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Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface tension
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We consider the Rayleigh-Taylor instability in two finite-thickness fluids including the effects of viscosity
and surface tension. The eight equations expressing boundary, continuity, and jump conditions imposed on the
eigenfunction are written in the forid V=0 whereM is an 8<8 matrix andV is a vector containing the eight
coefficients that appear in the eigenfunction. Exact numerical results are obtained by solvMy=e8t(the
dispersion relation which determines the growth rats a function of the physical parameters of the system.

For the case of a semi-infinite viscous fluid with a free surface the exact result is given analytically. We also
derive an approximate analytic formula for arbitrary thicknesses, compare it with the exact results, and briefly
discuss recent experiments on finite-thickness flUig4063-651X96)07310-2

PACS numbg(s): 47.20-k, 52.35.Py, 47.40.Nm

I. INTRODUCTION [Eg. (10) in Ref. [7]], presumably because there is no for-
mula containing all three effects of finite thickness, surface
In this paper we consider the Rayleigh-Taylor instability tension, and viscosity. Unlike Eq1), Eq. (2) is an exact
in finite-thickness fluids including the effects of viscosity result. The second motive is that the steps in our treatment
and surface tension. The system consists of two fluids ofr® quite general and can be applied to other problems re-
densitiesp; andp,, thicknesses, andt,, viscositiesu, and ~ 9uiring finite-thickness corrections.
4, and surface tensiof® between the two fluids. Pertur- The exactbut numerical results are given in Sec. Il. The
bations of wave numbek at the interface of the two fluids 2PProximatebut analytig results are given in Sec. Ill, where
grow exponentially in time with a growth rateif the accel- W€ @lso discuss recent experimefti In the course of this
erationg is directed from the low-densityp,) fluid towards investigation we have derived a&xact and analyticolution

. . ' ; . . for the caseT®=0, p,=0, andt,=x. As far as we know
the hlgh-o_lensn)(pz) flwd. The goal IS to obtain the dlsper- this is the only exact analytic expression for a viscous fluid
sion relation that givesy as a function of the other nine

. valid for all wave numbers, and naturally we use it to test our
variables of the system.

. L .. ... humerical results and approximate expressions. The deriva-
Earlier work [1] has focused primarily on semi-infinite tion is detailed in the Appendix.

fluids, i.e.,t;=t,=, which is a considerably simpler sys-
tem than the finite-thickness case. Even then the exact solu- Il. EXACT RESULTS
tions must be obtained numerically. An approximate disper-
sion relation for such semi-infinite fluids was derived
recently[2]

Our starting point is the general eigenvalue equation, Eq.
(41) in Ref.[1]:

D
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K2 (p—%(D2—k2)>DW—;DM(DZ+kZ)W}
y2+2kzvy—gkA(1—P)=0, )
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where the Atwood number A=(p,—p)/(pa+tp1),

v=(uot u)l(pytpy), andke=[(p,—p;)9/ T2 Equation _ ,

(1), without the surface tension term, was first proposed by

Bellman and Penningtof8] and subsequently by Hidel], R

though his derivation was criticized by Rdifl (see Ref[1] ~ WhereW(y) is the perturbed velocity and=d/dy, y being

for historical remarks In this paper we present exact nu- the direction of the constant acceleratign

merical solutions to the finite-thickness case and an approxi- 'ntegrating Eq(3) we obtain

mate analytic dispersion relation that generalizes #jto

finite-thickness fluids. Y f pW dy+k2>, TOW(y,)+y f w(D?+ KW dy
There are two motivations for this extension: Micrograv- :

ity experiments have been carried §6% where both viscos-

ity and surface tension are present in finite-thickness fluids, —gf DpW dy

and the results compared with a dispersion relation that con-

tains the effect of finite thickness and surface tension only

2
W-+2—-DuDW=0, 3)

)7’
_ = D2_k2
p 7,( )

V[ u
=A|2WDW+ P [p— b (DZ—kZ)}DW
Y p—pi—KTOlg - y
gk pycothkt,)+ pjcothkt,) 2 Du(D2+ kZ)W], 4
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FIG. 1.Y vs X for the caseT®=Ap=0, H,;=H,=H. In each diagram the uppermost, middle, and lowest curves correspbhd 260,
4, and 2, respectively. The Atwood numbgiis 0.1, 0.5, and 0.9 in diagranta), (b), and(c), respectively. These curves are obtained by
numerically solving Eq(17).

