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The derivation of Boussinesq's type of equations is reexamined for the shallow fluid layers and nonlinear
atomic chains. It is shown that the linearly stable equation with purely spatial derivatives representing disper-
sion must be of sixth order. The corresponding conservation and balance laws are derived. The shapes of
solitary stationary waves are calculated numerically for different signs of the fourth-order dispersion. The
head-on collisions among different solitary waves are investigated by means of a conservative difference
scheme and their solitonic properties are established, although the inelasticity of collisions is always present.
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[. INTRODUCTION the governing parameters. It happened not to be the case with
the original equation derived by Boussinesq himself, since it
The permanent wave was observed by Rus§g/E]  was linearly unstable with respect to short-wave-length dis-
around “Turning Point” in Union Canal near Edinburgh and turbances and can be called “incorrect in the sense of Had-
further results were obtained in laboratory systematic experiamard” since the smallest disturbance in the initial condi-
mental investigations by Russell and Bazin. Boussinesgons results in a significant change in the solution after a
[3-5], and later on independently Lord Raylei§@], pro- finite time. This spurred a significant activity for improving
vided the pertinent theoretical description. The importance othe Boussinesq equatidBE) and nowadays “good,” “im-
this discovery went unnoticed at the beginning althoughproved,” “proper,” etc., Boussinesq equations are known
Korteweg and de Vrief7] further developed its understand- which differ from Boussinesq’s derivation. For the sake of
ing. It was only after Zabusky and Kruskg8] showed the clarity we call the equation derived by Boussinesq himself
particlelike (“solitonic” ) behavior of the localized waves of “Boussinesq’s Boussinesq equatiofiBBE). Thus a Bouss-
the Korteweg—de Vries equatigikdV), that the individual- inesq equation will be a wave equation to which a fourth-
ized (permanent wave captured for good the attention of order dispersion term and certain nonlinearity are added.
investigators and the study of solitons became an importanitBoussinesq Paradigm” refers to this in a broad sense.
field of nonlinear physics. Nowadays, the Boussinesq idea A way to make BE mathematically correct is to change
that the permanent-wave shapes are the result of an apprithve improper sign of the dispersion term of Boussinesq's
priate (local) balance between dispersion and nonlinearityBoussinesq equation. In fluid dynamics it amounts to consid-
has already become a paradigm. The Boussinesq equatioegeng a very strong surface tensidwhich hardly corre-
appear not only in the study of the dynamics of thin inviscidsponds to the case observed by Rugsealhile in lattices it
layers with free surface but also in the study of the propagameans an overwhelming presence of long-range interactions
tion of waves in elastic rods and in the continuum limit of (five-point differenceswhich is never true in reality. This
lattice dynamics or coupled electrical circuits. On the othemeans that the mathematically improper sign of the disper-
hand the Korteweg—de Vrig&dV) equation served as the sion coefficient in BBE reflects a deeper physical nature and
prime example of the integrability theory and various prop-could not be simply changed without compromising the main
erties have since been established for KdV, Boussinesq, arassumptions of the model. In our view, the mathematical
related equations. incorrectness of BBE is due to missify badly rearranged
Yet, an exhaustive analytical description can be obtainederms, rather than to the physics it was attempting to reflect.
only in certain rather special cases. It takes just the smallest Another approach is to replace the fourth spatial deriva-
step in the direction of making the model more realistic andive by a mixed spatiotemporal one of the same order. This
the integrability(or at least the analytical form of the solu- keeps intact the physical assumptions but then makes the
tiong) is lost. It is clear that a model or a paradigm can be ofmodel less amenable to the analytical techniques since the
practical importance only if its properties are robust, i.e.,“improved” equation is no more fully integrabl¢9]. It
structurally stable. Then it can be simulated numerically andeems important to pursue further the research with purely
predictions can be made for large intervals of the variation obpatial derivatives representing the dispersion. As we show
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here, this can be done mathematically correct if at least theause for the nonlinear blowup of the model. Thus the cubic-

sixth spatial derivative is retained when approximating thepentic approximation fronj13] appears more appropriate.

dispersion. However, it goes beyond the frame of the present work to
Here we point out that there exists a physical situationinvestigate the consequences of different approximations for

where an equation of Boussinesq's type naturally appearthe potential. For the behavior of solitons in the cubic-pentic

with the proper sign of the dispersion. This is the case omodel we refer the reader {a4].

transverse vibrations of nonlinear rofd<0—-17. Newton’s law for the mass point of numberreads

Il. LONGITUDINAL VIBRATIONS mX,=V'(Ups1)— ¥’ (up), (2.5

IN NONLINEAR CHAINS

. . or which is the same
A. Discrete dynamics

Consider a chain of points of equal masses, connected to MX,=ab(Xn4+1—2Xp+Xn—1) + [F(Xn+1—Xp)
each other througfmonlineaj springs. Let us denote bythe CF(x— 26
lattice constanfthe equidistant spacing between the material (Xn=Xn-1)], (2.6

points in the initial state or “reference configuration'We

consider here a chain which is a straight line coinciding withwhere
the coordinate axi©x. This conjecture gives a good ap-
proximation for any curved one-dimensiondlD) filament

whose local radius of curvature is large enough in compari-

son with the distancé between points. In the nondeformed

state the coordinates of points ark The longitudinal posi- is the nonlinear part of the force.

tions assumed in the deformed state are denoted by In a similar fashion the Newton law with the potential of
Xg,-+-Xny- Xy - It iS convenient to also introduce the rela- interactions that depends on the relative position of three
tive displacementfloosely speaking “strains)’and the rates particles can be derived. It can be noted here that a quadratic

2
F(Xn+l_xn)E - T (Xn+1_xn)2

of strains potential depending on the three-point difference yields in
) ) o the equations a linear term proportional to the five-point dif-
Un+1=Xn+17 X0 =ln+1s Une1=Xnt 17 Xn=Tnt 1, ferencex,_,—4X,_1+6X,— 44X+ 1+ Xn1 2
2.9 In terms of relative displacements of atoms in a lattice,

where the dots over the variables denote time derivativeg.he governing equation has the following forfit5,16):

Let us now denote b (r,,,) and¥'(r,.,), respectively, .
the potential and the elastic force of interaction between theui_X(u”l_zui+u‘+1)+[F(u”l)_ZF(ui)+ F(Uif%)z]'?)
masses at sitas andn+1. If one considers an exponentially '

nonlinear(Toda lattice, these are expressed as follows: where y=ab/m is proportional to the square of the charac-

a teristic speed in the crystal.
V(rpeq1)= b [exp(—bry, ) —1]+ary, 1, (2.2 Taking into considerations the triple interactions among
the points of the chaifatoms in the latticeone ends up with
an equation also containing the five-point differefit8]

W' (rps)=all—exp(—bro.q)]. (2.3
If the characteristic length~* of nonlinearity of the prob-  Ui=x(Ui+1=2Ui+ Ui 1) +[F (Ui 1) = 2F (Up) +F(ui-1)]
lem is large enough, the springs can experience a large elon-  _ S(Ui+ p— AU, , 1 +6U— AU, 1 +U; ). 2.9

gation before the nonlinear effects become important. Then
in the limit Ib<1 one can reduce the exponenti@bda’s

. . ) Here 6 controls the triple interactions and the linear stability
potential to the following cubic one

demands tha$>0, which is the proper sign for a discrete
equation of the discussed type.

