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The transition of velocity structure functions between the viscous and inertial range is examined by assum-
ing a plausible interpolation formula for the required scaling functions. This analysis shows that the recently
observed phenomenon of extended self-similarity~ESS! is consistent with assuming that the cutoff length
decreases with increasing order of the moment. A revised multifractal formalism is used to quantify this
dependence of cutoff scale on the order of the moment. At low and intermediate Reynolds numbers, the
proposed mechanism predicts ESS, as well as some additional subtle trends that are experimentally observed.
However, at large Reynolds numbers, the shift in cutoff scale predicted by the multifractal formalism becomes
too large to be consistent with ESS.@S1063-651X~96!03110-8#

PACS number~s!: 47.27.2i

I. INTRODUCTION

There has been growing~and many would say by now
conclusive! evidence that turbulent velocity structure func-
tions @1# of high order

^~D ru!p&[^@u~x1r !2u~x!#p& ~1!

deviate from the behavior predicted by the original Kolmog-
orov 1941~K41! theory. Above,u is the velocity projected
onto the direction of the separationr . The deviation from
K41 occurs in the scaling of̂(D ru)

p& with separation dis-
tance r5ur u, when r is in the inertial range,h!r!L
~h5n3/4/^e&1/4 is the Kolmogorov scale,L is the flow’s inte-
gral scale, and̂e& is the mean viscous dissipation rate!. For
the remainder of this discussion, we shall consider thatu is
made dimensionless by a large-scale velocity~^e&L!1/3. In the
inertial range, it has been found experimentally@1,2# and
numerically@3# that

^~D ru!p&;S rL D j~p!

, ~2!

where, asp rises, the seemingly universal exponentj(p)
falls increasingly belowp/3, the K41 prediction. Summaries
of previous work in this area can be found in Refs.@4, 5#.
Recent experimental data at very high Reynolds numbers@6#
give unambiguous support for deviations from the K41 pre-
diction.

At very small scales, whenr!h, the Taylor expansion of
u(x1r ) yields ^(D ru)

p&;r p. In recent years there has been
growing interest in the behavior of structure functions when
the separation distancer transitions from the inertial range
@with exponentj(p)# to the viscous dissipation range~with
exponentp!. This interest has been fueled by the observation
of ‘‘extended self-similarity’’ ~ESS!, originally made by
Benziet al. @7,4#. They proposed to examine structure func-
tions~defined with an absolute value for reasons of statistical
robustness! plotted one versus the other, e.g.,^uD ruup& ver-
sus ^uD ruu3&. They found that the range over which the
inertial-range exponentj(p) is discernible from the logarith-
mic plots reaches much further into the dissipative range~to

aboutrESS;5h! than for standard scaling with distance@typi-
cally ~20–30!h#. This effect is practically very advantageous,
since standard measurements ofj(p) inevitably suffer from
inaccuracies due to scaling ranges of limited extent, espe-
cially at low Reynolds numbers. ESS could thus be used to
measure exponentsj(p) with an unprecedented level of ac-
curacy. The resultingj(p) ~e.g., reported in@4#—their Table
II ! confirmed previous results obtained from the traditional
method, but at a significantly increased level of confidence.
Along a related line of inquiry, we are studying scaling prop-
erties of the local subgrid energy fluxPr~x,t![2t i j S̃i j ,
where ti j is the turbulence subgrid stress tensor at scaler
~see, e.g.,@8#!, and S̃i j is the strain-rate tensor, filtered at
scaler . Using the practice of plotting moments againsts each
other~as opposed to scaler !, we have found very clear scal-
ing properties for moments ofuPr u. The results are suggestive
of ESS in this context also.

However, an explanation for the phenomenon of ESS is
still lacking. Quantitatively, as formulated in@4#, one may
invoke a scaling function forp-order momentsf p(r /h), de-
fined as

^uD ruup&; f p~r /h!S rL D j~p!

