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I. INTRODUCTION

The permanent wave was observed by Russell@1,2#
around ‘‘Turning Point’’ in Union Canal near Edinburgh and
further results were obtained in laboratory systematic experi-
mental investigations by Russell and Bazin. Boussinesq
@3–5#, and later on independently Lord Rayleigh@6#, pro-
vided the pertinent theoretical description. The importance of
this discovery went unnoticed at the beginning although
Korteweg and de Vries@7# further developed its understand-
ing. It was only after Zabusky and Kruskal@8# showed the
particlelike~‘‘solitonic’’ ! behavior of the localized waves of
the Korteweg–de Vries equation~KdV!, that the individual-
ized ~permanent! wave captured for good the attention of
investigators and the study of solitons became an important
field of nonlinear physics. Nowadays, the Boussinesq idea
that the permanent-wave shapes are the result of an appro-
priate ~local! balance between dispersion and nonlinearity
has already become a paradigm. The Boussinesq equations
appear not only in the study of the dynamics of thin inviscid
layers with free surface but also in the study of the propaga-
tion of waves in elastic rods and in the continuum limit of
lattice dynamics or coupled electrical circuits. On the other
hand the Korteweg–de Vries~KdV! equation served as the
prime example of the integrability theory and various prop-
erties have since been established for KdV, Boussinesq, and
related equations.

Yet, an exhaustive analytical description can be obtained
only in certain rather special cases. It takes just the smallest
step in the direction of making the model more realistic and
the integrability~or at least the analytical form of the solu-
tions! is lost. It is clear that a model or a paradigm can be of
practical importance only if its properties are robust, i.e.,
structurally stable. Then it can be simulated numerically and
predictions can be made for large intervals of the variation of

the governing parameters. It happened not to be the case with
the original equation derived by Boussinesq himself, since it
was linearly unstable with respect to short-wave-length dis-
turbances and can be called ‘‘incorrect in the sense of Had-
amard’’ since the smallest disturbance in the initial condi-
tions results in a significant change in the solution after a
finite time. This spurred a significant activity for improving
the Boussinesq equation~BE! and nowadays ‘‘good,’’ ‘‘im-
proved,’’ ‘‘proper,’’ etc., Boussinesq equations are known
which differ from Boussinesq’s derivation. For the sake of
clarity we call the equation derived by Boussinesq himself
‘‘Boussinesq’s Boussinesq equation’’~BBE!. Thus a Bouss-
inesq equation will be a wave equation to which a fourth-
order dispersion term and certain nonlinearity are added.
‘‘Boussinesq Paradigm’’ refers to this in a broad sense.

A way to make BE mathematically correct is to change
the improper sign of the dispersion term of Boussinesq’s
Boussinesq equation. In fluid dynamics it amounts to consid-
ering a very strong surface tension~which hardly corre-
sponds to the case observed by Russell!, while in lattices it
means an overwhelming presence of long-range interactions
~five-point differences! which is never true in reality. This
means that the mathematically improper sign of the disper-
sion coefficient in BBE reflects a deeper physical nature and
could not be simply changed without compromising the main
assumptions of the model. In our view, the mathematical
incorrectness of BBE is due to missing~or badly rearranged!
terms, rather than to the physics it was attempting to reflect.

Another approach is to replace the fourth spatial deriva-
tive by a mixed spatiotemporal one of the same order. This
keeps intact the physical assumptions but then makes the
model less amenable to the analytical techniques since the
‘‘improved’’ equation is no more fully integrable@9#. It
seems important to pursue further the research with purely
spatial derivatives representing the dispersion. As we show
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here, this can be done mathematically correct if at least the
sixth spatial derivative is retained when approximating the
dispersion.

Here we point out that there exists a physical situation
where an equation of Boussinesq’s type naturally appears
with the proper sign of the dispersion. This is the case of
transverse vibrations of nonlinear rods@10–12#.