whereA (f)=f(t,) —f(—t;). The left-hand-sidélhs) of Eq. The following eight equations determine the eight con-
(4) is identical to the Ihs of Eq(4) in Ref.[2]. The right-  stantsA; throughD,:
hand-side(rhs) represents the “surface terms” that were

dropped in Ref[2]. We emphasize that EqE3) and(4) are A;+B1+C{+D;=A,+B,+C,+D,, 9
exact, general, and apply to fluids of arbitrary density profile
p(y) and viscosity profileu(y) in the region—t;<y=<t,. kA;+q:B;—kC;—q;D1=—kA;—0,B,+kCy+q,D,,
We now specialize to the case of two constant-density and (10
constant-viscosity fluids, i.e.,
Aje K14 B e 91+ Cekai+ D eMl1=0, (11)
p=p1, M=p1, —tsSys<O, (5a)
A,e K24 B,e %22+ Cekle+ D ,e%22=0, (12
p=p2, M=z, OsYyst,. (5b)

Ake Ki+B q,e 91— C ke1—D,q,eM1=0, (13

It is straightforward to show that for thiaviscid case(i.e.,

1= u,=0) the exact eigenfunctions are —Agke 2= B,qpe” %2+ Coke 2+ D ,0,e%'2=0,

(14
sinh(kt; +k
- % “4=y=0,  (6a sl 2K3(Ay+ Cp) +(q2+K2) (B, + D)
1
= uo 2k¥(Ap+Co) + (a5 +k?)(B+D2)],  (15)
sinh(kt, —ky)
- sinf(zkt y <tz. (6b) gk 21(s)
2 (A2=Cp)pat (A= Cy)ps + P (p1=p2+kT¥1g)
For the viscous case, however, the exact eigenfunctions are k
more complicated: X(A;+B+Cq+ D1)+2; (1= p2)
W=A,e"+B,e9Y+Ce W+De Y, —t;<y=<0, X (kA;+q;B;—kC;—q;D;)=0. (16)
(78

Equations(9) and (10) follow from the continuity of
W=A,e K4 B,e %Y+ C,ek+ D,e, O<yst,, W(y) andDW(y) aty=0. Equationg11) and(12) express
(7b)  W(y)=0 aty=—t; andy=t,, respectively. Equationd 3)
and (14) expressDW(y)=0 aty=—t; andy=t, respec-
where tively. Equation (15 expresses the continuity of
w(D?+k?)W(y) aty=0. And, finally, Eq.(16) is the jump
condition whichW(y) must satisfy aty=0 [see Eq(40) in
(A12=Ko+y 222, (8 Ret.[1ll
’ M1,2 Equations(9)—(16) can be written in the fornrMV=0,
whereM is an 8<8 matrix andV is a vector having the eight
andq, , are defined such that their real parts are positiveconstantsA; throughD, as its elements. A nontrivial solu-
Our notation follows that of Chandrasekiat who gave Eq. tion is obtained only if
(7) with C,=D,;=C,=D,=0 because he considered
ty=t,=0o. Det(M)=0 (17)



3678 KARNIG O. MIKAELIAN 54

b, L el ol L are available, and indeed thé=200 curves in Figs. (8),
E 1(b), and Xc) are in close agreement with curves 3, 6, and 7
in Figs. 106 and 107 in Refl] corresponding tcA=0.1,
] 0.5, and 0.9, respectively.
05 3 Figure 1 shows thatat any value of A decreasingH
: E decrease¥ and moves the peak to larg#y, i.e., largerk
(smaller wavelength\, sincek=2=/\). In addition, Fig. 1

06 2

04 - 3 shows that byX~2 the growth rate has become insensitive
] ] to thicknessH, since we see in Fig. 1 that the three curves
03 3 3 for H=2, 4, and 200 coalesce into one curveXyy 2. This

is expected on physical grounds since shorter-wavelength
E perturbations are more localized near the interface and are
02 3 insensitive to how far the fluids extend. Note that the coales-
E cence occurs far all values #f.

If T+ 0 then Eqs(9)—(16) show thaty=0 whenk=Kk .