, ~3!

where f p(x)→1 for x@1 and f p(x)→xp2j(p) for x!1. ~For
consistency with Ref.@4#, we use absolute values in the defi-
nition of structure functions.! It is simple to show@4# that for
j(p) scaling of ^uD ruup& vs ^uD ruu3& to extend to a scale
rESS/h, the expression

@ f p~r /h!#1/j~p! ~4!

must be independent ofp down to a scalerESS/h. Such a
condition is not easy to satisfy, for we know that forr!rESS
the above expression must depend onp for proper viscous
scaling. If one assumes thatf p(r /h) depends smoothly on
r /h and parameterp, it becomes difficult to see how
[ f p(r /h)]

1/j(p) could beexactlyindependent ofp in r.rESS
while depending onp in r,rESS. Thus, we suspect that
[ f p(r /h)]

1/j(p) is almost~but not exactly! independent ofp
in the ESS range.
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In Sec. II, we point out a mechanism that may cause such
an approximate collapse. The main argument is given, quali-
tatively, in Sec. II A. A more quantitative analysis is pre-
sented in Sec. III. Finally, a discussion and conclusions are
given in Sec. IV.

II. ANALYSIS

We begin by choosing a particular form forf 3(r /h), the
scaling function corresponding to the third-order structure
function. Batchelor@9# proposed an elegant interpolation for-
mula for the second-order structure function, which has been
used recently in several studies~e.g.,@10–12#!. In Ref. @10#,
the Batchelor expression was generalized to structure func-
tions of arbitrary order, including proper allowance for inter-
mittency. For the third-order structure function, the proposed
expression reads

f 3* ~r /h!5
1

@11~r /gh!22#
. ~5!

We usef 3* (r /h) @instead off 3(r /h)# in order to highlight
the possibility that some differences between Eq.~5! and the
‘‘real’’ scaling function could exist. Withg'13, Eq.~5! fits
the measured curve reported in Fig. 10 of Ref.@4# quite well.
The transition scale~r /h!5g513 is in the usually accepted
range. Equation~5! smoothly merges the viscous behavior of
the structure function„;r 3@11c3(r /h)

21•••#… to its inertial
range scaling~;r !. We hasten to point out that, as discussed
in detail in Ref.@10#, strictly speaking, the above-mentioned
viscous behavior can only be derived for structure functions
defined without the absolute value. Also, more detailed kine-
matical relationships relating exponents, velocity derivative
moments, and the cutoff scale can be established@10#. More-
over, the Kolmogorov equation provides a dynamical con-
straint, for relating the scaling function for the second- and
third-order structure functions~see Refs.@11, 4#!. However,
for the present discussion, we continue using the simple form
of Eq. ~5!, mainly because it gives a very good fit through
the data of Ref.@4# ~their Fig. 10!, as well as for other data.
But we shall keep in mind that further refinements, such as
incorporating the above-mentioned constraints~for formula-
tion without absolute values!, are possible.

As proposed in Ref.@10#, a possible interpolation formula
for p-order moments is

f p* ~r /h!5
1

@11~r /gh!22#@p2j~p!#/2 . ~6!

We defer detailed comparisons with the data of Ref.@4# to
a later stage. For now, having selected what may appear at
first glance to be a reasonably looking set of scaling func-
tions, we examine the practice of plotting the structure func-
tions against each other, as opposed to the traditional prac-
tice of plotting them with respect to scale.

For the sake of further discussion, we also need to pre-
scribe the functionj(p) with a realistic, but simple, fit. We
use thep model @13# and write

j~p!512 log2~0.7
p/310.3p/3!. ~7!

We stress that for what follows, any other fit giving reason-
ablej(p) values~such as the log-Poisson model of She and
Leveque@14# or the randomb model @15#! would serve our
purposes equally well.

Figures 1~a! and 1~b! show a comparison between plots of
hypothetical structure function of order 6,

f 6* ~r /h!S rh D j~6!