1 2 3
W(ry+1)~ab Ern+1_grn+l J

2.4 B. Continuum limit

2 The most natural way to predict the behavior of a chain

Fn+1™ 2 nea)- seems to be making use of the “difference” equati@m®)
as the governing equation and simulating it numerically as it

Here the first term gives a harmonic potential with a springis correct in the sense of Hadamard. The problem is that it is
constantk=ab. For simplicity and with no lack of generality a microscopic equation withbeing of the order of intermo-
we constrict the considerations in what follows to the cubiclecular distances. Hence too many computational pduts
potential(2.4). Yet, the cubic potential is qualitatively differ- inciding with the number of atoms of the chaiwill be
ent from the exponential one and is inherently improper inneeded for direct numerical simulations if one is to model
the sense that the force which corresponds to it becomesven the smallest system of macroscopic relevance. To over
unbounded for large relative displacements. At the time theome this difficulty the continuum limit is used, assuming
exponential potential gives a saturation for the fofsee that the relative displacementis a continuous and smooth
(2.3)]. In fact the cubic approximation of the potential is the enough function whose values in the geometric points repre-

W'(rpy1)~ab



54 WELL-POSED BOUSSINESQ PARADIGM WITH PUREL. . . 3623

senting the material points of the chain are exaatly Then d?F(u) dU(u)
a Taylor-series expansion for the strain in the vicinity of Ux="7y UXX+T+ BUxxxt Usxxxxs F(U)=— du
point x; gives 2.13
4 6
(Uis1—2Ui+Ui_p) = 12U+ — ! ( ) 4+ I_ U(G) HereU(u) is the nonlinear part of the potential. In the cubic
127 360 case we havet)(u)=(a/6)u®, a=ab’ We call Eq.(2.13
8 10 the sixth-order generalized Boussinesq equatGBBE).
+ u®4 (19

| + i )
20 160 1814400 C. Pseudomomentum formulation

(2.9 Equation(2.13 is a corollary of the system
4 6 dU
- " (4) (6)
(Fi+l F +FI 1) | F +12F +360F| Ui = Qxx» qt=)/2u—m+BW+Wxx, W= Uyy.
8 |10 (2.19
SR
20 160 1814400 ' Different boundary condition&.C.) can be imposed. On
a finite interval —L,L,], however, the systerf2.14) admits
(2.10
' conservation laws, only for the following B.C.:
6 8
(Ujso— Ui+ 6U;—4u;_1+Uu;_p)=1*ul?+ — 5 u®+ — 0 u(® u=0, ux=0, ox=0 for x=—1L,,L,. (219
Indeed, consider the quantities
17| 10
u(lO
30 240" Mdeff 2 q Pdeff 2 q 2.16
= udx, = ug,dx. )
(2.1) L, 1, Qx
and hence
def Ly
72 Ezf Hy?u?+q2—2U(u) + Bu+w?]dx.
un=I2)(uxz+I2 =2 FLux, t)]+|4 = 5) Uys —L 217
8 X g Uog - - 2.12 Upon an appropriate manipulation (.14), integrating
360 6/ with respect tax and using the B.C(2.15), one obtains the

following conservation and balance lawfor the fourth-
Now higher-order spatial derivatives appear in the modebrder BE see a similar derivation jA7-19):
reflecting more information about the interaction between the

atoms. Equations of the type (£.12) are “generalized wave dM dP 1 L2 B dE

equations” (GWE). The problem is that after the contribu- Gr-9 go3zlusd| =F. ;=0 (218
tion of these new terms is acknowledged the truncation after 1

the fourth derivative does not necessarily give a linearl .

stable model. ya y HereM can be interpreted as the mass of the waveE&nd

The fourth-order truncation of E¢2.12 would be proper as its: energy[Note.that this energy is not a positive definite
functional. Hence its conservation does not bound the solu-

only if 6>x/12, which is hardly realizable since the multiple hich I di i bl llowi
interactions are always “screened” by the lower-order onest'zog V; Ic ma3|’| Y:VG |v(ej:rgénon Inear dCIJ:WUDl] Fod ofvvmg
i.e., actuallys<y. Then it is the sixth-order truncation which [20-22 we ca P pseudomomentyrand F—pseudoforce
is of practical interest since it is well posed 8¢ y/60. The mechanical and field interpretation embodied in Egs.

One can proceed even further by considering the elghth(-2 17, (2.18 which grants to a.nonllinea}’r wave process the
essential attributes of a “quasiparticle,” is made more sa-

order GWE but the condition for correctness of the latter®
lient by remarking the following. If one introduces the po-

appears to be qualitatively similar to the fourth-order equa- U of ub q hat for d |
tion with the only difference that the limitation now is not so €ntialu of u by u= u, and assumes that for dynamical so-
lutions of |nteres1ut(x— —L4)=0, it is verified, on account

restrictive, namelys>x/252, but still well above the prac-
tical range of parameters. Then the tenth-order GWE can b f(2.14, thatlut Gy and thusP andE are none other th:;n
considered and it is correct for very largebut lesser than the canonicalwave momentum and energy associated to

17/60. the Lagrangian

It is clear that the increasedlinterval for correctness in L
the case of the tenth-order equation does not pay off the L=| 2 £dx, L=K-W, (2.19
increased complexity added to the model. Thus we shall -l

limit the consideration to the sixth-order GWE which is the

minimal order that is linearly stable. After rescaling the vari- With

ables, we arrive at the following equation for the transverse

strain: K=3u7, W= 3 [Y2U;—2U(u) +Buf+ Ui, (220
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with the canonicalfield-theoretical definition§20,21] Boussinesq expanded the solution of the Laplace equation
(3.1) into a power series with respect g With the nonflux
P J’Lz u—% A= — JLz TUdx (2.20 condition d¢/dz=0 at the bottom of the layer the power se-
L, Suy Ly L : ries contains only the even powers of the coordinate

namely,

L, _ oL w

E= Hdx, H=Pu—L, P=—, (2.22 z2m
L 3y p(xy,z0=2 (=A™ (xy.) Zror, (34

where §/6u, denotes the Euler-Lagrange variational deriva- . )

tive. In this mechanical reinterpretation, it isthat is the = Wheref(x,y,t)=¢(x,y,z=0}) is the unknown function rep-
displacementor basic field and u that is thestrain (field ~ 'esenting the value of potential at the bottom of the layer.
gradien}. Thus we have a mathematical object pertaining tol Nen for the derivatives entering the surface conditi@3),

the class of solitonic systems. 3.3 one has
* 2m-1
IIl. INVISCID FLOW IN SHALLOW LAYER: aid = (= BA)TE(x,Y,1) % (3.5
BOUSSINESQ'S APPROACH 9Z|, 14y T (2m—1)!

In this section we revisit Boussinesq's derivation with the = om
purpose of obtaining a form that may be more useful in some @ - E (—BA)™ gtx.y.t) (1+7) . (3.6
instances, e.g., when showing conservativeness with higher-  dt{,_, = 0 ot (2m)!
order derivatives. We derive the general case of two-
dimensional2D) motion in the plane of the layer but restrict * (1+ 7)2m
ourselves to one spatial dimension in numerical calculations. Vel-1+ 7,220‘, (—BA)VE(X,y,1) “amn 3.7

Consider the 2D inviscid flow in a thin layer with a free
surface. We limit the derivations to the case when the shape
function h(x,y,t) of the free surface is single valued, i.e., he
there is no breaking of the waves. The motion in the bulk is
governed by the Laplace equation for the potenbal

Let H be the scale for the vertical spatial coordinate And
(the yet undefined wave lengtfor the horizontal one. We
introduce dimensionless variables according to the schem

Note that in our 2D case there is no dependencey/on
nceA=4/x* and V=4/Jx.