01 3 3 As Chandrasekhar points olt] y=0 whenk=k, for any
value of the viscositieg; and u,. Our analysis shows that
0.0 4 this zero is not only independent pf and w,, but oft; and

0.0 05 1.0 15 2.0 t; as well.
Equations(9)—(16) reduce to the four equations given in
FIG. 2. Y vs X for the case of a semi-infinite viscous fluid with Ref.[1] for t;=t,==: SetC;=D;=C,=D,=0 and delete
a free surface A=1) and no surface tension. Three curves areEQs.(11)—(14). M becomes a %4 matrix and Eq(17) be-
plotted in this figure: The analytic result given by E¢@1)—(23); comes a quartic equation that is still too complicated to be
the numerical solution to Eq17) with H,;=H,=200, andA=0.99  solved analytically. However, if we sét=1 andT®=0,
(this curve lies almost exactly on top of the first curvand the  we obtain
approximate result, Eq24), which is above the other two.
24+27?—-4Z+1-Q=0, (20)
and this equation determines the growth rater, equiva-
lently, g, ». In other words Eq(17) is the dispersion relation. where
It must be solved numerically.
Following Chandrasekh#i] we plotY as a function o Z=q,/k=1+Y/X? Q=1/X° (21)

whereY is the dimensionless growth rate o ) ) o )
This is the simplest Rayleigh-Taylor problem with viscosity:

Y= y(vig?)? (189 A semi-infinite fluid with a free surface. Equati¢20) agrees
with Eq. (125 of Ref.[1] after we setw,=1, a;=0 in that
and X is the dimensionless wave number equation p, ;=0.5(1+A)].
The solution to Eq(20) is (details are given in the Ap-
X=k(v?/g)*3. (18p  pendix
An analysis of Eqs(9)—(16) reveals thalY depends only on e+e’—4(d—f)
the six independent variablés, A, T, Ay, H,, andH,, Z= > : (22)

whereAv=v,—v;=u,/p,— uqi/p; and

here
Hi=t(g/v)¥3 i=1,2. a

d=3+(Q/3+ 2+ VP)*+(Q/3+ £ —-VP)*3 (23
Our numerical examples concentrate éh=H,=H. S QI3+ 37+ P) Y+ QI3+ - VP)™, (239

Furthermore, we tak@®=Av=0, so thaty;=v,=». The e

six variables are thus reduced down to three, i.e., f=yd™+Q-1, (23b)
Y=Y(X,A,H), and we plotY as a function o¥X for various and

values ofA andH. ForH = our results must agree with the

curves given by Chandrasekh@figs. 106 and 107 in Ref. e=2/f (230

[1].
In Fig. 1 we plotY vs X for A=0.1, 0.5, and 0.9, taking \ith
H=2, 4, and 200 for each value &f The range ofA covers
low, intermediate, and high values of the Atwood number, P=(Q%®-Q%+18Q+11)/27. (230
while the range oH covers low to high viscosity fluids. For
example, v,,e~10 2 cnf/s and, takingt~1 cm, g=980  The dispersion relatiot(X) is completely specified via Egs.
cm/$, we haveH~200. Glycerine, on the other hand, has (21)—(23), and is plotted in Fig. 2. Figure 2 also contains our
Vglycering~ 10 cnf/s, henceH~2. numerical solution to Eq(17), i.e., the same algorithm that
For fixed v varying H corresponds to varying the thick- generated the curves in Fig. 1, witk=0.99 andH = 200.
ness of the fluids. We may consider=200 close to the We see that this numerical solution is almost identical to the
semi-infinite H=c0) case for which prior numerical results analytic answer given above.



54 RAYLEIGH-TAYLOR INSTABILITY IN FINITE -. .. 3679

0.10 1 L 03 1

04

02 1 - 03 1

0.05 4 -
02 L

0.1 1 [

0.1 -

@ J (0) J ©
0.00 = 0.0 o 0.0 o

T T T T ¥ T T T T T T T T

0.0 0s 10 18 20 0.0 os 10 15 20 0.0 0s 1.0 18 20

FIG. 3. Same as Fig. 1, using the approximate formula(Eg).

