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Transition between viscous and inertial-range scaling of turbulence structure functions
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The transition of velocity structure functions between the viscous and inertial range is examined by assum-
ing a plausible interpolation formula for the required scaling functions. This analysis shows that the recently
observed phenomenon of extended self-similatES is consistent with assuming that the cutoff length
decreases with increasing order of the moment. A revised multifractal formalism is used to quantify this
dependence of cutoff scale on the order of the moment. At low and intermediate Reynolds numbers, the
proposed mechanism predicts ESS, as well as some additional subtle trends that are experimentally observed.
However, at large Reynolds numbers, the shift in cutoff scale predicted by the multifractal formalism becomes
too large to be consistent with ES$1063-651X96)03110-§

PACS numbd(s): 47.27—i

[. INTRODUCTION aboutr ggs—57) than for standard scaling with distandgpi-
cally (20—30 #]. This effect is practically very advantageous,
There has been growin@nd many would say by now since standard measurements¢f) inevitably suffer from
conclusive evidence that turbulent velocity structure func- inaccuracies due to scaling ranges of limited extent, espe-

tions[1] of high order cially at low Reynolds numbers. ESS could thus be used to
measure exponengp) with an unprecedented level of ac-
(A, W)PY=([u(x+r)—u(x)]?) (1)  curacy. The resulting(p) (e.g., reported if4]—their Table

II) confirmed previous results obtained from the traditional
deviate from the behavior predicted by the original Kolmog-method, but at a significantly increased level of confidence.
orov 1941(K41) theory. Above,u is the velocity projected Along a related line of inquiry, we are studying scaling prop-
onto the direction of the separation The deviation from erties of the local subgrid energy fluM,(x,t)=—17;S;,
K41 occurs in the scaling of(A,u)P) with separation dis- where 7 is the turbulence subgrid stress tensor at scale
tance r=|r|, when r is in the inertial range,np<r<L (see, e.9.[8]), and §; is the strain-rate tensor, filtered at
(7=1""(e* is the Kolmogorov scald, is the flow’s inte-  scaler. Using the practice of plotting moments againsts each
gral scale, ande) is the mean viscous dissipation ratEor  other(as opposed to scate, we have found very clear scal-
the remainder of this discussion, we shall consider th&  ing properties for moments difl,|. The results are suggestive
made dimensionless by a large-scale velogiéL ). Inthe  of ESS in this context also.

inertial range, it has been found experimentdlly2] and However, an explanation for the phenomenon of ESS is
numerically[3] that still lacking. Quantitatively, as formulated if], one may
invoke a scaling function fop-order momentd ,(r/ ), de-
&(p) ;
r fined as
(A~ 2

r\ P
Py~ —
where, asp rises, the seemingly universal expongiip) {14.ulP) fp(r””(L) ' ©

falls increasingly belowp/3, the K41 prediction. Summaries
of previous work in this area can be found in Re#, 5.  wheref,(x)—1 for x>1 andf ,(x) —xP~P) for x<1. (For
Recent experimental data at very high Reynolds numldrs consistency with Ref4], we use absolute values in the defi-
give unambiguous support for deviations from the K41 pre-nition of structure functionglt is simple to show4] that for
diction. &p) scaling of (|A,ulP) vs (|A,ul® to extend to a scale
At very small scales, when<y, the Taylor expansion of rgsd7, the expression
u(x+r) yields((A,u)P)~rP. In recent years there has been
growing interest in the behavior of structure functions when [fp(r/m)]H® (4)
the separation distanaetransitions from the inertial range
[with exponenté(p)] to the viscous dissipation randwith ~ must be independent gf down to a scalegsd#. Such a
exponentp). This interest has been fueled by the observatiorcondition is not easy to satisfy, for we know that fogr ggg
of “extended self-similarity” (ESS, originally made by the above expression must dependmior proper viscous
Benziet al.[7,4]. They proposed to examine structure func-scaling. If one assumes thé(r/») depends smoothly on
tions (defined with an absolute value for reasons of statisticat/» and parameterp, it becomes difficult to see how
robustnessplotted one versus the other, e.A,ulP) ver- [fp(r/n)]”’f(p) could beexactlyindependent op in r>rggg
sus (|A,ul®. They found that the range over which the while depending orp in r<rggs. Thus, we suspect that
inertial-range exponeri{(p) is discernible from the logarith- [fp(r/n)]l’g(p) is almost(but not exactly independent op
mic plots reaches much further into the dissipative rafige in the ESS range.
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In Sec. Il, we point out a mechanism that may cause such 10° : ,
an approximate collapse. The main argument is given, quali- ¢
tatively, in Sec. Il A. A more quantitative analysis is pre- = .
sented in Sec. Ill. Finally, a discussion and conclusions are I |
given in Sec. IV. No2 o