Introducing these expressions into the system governing
the surface motion and keeping within the order of approxi-
mation O(%) one arrives at the following approximate sys-
etem containing the 1D variableg f, only:

J
®=UH¢, h=Hy, z=Hz', x=Lx, y=Ly AT

ot EV[(1+77)2fxx] Vg

t=HU™'t’, B
=—(1+ p)Af+ = (1+ 5)3A%f, (3.9

whereU = \gH is the characteristic scale for the velocity. 6
Henceforth, the primes will be omitted without fear of con-
fusion. ﬂ—éi[(len)zAfH—l(Vf )2+ 7
Then the Laplace equation takes the form at 2 ot 2
52 _ E 2 E 2_
BA¢+&—$=O, (3.1 5 VE-VI(1+7)2Af1+ 5 [(1+ n)Af12=0,
(3.9
where B=H/L is the dispersionparameter. This is a small
parameter for long-length scales of the motion. The kinewhich is the gist of Boussinesq'’s derivation.
matic and dynamic conditions then becoftiee free surface The linearized version of the system for Boussinesq's
in dimensionless form ig=1+7) functions is obtained fron3.8), (3.9) upon neglectingy in
comparison with unity andyf, f>—in comparison withf.
an _1d¢ Then the functiony is readily excluded to obtain a single
St Ve V= B oz’ (32 equation
2 2
and a_f_é_aAf_ _E 2
et =Af 6 A-f, (3.10
dp 1 , 1 [dp)\?
s T2 (Vo)'+ 28\7z) T 7=0. (3.3 which is well posed as an initial value problem. Naturally, its
energy functional
Here the unknown function of time that enters the dynamic .
condition is_identified agH, assuming that in the initial E=E J ft2+(Vf )2+E (Vft)2+é (A )2|dx
moment of time the system was at réis¢., ®=0>, h=0 at 2 ) -« 2 6

t=0). (3.1
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is positive definite and it is a conserved quantity due to Eqorder here secures the third order of the overall procedure
gives

(3.10.

In the literature Eq(3.10 is called the regularized long-
wave equatio(RLW) (see,[23-25) suggesting that some-
thing had to be regularized in the thin-film equations. RLW
is the natural equation that appears in Boussinesq'’s type of
derivation(see. Sec. Il €and curiously enough some effort
is needed to “deregularize” it making it incorrect.

If an approximation valid only in the moving frame is
sought, then following Boussine$§—5] one can argue that
the time derivatives can be approximated by the spatial ones
for motions that evolve slowly in the coordinate frame mov-
ing to the right(with unit velocity). Then upon replacing the
mixed fourth derivative in Eq(3.10 by the fourth spatial
derivative one obtains

ﬂzf__

at?

#f+ﬁaﬁ
a2 3 ax*

(3.12
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2 2 2
f:¢+<rzm BA¢+&$IZW)A(1ZM Ay
4
(1+9)?% 1+ (1+7)?
73 2 7 AV
(72 (A+nt ,  (1+n)* , (1+7)?
Ty AT AT A Ay
1+17)°
( 722) A%y |+0(B%. @.1)

And upon introducing the last formula into expressiGb)
we get

which apparently has a mathematically more pleasant form
lacking mixed derivatives. However, E@.12) is unstable to

2

short-length disturbances, as linear stability analysis shows. — ﬁ =—(1+p)Ay— B (1+ ,7)4(14— 7) Alﬂ}

Physically speaking this deficiency seems to be of no rel- B oz =1+ 2
evance, because from the very beginning the equation was 3
derived to only account for the long-wave motions. This is _ (1+7) Azllf]
indeed the case when one can find an analytical sol(#ien 6
Boussinesq did Yet avoiding the short-wave-length insta- (1472  (1+7)?
bility is crucial when direct numerical simulations are at- — B (1+ p)A A " Ay
tempted because it can be triggered by the inevitable errors 2 2
(truncation, round-off, mismatch between analytical initial (1+ )
conditions and finite difference solution for evolution, gtc. —(1+ W)A[—n AZ,}y}
Note that here the mixed-derivative expression naturally ap- 24
pears while the purely spatial dispersion is an approximation. 3 2
i . , . (1+7)° [(1+7) }

is opposite to the case of nonlinear chains where the — A Ay
mixed-derivative expression is used to regularize the equa- 6 2
tion. 5

(1+7%)° 3
120 Ay +0O(B°). 4.2
IV. THE 6GBE
A. Reformulating Boussinesq'’s approach i % ZZE (14 ) AYP

Although Boussinesq arrived at an ill-posed problem 2B | 9z =1+ 2 7
when replacing the mixed spatiotemporal derivative by the 5
purely spatial fourth derivative, getting rid of the mixed +B2(1+ )2A¢[A|:(1+77) Az/;}
fourth derivative might prove useful in the end. This idea g 2
nowadays enjoys a revived actuality in the light of the quest 5
for conservation laws and integrability of the models. So far, _ (1+7) A2yt +0(8%) 4.3
attempts to show integrability for models with mixed deriva- 6 v . '

tives have failed[9]. For this reason we reformulate the
Boussinesq derivation in a manner to have only spatial
higher-order derivatives, while avoiding the trap of ill pos-
edness.

Our approach requires inversion of infinite series and we
carry it on in an asymptotic manner up to terms of order of 97
B2 included. ot

The simplest way to avoid mixed derivatives is to use the
value of the original potential function at the surfadenote
it by ¥(x,y,t)=¢[X,y,1+ n(X,t),t]) rather than the Bouss-
inesq functionf= ¢(x,y,0,t) which is the restriction ot to
the bottom boundary. We invert the Boussinesq series Eq.
(3.4) to express in termsy. To the ordeiO(B% (the fourth

+VWVWZ_U+Uﬂ¢_5h1+mA[

(1+7)°
6 W]

u+m2Au+m2

(1+7)?

2

Introducing(4.2), (4.3 into Egs.(3.2), (3.3) we arrive at a
system asymptotically correct to ord@x3%), namely,

.

—32{(1+nm 5

2

Ay
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(1+n)* ) Hereafter we neglect the dependence on the varigldad
~(A+pAl——,— A% consider only 1D case. Thus we arrive at a system which we
shall call “sixth-order classical Boussinesq systef@CBS.

(1+7)° o (1+ 7)? A similar coinage was used if28] for a system to which
— A 5 Ay (4.6) is reduced if the sixth derivative is neglected, which
was linearly unstable.
(1+7)° The system4.6), (4.7) can be reformulated by introduc-
120 Ay +0(B°), (44 ing the auxiliary variables,=—» andu= ¢, , the latter be-
ing simply thex component of the velocity at the surface.
{9(# 1 :8 Then
E+§(V¢)2+E[(l+ﬂ)mﬂ]2 ) .
(?q+ aq +,6'(?u+2,8 a"u 48
1492 | (1492 I i T AR
+B%(1+ p)%Ayi A 5 Ay - — A2y
du du_ d%q
+0(B%=—n, (4.5 PRy 4.9

which is complicated enough while being an approximateyhere it is already integrated twice with respecixtaising
model due to the very fact of employing the Boussinesqy, =7=0 for x=—L,.

series(3.4). It seems reasonable to simplifalthough as-
ymptotically inconsistentlythe system and to retain only the
terms responsible for introducing the qualitatively new ef-
fects like the linear stability. For instance, the leading non- Before turning to the integral characteristics we specify
linear terms could not be neglected, as well as the leadinge asymptotic conditions at both infinities. Since we are
dispersion terms, while their modifications of relative orderconcerned here with solitary waves, we set

