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Green’s functions for a system with a thin membrane

Tadeusz Kosztotowidz
Institute of Physics, Pedagogical University, ulica hasl6, 25-509 Kielce, Poland
(Received 5 January 1996; revised manuscript received 27 March 1996

A procedure to determine concentration profiles of solute in a system with a thin membrane is presented. We
assume that the permeability of the membrane is described by a set of general coefficients without the need to
investigate its internal structure. This procedure is based on the Smoluchowski equation, but the boundary
condition on the membrane is given in a new form. The membrane permeability coefficients are given sepa-
rately with respect to the diffusion, convection, and migration phenomena. The procedure, relative to existing
procedures, considerably reduces the calculations necessary to determine concentration profiles.
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I. INTRODUCTION from locationz at an earlier timed’, is often used to solve
diffusion problems in different systeni8—16.
One of the most important biophysics processes is the

membrane transport process. The theoretical problem is to Il. MODEL
determine the solution concentration profile in the membrane . . :
system when either outside forces acts effectively on diffus- . We assume that the_ proble_m is one dimensional. We start
ing particles of the solutéhe migration effect of particles with the Smoluchowski equation
or these particles are floated by the solv@ghe particle con- & _ i ( dC ) )
vection effect of the soluje The concentration profile on the at ax '
border between the membrane and the solution has a greghereD is the diffusion coefficienty =ve+uvy, v is the
effect on the solute and solvent fluxes flowing through theconyection velocityequal to the velocity of solventandu
membrane. Indeed, it determines the course of many physjs the migration velocity of solute particldsaused by an

ological processefl-5]. external field.
In many previous paper§6-8] and others theoretical The concentration profile functioB(x,t) can be written
calculations of concentration profiles in membrane systemi the form of the integral formul§8]:
are based on the assumption that the concentration within the o
membrane is described by the SmoluchowskiFick) equa- C(x,t)=f G(x,t;2,00C(z,0)dz, (2

tion (where the coefficient of diffusion is constanthis as-
sumption is not always true because the internal structure affhere G is the Green’s function for the membrane system
a real membrane is not homogeneous and is, in fact, vergnd C(z,0) is the initial concentration profile.
complicated. Furthermore, in practice, we only have experi- The following have been assumed) there are no “col-
mental data that determine the properties of permeability inective” effects for movement of the solute particles in the
relation to the whole membrane without taking into consid-system, i.e., the movement of any solute particle does not
eration its internal structure. depend on the positions of the other particles; in particular
The aim of this paper is to present a procedure that allowsve make the assumptions th@l) the interactions among
the determination of the concentration profile of the solute inthe solute particles are negligibly smalg2 the diffusion
a membrane system. We assume that the permeability of theefficientD and the migration velocity,, do not depend
membrane is described by a set of general coefficients withen the concentration value, time, and positiéad) the pa-
out the need to investigate its internal structure. This procerameters of the membrane permeability are constant in time
dure is based on the well-known Smoluchowski equationand they do not depend on the value of the solute flux flow-
but the boundary condition on the membrane surface is giveing through the membranéa4) the convection velocity is
in a new form. The procedure makes full use of Green’'sconstant in time and its changes, determined by the differ-
function in Eq.(1). We also assume that the membrane isence in osmotic pressure on the membrane, are negligibly
very thin relative to the size of the system, which allows ussmall; (b) the whole flux of the solutd flowing through the
to treat it as “a partially permeable wall.” In this paper each membrane is an algebraical sum of fluxes that are generated
Green'’s function depends explicitly on the convection andby the diffusion (), convection {.), and migration {J,,)
migration velocities. For diffusion, convection, and migra- effects.
tion the membrane permeability is specified with separate Let us consider two diffusive systems: one which does not
coefficients. It is noted that the Green’s function, which iscontain a membrane and one with a membrgplaced at
sometimes interpreted as a probability densigx,t;z,t") X=Xg). We assume that the paramet&sandv are equal
for finding a particle at locatiox at timet after departure and that the systems be free from solute at tiri8. At time
t=0 in the plane at point the amount of solutéequal in
both systemsis produced instantaneously. We denote by
*Electronic address: wspfiz@sabat.tu.kielce.pl 39,3239 the fluxes(diffusion, convection, and migration
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in the first systemwithout a membranegenerated by this G(x,t;2,0)|—o= 8(X—2).