5 10"
Il. ANALYSIS S

We begin by choosing a particular form fég(r/ ), the A TOE
scaling function corresponding to the third-order structure 0‘:‘ 107
function. Batchelof9] proposed an elegant interpolation for- —j— 107
mula for the second-order structure function, which has been ~ 107
used recently in several studiésg.,[10—-12). In Ref.[10], 107

the Batchelor expression was generalized to structure func-
tions of arbitrary order, including proper allowance for inter-
mittency. For the third-order structure function, the proposed
expression reads

=

fi(r/ ! 5 §
D T Gy o2
™~
—
We usefj (r/#) [instead off;(r/#)] in order to highlight o
the possibility that some differences between &g.and the "
“real” scaling function could exist. Withy~13, Eq.(5) fits =
the measured curve reported in Fig. 10 of Réf.quite well. <
The transition scalér/7)=y=13 is in the usually accepted
range. Equatiori5) smootgﬂy merges t2he viscous behavior of 10 ; ; .
the structure functiof~r3[1+cs(r/5)%+---]) to its inertial 107 oo 10* 10°
range scaling~r). We hasten to point out that, as discussed <Iaaf>=fole/n) (r/n)

in detall in Ref.[10], strictly speaking, the above-mentioned - i _
viscous behavior can only be derived for structure functions F!G- 1. (@) Traditional log-log plot of hypothetical sixth-order
defined without the absolute value. Also, more detailed kineStfucture function with viscous cutoffEq. (6) multiplied by
matical relationships relating exponents, velocity derivativei(r:é 7r7'2ial l’lnﬂo\ﬁggoiz 2Cf:|?n0t'%2$rg'zt\‘;"enr°; E)‘(fe:ggg'tr';;gzgt_ween
moments, and the cutoff scale can be establi$héf More- ternative loa-loa plot. i gh' h the hvpothetical sixth-order Struc-
over, the Kolmogorov equation provides a dynamical con- 0g-log plot, 1h which the hypothetical sixth-order struc

it f lating th ling function for the second- andtu.re function is pIot.ted ywth respect to the thlrd-qrder one. The
Stfa'”t' or refating the scaling difference between inertial and viscous exponents is much smaller,
third-order struct.ure fu_nctlonésee Refs[ll,. 4. Hovyever, and the transition occurs in a shorter interval of scales.
for the present discussion, we continue using the simple form
of Eq. (5), mainly because it gives a very good fit throughye giress that for what follows, any other fit giving reason-
the data of Ref[4] (their Fig. 10, as well as for other data. ,pje «1) values(such as the log-Poisson model of She and
But we shall keep in mind that further refinements, such a$ eveque[14] or the random3 model[15]) would serve our
incorporating the above-mentioned constraifits formula- purposes equally well.

tion without absplute valugsare ppssiple. . Figures 1a) and Xb) show a comparison between plots of
As proposed in Ref.10], a possible interpolation formula hypothetical structure function of order 6,

for p-order moments is
r )§<6>
77 b

plotted in the usual wagversusr/#) and in the fashion pro-
We defer detailed comparisons with the data of R&ffto posed by Benzet al. [7], versus
a later stage. For now, having selected what may appear at

- f5(rlm)
[1+(r/yny) 2]P- &l (6)