O(B) can be either neglected or reduced to simpler terms. o du= f .
This kind of heuristic but not so arbitrary reduction is called 7="0—> 7= andu=gy,—0 for x— =, 4.10
“paradigmatic reduction” to distinguish it from other as- ’
ymptotically inconsistent reductions. Note that a true 10ng-These are asymptotic conditions that also imply decay of all
wave-length solution can exist for the Boussinesq systemyerivatives, namely2],

only if it is also weakly nonlinea([26,3€]). As far as Bouss-

inesq seches are concerned, this is the case when the celeri- 7, ,7,,,..—0  and gy, Yrxx: Yrxsxs Yoxxsr -+

ties are very close to the characteristic velocity of the system

[36] (unity in the particular dimensionless form considered —0 for x— =+, (4.11

here. Thus in the process of reduction we envisage quanti- ¢ ; ded si ial derivati
tative applications to shallow-layer flows only for the case!!" fact B.C. fory are not needed since no spatial derivatives

#,m~O(B). Yet, we obtain a system for investigating the of » are present in the system. Due to the system one has

“quasiparticle” behavior of the localized nonlinear waves. 7% for x—=xe,) _ . . :
Accordingly, we set When a finite interval is considered, it does matter which

of the B.C.(4.11) are imposed. For some B.C. one can have

B. Conserved quantities for 6CBS

1 9¢ B B2 conservation of mass and energy in a finite interval. The
3z =—(1+n)Ay— 3 A?y— 15 A3y, conserving B.C. that are compatible with the physical B.C.
B z=1+7 (4.10 are the following:
i |:@ 2:0+O(B) le: $3X: ¢5X:O for X:_Ll,Lz, (412
2B | 9z '
A z=1+n where—L, andL, are the boundaries of the spatial interval

under consideration.

where the sixth spatial derivative af is kept although it The energy functional of systefd.6), (4.7) reads

contributes to the ordes? at the time when all other terms of
the same order were neglected. As argued in Sec. lll, the 1 (L, B 232
only way to have a linearly stable system is to keep this term. E=_ J VA P+ Pi— = Pt —— Pl ldx.

It is even more inconsistent with the nonlinear term where, in L 3 15

fact, all the terms have been neglected. However, this allows (4.13
to derive a conservation law for energy, i.e., the simplifica-
tion is “paradigmaticly consistent.” Finally, we obtain

Note that the linear stability can be inferred either directly
from (4.6) or from (4.13 since for any wave numbdy, the
form k?— Bk*/3+2B%k5/15 is positive definite. However,
(4.6)  the possibility of nonlinear blowugsee, e.9.[29,30) re-

mains due to the presence of the cubic tejif which may
5 happen not to be positive for certain transients.
AN 4.7 Here one can see the difference between the fluid layer
- ' and the nonlinear chain. In the lattice the possibility of non-

om, 9 ) _ Py Bty 2B Py
ot ox |\ Tax] T T axZ 3 ax* 15 ox°’

oy 1

+
a2

X
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linear blowup was introduced by the inadequate cubic apthat total energy4.13), on account 0f4.10, is associated
proximation of the potential. In the fluid layer, the nondefi- with the following Lagrangian:

niteness of the energy functional is inherent, because of the

presence of free surface. The lack of positive definiteness Lo

reflects the fact that Eulerian coordinates are used in which '—:f ) Ldx,  L=K(, ) = W, hx, ¥3x),

the well known phenomenon of steepening of the surface ot (4.18
waves due to nonlinearity cannot be followed beyond the '
instant in which the surface shape function becomes

where
double valued.
Now the pseudomomentucan be defined as 1 1 1
K=5 W+ uim), W=y | W7 vl 5 2
Ly 2 t x ¥t} 2 X 4 X 3 XX
p= f X, (4.14
7L1 ZB
and the balance law for it can be derived as follows. Equa-

tion (4.6) is multiplied by ¢, ; the x derivative of Eq.(4.7) is

multiplied by #; the results are added to each other and in- The general definitior{2.21), and appropriate boundary
tegrated in the intervdl-L,,L,]. Then we get conditions then yield the balance wfave momenturf21]

Lo Lo L 1
le(nt¢x+¢xtﬂ)dX:J [ = I mih)x— 7 J' Lll//x S dx—_f i Wy 'r/ft+§ 'pi)dx

+ XXX d
Pl =7 pn o 420

Ly B -
- ij ‘pxx'l' § ¢4x

While the Euler-Lagrange equation derived frqm18
by straightforward variation just yields the variant @.6)
+ 15 lﬂBx} ydx obtained by takind4.7) into account, the canonical quantity
(4.20 is the first of (4.14) or (4.16. Furthermore, while

1 (2 d ) the Lagrangian4.18 contains a term linear in, this is
=73 f Ix |20t P not the case of the associated Hamiltonian density
H=ux(Lloy)—L [this is the integrand in expression
B , 2B (4.17]. Thus we have succeeded in reinterpreting our fluid-

2
3 Yt 15 Y dx mechanics problem asfeld-theoretical constructhamely,

the one-dimensional elastic crystandowed not only with

or which is the same nonlinearityanddispersion but also with a Lagrangian con-
tribution of the so-called gyroscopi€ type, that does not
dP 5 2 , B, 232 ) ) L2 contribute to the total energy while altering the final expres-
Gt - FE T3 | T 2nYi— 3 et 5 Vet sion of canonical momenturtthis happens in spin systems
! such as in ferromagnetics
1 '8 2 2 b2
) [§ P ' (4.19 C. Sixth-order corrections
! to Boussinesq’'s Boussinesq equation
whereF is calledpseudoforcend the last equality acknowl- It is instructive to add here the equation in the form ob-
edges the conserving B.(%.12). tained by Boussinesq himself. For this reason, following

In terms of functionau,q, similar expressions are valid ~Boussinesq we neglect the nonlinear term4c®) as intro-
ducing “too much nonlinearity” (see, also[28]). Bouss-
B, 1, L2 inesq’'s conjecture was indeed physically sound and asymp-
IO (4.16 totically correct since the long-wave assumption goes
! together with the weakly nonlinear assumption. The second
Boussinesq conjecture was that in the nonlinear terd &
dx. (4.17 one can replacg, by —u as in the right-moving frame, the
' derivativeu; can be replaced approximately byu, in (4.9
and to integrate the latter once with respecitéhis inte-
Due to B.C.(4.12 the only source fopseudoforceould be  gration is needed because we use here the auxiliary function
the differencesy? — 72 of the fluid levels which drives the q).
unsteady waves. Only when this difference vanishes, are the Apart from rendering the model linearly unstable, the
stationary propagating waves possible. Boussinesq manipulations as a “byproduct” destroy also the
Like system(2.14), systems(4.6), (4.7) or (4.8), (4.9 Galilean invariance. Thus the difference between the Eule-
may be reinterpreted in a field-theoretic framework by notingrian and Lagrangian descriptions disappears and then the

p— J'—z q dP_F_
= _LlUQX X, T

1 (L B ,32
E:—f [qx qyu 2+U_3U+EU
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longitudinal coordinate can be thought of as a material coorThe results of numerical simulations of head-on collisions in
dinate in the reference configuratipal]. We have already RLW exhibit considerable inelasticitisee[37,3§). The in-
demonstrated in a previous section that the pseudomomemiastic behavior was confirmed also by the calculations with
tum formulation of BBE coincides with the field-theoretical the conservative scheni@6] which makes us believe that it

approach. is an innate property of the RLW rather than an artifact of the
Finally, the sixth-order Boussinesq’s Boussinesq Equatiomumerics.
(6BBE) adopts the form Finally, upon rescaling the variables of E@.21), the

latter is recast in the forni2.13 which will be henceforth

referred to as the sixth-order Boussinesq equatGBBE).
(4.22 o e

In what follows we turn to the numerical investigation of

) ) o 6GBE.
If we disregard the sixth derivative, we have exactly the

equation derived by Boussinesqg himgglith the coefficient
of the nonlinear term rescaled