Figure 2 contains a third curve quite distinct from the Eq. (4). Note the substantial “advantage” of the inviscid
other two. This is the approximate result, Ed), with  Ws they do not containy, hence the dispersion relation
T®=0 andA=1, which readsy?+X2Y—X=0. The third  obtained by substituting E¢6) in Eq. (4) is guaranteed to be

curve plotted in Fig. 2 is polynomial iny.
An interesting point comes up when we examine the
—X24+ X4+ 4X “surface terms” given in the rhs of Eq4). They containwV,
Yo (249 DW, D?W, andD*W evaluated at the boundaries. The exact

Ws must satisyW=DW=0 on the boundaries, so one
ar“night be tempted to drop them. However, since we wish to
use the approximate and inviscid eigenfunctions of .
hich satisfy onlyW=0 on the boundaries, weannotdrop
the DW terms.
We now substitute Eq(6) into Eq. (4) and usep=p,,
pu=pn, for —t;<y=<0, and p=p,, u=u, for O=sy=<t,.
IIl. APPROXIMATE RESULTS Many terms can be combined usilfW=k?W. The inte-
gfrations are straightforward and the result is

We see that this solution agrees with the exact solution
small X and somewhat overestimat¥sat largeX. Further
comparisons between exact and approximate results al
given in Sec. Ill.

Comparisons between exact and approximate results f
semi-infinite fluids, like the one shown in Fig. 2, have been
made previously3,4,8. We should point out that the agree- 2 2

. ; : vo+ 2k

ment is better in the presence of surface tension because both
the exact result and the approximate expression,(Bggo 31(s)
through zero ak=Kk., so in this sense Fig. 2 displays a KT —gk(pa—p1) -0 (25)
worst-case comparison. pocoth(kt,) + p;coth(kt;) '

One resorts to approximate formulas to avoid numerical
computation. Even for the simplest case, for which we pro-Some of the terms from the Ihs of E®) have canceled
vided an analytic solution, the approximate formula is muchsimilar terms in the rhs leading to our final result, E25).
simpler—compare Eq(24) with Egs. (21)—(23). Finite- For t; ,— Eq. (25 reduces to the semi-infinite result,
thickness fluids introduce a substantial additional complexityEq. (1). For u;=u,=0 Eq. (25) reduces to Eq(2) which is
because the exact dispersion relation is no longer polynomiadxact because Eq6) is the exact eigenfunction for the
in y because it appears in quantities l&é9%1#12—see Eqs. inviscid problem. This serves as an important check
(11)—(14). An alternative to exact numerical results is anof our calculation because E@2) was derived[7] by a
approximate analytic formula generalizing E@) to finite-  completely different method. Had we dropped D&/ terms
thickness fluids, which we proceed to derive. in the rhs of Eq.(4) this agreement would be lost.

The extension is based on the same “moment equatiofrinally, for t;,—% and u;=u,=0 Eq. (25 gives
approach” used earlier for semi-infinite fluif2], and essen- y?/g k=(p2—pl—k2T(S))/(p2+ p1) which agrees with Eq.
tially consists of using an approximate eigenfunction in the(51) in Ref.[1].
exact moment equation, E¢4). Two elements are needed  To compare with the exact results we p¥otws X in Fig.
for this extension: First, we need to keep the “surface3 for the same nine cases as in Fig. 1, using this time Eq.
terms”, i.e., the rhs of Eq4). Second, we need to use eigen- (25). As in Fig. 2, the approximate formula somewhat over-
functions that vanish at the boundaries —t; andy=t, in estimates the growth rate. The general trends seen in Fig. 1,
the frame wherey=0 marks the interface. The inviscid however, are well captured by E(5): The growth rateY
eigenfunction given in Eq6) satisfies this condition. While decreases ad decreases and the peaks move to lager
Eq. (4) is exact, the approximation comes in using the invis-Coalescence into one curyee., independence from) oc-
cid eigenfunction, Eq6), instead of the exact eigenfunction, curs somewhat earlieiX(~1.2) than the exact resulK¢-2).
Eq. (7), in evaluating the integrals and the surface terms offhe exact resulté~ig. 1) indicate that before coalescence the

/.chotr( ktz) + ,LL]_CO”‘( ktl)
pocoth(kt,) + pjcoth(kt;) Y
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growth rate is quite sensitive tBl and, for X<1, Y de- R=2d (A2)
creases rapidly with decreasihy (meaning, of course, that
perturbations grow slower in thinner fluidlFigure 3 also is a solution whera was defined in Eq(233.
shows this decrease, but it is not quite as sensitive. Next we finde andf from
If the fluids have equal thicknesses thert,=t and Eq.