HUPE

first glance to be a reasonably looking set of scaling func- % r

tions, we examine the practice of plotting the structure func- 3 (r/”)(; '

tions against each other, as opposed to the traditional prac-

tice of plotting them with respect to scale. The immediate impression is that the scaling in céyeis

For the sake of further discussion, we also need to premuch superior compared to caé®. The reason is simply
scribe the functioré(p) with a realistic, but simple, fit. We that the transition irfa) occurs between two power laws that
use thep model[13] and write are very different[from &6)~1.76 to 6 going to small

scale$ while in case(b) the difference is considerably
&(p)=1-10gy(0.772+0.33). (7)  smaller(from 1.76 to 2. For moments of general order, the
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logy5(r/m) FIG. 4. Comparison of local slopes(logarithmic derivatives

of sixth-order structure functions, corresponding to several cases.
FIG. 2. Hypothetical scaling functioi s (r/7)]*¥®) for p=2,  Dotted  line is  for  standard  method, s(r/7)
4, and 6(solid, dotted, and dashed lines, respectivelbhey are  =d{In[f%(r/7)ré®1/d In(r/5) (extending to 6 at small scales
inconsistent with ESS since they already branch out at abouDashed line is for scaling with third-order structure function,
r/5~20. s(r/n)=d{In[f% (r/ 7)rsOT/d{In[f% (r/5)r]}. Solid line is for
shifted case, s(r/7)=d{In[f%(r/0.837)r O T/d{In[f (r/7)r]}.
difference is fromg(p) to p for scaling with distance, and (Note that the local slopes are plotted as functionrbf, even
from &(p) to p/3 for scaling between structure functions. For though in two of the cases the logarithmic derivatives are not taken
such smaller slope differences between two power laws, theith respect ta/7.)
extent to which the curving reaches into the power-law re-
gion (as measured with respect to some fixed deviatien the rationale for plotting structure functions against each
shorter, thus allowing for a more accurate determination obther, they probably have little to do with ESS.
the exponents. We conclude that already for this reason As reviewed in Secl a necessary condition for ESS is
alone, the practice proposed in RET] is advantageous. that [f ,(r/5)] () is independent op, down to a scalegss
Nevertheless, for the example shown in Fig. 1, the scale aignificantly smaller than 3@ Let us now examine to what
which the transition noticeably begifdashed lines in Fig. 1, degree this is the case for our example functigir/ 7). In
atr=307), is about the same for both methosig. 1(b)  Fig. 2 are plotted f3(r/7)]Y4® for p=2,4,6. The curves
must be viewed edge-on to see $hi®n the contrary, the pranch out to their respective viscous scalings starting near
conclusion of extended self-similarity is that the inertial-/,,—20. The curves for higp fall off faster (and thus begin
range scaling between structure functions extends to scalgg curve at larger) than those for lowp, because at small
significantly smaller (measurements in Refl4] suggest ihe function[f;]l/é(p) scales ag[P¢P1-1 and the ratio

~57) than where the curving of the traditional structure /&(p) increases withp because of intermittency. However,
function occurs. Thus, while our arguments so far supporf,ere certainly is no collapse down itéy~5, as required by
ESS. This figure must be contrasted with the experimentally
0.5 . . T . determined Fig. 8 of Ref.4], which convincingly shows a
much tighter grouping between the differgntturves down
to aboutr ~5.

A. Main argument

Our central argument can now be made: if the cutoff
scale » were to slightly decrease with increasiqg the
4 highp curves could possibly move to the left in such a way
as to produce a near-collapse of the curves bealbi=20.
For example, imagine that the curve fo=6 is translated to
-1.5F A the left by an amounhlog;(r/7)~0.08, i.e., the cutoff scale
is multiplied by a factor 0.83. Figure 3 shows the original
functionf (r/») for p=3, together with the translated curve
05 10 15 20 25 3 for p=6, namely,[f (r/0.837)]1Y¢®). They now fall almost
10g40(r/m) on top of each other, down to significantly smaller values of
r/xthan in Fig. 2. The extended collapse would mean that in
FIG. 3. Comparison betweeff?(r/7)] and the modified the log-log plots between structure functions, inertial-range
(shifted curve [ f%(r/0.837)]Y®. This hypothetical situation is scaling will be extended to/~5, consistent with ESS. To
consistent with ESS, because the two curves nearly overlap down tore clearly exhibit this effect, Fig. 4 shows local slopes
rin~5. (logarithmic  derivatives of the log-log plots of

