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We consider the Rayleigh-Taylor instability in two finite-thickness fluids including the effects of viscosity
and surface tension. The eight equations expressing boundary, continuity, and jump conditions imposed on the
eigenfunction are written in the formMV50 whereM is an 838 matrix andV is a vector containing the eight
coefficients that appear in the eigenfunction. Exact numerical results are obtained by solving det(M )50, the
dispersion relation which determines the growth rateg as a function of the physical parameters of the system.
For the case of a semi-infinite viscous fluid with a free surface the exact result is given analytically. We also
derive an approximate analytic formula for arbitrary thicknesses, compare it with the exact results, and briefly
discuss recent experiments on finite-thickness fluids.@S1063-651X~96!07310-2#

PACS number~s!: 47.20.2k, 52.35.Py, 47.40.Nm

I. INTRODUCTION

In this paper we consider the Rayleigh-Taylor instability
in finite-thickness fluids including the effects of viscosity
and surface tension. The system consists of two fluids of
densitiesr1 andr2, thicknessest1 and t2 , viscositiesm1 and
m2, and surface tensionT(s) between the two fluids. Pertur-
bations of wave numberk at the interface of the two fluids
grow exponentially in time with a growth rateg if the accel-
erationg is directed from the low-density~r1! fluid towards
the high-density~r2! fluid. The goal is to obtain the disper-
sion relation that givesg as a function of the other nine
variables of the system.

Earlier work @1# has focused primarily on semi-infinite
fluids, i.e., t15t25`, which is a considerably simpler sys-
tem than the finite-thickness case. Even then the exact solu-
tions must be obtained numerically. An approximate disper-
sion relation for such semi-infinite fluids was derived
recently@2#

g212k2ng2gkAS 12
k2

kc
2D 50, ~1!

where the Atwood number A5(r22r1)/(r21r1),
n5~m21m1!/~r21r1!, andkc5[(r22r1)g/T

(s)] 1/2. Equation
~1!, without the surface tension term, was first proposed by
Bellman and Pennington@3# and subsequently by Hide@4#,
though his derivation was criticized by Reid@5# ~see Ref.@1#
for historical remarks!. In this paper we present exact nu-
merical solutions to the finite-thickness case and an approxi-
mate analytic dispersion relation that generalizes Eq.~1! to
finite-thickness fluids.

There are two motivations for this extension: Micrograv-
ity experiments have been carried out@6# where both viscos-
ity and surface tension are present in finite-thickness fluids,
and the results compared with a dispersion relation that con-
tains the effect of finite thickness and surface tension only

g2

gk
5

r22r12k2T~s!/g

r2coth~kt2!1r1coth~kt1!
~2!

@Eq. ~10! in Ref. @7##, presumably because there is no for-
mula containing all three effects of finite thickness, surface
tension, and viscosity. Unlike Eq.~1!, Eq. ~2! is an exact
result. The second motive is that the steps in our treatment
are quite general and can be applied to other problems re-
quiring finite-thickness corrections.

The exact~but numerical! results are given in Sec. II. The
approximate~but analytic! results are given in Sec. III, where
we also discuss recent experiments@6#. In the course of this
investigation we have derived anexact and analyticsolution
for the caseT(s)50, r150, andt25`. As far as we know
this is the only exact analytic expression for a viscous fluid
valid for all wave numbers, and naturally we use it to test our
numerical results and approximate expressions. The deriva-
tion is detailed in the Appendix.

II. EXACT RESULTS

Our starting point is the general eigenvalue equation, Eq.
~41! in Ref. @1#:
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whereW(y) is the perturbed velocity andD[d/dy, ŷ being
the direction of the constant accelerationg.

Integrating Eq.~3! we obtain
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whereD( f )[ f (t2)2 f (2t1). The left-hand-side~lhs! of Eq.
~4! is identical to the lhs of Eq.~4! in Ref. @2#. The right-
hand-side~rhs! represents the ‘‘surface terms’’ that were
dropped in Ref.@2#. We emphasize that Eqs.~3! and ~4! are
exact, general, and apply to fluids of arbitrary density profile
r(y) and viscosity profilem(y) in the region2t1<y<t2 .