(25) becomes (R—2)Z°+4Z+R%/4+Q—1=(ezZ+f)%2,  (A3)

K2 which givesf and e as defined in Eqs(23b) and (230,
2+ 2k?vy—gkAl 1— P) tanh(kt)=0, (26)  respectively. An important and useful check is the relation
c e’=R-2 that is satisfied if and only R is a solution of Eq.
(AL).
The next step is to write Eq20) as a biquadratic equa-
fion,

which is Eq.(1) with A replaced byA tanhkt). The experi-
ments[6] had t;=t,=2.2 cm. Finite-thickness corrections
are most important for long-wavelength perturbations tha
probe the density profile over longer distances and hence (Z2+d)2=(eZ+f)2: (A%)
“feel” the presence of fixed boundaries more than the short-

wavelength perturbations. The longest wavelength in the exaence

periment was 19 cm, so the correction £Aois tanhkt)

~tanh0.73~0.6, i.e., the effective Atwood number is Z?+d=*(ezZ+f) (A5)

reduced by~40%. The reduction is less for shorter Wave-f hich the f luti follow | atelv:
lengths: ~10% for A\=9.5 cm, and~2% for the next har- "oM which the four solutions follow immediately:

monic,A=6.3 cm. As the wavelengths get shorter the effects 7 A A\
of finite thickness get weaker, but of course the effects of 21:e+ e’ 4 f), (AB)
viscosity and surface tension get stronger. 2 2
Representative values from R¢B] are g~150 cm/s,
»~0.15 cnf/s, therefore the viscous length scale 7 _e—el—4(d-f) (A7)
(v?19)*~0.05 cm, so thaH~40 and 0.0&X=<0.07 for 2= 2 :
4.75<\<19 cm (the experiments focused on the first four
harmonics. From Fig. 1 we conclude that the growth rate is —ex \/e7—4(d+ f)
near its inviscid limit where Eq(25) goes over to Eq(2). Z34= 2 : (A8)

The same conclusion is reached by noting that even the

shortest-wavelength perturbation observed in the experi- By studying the radica#®—4(d+f) we find thatZ; , are
ments(4.75 cm, the fourth harmonjiés about 100 times the complex, but of course that is no reason for rejection. How-
viscous length scalé~0.05 cm), which might explain why ever, we find that R&{3 ) <0 and this makes them unac-
Eqg. (2) showed good agreement with the experiments ateptable because, by definitiod=q,/k and Ref,)>0.

those wavelengthgb]. (The reader might wish to consult Chandrasekhar’s discus-
sion given on pp. 444 and 445 of Ré¢l]. Except for one
ACKNOWLEDGMENT point noted below we agree with his statemenits.contrast

) . to Z3 4 Z1, are both real. Furthermor&,=Re(Z,)>0 for
This work was performed under the auspices of the_ U.Sall X, and this is the root we reported as the solufoim Eq.
Department of Energy by the Lawrence Livermore National22). we find thatz>1, so that the associated growth rate

Laboratory under Contract No. W-7405-ENG-48. is positive as plotted in Fig. 2Y[=(Z2—1)X?.
Turning to Z, we find that it is negative and therefore
APPENDIX unacceptable foK<1. ForX>1, however, we find thaZ,

is positive and therefore is an equally acceptable root. This is
in conflict with Chandrasekhar’s statement that his @§5
“allows only one root whose real part is positive” referring,
no doubt, taZ,. For X>1 we haveZ,>0; however, we find

R3-2R?—4(1-Q)R-8(1+Q)=0. (A1) that Z,<1 and therefore the associated dimensionless

growth rateY, is negative, indicating that this is a decaying

Any root of this cubic equation will do. Using Cardan’s so- solution, i.e.,y<0. We conclude that there is only one true
lution we see that growth rate given explicitly by Eq22).

To solve the quartic equatiof20) we follow the method
described in Refl9]. The first step is to find the resolveRt
of Eq. (20) from the following equation:
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