solute and byl , Jc, andJ,, analogous fluxes in the second

one. Using Laplace transform techniqugk?] the solution of this

Let us define the permeability coefficients of the mem-problem is given by

brane by the following equations:

Jo(Xo,H)=(1—8)3%(x0,t) (33 G__(xt;2,0= L o zonn
p(Xp,t)= p(Xo,1), T 2/aDt
Je(Xo,1)=(1=0)Jg(Xo.1), (3b) 5 ,
+ e—(2xo—x—z—vt) /4Dt —v(xg—X)/D
In(Xo, )= (1= ) Iy (Xo,1). (39 2Dt
We call the coefficient$1—¢), (1—o), and(1—u) the coef- OvcTt HUwm e~ v(X—X)/D
ficients of permeability of the membrane with respect to the 2D

diffusion, convection, and migration phenomena, respec-
tively. Consistently, the coefficient§ o, and u are under-
stood as the coefficients of reflection of the membrane with
respect to the above-mentioned phenomena.

From the microscopic point of view thd— 8) coefficient
can be interpreted as a conditional probability of getting the

< erf 2Xg—X—z—vt
erncy ———¢»
2Dt
X<Xg, Z<Xg, (68

(1-9)

solute particle through the membrane on condition that after G, (x t:2z,0)= e~ (x—z—v1)?/4Dt

removing the membrane the particle can go through the vol- 2\ =Dt

ume that was occupied earlier by the membréneking the

assumption that the particle displacement is caused only by _ (8= a)vct (86— plom e—v(z=x)/D
its diffusion movement We can interpret thé¢1—o), and 2D

(1—uw) coefficients analogously. For the typical membrane

system thed, o, and u coefficients should take values in the < erf Z—X—ut

interval (0,1). 2Dt |’

From the macroscopic point of view the Green'’s function KX 75X (6b)
can be interpreted as the abstract concentration profile that is 0 0
determined only by one particle, which is locatedzatt the (1-5)
initial moment. Thus, we can write G, (xt;z,00= ef(xfzfut)2/4Dt

7Dt
Gy
0 _ 0_ 0 _
Jp=-D o Je=vcGo, In=vwGo, . (6— v+ (56— oy SR
2D
whereG, denotes the Green's function for the system with-
out a membrane: X erfc{ X—Z+ vt}
2Dt |’
Go(x,t;2,0)= g Oz unTRL @
2. /7Dt X>Xg, Z<Xg, (60
Let the membrane be at=x,. Taking into account the 1 )
above equations and the following expression for the full G .(x,t;z,0)= g~ (x~zTvnTDt
flux of solute in a membrane system, 2\mDt
G 4 —(X+z—2xg— t)2/4Dt—v(z—
=—D — 4+ ——¢ o—vt) t—v(z—xq)/D
I= 7D o G 27Dt
we can give the boundary condition on the membrane as ovct uuy

follows: 2D

JG (1—96)(Xg—z—vt) X+2z2—2Xg+ut
-D (9—+vG = X erfef ——————,
X X=X, 4t/ 7Dt 2Dt

X>Xg, Z>Xg, (6d)

(1-0)vct(1—uom
here erfc is the complementary error function.
2\/wDt W ; e
m In order to fix thed, o, andu coefficients, we must make
X @~ (Xo—z=vt)?/4Dt. 5 use of a particular theory. For example, in the Kedem-

Katchalsky theony18] to obtain these coefficients we must
For the Green’s function the initial condition is given by take into consideration the following: The diffusive flux,
the equation which flows through the membrane, is given by
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FIG. 1. The concentration profiles for different parameters: FIG. 2. The concentration profiles for different timgkeoreti-
n=0.6,6=0.7, ande:7.5><10‘7 m st (plot 1), ©=0.3, §=0.4, cal results, continuous lingst=240 s(plot 1), t=600 s(plot 2),
and vy=7.5x10"" ms?! (plot 2, w=0.6, §=0.7, and andt=1200 s(plot 3); the experimental datésquares in the plpt
vm=-—7.5x10"7 ms?! (plot 3, w=0.3, 6=0.4, and are taken froni7], an additional description is in the text.
vm=-7.5x10"7 ms?! (plot 4. For all cases:t=240 s,