log,o[f,(r/n) ]/
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f2(r/0.83p)r¢P vs f%(r/5)r, as opposed to the unshifted al3
case off £ (r/7)réP vs % (r/5)r. For comparison, we also |Arul~gq[r/n(a)] T (10
show the local slopes corresponding to the standard case of
f%(r/5)ré® vsr, which exhibits the transition from an ex- where the scaling functiog,[r/7()] is postulated to have
ponent of&(6) to 6 at small scales. The scaling appears worsthe form
for this traditional method, and is significantly improved for 1
the scaling withf (r/7)r. However, the scaling would ap- [r/p(a)]= ]
pear best for the case in which the=6 curve has been Jal 117 {1+[rlyn(a)] 2}t "2
shifted as described above. The small intermediate dip i . : .
local slope is unlikely to be seen during analysis of real datal:l-h'a scaling functiorg,[r/»n(a)] is such that ar <s(a),

. More importantly, the cutoff

f
: : - : ol n(a)]~[r/7(a)]
g;gggsthe typical scatter of empirically determined local scale is allowed to depend an for the same reason leading

The observed trend, namely, that an improved collapsé0 Eq. (9). We remark_that the notation of Ref21, 19 is

occurs when the cutoff scale is shifted, is based here on thrgcovgred by setting =3h.

Batchelor interpolation formula. While this choice may ap-. A dlgressmn abkou:c EC{'}O) should nolw bﬁ mbaqde._Follﬁw-
pear to be rather specific, we would have reached the sal ad extensive work o Re_ 5{22’ 23 on locally bridging the
qualitative conclusions for any other smooth interpolationv.eloc'ty"ncrem?nt and dissipation statistics, one COUld. mul-
formula that is monotonic in both andp, in the sense that tiply Eq. (10) (ywthogt the abs_olutg valuyeby anonintermit-
£%(r/m) is an increasing function of/z for all p, and a tent, stochastic variablé. This raises the interesting possi-

p A7 K K bility that the observed decrease of the width of probability

decreasing function g for all r/z. density functions ol near the viscous rand@3] may thus

In summary, we raise the possibility that ESS is due to &e absorbed in the scalina functionir/ Therefore
p-dependent cutoff scale, which happens to shift the curvevc‘lriting Eq. (10) insteadgof A UE@\[,(E’T)‘I%]:' V(r/L)%R '
. . . . . ‘i . ] r r 1
in the right direction to produce the required “near- could render the statistics &f even more universdiinde-

collapse” of scaling functions in the extendt_ad scaling rangependent of local Reynolds numbethan they appeared in
In other words, we propose a scaling function of the form Ref.[23]

(11)

1 The next step is to descrilig («), the probability density
fo(rlin)= —5-To T , (8) of a. Again, endowing the usual multifractal formalism with
P 21lp—&(p)1i2
[L+(rlypm) = TP75P a scaling function, we write
1-f(a)
essentially the same dﬁ(r/n), except for the fact that the p (a):p(a)\/m h.(r/7) L) . (12)
cutoff scale(y,n) now depends omp. ' “ L

The next question that must be answered is whether there
exists anya priori basis for expecting such a shift of cutoff
scale withp. Moreover, the shift must depend gnin a
particular way, if it is to allow for(approximatg ESS. Mul-
tifractality is a possible candidate for such an effect. Indeed
it has been showh16-19 that within the multifractal for-
malism of turbulence, stronger eventsorresponding to