Pu , Bdu 2p%du

+UlH S —F — —
a2 a2 YTV T30 T 15 X

V. THE STATIONARY SHAPES

First we begin with the equation for the shapes that are
stationary in the moving frame&=x—ct. Denoting by
primes the derivatives with respect to the variabiee arrive

o ] _ ) _ at the following ordinary differential equatidl®DE) for the
This is an equation that contains both the nonlinearity andtationary shapes

approximate dispersioffourth-order derivative This was

Pu 3§

T 3 x2

2
u+ u2+éa—u}. (4.22

the main contribution of Boussinesg. He also found an ana- O=\u+au?+pBu’+u"”, r=(y*-c?), (5.1
lytical solution of his equation which in terms of the vari-
ables used here reads which is the same ODE to which the fifth-order KdV

(FKdV) is reduced for solutions in the moving franieee,
x—ct | c*—1\12 [39,49,58,35,6D Apparently, the first numerical study of
2 T (423 (5.1) is due to the Kawaharg89], which is the reason why
some authors call the oscillatory solutions(6f1) “Kawa-
and represents Aump over the surface propagating with hara solitons.”
phase velocityc. Thus Boussinesq put a full stop on the Before embarking on numerical investigations we recall
discussion of whether a wave of permanent form is possibléhere the results of the linear analysis of the tails of the soli-
Explicitly obtaining the shape of the permanent form he vin-tary waves. The linearized equation possesses harmonic so-
dicated John Scott Russell whose discovery of the solitarjutions of the typee*¢. The dispersion relation for these
wave[1,2] was rejected by Ainf31] who did not consider waves reads
the appropriate contribution of dispersion. Independently of
Boussinesq, Lord Rayleigh6] also found the permanent
wave. This point was further strengthened by Korteweg and
de Vries[7] who besides the Boussinesqg sech found another
permanent wave—the cnoidal one—consisting of a periodic For the sake of definiteness let us §8t=1, y=1. The
train of crests. In the linear limit it gives the harmonic wave, other cases can be obtained by rescaling the variables.
while for significant nonlinearity it is a train of shapes simi-

3
7=—u=3 (c’~1)sech

k*+ BKk?>+A=0=k==*

— B+ \BZ—ax\?
SR

lar to sech, but we had to wait 50 ye.ars.befo.re it was under- A. Monotone shapes
stood[32] (see, alsd33] for an illuminating discussion on , ) o . "
the cnoidal wave as “imbrication” of sech solitonsA his- For negative dispersiofp=—1 and subsonic celerities

_ 2
torical account can be found [34—36, among others. A=1-c">0 one has

The dispersion is weafof order of the small parametg) =T\ 112
and hence the coefficient of the nonlinear term must also be Ky o=+ M) ,
small(i.e., @~ ) in order to have a balance between disper- ’ 2
sion and nonlinearity while both being weak. At the time, the , 1
famous Boussinesq sech soluti@h23) is formally valid for _ . [BTVB — 4|\
all values of the parameters, which is a typical feature of a K3a= £ 2 ' (5.3

paradigmatic derivation. The weakly nonlinear long-length-

scale solution is recovered only for phase velocitesderi- and two cases can be distinguished. In the first case
ties) ¢ very close to the characteristic spe@thity in our  >./1—0.253~0.866 and we get two pairs of real roots. In
notation). Then, indeed, the solution evolves slowly in the this case an analytical solution ¢.1) can also be found
moving frame, at least for overtaking interactions of seches40] in the ubiquitous sech shape

This means that the physical validity of Boussinesq’'s Bouss-

inesq equation is not wider than the validity of KdV equa- 105 8° ul X - B2 [, 36 \1?
tion, which is much simpler mathematically being merely an Y~ 7592, S¢°"'\ 2 | 13| | le[={ "~ 169 :
evolution equation in the moving frame. Formally one can (5.4)

solve one of the “improved” versions of Boussinesq equa-
tion for head-on interactions of seches but the result must b&herec is the phase velocity ocelerity of the wave. Note
appreciated mostly qualitatively rather than quantitatively.that this is the subsonic case, hemeey=1. The difference
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TABLE I. Checking the algorithm for stationary shapes and 105a(1—C2) 1—c2\ 12
comparison with the analytical solution=0.887 12 x [—80,80. B E— ( >4 ) ,

analytical h=0.1 h=0.2 h=0.4

respectively. Thus the normalized analytic solution has unit
amplitude ~ 0.310651 0.310661 0.310689 0.310 801 amplitude and approximately unit space support. The figure
difference 0 0.000010 0.000038 0.000150 shows that there is a deviation from the sech shape.

For c<0.75~0.866 a complex conjugate pair of roots
appears and the localized waves do have oscillatory damped
with the fourth-order Boussinesq and the classical KdVtails but of extremely low amplitude so that the fact that the
equations is that the analytical solution of sech typel)  shapes are not strictly monotone cannot be discerned on the
exists only for a single value of celerity. For the selectedgraphs with normal scales for the variables. In order to show
parametersy=1 and f=—1, the celerity of the analytical that we present in Fig. 2 two successive zooms to illustrate
solution isc~0.887 12 which falls in the range>0.866. this statement. This means that the real pair of roots domi-

We start the numerical experiments with this case. Thenates the behavior of the solution, as far as the steady propa-
difference scheme is given in the Appendix. The differencegating waves are concerned. Note that for sma8lene can
solution we obtain for this particular value of celerity virtu- find more intense oscillations of the outskirts of the “mono-
ally coincides with the analytical solution. Table | shows thetone” shapes.
maximal amplitude of the solutions obtained as a function of
the spacindh of the scheme. It is seen that the deviation from
the analytical solution is indeed of ord®(h?), which is the
accuracy of the scheme. It is no surprise that even the rough- The algorithm developed is applied next to the case of
est mesth=0.4 gives very good accuracy of 0.015%, sincepositive fourth-order dispersiof=1. The difference here is
the solution is very smooth. that the oscillatory shapes become stable in the iterative pro-

It is hard to believe that5.4) presents the only value of cess while the humplike shapes disappear. The upper graph
celerity for which a solution of monotone shape is possiblejn Fig. 3 shows the result for different celerities where the
i.e., that the spectrum of the nonlinear eigenvalue probleramplitudes are scaled by the Lorentzian fact@.75- c?
under considerations is discrete, and consists only of a singend the abscissa is not scaled. We have obtained the shapes
value. What can indeed be unigue is the analytical represerieund by Kawahara for the continuous spectruri ®&<c,
tation of the solution. So we treated numerically the whole= /0.75.
range of subsonic celerities<y=1 and obtained solutions An important feature of the case with positive fourth-
to (5.1) for a continuous spectrum of celeritiesSimilarly to  order dispersion is that the stationary shapes form bound
the case of the fourth-order proper Boussinesq equéses, states. Depending on the amount of initial energy put into the
[36] for detail9, the subsonic humps have larger amplitudeinitial condition, the algorithm goes to different solutions.
when they are slower. In Fig. 1 the numerically obtainedThe solutions containing more than one hump can be consid-
shapes of the sechlike solutions for different celerities areered as bound states of solitons, i.e., wave trains of humps
presented. The amplitude and the independent coordinate aseparated by different distances between the main peaks. The