D=1.28x10"° m?s™%, andvc=0 (M is the membrane the parameter values taken from Dworecki7],
D=1.28x10° m?*s ™%, v-=0, and the initial concentration
Jp=—-wRTAC, is given by Eq(7). The migration velocity,, and the coef-

ficients 6§ and u were treated as parameters. The values
wherew is the permeability coefficienR is the gas constant, v,,=—0.9x10 ' ms %, §=0.18, andu=0.26 resulted in the
T is the temperature, antic is the solute concentration dif- closest conformity of theoretical results with experimental
ference occurring on the membrane. After removing the thirones.
membrangwithout any changes of the external conditipns

the diffusive flux is(approximately given by IV. CONCLUDING REMARKS

ng—DAc/d, The results shown in this paper are in accordance with
. _ the results that have been obtained until now and so
whered is the membrane thickness. From the above equaprove internally consistent. Consider the following special

tions and Eq(3) we obtain the formula cases.
(i) Substitutings=o=u=0 (full permeable membrane
6=1-(wRTdD). for the functions(6a)—(6d) we obtain the “free” Green's

functions(4).

(i) Substituting =c=u=1 (full reflecting membrane
andv =0, vy, =0 for the functions5__ andG, , we obtain
the Green’s function for the case of the full reflecting wall
ﬁdentical with the function given if8,11])).

(ii ) Substitutingé=o=u=1 andv-=0 for G__ we ob-
tain the function that determines the concentration profile of
Il. NUMERICAL CALCULATIONS sedimentating particles in the system with an impenetrable

The figures illustrate the practical application of Green’sbas‘?[ll]- )
functions to calculate the concentration profile in the follow-  Finally, we make the following remarks.
ing model system. Calculations were performed numerically (& Assumptionga2), (a3, and(a4) from Sec. Il may not
by using Green’s functionsa)—(6d) and the integral for- be necessary if the calculations are performed numerically;

mula (2). The initial concentration is described by the equa-We could then divide the time domain into intervals small
enough that these assumptions are approximately valid inside

The two other coefficients can be described as followss
the reflection coefficient which appears in Kedem-
Katchalsky theory andu is the additional coefficient that
characterizes the effect of the migration transport through th
membrane.

tion
each one of them.
250 molnm3, z<O0 (b) Being familiar with Green’s functions for this system
C(z,0= 0, z>0, @) allows us to use them for constructing Green’s functions in

the multimembrane systems. In this case the following pro-
the membrane is located at=0, the diffusion constant cedure can be used: let us assume that for the system con-
D1.28x10 ° m?s L. In Fig. 1 the examples of plots of the taining (n—1) membranes Green’s functions are known. Let
theoretical dependendg=C(x,t) at timet=240 s for dif- us add to that system a nemth) membrane. Using the
ferent values of thes, o, and u coefficients are shown. In above-mentioned procedure we obtain Green’s functions for
Fig. 2 the theoretical and experimental cur¢esperimental the n-membrane system, but in E¢p) 8, o, and u refer to
ones representing the concentration profile of ethanol aquéhe new (nth) membrane ands, is an adequate Green'’s
ous solution7]) are compared for different times. Based on function for the(n—1) membrane system. In this way if we
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know Green'’s functions for a one-membrane system we caity coefficients of these walls may be connected with, for

find Green’s functions for a two-membrane system and s@xample, the shape of the potential inside the membrane or

on. with chemical reactions taking place inside the membrane
(c) The above-mentioned considerations refer to the thi19,2Q.

membrane; this is justified because the thickness of real Itis worth noting that by giving the boundary condition in

membrane$10 8-10° m) is small in comparison with the the manner presented in this papen. (5)], the calculations

size of a typical system. However, it is possible to take intonecessary to determine the concentration profile in a mem-

account the internal structure of a membrane by treating it abrane system are considerably redué¢aan be especially

a system of many partially permeable walls. The permeabiluseful in multimembrane systeins
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