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A procedure to determine concentration profiles of solute in a system with a thin membrane is presented. We
assume that the permeability of the membrane is described by a set of general coefficients without the need to
investigate its internal structure. This procedure is based on the Smoluchowski equation, but the boundary
condition on the membrane is given in a new form. The membrane permeability coefficients are given sepa-
rately with respect to the diffusion, convection, and migration phenomena. The procedure, relative to existing
procedures, considerably reduces the calculations necessary to determine concentration profiles.
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I. INTRODUCTION

One of the most important biophysics processes is the
membrane transport process. The theoretical problem is to
determine the solution concentration profile in the membrane
system when either outside forces acts effectively on diffus-
ing particles of the solute~the migration effect of particles!
or these particles are floated by the solvent~the particle con-
vection effect of the solute!. The concentration profile on the
border between the membrane and the solution has a great
effect on the solute and solvent fluxes flowing through the
membrane. Indeed, it determines the course of many physi-
ological processes@1–5#.

In many previous papers~@6–8# and others! theoretical
calculations of concentration profiles in membrane systems
are based on the assumption that the concentration within the
membrane is described by the Smoluchowski~or Fick! equa-
tion ~where the coefficient of diffusion is constant!. This as-
sumption is not always true because the internal structure of
a real membrane is not homogeneous and is, in fact, very
complicated. Furthermore, in practice, we only have experi-
mental data that determine the properties of permeability in
relation to the whole membrane without taking into consid-
eration its internal structure.

The aim of this paper is to present a procedure that allows
the determination of the concentration profile of the solute in
a membrane system. We assume that the permeability of the
membrane is described by a set of general coefficients with-
out the need to investigate its internal structure. This proce-
dure is based on the well-known Smoluchowski equation,
but the boundary condition on the membrane surface is given
in a new form. The procedure makes full use of Green’s
function in Eq. ~1!. We also assume that the membrane is
very thin relative to the size of the system, which allows us
to treat it as ‘‘a partially permeable wall.’’ In this paper each
Green’s function depends explicitly on the convection and
migration velocities. For diffusion, convection, and migra-
tion the membrane permeability is specified with separate
coefficients. It is noted that the Green’s function, which is
sometimes interpreted as a probability densityG(x,t;z,t8)
for finding a particle at locationx at time t after departure

from locationz at an earlier timet8, is often used to solve
diffusion problems in different systems@8–16#.

II. MODEL

We assume that the problem is one dimensional. We start
with the Smoluchowski equation
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whereD is the diffusion coefficient,v5vC1vM , vC is the
convection velocity~equal to the velocity of solvent!, andvM
is the migration velocity of solute particles~caused by an
external field!.

The concentration profile functionC(x,t) can be written
in the form of the integral formula@8#:

C~x,t !5E
2`

`

G~x,t;z,0!C~z,0!dz, ~2!

whereG is the Green’s function for the membrane system
andC(z,0) is the initial concentration profile.

The following have been assumed:~a! there are no ‘‘col-
lective’’ effects for movement of the solute particles in the
system, i.e., the movement of any solute particle does not
depend on the positions of the other particles; in particular
we make the assumptions that~a1! the interactions among
the solute particles are negligibly small,~a2! the diffusion
coefficientD and the migration velocityvM do not depend
on the concentration value, time, and position,~a3! the pa-
rameters of the membrane permeability are constant in time
and they do not depend on the value of the solute flux flow-
ing through the membrane,~a4! the convection velocity is
constant in time and its changes, determined by the differ-
ence in osmotic pressure on the membrane, are negligibly
small; ~b! the whole flux of the soluteJ flowing through the
membrane is an algebraical sum of fluxes that are generated
by the diffusion (JD), convection (JC), and migration (JM)
effects.

Let us consider two diffusive systems: one which does not
contain a membrane and one with a membrane~placed at
x5x0!. We assume that the parametersD and v are equal
and that the systems be free from solute at timet,0. At time
t50 in the plane at pointz the amount of solute~equal in
both systems! is produced instantaneously. We denote by
J D
0 , J C

0 , J M
0 the fluxes~diffusion, convection, and migration!*Electronic address: wspfiz@sabat.tu.kielce.pl
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in the first system~without a membrane! generated by this
solute and byJD , JC , andJM analogous fluxes in the second
one.

Let us define the permeability coefficients of the mem-
brane by the following equations:

JD~x0 ,t !5~12d!JD
0 ~x0 ,t !, ~3a!

JC~x0 ,t !5~12s!JC
0 ~x0 ,t !, ~3b!

JM~x0 ,t !5~12m!JM
0 ~x0 ,t !. ~3c!

We call the coefficients~12d!, ~12s!, and~12m! the coef-
ficients of permeability of the membrane with respect to the
diffusion, convection, and migration phenomena, respec-
tively. Consistently, the coefficientsd, s, andm are under-
stood as the coefficients of reflection of the membrane with
respect to the above-mentioned phenomena.

From the microscopic point of view the~12d! coefficient
can be interpreted as a conditional probability of getting the
solute particle through the membrane on condition that after
removing the membrane the particle can go through the vol-
ume that was occupied earlier by the membrane~making the
assumption that the particle displacement is caused only by
its diffusion movement!. We can interpret the~12s!, and
~12m! coefficients analogously. For the typical membrane
system thed, s, andm coefficients should take values in the
interval ~0,1!.

From the macroscopic point of view the Green’s function
can be interpreted as the abstract concentration profile that is
determined only by one particle, which is located atz at the
initial moment. Thus, we can write
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0 52D

]G0

]x
, JC

05vCG0 , JM
0 5vMG0 ,

whereG0 denotes the Green‘s function for the system with-
out a membrane:

G0~x,t;z,0!5
1

2ApDt
e2~x2z2vt !2/4Dt. ~4!