II. LONGITUDINAL VIBRATIONS
IN NONLINEAR CHAINS

A. Discrete dynamics

Consider a chain of points of equal masses, connected to
each other through~nonlinear! springs. Let us denote byl the
lattice constant~the equidistant spacing between the material
points in the initial state or ‘‘reference configuration’’!. We
consider here a chain which is a straight line coinciding with
the coordinate axisOx. This conjecture gives a good ap-
proximation for any curved one-dimensional~1D! filament
whose local radius of curvature is large enough in compari-
son with the distancel between points. In the nondeformed
state the coordinates of points arenl. The longitudinal posi-
tions assumed in the deformed state are denoted by
x0 ,...,xn ,...,xN . It is convenient to also introduce the rela-
tive displacements~loosely speaking ‘‘strains’’! and the rates
of strains

un115xn112xn[r n11 , u̇n115 ẋn112 ẋn[ ṙ n11 ,
~2.1!

where the dots over the variables denote time derivatives.
Let us now denote byC(r n11) andC8(r n11), respectively,
the potential and the elastic force of interaction between the
masses at sitesn andn11. If one considers an exponentially
nonlinear~Toda! lattice, these are expressed as follows:

C~r n11!5
a

b
@exp~2brn11!21#1arn11 , ~2.2!

C8~r n11!5a@12exp~2brn11!#. ~2.3!

If the characteristic lengthb21 of nonlinearity of the prob-
lem is large enough, the springs can experience a large elon-
gation before the nonlinear effects become important. Then
in the limit lb!1 one can reduce the exponential~Toda’s!
potential to the following cubic one

C~r n11!'abS 12 r n11
2 2

b

6
r n11
3 D ,

~2.4!

C8~r n11!'abS r n112
b

2
r n11
2 D .

Here the first term gives a harmonic potential with a spring
constantk5ab. For simplicity and with no lack of generality
we constrict the considerations in what follows to the cubic
potential~2.4!. Yet, the cubic potential is qualitatively differ-
ent from the exponential one and is inherently improper in
the sense that the force which corresponds to it becomes
unbounded for large relative displacements. At the time the
exponential potential gives a saturation for the force@see
~2.3!#. In fact the cubic approximation of the potential is the

cause for the nonlinear blowup of the model. Thus the cubic-
pentic approximation from@13# appears more appropriate.
However, it goes beyond the frame of the present work to
investigate the consequences of different approximations for
the potential. For the behavior of solitons in the cubic-pentic
model we refer the reader to@14#.

Newton’s law for the mass point of numbern reads

mẍn5C8~un11!2C8~un!, ~2.5!

or which is the same

mẍn5ab~xn1122xn1xn21!1@F~xn112xn!

2F~xn2xn21!#, ~2.6!

where

F~xn112xn![2
ab2

2
~xn112xn!

2

is the nonlinear part of the force.
In a similar fashion the Newton law with the potential of

interactions that depends on the relative position of three
particles can be derived. It can be noted here that a quadratic
potential depending on the three-point difference yields in
the equations a linear term proportional to the five-point dif-
ferencexn2224xn2116xn24xn111xn12.

In terms of relative displacementsui of atoms in a lattice,
the governing equation has the following form~@15,16#!:

üi5x~ui1122ui1ui11!1@F~ui11!22F~ui !1F~ui21!#,
~2.7!

wherex5ab/m is proportional to the square of the charac-
teristic speed in the crystal.

Taking into considerations the triple interactions among
the points of the chain~atoms in the lattice! one ends up with
an equation also containing the five-point difference@13#

üi5x~ui1122ui1ui11!1@F~ui11!22F~ui !1F~ui21!#

2d~ui1224ui1116ui24ui211ui22!. ~2.8!

Hered controls the triple interactions and the linear stability
demands thatd .0, which is the proper sign for a discrete
equation of the discussed type.

B. Continuum limit

The most natural way to predict the behavior of a chain
seems to be making use of the ‘‘difference’’ equation~2.8!
as the governing equation and simulating it numerically as it
is correct in the sense of Hadamard. The problem is that it is
a microscopic equation withl being of the order of intermo-
lecular distances. Hence too many computational points~co-
inciding with the number of atoms of the chain! will be
needed for direct numerical simulations if one is to model
even the smallest system of macroscopic relevance. To over-
come this difficulty the continuum limit is used, assuming
that the relative displacementu is a continuous and smooth
enough function whose values in the geometric points repre-
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senting the material points of the chain are exactlyun . Then
a Taylor-series expansion for the strain in the vicinity of
point xi gives

~ui1122ui1ui21!5 l 2ui91
l 4

12
ui

~4!1
l 6

360
ui

~6!