B. Damped oscillatory shapeqKawahara solitons)

scaled by lower graph in Fig. 3 depicts the bound state of two solitons
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FIG. 1. Normalizedu =[72/105x(1 - c?)]u, xs=x(24/1-c?)*2 subsonic humplike shapes f@=—1 and differentc.
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with the shortest distance between the peaks and it exists imump (strongly nonlocal solutionsthey can only be found

our numerical calculations for a continuous spectrum of cenumerically. However, proceeding to the realm of strongly

lerity, i.e., the bound states are valid “quasiparticles.” Oncenonlocal solutions needs some more systematic investigation

again the amplitude is scaled by the Lorentzian factor whictagain beyond the scope of the present paper.

in this case isy/0.75— c?. We have also found bound states

with different separations of the centers of the solitons. How- VI. PSEUDO-LORENTZIAN KINEMATICS

ever, to make a full taxonomy of those goes well beyond the OF “QUASIPARTICLES”

scope of the present paper. Bound states were briefly consid- ) ) . i

ered also in47] where they were called multisolitons. We __AS We are interested in 6GBE from the point of view of

believe that using such a terminology might prove misleadits fleld—theqrethal interpretation and the "quasiparticles

ing because multisoliton solutior®r N-soliton solutiony W€ compile in this section the results for the three conserved

are called dynamical structures in which the different humpguantities characterizing the localized wave-quasi-particle,

(solitong may move with different celerities. In the bound Namely, themass energy andpseudomomentum ,

states discussed here the soliton train moves as a rigid body, 1Ne kinematics of “quasiparticles” of 6GBE is domi-

i.e., the bound state appears as a “frozen pattertynfor- ~ 'ated by what can be callquseudelorentzian(in a sense

tunately, Ref[47] is very brief and it is not possible to make ant-Lorentzian character. In the “real” Lorentzian dynam-

quantitative comparison with the results reported there. €S the mass and momentum of a particle increase with the
The four-soliton bound state presented in Fig. 4 deservel§icrease of velocity and eventually become infinite at the

a comment: two of the solitons form a tight bound statecharacteristic speed, (speed of lightin the case of trans-

like a “nucleus” and the other two appear as two electronsVerse vibrations ospeed of sounébr the case of longitudi-

in their lower orbit. nal vibrationg. Because of their subsonic nature, the local-
Needless to say, the results reported in the present subsdg€d waves of 6GBE have amplitudes that decrease with the

tion have been verified with the same scrutiny as in the prellcrease of the phase velocitgelerity) ¢ and eventually

ceding subsection, namely, the mesh size, the “actual infind€cay to zero at the characteristic spegdYet their kine-
ity,” and initial conditions have been varied and their matics resemble the Lorentzian in the sense that the factor

optimal values carefully chosen. c2> 12

Y= Cg

C. Weakly nonlocal solitons

In the supersonic case<0 and regardless of the sign gf  enters the picture. Contrary to Lorentzian dynamics, it enters
the dispersion relatiob.2) has two pairs of rootéa real pair  the formulas with positive powers, because ¢er c, all of
and a pair of imaginary and conjugate rgofEhe presence the quantities must decay to zero. This anti-Lorentzian be-
of the real pair of roots might give some expectation that ghavior appears to be characteristic of all of the different
localized humplike shape could be possible, while the imagiequations from the Boussinesq paradigm which contain only
nary pair suggests that the solutions cannot be strictly localspatial derivatives for the dispersion and are at the same time
ized but rather acquire oscillatory nondecaying tails. Thidinearly stable. In this section we perform systematic compu-
case was thoroughly investigated by Boj4B,33,49 who tations so as to obtain an extensive set of data fomiaes
found solutions with a main hump and small wings extend-pseudomomentymand energy of the stationary solitary
ing to infinity. He called thenweakly nonlocal solutionsr  waves.
“nanopterons” because of their wings. He also showed that
imbrication of nanopterons can form a periodic wave which A. The monotone sech-like shapes
he callednanopteroidal waveWhen the amplitude of the In Fig. 5 the point-wise(i.e., for set ofc’s) numerical
wings is of the same order as the amplitude of the mairresults for the mass, energy, and pseudomomentum are pre-
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FIG. 3. Normalized subsonic oscillatory shapes for positive dispeioh and different celeritiega) Kawahara solitongb) two-hump
bound states.

sented. One sees that the three quantities do decay to zero fient variables. We further restrict ourselves taking only pow-
c—Co=1. ers of y that are integer multiples of 1/2, 1/3, or 1/4. This
Since there are no analytic expressions for the masseduces somewhat the flexibility of the approximation. The
pseudomomentum, and energy we look for the best approxbest fit obtained under these constrai(@mooth curves in
mation containing the powers of celerityand the “Lorent-  Fig. 5 is
zian” factor y. Some preliminary experience with deriving
analytical expressions for the pseudomomentum for other
solitonic system teaches us that the expressions need not be
necessarily limited only to powers of but may rather con- P=Mcy?*=Mqcy™4
tain also some transcendental functigasch as arctangent
Exhausting all the combinations with different functions is The agreement is quite good and justifies the choice for
impossible and for that reason we take the usual route in thpowers ofy. We attempted some best fit approximations for
best-fit approaches resorting only to powers of the indeperthe energy too, but due to the nonconvexity of the latter the

M=Mqy** Mo=7.4, (6.2

(6.2
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04 | < FIG. 4. A bound state of four
Kawahara solitons.
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number of possible different combinations of powers o, Performing the calculations in the interved c,~0.866
M, andP increases to such an extent that renders impossibl&e obtain the numerical data for the quantities under consid-
the task to choose one expression over another because quanation. These data are presented in Fig. 6 with solid lines.
titatively they fit equally well the data from numerical ex- Once again we found a best-fit approximation guided by the
periments. above described considerations. The regtétshed lines in

In the limiting case of slow celerities<cy(y<1), as far  Fig. 6) is
as the mass and pseudomomentum are concerned, the dy- -
namics of monotone shapes of 6GBE appears to be Newton- M=Mgy™, Mo=2.986, (6.3
ian, namelyM~M,, P~Mc.

— 5/4__ 12/4__ 3

B. Kawahara solitons P=Mcy™=Mocy™"=Mocy". ©.4

The shapes of the subsonior subluminous solitary
waves of 6GBE can transform to damped oscillatory onedlere also, the selected type of approximation secures quan-
when changing the coefficierg of the fourth-order disper- titatively very good results for the best fit.
sion. Increasing3 one reaches a threshold above which the There are some differences in the powersydbetween
localized waves acquire oscillatory tailsalled Kawahara the two cases considered here. Yet, the general behavior is
solitong. The said threshold is usually a negative value, saimilar. One is to expect different behaviors from a complex
that if one takeg3>0 the shapes will be Kawahara solitons system when one changes the sign of one of the dispersion
for the whole range of admissible subluminous celerities. Saoefficients. In Kawahara's case the two dispersions act
here we report the casg=1. There is a major difference against each other and this can explain the different shapes
between this case and the previous one. Now the existence (damped and oscillatoyyfor the solitary waves and hence
the quasiparticles is not limited by the characteristic speed ahe different powers of in the expressions for the mass and

the equation, but rather it i55=0.75, c,~0.866. pseudomomentum. The Newtonian limitNs~M,, P~Mc.
M.E,P
8 1 T T 1 ] 1 1 1 T
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FIG. 5. Themass pseudomomentuyrandenergyfor sech shapes for negative fourth-order dispergen-1. Symbols: numerical result;
lines: best fit approximatiof6.2).
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FIG. 6. Themass pseudomomentunandenergyfor Kawahara solitons for positive fourth-order dispers@nl. Symbols: numerical
result; lines: best fit approximatio(®.4).

VIl. DYNAMICS OF SOLITONS IN 6GBE putational efficiency, but rather because of the consistent
way to implement on the “difference” level the conserva-
tion and balance laws holding true for the differential equa-
tion.