Let the membrane be atx5x0. Taking into account the
above equations and the following expression for the full
flux of solute in a membrane system,

J52D
]G

]x
1vG,

we can give the boundary condition on the membrane as
follows:
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For the Green’s function the initial condition is given by
the equation

G~x,t;z,0!u t505d~x2z!.

Using Laplace transform techniques@17# the solution of this
problem is given by

G22~x,t;z,0!5
1
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e2~x2z2vt !2/4Dt
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where erfc is the complementary error function.
In order to fix thed, s, andm coefficients, we must make

use of a particular theory. For example, in the Kedem-
Katchalsky theory@18# to obtain these coefficients we must
take into consideration the following: The diffusive flux,
which flows through the membrane, is given by

3640 54TADEUSZ KOSZTOŁOWICZ



JD52vRTDc,

wherev is the permeability coefficient,R is the gas constant,
T is the temperature, andDc is the solute concentration dif-
ference occurring on the membrane. After removing the thin
membrane~without any changes of the external conditions!
the diffusive flux is~approximately! given by

JD
0 52DDc/d,

whered is the membrane thickness. From the above equa-
tions and Eq.~3! we obtain the formula

d512~vRTd/D !.

The two other coefficients can be described as follows:s is
the reflection coefficient which appears in Kedem-
Katchalsky theory andm is the additional coefficient that
characterizes the effect of the migration transport through the
membrane.

III. NUMERICAL CALCULATIONS

The figures illustrate the practical application of Green’s
functions to calculate the concentration profile in the follow-
ing model system. Calculations were performed numerically
by using Green’s functions~6a!–~6d! and the integral for-
mula ~2!. The initial concentration is described by the equa-
tion

C~z,0!5 H250 mol m23,
0,

z,0
z.0, ~7!

the membrane is located atx050, the diffusion constant
D1.2831029 m2 s21. In Fig. 1 the examples of plots of the
theoretical dependenceC5C(x,t) at time t5240 s for dif-
ferent values of thed, s, andm coefficients are shown. In
Fig. 2 the theoretical and experimental curves~experimental
ones representing the concentration profile of ethanol aque-
ous solution@7#! are compared for different times. Based on

the parameter values taken from Dworecki@7#,
D51.2831029 m2 s21, vC50, and the initial concentration
is given by Eq.~7!. The migration velocityvM and the coef-
ficients d and m were treated as parameters. The values
vM520.931027 m s21, d50.18, andm50.26 resulted in the
closest conformity of theoretical results with experimental
ones.

IV. CONCLUDING REMARKS

The results shown in this paper are in accordance with
the results that have been obtained until now and so
prove internally consistent. Consider the following special
cases.

~i! Substitutingd5s5m50 ~full permeable membrane!
for the functions~6a!–~6d! we obtain the ‘‘free’’ Green’s
functions~4!.

~ii ! Substitutingd5s5m51 ~full reflecting membrane!
andvC50, vM50 for the functionsG22 andG11 we obtain
the Green’s function for the case of the full reflecting wall
~identical with the function given in@8,11#!.

~iii ! Substitutingd5s5m51 andvC50 for G22 we ob-
tain the function that determines the concentration profile of
sedimentating particles in the system with an impenetrable
base@11#.

Finally, we make the following remarks.
~a! Assumptions~a2!, ~a3!, and~a4! from Sec. II may not

be necessary if the calculations are performed numerically;
we could then divide the time domain into intervals small
enough that these assumptions are approximately valid inside
each one of them.

~b! Being familiar with Green’s functions for this system
allows us to use them for constructing Green’s functions in
the multimembrane systems. In this case the following pro-
cedure can be used: let us assume that for the system con-
taining (n21) membranes Green’s functions are known. Let
us add to that system a new~nth! membrane. Using the
above-mentioned procedure we obtain Green’s functions for
the n-membrane system, but in Eq.~5! d, s, andm refer to
the new ~nth! membrane andG0 is an adequate Green’s
function for the~n21! membrane system. In this way if we

FIG. 1. The concentration profiles for different parameters:
m50.6, d50.7, andvM57.531027 m s21 ~plot 1!, m50.3, d50.4,
and vM57.531027 m s21 ~plot 2!, m50.6, d50.7, and
vM527.531027 m s21 ~plot 3!, m50.3, d50.4, and
vM527.531027 m s21 ~plot 4!. For all cases: t5240 s,
D51.2831029 m2 s21, andvC50 ~M is the membrane!.

FIG. 2. The concentration profiles for different times~theoreti-
cal results, continuous lines!: t5240 s ~plot 1!, t5600 s ~plot 2!,
and t51200 s~plot 3!; the experimental data~squares in the plot!
are taken from@7#, an additional description is in the text.
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know Green’s functions for a one-membrane system we can
find Green’s functions for a two-membrane system and so
on.

~c! The above-mentioned considerations refer to the thin
membrane; this is justified because the thickness of real
membranes~1028–1029 m! is small in comparison with the
size of a typical system. However, it is possible to take into
account the internal structure of a membrane by treating it as
a system of many partially permeable walls. The permeabil-

ity coefficients of these walls may be connected with, for
example, the shape of the potential inside the membrane or
with chemical reactions taking place inside the membrane
@19,20#.

It is worth noting that by giving the boundary condition in
the manner presented in this paper@Eq. ~5!#, the calculations
necessary to determine the concentration profile in a mem-
brane system are considerably reduced~it can be especially
useful in multimembrane systems!.
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