,

plotted in the usual way~versusr /h! and in the fashion pro-
posed by Benziet al. @7#, versus

f 3* ~r /h!S rh D .
The immediate impression is that the scaling in case~b! is
much superior compared to case~a!. The reason is simply
that the transition in~a! occurs between two power laws that
are very different@from j~6!'1.76 to 6 going to small
scales# while in case ~b! the difference is considerably
smaller~from 1.76 to 2!. For moments of general order, the

FIG. 1. ~a! Traditional log-log plot of hypothetical sixth-order
structure function with viscous cutoff@Eq. ~6! multiplied by
~r /h!j~6!#, plotted as a function of distance. The transition between
inertial and viscous scaling occurs over an extended range.~b! Al-
ternative log-log plot, in which the hypothetical sixth-order struc-
ture function is plotted with respect to the third-order one. The
difference between inertial and viscous exponents is much smaller,
and the transition occurs in a shorter interval of scales.
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difference is fromj(p) to p for scaling with distance, and
from j(p) to p/3 for scaling between structure functions. For
such smaller slope differences between two power laws, the
extent to which the curving reaches into the power-law re-
gion ~as measured with respect to some fixed deviation! is
shorter, thus allowing for a more accurate determination of
the exponents. We conclude that already for this reason
alone, the practice proposed in Ref.@7# is advantageous.

Nevertheless, for the example shown in Fig. 1, the scale at
which the transition noticeably begins~dashed lines in Fig. 1,
at r530h!, is about the same for both methods@Fig. 1~b!
must be viewed edge-on to see this#. On the contrary, the
conclusion of extended self-similarity is that the inertial-
range scaling between structure functions extends to scales
significantly smaller ~measurements in Ref.@4# suggest
;5h! than where the curving of the traditional structure
function occurs. Thus, while our arguments so far support

the rationale for plotting structure functions against each
other, they probably have little to do with ESS.

As reviewed in Sec. I a necessary condition for ESS is
that [f p(r /h)]

1/j(p) is independent ofp, down to a scalerESS
significantly smaller than 30h. Let us now examine to what
degree this is the case for our example functionf p* (r /h). In
Fig. 2 are plotted@ f p* (r /h)#

1/j(p) for p52,4,6. The curves
branch out to their respective viscous scalings starting near
r /h;20. The curves for highp fall off faster ~and thus begin
to curve at largerr ! than those for lowp, because at smallr
the function @ f p* #1/j(p) scales asr [p/j(p)]21, and the ratio
p/j(p) increases withp because of intermittency. However,
there certainly is no collapse down tor /h;5, as required by
ESS. This figure must be contrasted with the experimentally
determined Fig. 8 of Ref.@4#, which convincingly shows a
much tighter grouping between the differentp curves down
to aboutr;5h.

A. Main argument

Our central argument can now be made: if the cutoff
scale h were to slightly decrease with increasingp, the
high-p curves could possibly move to the left in such a way
as to produce a near-collapse of the curves belowr /h520.
For example, imagine that the curve forp56 is translated to
the left by an amountDlog10~r /h!'0.08, i.e., the cutoff scale
is multiplied by a factor 0.83. Figure 3 shows the original
function f 3* (r /h) for p53, together with the translated curve
for p56, namely,@ f 6* (r /0.83h)#

1/j(6). They now fall almost
on top of each other, down to significantly smaller values of
r /h than in Fig. 2. The extended collapse would mean that in
the log-log plots between structure functions, inertial-range
scaling will be extended tor /h;5, consistent with ESS. To
more clearly exhibit this effect, Fig. 4 shows local slopes
~logarithmic derivatives! of the log-log plots of

FIG. 2. Hypothetical scaling functions@ f p* (r /h)#
1/j(p) for p52,

4, and 6~solid, dotted, and dashed lines, respectively!. They are
inconsistent with ESS since they already branch out at about
r /h;20.

FIG. 3. Comparison between@ f 3* (r /h)# and the modified
~shifted! curve @ f 6* (r /0.83h)#

1/j(6). This hypothetical situation is
consistent with ESS, because the two curves nearly overlap down to
r /h;5.

FIG. 4. Comparison of local slopess ~logarithmic derivatives!
of sixth-order structure functions, corresponding to several cases.
Dotted line is for standard method, s(r /h)
5d$ ln†f 6* (r /h)r

j(6)
‡%/d ln(r/h) ~extending to 6 at small scales!.