As seen from the numerical results in Sec. V on stationary

To investigate the dynamics of interactiofsllisions of
the *“quasiparticles” we employ here the conservative
scheme developed ib0] as a generalization of the scheme

devised for the fourth-order Boussinesq equatiofy and shapes, the Fourier components with very large wave num-

used for the RLW equation i[86). bers are of negligible amplitude for the solitary waves under

. Bef_ore proceeding with the results some comments on thSonsideration. However, after a collision of two solitons any
limitations of the scheme are due. The implicit scheme em-

loved here has a dispersion relation of the following tvpe: VA€ number could be excited at least in a small region.
ploy P 9 WP€: Then due to the unfaithful dispersion relation, if a compo-

oT or kh nent of very high wave number appears, it is propagated at
477 2sir? — cos 2 — =2%h"6gin® —, (7.1  higher speed and escapes the region where the predominant
2 2 2 part of the energy of the wave system is locatedy., the
collision site in case of multisolitonsThis is the only limi-
time increment, anth the spacing. Here we consider for the tation_of the impli_cit sch_eme employed. In the numerical
' ' experiments we did monitor the total energy of the system

sake of simplicity only the sngth-ordgr Spa"?" finite d|ffer- before and after the collisions and found that the escape en-
ence. At the same time the dispersion relation of the linear

part of 6GBE with only sixth-order derivatives present is ergy is negligible.
w?=Kk5. It is clear that the dispersion relatiqii.1) of the
scheme approximates reasonably well the dispersion relation
of the differential equation only whes=h® and when, in First we begin with the case when the fourth-order disper-
addition, 7w is small enough in order to replace sinf4by  sion term has a negative sign, i.e., the case when the fourth-
0.57w. One should note here that the dispersion relation foorder Boussinesq equation would have been correct in the
an explicit scheme is quite similar save the absence of theense of Hadamard. This is the case when humps of sech
term cos%0.57w). The latter means that when the aboveshape can be found. For definiteness we chgsse 1, a=1
requirement for the time increments not fulfilled then the and y=1. Our first objective is the head-on collision of two
solution for w is imaginary, i.e., the scheme is linearly un- sechlike humpgsee Fig. 1 The collisions of the analytical
stable. Naturally, the implicit scheme is always stable, buseches(c=0.887 12 were already investigated ib0] and

then forhk=0(1) and whenh® (which is the interesting their solitonic behavior was confirmed. For-£=0.9 we
case from the point of view of efficiency of the calculatinns discovered a practically elastic collision with extremely
then the phase speed of the waves with ldkigeis grossly  small transients excited in the site of collision. Respectively,
misrepresented and exaggerated. This means that the implidit and E are conserved with an accuracy of 1 i.e.,
scheme is efficient only fohk<1, i.e., the limitation is to  within the round-off error of the computer. For the balance
have a sufficient number of grid points per wavelength. Wdaw scaled by the maximum of the solution we obtain a
have discovered that 20 points per wavelengitk=7/10 is  quantity of order of 10%2 There are only slight hints of two
the roughest resolution which can be employed without irradiative signals escaping ahead of the main two humps after
reparable distortion of the high frequencies of the solygtion the collision. The situation sharply deteriorates with decreas-
Rougher meshes would require very small time incrementing celerity (increasing the amplitude of the subsonic soli-
and an intolerable amount of computational time althoughons. In Fig. 7 the head-on collision is shown for=0.86
there are no other limitations of a theoretical nature. We havevhere there appear considerable “pulses.” In faet0.86

in fact selected an implicit scheme not because of the comwas the smallest value for which we obtained a solution. For

where w is the frequencyk the spatial wave number,the

A. Humps (sech soliton$
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FIG. 7. Negative dispersiof=—1. Head-on collision of two monotone solitofttumps with ¢,= —c,=0.86. Time from 0 to 186.

¢=0.85 the nonlinear blowup took place in our calculationsin [51,52,14—for the case of cubic-pentic nonlinearity of
(see,[29,3Q for definition and theory anf36]—for numeri-  fourth-order BE. This behavior can also be traced back to the
cal verification for BE and RLW The coincidence between relevant numerical calculations for Kdigee [53,54,59 and
the threshold of the nonlinear blowup and the limit of exist-the works referred i56]). The asymptotic rate of expansion
ence of strictly monotone shapes is interesting and awaits ifé - for KdV pulses was found ii54] (see, alsd57]). The
explanation. same law was confirmed for the Boussinesq equation in the
numerical experimentb2].
B. Pulse formation Now one can investigate the behavior of a pulse as a
solitary wave. Since it propagates with the characteristic
We proceed further and investigate the long-time evoluspeed and with virtually zero mass and energy we may call it

tion of the transient excited after the collision of hump soli- pulse photorto distinguish it from the transient pulses gen-
tons of 6GBE. For definiteness we consider only the solutiorerated by the dissipation in nonconservative systems. In fact,
in the right-hand side of the interval. We cut the main humpthe emission of a pulse in 6GBE is exactly the same process
and investigate the evolution of the remindarmpulse in the  of redistributing of the mass, energy, and pseudomomentum
moving coordinate frame. Theassof the pulse appears to as the splitting of the initial signal into several seches in
be of the order of 10° of the total initial mass and the KdV. Then the question of solitonic nature and the “quasi-
energy of order of 10°. In this sense thenassandenergyof  particle” properties of the pulse photons is raised. To answer
the pulseare virtually equal to zero. Due to the nondefinite- this question we take as an initial condition a system of two
ness of the energy functional, however, its amplitude is alpulse photons propagating towards each other. We have
lowed to change while the energy remains fixed and that i$ound that in the course of interaction they pass through each
what happens. It is clearly seen in Fig. 8. Thésebroadens other without qualitatively changing their shagsave a red
with time (it experiences a *“red shift) and decreases in shifting) and the mass and energy of the system of pulses are

amplitude, which we call “Big-Bang” property. It was ob- conserved. This suffices to claim that the pulse photons are
served in[19,3€ for the quadratic Boussinesq equation andalso solitons.

U

0.01 T T T T
"
topa
1 i H

0.005 | I i
VIR R A .
VIR M A A . .
SERRR AR I ‘-,".».r.".r-u.n
1 | |||I' ‘lryll'lll Ak

0 LLLLLERLRND H ".M\.‘)\."A"'.,f\"li"n;w‘;ﬂvﬁn \

R RARHEE TRV VAT A R AV D AR
\/VVU\NV""
IR . )
DLV

-0.005 |- PV .
v

-0.01 L L L

0 100 200 300 400
T~
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FIG. 9. Positive dispersio=1. Head-on collision of two Kawahara solitons with= —c¢,=0.75. Time from 0 to 200.