1
l 8

20 160
ui

~8!1
l 10

1 814 400
ui

~10! ,

~2.9!

~Fi1122Fi1Fi21!5 l 2Fi91
l 4

12
Fi

~4!1
l 6

360
Fi

~6!

1
l 8

20 160
Fi

~8!1
l 10

1 814 400
Fi

~10! ,

~2.10!

~ui1224ui16ui24ui211ui22!5 l 4ui
~4!1

l 6

6
ui

~6!1
l 8

80
ui

~8!

1
17l 10

30 240
ui

~10!

~2.11!

and hence

utt5 l 2xux21 l 2
]2

]x2
F@u~x,t !#1 l 4S x

12
2d Dux4

1 l 6S x

360
2

d

6Dux61••• . ~2.12!

Now higher-order spatial derivatives appear in the model
reflecting more information about the interaction between the
atoms. Equations of the type of~2.12! are ‘‘generalized wave
equations’’ ~GWE!. The problem is that after the contribu-
tion of these new terms is acknowledged the truncation after
the fourth derivative does not necessarily give a linearly
stable model.

The fourth-order truncation of Eq.~2.12! would be proper
only if d.x/12, which is hardly realizable since the multiple
interactions are always ‘‘screened’’ by the lower-order ones,
i.e., actuallyd!x. Then it is the sixth-order truncation which
is of practical interest since it is well posed ford,x/60.

One can proceed even further by considering the eighth-
order GWE but the condition for correctness of the latter
appears to be qualitatively similar to the fourth-order equa-
tion with the only difference that the limitation now is not so
restrictive, namely,d .x/252, but still well above the prac-
tical range of parameters. Then the tenth-order GWE can be
considered and it is correct for very larged but lesser than
17x/60.

It is clear that the increasedd interval for correctness in
the case of the tenth-order equation does not pay off the
increased complexity added to the model. Thus we shall
limit the consideration to the sixth-order GWE which is the
minimalorder that is linearly stable. After rescaling the vari-
ables, we arrive at the following equation for the transverse
strain:

utt5g2uxx1
d2F~u!

dx2
1buxxxx1uxxxxxx, F~u![2

dU~u!

du
.

~2.13!

HereU(u) is the nonlinear part of the potential. In the cubic
case we have:U(u)5(a/6)u3, a5ab2. We call Eq.~2.13!
the sixth-order generalized Boussinesq equation~6GBE!.

C. Pseudomomentum formulation

Equation~2.13! is a corollary of the system

ut5qxx , qt5g2u2
dU

du
1bw1wxx , w5uxx .

~2.14!

Different boundary conditions~B.C.! can be imposed. On
a finite interval@2L1 ,L2#, however, the system~2.14! admits
conservation laws, only for the following B.C.:

u50, ux50, qx50 for x52L1 ,L2 . ~2.15!

Indeed, consider the quantities

M5
defE

2L1

L2
udx, P5

defE
2L1

L2
uqxdx. ~2.16!

E5
defE

2L1

L2
1
2 @g2u21qx

222U~u!1bux
21w2#dx.

~2.17!

Upon an appropriate manipulation of~2.14!, integrating
with respect tox and using the B.C.~2.15!, one obtains the
following conservation and balance laws~for the fourth-
order BE see a similar derivation in@17–19#!:

dM

dt
50,

dP

dt
5
1

2
@uxx

2 #U
2L1

L2

[F,
dE

dt
50. ~2.18!

HereM can be interpreted as the mass of the wave andE
as its energy.@Note that this energy is not a positive definite
functional. Hence its conservation does not bound the solu-
tion which may well diverge~nonlinear blowup!.# Following
@20–22# we callP pseudomomentum, andF—pseudoforce.

The mechanical and field interpretation embodied in Eqs.
~2.17!, ~2.18! which grants to a nonlinear wave process the
essential attributes of a ‘‘quasiparticle,’’ is made more sa-
lient by remarking the following. If one introduces the po-
tential ū of u by u5ūx and assumes that for dynamical so-
lutions of interestūt(x52L1)50, it is verified, on account
of ~2.14!, that ūt5qx and thusP andE are none other than
the canonical~wave! momentum and energy associated to
the Lagrangian

L5E
2L1

L2
Ldx, L5K2W, ~2.19!

with

K5 1
2 ūt

2, W5 1
2 @g2ūx

222U~ ūx!1būxx
2 1ūxxx

2 #, ~2.20!
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with the canonicalfield-theoretical definitions@20,21#

P52E
2L1

L2
ūx

dL
dūt

dx52E
2L1

L2
ūxūtdx, ~2.21!