We now specialize to the case of two constant-density and
constant-viscosity fluids, i.e.,

r5r1 , m5m1 , 2t1<y<0, ~5a!

r5r2 , m5m2 , 0<y<t2 . ~5b!

It is straightforward to show that for theinviscid case~i.e.,
m15m250! the exact eigenfunctions are

W5
sinh~kt11ky!

sinh~kt1!
, 2t1<y<0, ~6a!

W5
sinh~kt22ky!

sinh~kt2!
, 0<y<t2 . ~6b!

For the viscous case, however, the exact eigenfunctions are
more complicated:

W5A1e
ky1B1e

q1y1C1e
2ky1D1e

2q1y, 2t1<y<0,
~7a!

W5A2e
2ky1B2e

2q2y1C2e
ky1D2e

q2y, 0<y<t2 ,
~7b!

where

~q1,2!
25k21g

r1,2
m1,2

, ~8!

and q1,2 are defined such that their real parts are positive.
Our notation follows that of Chandrasekhar@1# who gave Eq.
~7! with C15D15C25D250 because he considered
t15t25`.

The following eight equations determine the eight con-
stantsA1 throughD2 :

A11B11C11D15A21B21C21D2 , ~9!

kA11q1B12kC12q1D152kA22q2B21kC21q2D2 ,
~10!

A1e
2kt11B1e

2q1t11C1e
kt11D1e

q1t150, ~11!

A2e
2kt21B2e

2q2t21C2e
kt21D2e

q2t250, ~12!

A1ke
2kt11B1q1e

2q1t12C1ke
kt12D1q1e

q1t150, ~13!

2A2ke
2kt22B2q2e

2q2t21C2ke
kt21D2q2e

q2t250,
~14!

m1@2k
2~A11C1!1~q1

21k2!~B11D1!#

5m2@2k
2~A21C2!1~q2

21k2!~B21D2!#, ~15!

~A22C2!r21~A12C1!r11
gk

g2 ~r12r21k2T~s!/g!

3~A11B11C11D1!12
k

g
~m12m2!

3~kA11q1B12kC12q1D1!50. ~16!

Equations ~9! and ~10! follow from the continuity of
W(y) andDW(y) at y50. Equations~11! and ~12! express
W(y)50 at y52t1 andy5t2 , respectively. Equations~13!
and ~14! expressDW(y)50 at y52t1 and y5t2 respec-
tively. Equation ~15! expresses the continuity of
m(D21k2)W(y) at y50. And, finally, Eq.~16! is the jump
condition whichW(y) must satisfy aty50 @see Eq.~40! in
Ref. @1##.

Equations~9!–~16! can be written in the formMV50,
whereM is an 838 matrix andV is a vector having the eight
constantsA1 throughD2 as its elements. A nontrivial solu-
tion is obtained only if

Det~M !50 ~17!

FIG. 1.Y vsX for the caseT(s)5Dn50,H15H25H. In each diagram the uppermost, middle, and lowest curves correspond toH5200,
4, and 2, respectively. The Atwood numberA is 0.1, 0.5, and 0.9 in diagrams~a!, ~b!, and~c!, respectively. These curves are obtained by
numerically solving Eq.~17!.
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and this equation determines the growth rateg or, equiva-
lently, q1,2. In other words Eq.~17! is the dispersion relation.
It must be solved numerically.

Following Chandrasekhar@1# we plotY as a function ofX
whereY is the dimensionless growth rate

Y5g~n/g2!1/3 ~18a!

andX is the dimensionless wave number

X5k~n2/g!1/3. ~18b!

An analysis of Eqs.~9!–~16! reveals thatY depends only on
the six independent variablesX, A, T(s), Dn, H1 , andH2 ,
whereDn5n22n15m2/r22m1/r1 and

Hi5t i~g/n
2!1/3, i51,2. ~19!

Our numerical examples concentrate onH15H25H.
Furthermore, we takeT(s)5Dn50, so thatn15n25n. The
six variables are thus reduced down to three, i.e.,
Y5Y(X,A,H), and we plotY as a function ofX for various
values ofA andH. ForH5` our results must agree with the
curves given by Chandrasekhar~Figs. 106 and 107 in Ref.
@1#!.

