon, New York, 1986!.
@7# E. A. Novikov, Ann. N. Y. Acad. Sci.357, 47 ~1980!.
@8# A. A. Abrikosov, Zh. Eksp. Teor. Fiz.5, 1174~1957!.
@9# A. Hasegava and K. Mima, Phys. Fluids21, 87 ~1978!.

@10# J. Pedlosky,Geophysical Fluid Dynamics~Springer, Berlin,
1979!.

@11# S. J. Chapman and G. Richardson, SIAM J. Appl. Math.55,
1275 ~1995!.

@12# L. Peres and J. Rubinstein, Physica D64, 299 ~1993!.
@13# D. Kitao, Beitrage zur Theorie der Bewegung der Erdatmo-

spher und der Wirbelsturme~Tokio University, Tokio, 1895!.
@14# A. Masotti, Note Idrodinamiche~Societa Editrica ‘‘Unita e

pensiero,’’ Milano, 1935!.
@15# M. Goldshtik, F. H. Hussain, and V. Shtern, J. Fluid Mech.

232, 521 ~1991!.
@16# V. Shtern and F. Hussain, J. Fluid Mech.256, 535 ~1993!.

3686 54A. E. NOVIKOV AND E. A. NOVIKOV