The pulse formation has been observed for 6GBE in alin our calculations forc,= —c,=0.7. The threshold is very
collisions of humps while in fourth-order BE, the formation near that value, because as shown in Fig. 10,cfer0.8,
of pulses was observed only for significant enough misc,=—-0.7 no blowup takes place. In fact, the last figure was
matches between the initial condition and the stationaryroduced in our quest for a dynamical creation of quasipar-
shapes. This imperfect behavior of the quasiparticles is najcles of type of resonancébound statels One sees that the
related to the conservativeness of the system. In all thesgster solitary wave reemerges from the collision consider-
calculations the total energy and mass were conserved to t%w changed in shape resembling rather a bound state of two
last significant digit of the calculations. F_or gollisiqnless waves. We did pursue further the calculations in the moving
long-wave-length systems, the sixth derivative did nOtgame of the right-going soliton but the bound state dissolved
change the quantitative and qualitative evolution. However, 4 finally the whole structure evolved into a pulse, i.e., it

if. a ShOH.Z-Wa..VE disturbance appears at least once, then tQﬁd not survive the collision. At the same time the bigger
sixth derivative becomes the dominant feature—whence thﬁeft going in the figurg solitary wave did preserve its iden-

inelasticity, radiation, and pulse formation. This is always,[ity after the collision
what happens when a system is singularly perturtieda In Fig. 11 the evolution of the right-going soliton is fol-

discussion about this, s¢B8]). | d after i ¢ h llisi h in Fig. 9
Paradoxically enough, the pulses can be suppressed fwed after it reemerges from the collision shown in Fig. 9.

dissipation is introduced. But then in order to have self-Now the oscillatory soliton eventually recovers its identity
sustained patterns one has to introduce energy input. THd Pulses photons of virtually zero energy are emitted ahead
dissipation will act to smooth the short-wave-length of it and propagate with the characteristic velocity. Once
pulses, while the energy input in the larger scales will sus@dain a bound state was not produced by the head-on colli-
tain the motion preventing its decay. Some steps were asion of two Kawahara solitons.

ready undertaken in this direction [59] where the KdV- Finally, let us mention that we actually studied an over-
KSV (Kuramoto-Sivashinsky-Velardeequation was gener- taking collision for the case;=0.8, c,=0.7. Once again a
alized to a wave equation containing energy dissipation angound state was not found and the smaller soliton did not
energy production and the coherent structures of the prosurvive the collision.

posed equation were investigated numerically. They turned

out to behave as quasiparticles and can be called “dissipative VIIl. CONCLUSIONS

solitons™ with a proper justification27]. The derivations of Boussinesqg equations in shallow fluid

layers and in nonlinear chains have been revisited. It has
been shown that the correct truncation of the series repre-
Let us now consider the case of positive fourth-order dissenting the dispersion is after the sixth derivative. The non-
persionB=1 when the stationary shapes are not monotonelinear equation derived is called sixth-order generalized
In Fig. 9 a head-on collision is shown for a large deviationBoussinesq equatioi®GBE) for which conservation laws of
from the characteristic speed. The intuitive expectation herenass and energy and a balance law for the pseudomomentum
is that the improper sign of the fourth-order dispersion wouldare shown to hold.
degrade the overall stability of the process. Contrary to this The stationary propagating localized solutions have been
expectation, the nonlinear blowup was not observed even fdnvestigated numerically and the two classes of solutions
c=0.75 (compare with the case of proper sign—precedingcorresponding to the two different signs of the fourth-order
subsection, when the blowup takes place ¢st0.85. Ap-  dispersion term are obtained: monotofeechlike shapes
parently, the interaction of the monotone shapes producand shapes with oscillatory tai{&awahara solitons These
some unfavorable deformation of the signal, making part otwo classes are subsonic as they propagate with phase speeds
it a signal of zero or negative energy. Consecutively this parslower than the characteristic speed of equation. The Kawa-
of the signal blows up. The nonlinear blowup was observedara solitons can form bound states.

C. Kawahara solitons
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FIG. 10. Positive dispersiof=1. Head-on collision of two Kawahara solitons with=0.8, c,=—0.7. Time from 0 to 150.

The dynamics of collisions of the localized solutions hasPB93-081. The Laboratoire de Mdation en Meanique is

been investigated numerically by means of a differenceassocieau CNRS.

scheme that faithfully represents the conservation and bal-

ance laws. An important feature of the collisions of solitary APPENDIX: DIFFERENCE SCHEME

waves in 6GBE is inelasticity, manifesting itself in the emis-

sion of a faster pulse photon of virtually zero mass and en- We divide the intervake [ —Ly,L,] into N—1 intervals.

ergy which propagates with the characteristic speed. Th&he grid points are denoted by, i=1,...N. They are

pulse photon eventually escapes the lagging “hump” andequally spaced with spacirtg=(L,+L,)/(N—1).

the latter practically resumes its original shape, phase speed, Upon introducing the auxiliary functiow=u". Eq.(5.1)

mass, and energy. In this sense, the solitary waves of 6GBE recast to a system of two second-order equations. By

can be called solitons, since their behavior upon collision fitgneans of the standard central-difference approximation of

well the expected behavior of the quasiparticles of the fieldhe second derivatives and Newton’s quasilinearization for

governed by the 6GBE equation. the nonlinear term we obtain the following difference
scheme for the functions on the “new” iterative sta(gie-
noted by superscrigi+1):

ACKNOWLEDGMENTS

The work of C.I.C. is supported by the European Com- %(u{‘fﬁ—Zu{‘“Jr uth=wtt, (A1)
mission under the Human Capital and Mobility Program—
Grant ERBCHBICT940982. Parts of this research were car-
ried out at the Instituto Pluridisciplinar. UCM, Spain (WA= 2w LWt gw T 42Uy L AUt
sponsored by the Spanish Ministry of Science and Educationh? ' 1 ' -1 ! t !

This research has been supported by a European Union Con- 2

tract ERBCHRXCT930107 and by DGICY{Spain Grant =au! A2)
u
o iineune —
600 time units -----
02| |
01 |

-0.1

-50 0 50 100 150 200 250

FIG. 11. Long-time evolution of thpulse photorcreated after the collision shown in Fig.(8=—1, ¢,=c,=0.75.



54 WELL-POSED BOUSSINESQ PARADIGM WITH PUREL. . . 3637

fori=2,..N—1 and with B.C. trivial term containing the second derivative is present. Lim-
iting the number of terms in the spectral technique we
reached point-wise agreement with the difference soliton
) o i i ) within 1% from the amplitude of the soliton.

Starting from a certain initial profila?, w?, the iterations Another check was provided by the method of variational
are conducted until convergence is reached. The selection ghbedding (MVI) developed in[44] for identifying ho-
the initial condition turns out to be very important due to themoclinic solutions(see, alsd45,46)). MVI is a difference
bifurcation nature of the problem. We consider a localizedtechnique and if it gives a solution it must coincide with the
initial input of triangular shape spanning approximately one-difference solution obtained here. This has been the case and
fourth of the total grid points with various amplitudéhe  the two difference solutions agreed within the round-off error
height of trianglé. The trivial solution to the problem always of calculations with double precisiop=10"1%).
exists and when the energy of the initial condition is suffi- Note that the inverse nature of the homoclinic problem
ciently small then the iterative process goes to the trivialdoes not show up for Ed5.1) and solutions have been ob-
attractor. Nontrivial solutions are obtained for sufficiently tained here with a simple scheme without special techniques
high energy levelgamplitude$ of the initial profile. Then a for inverse problems, like the ones mentioned in MVI. It was
typical phenomenon is observed: depending on the initiahot the case, however, with the homoclinic solution of the
energy one arrives to one-hump, two-hump, etc., localized.orenz systenj44] and the Kuramoto-Sivashinsky equation
solutions, i.e., the one-hump shapes presented here were dd5,46] where the inverse nature of the problem of ho-
tained for quite narrow an interval for the amplitude of initial moclinic identification showed up in a drastic form. The ex-
conditions. planation may be that here the problem is of even order

In order to check the performance of the simple schemélinear part is self-adjointwhile in the mentioned cases the
implemented here we used also the spectral technique deveirear part was of odd ordegthird orde). Thus the simple
oped in[41-43. The algorithm developed for the fifth-order scheme with Newton’s quasilinearization turns out to be in-
Korteweg—de Vries equatiofFKdV) [43] has been applied strumental in obtaining the numerical solution in the case
here without major changes save the fact that now a nordnder study.

n+1_ n+1__ ., n+l1__ ., n+1__
U ~=uy “=wp T=wy —=0.
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