In Fig. 1 we plotY vs X for A50.1, 0.5, and 0.9, taking
H52, 4, and 200 for each value ofA. The range ofA covers
low, intermediate, and high values of the Atwood number,
while the range ofH covers low to high viscosity fluids. For
example,nwater'1022 cm2/s and, takingt'1 cm, g5980
cm/s2, we haveH'200. Glycerine, on the other hand, has
nglycerine'10 cm2/s, henceH'2.

For fixed n varyingH corresponds to varying the thick-
ness of the fluids. We may considerH5200 close to the
semi-infinite (H5`) case for which prior numerical results

are available, and indeed theH5200 curves in Figs. 1~a!,
1~b!, and 1~c! are in close agreement with curves 3, 6, and 7
in Figs. 106 and 107 in Ref.@1# corresponding toA50.1,
0.5, and 0.9, respectively.

Figure 1 shows that,at any value of A, decreasingH
decreasesY and moves the peak to largerX, i.e., largerk
~smaller wavelengthl, sincek52p/l!. In addition, Fig. 1
shows that byX'2 the growth rate has become insensitive
to thicknessH, since we see in Fig. 1 that the three curves
for H52, 4, and 200 coalesce into one curve byX'2. This
is expected on physical grounds since shorter-wavelength
perturbations are more localized near the interface and are
insensitive to how far the fluids extend. Note that the coales-
cence occurs far all values ofA.

If T(s)Þ0 then Eqs.~9!–~16! show thatg50 whenk5kc .
As Chandrasekhar points out@1# g50 whenk5kc for any
value of the viscositiesm1 andm2. Our analysis shows that
this zero is not only independent ofm1 andm2, but of t1 and
t2 as well.

Equations~9!–~16! reduce to the four equations given in
Ref. @1# for t15t25`: SetC15D15C25D250 and delete
Eqs. ~11!–~14!. M becomes a 434 matrix and Eq.~17! be-
comes a quartic equation that is still too complicated to be
solved analytically. However, if we setA51 andT(s)50,
we obtain

Z412Z224Z112Q50, ~20!

where

Z[q2 /k5A11Y/X2, Q[1/X3. ~21!

This is the simplest Rayleigh-Taylor problem with viscosity:
A semi-infinite fluid with a free surface. Equation~20! agrees
with Eq. ~125! of Ref. @1# after we seta251, a150 in that
equation [a2,1[0.5(16A)].

The solution to Eq.~20! is ~details are given in the Ap-
pendix!

Z5
e1Ae224~d2 f !

2
, ~22!

where

d5 1
31~Q/31 19

271AP!1/31~Q/31 19
272AP!1/3, ~23a!

f5Ad21Q21, ~23b!

and

e52/f ~23c!

with

P5~Q32Q2118Q111!/27. ~23d!

The dispersion relationY(X) is completely specified via Eqs.
~21!–~23!, and is plotted in Fig. 2. Figure 2 also contains our
numerical solution to Eq.~17!, i.e., the same algorithm that
generated the curves in Fig. 1, withA50.99 andH5200.
We see that this numerical solution is almost identical to the
analytic answer given above.

FIG. 2. Y vsX for the case of a semi-infinite viscous fluid with
a free surface (A51) and no surface tension. Three curves are
plotted in this figure: The analytic result given by Eqs.~21!–~23!;
the numerical solution to Eq.~17! with H15H25200, andA50.99
~this curve lies almost exactly on top of the first curve!; and the
approximate result, Eq.~24!, which is above the other two.
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Figure 2 contains a third curve quite distinct from the
other two. This is the approximate result, Eq.~1!, with
T(s)50 andA51, which readsY21X2Y2X50. The third
curve plotted in Fig. 2 is

Y5
2X21AX414X

2
. ~24!

We see that this solution agrees with the exact solution at
small X and somewhat overestimatesY at largeX. Further
comparisons between exact and approximate results are
given in Sec. III.