The small-scale limit oh (r/ %) is as follows: Since at
r/n<1 the « distribution is no longer fractal, the dimension
of “iso-a" sets is 1 (on the 1D sections considered here
Thus P,(«@) no longer depends on the scale implying
h,(r/7)~(r/ )@~ asr/p—0. In analogy with previous
scaling functions, we postulate

stronger local singularitigsre accompanied by smaller local 1
cutoff scales. One may thus qualitatively argue that since h.(rln)= T (@ =DR2- (13
higher-order moments are dominated by the stronger singu- {1+[rlyn(a)] %}
larities, they involve smaller cutoff scales as well. In Sec. lll,  Next, we proceed to compute the structure functions. As
refined multifractal formalism. the following integral:
r al3\ p
Il. MULTIFRACTAL FORMALISM WITH TRANSITION <|Aru|p)=f (ga(r/n(a))(r) ) pla)yL/r h(rln)
TO VISCOUS RANGE @
. . . . —f(a
We start by recalling16—19 that if « is the local singu- % r o )da (14)
larity strength of one-dimensionélD) sections through the L '
multifractal dissipation field, as imrr/<e)~(r/L)0"l [20], o )
the “local” Kolmogorov scale follows In the limit of largeL/r, we obtain
app/37f(ap)+l
a(a) [ n|d-@Era . <|ArU|p>~[9ap(r/n(ap))]phap(f/n)<[ ,
— T : © (15

wherea, is the p-dependentr value at the extremum of the
wherey is the traditional Kolmogorov scale calculated basedexponentap/3— f(a)+1. This expression is valid far val-
on the mean dissipation. ues such that the scaling functiogs andh,, are not power
Now we write a local relation for velocity increments laws inr. That is, it holds forr /[ y»(a)]>0O(1). In thelimit
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FIG. 5. Scaling functionsfl,(r/7)] (" with p-dependent cutoff scalgiven by Eq.(22)], for p=2, 4, and &solid, dotted, and dashed
lines, respectively (a), (b), (c), and(d) correspond to Reynolds numbeRg=50, 100, 200, and 500, respectively.

of r/[yn(a)]<1, the scaling functions become power laws

and their respective exponents must be included in the steep- Yo~ Y(—
est descent calculation. Such scaling behavior in the very

smallr limit has been considered by Nelkjig4] in the con-

text of moments of velocity gradients. Since in our current

discussion on extended self-similarity, we are interested in
the intermediate range|[y7n(a)] ~O(1), Eq.(15) can still
be considered valid. Equating with E@®) gives the standard

relations among exponents

app/3—f(ap)+1=£(p),

but we have the additional condition

fo(r/m)={ga [T/ n(ap)]}Ph (r/9).

This condition is satisfied as long as

(vpm) =yn(ap),

or, using Eq.(9),

(16)

(17

(18

(19

(1—ap)/(3+ay)
n p p
L) , (20)
where
0.7°" 10g,0.7+0.3°" 10g,0.3
L 0.75+0.37 D

for the p-model parametrization. With this value for the cut
off scale (y,7), our proposed expression fég(r/7) [Eq.
(8)] is consistent with the multifractal formalism near the
transition between inertial and viscous ran@ast not in the
far dissipative range, where the scaling of Nellg4] should
apply insteagl

IV. DISCUSSION

We now return to our original objective of quantifying the
possibility of extended self-similarity. Since EQO) itself is
likely to be susceptible to transition behavior when
L/7»~0(10), we should replacén/L) by O(10)(#/L) in
Eq. (20). Arbitrarily, we choose a factor of 10, but the results
to be obtained are quite insensitive to this choice, because of



3662 CHARLES MENEVEAU 54

. . their ploy also falls above the=2 curve(squaresatr <57,
and below the squares at smaller scales. Theidt curve
(triangles falls in the middle.