Dashed line is for scaling with third-order structure function,
s(r /h)5d$ ln†f 6* (r /h)r

j(6)
‡%/d$ ln†f 3* (r /h)r ‡%. Solid line is for

shifted case, s(r /h)5d$ ln†f 6* (r /0.83h)r
j(6)

‡%/d$ ln†f 3* (r /h)r ‡%.
~Note that the local slopes are plotted as function ofr /h, even
though in two of the cases the logarithmic derivatives are not taken
with respect tor /h.!
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f 6* (r /0.83h)r
j(p) vs f 3* (r /h)r , as opposed to the unshifted

case off 6* (r /h)r
j(p) vs f 3* (r /h)r . For comparison, we also

show the local slopes corresponding to the standard case of
f 6* (r /h)r

j(p) vs r , which exhibits the transition from an ex-
ponent ofj~6! to 6 at small scales. The scaling appears worst
for this traditional method, and is significantly improved for
the scaling withf 3* (r /h)r . However, the scaling would ap-
pear best for the case in which thep56 curve has been
shifted as described above. The small intermediate dip in
local slope is unlikely to be seen during analysis of real data,
given the typical scatter of empirically determined local
slopes.

The observed trend, namely, that an improved collapse
occurs when the cutoff scale is shifted, is based here on the
Batchelor interpolation formula. While this choice may ap-
pear to be rather specific, we would have reached the same
qualitative conclusions for any other smooth interpolation
formula that is monotonic in bothr andp, in the sense that
f p* (r /h) is an increasing function ofr /h for all p, and a
decreasing function ofp for all r /h.

In summary, we raise the possibility that ESS is due to a
p-dependent cutoff scale, which happens to shift the curves
in the right direction to produce the required ‘‘near-
collapse’’ of scaling functions in the extended scaling range.
In other words, we propose a scaling function of the form

f p~r /h!5
1

@11~r /gph!22#@p2j~p!#/2 , ~8!

essentially the same asf p* (r /h), except for the fact that the
cutoff scale~gph! now depends onp.

The next question that must be answered is whether there
exists anya priori basis for expecting such a shift of cutoff
scale withp. Moreover, the shift must depend onp in a
particular way, if it is to allow for~approximate! ESS. Mul-
tifractality is a possible candidate for such an effect. Indeed,
it has been shown@16–19# that within the multifractal for-
malism of turbulence, stronger events~corresponding to
stronger local singularities! are accompanied by smaller local
cutoff scales. One may thus qualitatively argue that since
higher-order moments are dominated by the stronger singu-
larities, they involve smaller cutoff scales as well. In Sec. III,
we describe a plausible quantification of this effect using a
refined multifractal formalism.

III. MULTIFRACTAL FORMALISM WITH TRANSITION
TO VISCOUS RANGE

We start by recalling@16–19# that if a is the local singu-
larity strength of one-dimensional~1D! sections through the
multifractal dissipation field, as ine r /^e&;(r /L)a21 @20#,
the ‘‘local’’ Kolmogorov scale follows

h~a!

h
;S h

L D ~12a!/~31a!

, ~9!

whereh is the traditional Kolmogorov scale calculated based
on the mean dissipation.

Now we write a local relation for velocity increments

uD ruu;ga@r /h~a!#S rL D a/3

, ~10!

where the scaling functionga[ r /h(a)] is postulated to have
the form

ga@r /h~a!#5
1

$11@r /gh~a!#22%~12a/3!/2 . ~11!

The scaling functionga[ r /h(a)] is such that atr!h~a!,
ga[ r /h(a)];[ r /h(a)] 12a/3. More importantly, the cutoff
scale is allowed to depend ona, for the same reason leading
to Eq. ~9!. We remark that the notation of Refs.@21, 15# is
recovered by settinga53h.