III. APPROXIMATE RESULTS

Comparisons between exact and approximate results for
semi-infinite fluids, like the one shown in Fig. 2, have been
made previously@3,4,8#. We should point out that the agree-
ment is better in the presence of surface tension because both
the exact result and the approximate expression, Eq.~1!, go
through zero atk5kc , so in this sense Fig. 2 displays a
worst-case comparison.

One resorts to approximate formulas to avoid numerical
computation. Even for the simplest case, for which we pro-
vided an analytic solution, the approximate formula is much
simpler—compare Eq.~24! with Eqs. ~21!–~23!. Finite-
thickness fluids introduce a substantial additional complexity
because the exact dispersion relation is no longer polynomial
in g because it appears in quantities likee6q1,2t1,2—see Eqs.
~11!–~14!. An alternative to exact numerical results is an
approximate analytic formula generalizing Eq.~1! to finite-
thickness fluids, which we proceed to derive.

The extension is based on the same ‘‘moment equation
approach’’ used earlier for semi-infinite fluids@2#, and essen-
tially consists of using an approximate eigenfunction in the
exact moment equation, Eq.~4!. Two elements are needed
for this extension: First, we need to keep the ‘‘surface
terms’’, i.e., the rhs of Eq.~4!. Second, we need to use eigen-
functions that vanish at the boundariesy52t1 andy5t2 in
the frame wherey50 marks the interface. The inviscid
eigenfunction given in Eq.~6! satisfies this condition. While
Eq. ~4! is exact, the approximation comes in using the invis-
cid eigenfunction, Eq.~6!, instead of the exact eigenfunction,
Eq. ~7!, in evaluating the integrals and the surface terms of

Eq. ~4!. Note the substantial ‘‘advantage’’ of the inviscid
Ws: they do not containg, hence the dispersion relation
obtained by substituting Eq.~6! in Eq. ~4! is guaranteed to be
polynomial ing.

An interesting point comes up when we examine the
‘‘surface terms’’ given in the rhs of Eq.~4!. They containW,
DW, D2W, andD3W evaluated at the boundaries. The exact
Ws must satisfyW5DW50 on the boundaries, so one
might be tempted to drop them. However, since we wish to
use the approximate and inviscid eigenfunctions of Eq.~6!
which satisfy onlyW50 on the boundaries, wecannotdrop
theDW terms.

We now substitute Eq.~6! into Eq. ~4! and user5r1,
m5m1 for 2t1<y<0, and r5r2, m5m2 for 0<y<t2 .
Many terms can be combined usingD2W5k2W. The inte-
grations are straightforward and the result is

g212k2Fm2coth~kt2!1m1coth~kt1!

r2coth~kt2!1r1coth~kt1!
Gg

1
k3T~s!2gk~r22r1!

r2coth~kt2!1r1coth~kt1!
50. ~25!

Some of the terms from the lhs of Eq.~4! have canceled
similar terms in the rhs leading to our final result, Eq.~25!.

For t1,2→` Eq. ~25! reduces to the semi-infinite result,
Eq. ~1!. For m15m250 Eq. ~25! reduces to Eq.~2! which is
exact because Eq.~6! is the exact eigenfunction for the
inviscid problem. This serves as an important check
of our calculation because Eq.~2! was derived@7# by a
completely different method. Had we dropped theDW terms
in the rhs of Eq. ~4! this agreement would be lost.
Finally, for t1,2→` and m15m250 Eq. ~25! gives
g2/gk5(r22r12k2T(s))/(r21r1) which agrees with Eq.
~51! in Ref. @1#.

To compare with the exact results we plotY vs X in Fig.
3 for the same nine cases as in Fig. 1, using this time Eq.
~25!. As in Fig. 2, the approximate formula somewhat over-
estimates the growth rate. The general trends seen in Fig. 1,
however, are well captured by Eq.~25!: The growth rateY
decreases asH decreases and the peaks move to largerX.
Coalescence into one curve~i.e., independence fromH! oc-
curs somewhat earlier (X;1.2) than the exact result (X;2).
The exact results~Fig. 1! indicate that before coalescence the

FIG. 3. Same as Fig. 1, using the approximate formula Eq.~25!.
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growth rate is quite sensitive toH and, for X,1, Y de-
creases rapidly with decreasingH ~meaning, of course, that
perturbations grow slower in thinner fluids.! Figure 3 also
shows this decrease, but it is not quite as sensitive.