For large Reynolds numbers the collapse worsens, be-
cause scaling ranges mbecome more extended. The dis-
placement of higlp curves to smaller scales becomes exces-
sive, with highp lines falling noticeably above the low
ones, down to a crossing scale which decreases with increas-
ing R,. The corresponding logarithmic derivativé®cal
slopes as in Fig. Mexhibit an increasingly strong intermedi-
ate dip. Thus, the proposed form of E@2) predicts that
ESS should weaken at large Reynolds numbers. Of course, in
such a case the extended scaling range afforded by ESS is no
longer required for accurate determination of inertial-range
exponents. Conversely, for very highvalues and interme-
diate R, values (say p=15 and R,=200), the excessive
. crossing is also observed. It had already been found from
_ FIG. 6. Reynolds number effect onfs(r/7). Solid  gai5 analysig5] that ESS works less well for the higher-
line: R,=50, dashed line: R,=200, long dashes:R\=800. ,4or moments. Nevertheless, we expect this worsening
:Lr:ggérlrfe‘:ﬁ;z)s/(j’v;’fg ?%?Xg;g':g weak dependence on Reynolds trend to saturate, since the relevant exponent asymptotes to a

' constan{(1— ap)/(3+ a,)—0.14 asp—=] from below.

Finally, in Fig. 6, we show 5(r/ ») at different Reynolds
numbers. If we do not change the moment order, the curves
remain quite close, and have the same shape. However, be-

the smallness of the exponent in E80). For convenience, cause of the wealR, dependence in Eq22), the curves
we express the result in terms of the Taylor-scale Reynoldsjightly shift to the left aR, increases. Examination of Fig.
numberR, =u’\/v, instead ofl./7. The final expression for 10 of Ref.[4] shows that a similar trend can be discerned
the scaling function is from the experimental data, in which the high&t curve

(triangles is shifted to the leftto lowerr/» values from the

lower R, curves.

In summary, two main points have been madé) ESS

can be qualitatively understood if the cutoff scdie the
L (10711534 context of some reasonable interpolation formusaslightly
13y dependent on the order of the moment, as had been proposed
)Tap)p]lz before in the literaturg¢16—19. (ii) If the multifractal for-

logyol f5(r/n)]

—_ | I
1 '%.5 1.0 1.5 2

l0gye(r/)

1+

fo(rin)=

(22 malism is used to quantify this shift, ESS is recovered for
low to moderate Reynolds numbers. Also, some subtle trends
of the experimentally obtained scaling functiofsuch as
crossing of curves for differerpp values and shifts for dif-
ferent Reynolds numberare reproduced. This suggests that
the proposed mechanism is correct. However, at large Rey-

valid for r/(137)>~1. A weak Reynolds number depen- nolds numbers, the extended scalingr iffor shift in cutoff

dence now appears, as it difbr the case ofp=2) in the  scalg predicted by the multifractal formalism, becomes large

“intermediate dissipation range” of Ref19], and in recent enough to cause an “overshoot” when the scaling is viewed

work on asymptotic scaling of the dissipation rg2s]. according to ESS. To experimentally distinguish between

Next we explore the behavior of {(r/7)] ¥ within a  trye ESS and the “overshoot” predicted from the multifrac-
representative range of Reynolds numbers. Figures, 5 tal formalism will require high Reynolds number data, with

5(b), 5(c) and 8d) show [f(r/)]¥*® for R,=50, 100, high resolution and convergence in the viscous range.

200, and 500, respectively, each containing the cases for Note added Recently, the author became aware of con-

p=2,4,6. The curves for differemt values are quite close to current work by Benzet al.[26], in which an interpretation

each other(for the low and intermediate Reynolds number of ESS is proposed within the context of “generalized
casey, down to scales significantly smaller than20t sug- gss.”

gests that the multifractal phenomenological picture is con-

sistent with(approximatg¢ ESS in the intermediate range be-

X R§/2)(1—ap)/(3+ ap)

tween vispous and inertial scales.. More detailed obsgrvation ACKNOWLEDGMENTS
[of e.g., Fig. %c)] shows the following trend: Thp=6 line
falls slightly above thep=4 line forr >5, and falls below it The author acknowledges interesting conversations on

for r <57 (as it asymptotically must at very small scalds  this topic with G. Stolovitsky, and the comments of M. Nel-
is interesting to note that a similar crossing behavior is obkin, K. R. Sreenivasan, and R. Benzi. The financial support
served in the measured set of curves reported in Fig. 8 dfom NSF (Grant No. CTS9408394and ONR (Grant No.
Ref. [4], where thep=6 curve (shown with diamonds in N00014-92-J-11009is gratefully acknowledged.
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