A digression about Eq.~10! should now be made. Follow-
ing extensive work of Refs.@22, 23# on locally bridging the
velocity-increment and dissipation statistics, one could mul-
tiply Eq. ~10! ~without the absolute values! by a nonintermit-
tent, stochastic variableV. This raises the interesting possi-
bility that the observed decrease of the width of probability
density functions ofV near the viscous range@23# may thus
be absorbed in the scaling functionga[ r /h(a)]. Therefore,
writing Eq. ~10!, instead of D ru5V(e r r )

1/35V(r /L)a/3,
could render the statistics ofV even more universal~inde-
pendent of local Reynolds number! than they appeared in
Ref. @23#.

The next step is to describePr~a!, the probability density
of a. Again, endowing the usual multifractal formalism with
a scaling function, we write

Pr~a!5r~a!AL/r ha~r /h!S rL D 12 f ~a!

. ~12!

The small-scale limit ofha(r /h) is as follows: Since at
r /h!1 thea distribution is no longer fractal, the dimension
of ‘‘iso-a’’ sets is 1 ~on the 1D sections considered here!.
Thus Pr~a! no longer depends on the scaler , implying
ha(r /h);(r /h) f (a)21, asr /h→0. In analogy with previous
scaling functions, we postulate

ha~r /h!5
1

$11@r /gh~a!#22%„f ~a!21…/2 . ~13!

Next, we proceed to compute the structure functions. As
usual, the steepest descent method is employed to evaluate
the following integral:

^uD ruup&5E
a
S ga„r /h~a!…S rL D a/3D pr~a!AL/r ha~r /h!

3S rL D 12 f ~a!

da. ~14!

In the limit of largeL/r , we obtain

^uD ruup&;@gap
„r /h~ap!…#

phap
~r /h!S rL D app/32 f ~ap!11

,

~15!

whereap is thep-dependenta value at the extremum of the
exponentap/32 f ~a!11. This expression is valid forr val-
ues such that the scaling functionsga andha are not power
laws inr . That is, it holds forr /[gh(a)].O(1). In thelimit
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of r /@gh~a!#!1, the scaling functions become power laws
and their respective exponents must be included in the steep-
est descent calculation. Such scaling behavior in the very
small r limit has been considered by Nelkin@24# in the con-
text of moments of velocity gradients. Since in our current
discussion on extended self-similarity, we are interested in
the intermediate ranger /[gh(a)];O(1), Eq. ~15! can still
be considered valid. Equating with Eq.~3! gives the standard
relations among exponents

app/32 f ~ap!115j~p!, ~16!

ap53
dj~p!

dp
, ~17!

but we have the additional condition

f p~r /h!5$gap
@r /h~ap!#%

phap
~r /h!. ~18!

This condition is satisfied as long as

~gph!5gh~ap!, ~19!

or, using Eq.~9!,

gp;gS h

L D ~12ap!/~31ap!

, ~20!

where

ap52
0.7p/3 log20.710.3p/3 log20.3

0.7p/310.3p/3
~21!

for the p-model parametrization. With this value for the cut
off scale ~gph!, our proposed expression forf p(r /h) @Eq.
~8!# is consistent with the multifractal formalism near the
transition between inertial and viscous ranges~but not in the
far dissipative range, where the scaling of Nelkin@24# should
apply instead!.

IV. DISCUSSION

We now return to our original objective of quantifying the
possibility of extended self-similarity. Since Eq.~20! itself is
likely to be susceptible to transition behavior when
L/h;O(10), we should replace~h/L! by O(10)(h/L) in
Eq. ~20!. Arbitrarily, we choose a factor of 10, but the results
to be obtained are quite insensitive to this choice, because of

FIG. 5. Scaling functions [f p(r /h)]
1/j(p) with p-dependent cutoff scale@given by Eq.~22!#, for p52, 4, and 6~solid, dotted, and dashed

lines, respectively!. ~a!, ~b!, ~c!, and~d! correspond to Reynolds numbersRl550, 100, 200, and 500, respectively.
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the smallness of the exponent in Eq.~20!. For convenience,
we express the result in terms of the Taylor-scale Reynolds
numberRl5u8l/n, instead ofL/h. The final expression for
the scaling function is

f p~r /h!5F11S r

13h
~10211523/4

3Rl
3/2!~12ap!/~31ap!D 22G @j~p!2p#/2

, ~22!

valid for r /~13h!.;1. A weak Reynolds number depen-
dence now appears, as it did~for the case ofp52! in the
‘‘intermediate dissipation range’’ of Ref.@19#, and in recent
work on asymptotic scaling of the dissipation rate@25#.