If the fluids have equal thicknesses thent15t25t and Eq.
~25! becomes

g212k2ng2gkAS 12
k2

kc
2D tanh~kt!50, ~26!

which is Eq.~1! with A replaced byA tanh(kt). The experi-
ments @6# had t15t252.2 cm. Finite-thickness corrections
are most important for long-wavelength perturbations that
probe the density profile over longer distances and hence
‘‘feel’’ the presence of fixed boundaries more than the short-
wavelength perturbations. The longest wavelength in the ex-
periment was 19 cm, so the correction toA is tanh(kt)
'tanh~0.73!'0.6, i.e., the effective Atwood number is
reduced by;40%. The reduction is less for shorter wave-
lengths:;10% for l59.5 cm, and;2% for the next har-
monic,l56.3 cm. As the wavelengths get shorter the effects
of finite thickness get weaker, but of course the effects of
viscosity and surface tension get stronger.

Representative values from Ref.@6# are g;150 cm/s2,
n;0.15 cm2/s, therefore the viscous length scale
(n2/g)1/3;0.05 cm, so thatH;40 and 0.02<X<0.07 for
4.75<l<19 cm ~the experiments focused on the first four
harmonics.! From Fig. 1 we conclude that the growth rate is
near its inviscid limit where Eq.~25! goes over to Eq.~2!.
The same conclusion is reached by noting that even the
shortest-wavelength perturbation observed in the experi-
ments~4.75 cm, the fourth harmonic! is about 100 times the
viscous length scale~;0.05 cm!, which might explain why
Eq. ~2! showed good agreement with the experiments at
those wavelengths@6#.
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APPENDIX

To solve the quartic equation~20! we follow the method
described in Ref.@9#. The first step is to find the resolventR
of Eq. ~20! from the following equation:

R322R224~12Q!R28~11Q!50. ~A1!

Any root of this cubic equation will do. Using Cardan’s so-
lution we see that

R52d ~A2!

is a solution whered was defined in Eq.~23a!.
Next we finde and f from

~R22!Z214Z1R2/41Q215~eZ1 f !2, ~A3!

which gives f and e as defined in Eqs.~23b! and ~23c!,
respectively. An important and useful check is the relation
e25R22 that is satisfied if and only ifR is a solution of Eq.
~A1!.

The next step is to write Eq.~20! as a biquadratic equa-
tion,

~Z21d!25~eZ1 f !2; ~A4!

hence

Z21d56~eZ1 f ! ~A5!

from which the four solutions follow immediately:

Z15
e1Ae224~d2 f !

2
, ~A6!

Z25
e2Ae224~d2 f !

2
, ~A7!

Z3,45
2e6Ae224~d1 f !

2
. ~A8!

By studying the radicale224(d6 f ) we find thatZ3,4 are
complex, but of course that is no reason for rejection. How-
ever, we find that Re(Z3,4),0 and this makes them unac-
ceptable because, by definition,Z[q2/k and Re(q2).0.
~The reader might wish to consult Chandrasekhar’s discus-
sion given on pp. 444 and 445 of Ref.@1#. Except for one
point noted below we agree with his statements.! In contrast
to Z3,4, Z1,2 are both real. Furthermore,Z15Re(Z1).0 for
all X, and this is the root we reported as the solutionZ in Eq.
~22!. We find thatZ.1, so that the associated growth rateY
is positive as plotted in Fig. 2 [Y[(Z221)X2].

Turning to Z2 we find that it is negative and therefore
unacceptable forX,1. ForX.1, however, we find thatZ2
is positive and therefore is an equally acceptable root. This is
in conflict with Chandrasekhar’s statement that his Eq.~125!
‘‘allows only one root whose real part is positive’’ referring,
no doubt, toZ1 . ForX.1 we haveZ2.0; however, we find
that Z2,1 and therefore the associated dimensionless
growth rateY2 is negative, indicating that this is a decaying
solution, i.e.,g,0. We conclude that there is only one true
growth rate given explicitly by Eq.~22!.
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