Next we explore the behavior of [f p(r /h)]
1/j(p) within a

representative range of Reynolds numbers. Figures 5~a!,
5~b!, 5~c! and 5~d! show [f p(r /h)]

1/j(p) for Rl550, 100,
200, and 500, respectively, each containing the cases for
p52,4,6. The curves for differentp values are quite close to
each other~for the low and intermediate Reynolds number
cases!, down to scales significantly smaller than 20h. It sug-
gests that the multifractal phenomenological picture is con-
sistent with~approximate! ESS in the intermediate range be-
tween viscous and inertial scales. More detailed observation
@of e.g., Fig. 5~c!# shows the following trend: Thep56 line
falls slightly above thep54 line for r.5h, and falls below it
for r,5h ~as it asymptotically must at very small scales!. It
is interesting to note that a similar crossing behavior is ob-
served in the measured set of curves reported in Fig. 8 of
Ref. @4#, where thep56 curve ~shown with diamonds in

their plot! also falls above thep52 curve~squares! at r,5h,
and below the squares at smaller scales. Theirp54 curve
~triangles! falls in the middle.

For large Reynolds numbers the collapse worsens, be-
cause scaling ranges inr become more extended. The dis-
placement of highp curves to smaller scales becomes exces-
sive, with highp lines falling noticeably above the lowp
ones, down to a crossing scale which decreases with increas-
ing Rl . The corresponding logarithmic derivatives~local
slopes as in Fig. 4! exhibit an increasingly strong intermedi-
ate dip. Thus, the proposed form of Eq.~22! predicts that
ESS should weaken at large Reynolds numbers. Of course, in
such a case the extended scaling range afforded by ESS is no
longer required for accurate determination of inertial-range
exponents. Conversely, for very highp values and interme-
diate Rl values ~say p515 andRl5200!, the excessive
crossing is also observed. It had already been found from
data analysis@5# that ESS works less well for the higher-
order moments. Nevertheless, we expect this worsening
trend to saturate, since the relevant exponent asymptotes to a
constant@(12ap)/(31ap)→0.14 asp→`# from below.

Finally, in Fig. 6, we showf 3(r /h) at different Reynolds
numbers. If we do not change the moment order, the curves
remain quite close, and have the same shape. However, be-
cause of the weakRl dependence in Eq.~22!, the curves
slightly shift to the left asRl increases. Examination of Fig.
10 of Ref. @4# shows that a similar trend can be discerned
from the experimental data, in which the highestRl curve
~triangles! is shifted to the left~to lower r /h values! from the
lower Rl curves.

In summary, two main points have been made:~i! ESS
can be qualitatively understood if the cutoff scale~in the
context of some reasonable interpolation formula! is slightly
dependent on the order of the moment, as had been proposed
before in the literature@16–19#. ~ii ! If the multifractal for-
malism is used to quantify this shift, ESS is recovered for
low to moderate Reynolds numbers. Also, some subtle trends
of the experimentally obtained scaling functions~such as
crossing of curves for differentp values and shifts for dif-
ferent Reynolds numbers! are reproduced. This suggests that
the proposed mechanism is correct. However, at large Rey-
nolds numbers, the extended scaling inr ~or shift in cutoff
scale! predicted by the multifractal formalism, becomes large
enough to cause an ‘‘overshoot’’ when the scaling is viewed
according to ESS. To experimentally distinguish between
true ESS and the ‘‘overshoot’’ predicted from the multifrac-
tal formalism will require high Reynolds number data, with
high resolution and convergence in the viscous range.

Note added. Recently, the author became aware of con-
current work by Benziet al. @26#, in which an interpretation
of ESS is proposed within the context of ‘‘generalized
ESS.’’
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number remains even at fixedp53.
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