E5E
2L1

L2
Hdx, H5Pūt2L, P5

dL
dūt

, ~2.22!

whered/dūt denotes the Euler-Lagrange variational deriva-
tive. In this mechanical reinterpretation, it isū that is the
displacement~or basic field! and u that is thestrain ~field
gradient!. Thus we have a mathematical object pertaining to
the class of solitonic systems.

III. INVISCID FLOW IN SHALLOW LAYER:
BOUSSINESQ’S APPROACH

In this section we revisit Boussinesq’s derivation with the
purpose of obtaining a form that may be more useful in some
instances, e.g., when showing conservativeness with higher-
order derivatives. We derive the general case of two-
dimensional~2D! motion in the plane of the layer but restrict
ourselves to one spatial dimension in numerical calculations.

Consider the 2D inviscid flow in a thin layer with a free
surface. We limit the derivations to the case when the shape
function h(x,y,t) of the free surface is single valued, i.e.,
there is no breaking of the waves. The motion in the bulk is
governed by the Laplace equation for the potentialF.

LetH be the scale for the vertical spatial coordinate andL
~the yet undefined wave length! for the horizontal one. We
introduce dimensionless variables according to the scheme

F5UHf, h5Hh, z5Hz8, x5Lx8, y5Ly8,

t5HU21t8,

whereU5AgH is the characteristic scale for the velocity.
Henceforth, the primes will be omitted without fear of con-
fusion.

Then the Laplace equation takes the form

bDf1
]2f

]z2
50, ~3.1!

whereb[H/L is the dispersionparameter. This is a small
parameter for long-length scales of the motion. The kine-
matic and dynamic conditions then become~the free surface
in dimensionless form isz511h!

]h

]t
1¹f•¹h5

1

b

]f

]z
, ~3.2!

and

]f

]t
1
1

2
~¹f!21

1

2b S ]f

]z D 21h50. ~3.3!

Here the unknown function of time that enters the dynamic
condition is identified asgH, assuming that in the initial
moment of time the system was at rest~i.e.,F[0., h[0 at
t50!.

Boussinesq expanded the solution of the Laplace equation
~3.1! into a power series with respect tob. With the nonflux
condition]f/]z50 at the bottom of the layer the power se-
ries contains only the even powers of the coordinatez,
namely,

f~x,y,z,t !5(
0

`

~2bD!mf ~x,y,t !
z2m

~2m!!
, ~3.4!

wheref (x,y,t)5f(x,y,z50,t) is the unknown function rep-
resenting the value of potential at the bottom of the layer.
Then for the derivatives entering the surface conditions~3.2!,
~3.3! one has

]f

]zU
z511h

5(
1

`

~2bD!mf ~x,y,t !
~11h!2m21

~2m21!!
, ~3.5!

]f

]t U
z511h

5(
0

`

~2bD!m
] f ~x,y,t !

]t

~11h!2m

~2m!!
, ~3.6!

¹fuz511h5(
0

`

~2bD!m¹ f ~x,y,t !
~11h!2m

~2m!!
. ~3.7!

Note that in our 2D case there is no dependence ony,
henceD[]2/]x2 and¹[]/]x.

Introducing these expressions into the system governing
the surface motion and keeping within the order of approxi-
mationO~b2! one arrives at the following approximate sys-
tem containing the 1D variablesh, f , only:

]h

]t
1F¹ f2

b

2
¹@~11h!2f xx#G¹h

52~11h!D f1
b

6
~11h!3D2f , ~3.8!

] f

]t
2

b

2

]

]t
@~11h!2D f #1

1

2
~¹ f !21h

2
b

2
¹ f •¹@~11h!2D f #1

b

2
@~11h!D f #250,

~3.9!

which is the gist of Boussinesq’s derivation.
The linearized version of the system for Boussinesq’s

functions is obtained from~3.8!, ~3.9! upon neglectingh in
comparison with unity andh f , f 2—in comparison withf .
Then the functionh is readily excluded to obtain a single
equation

]2f

]t2
2

b

2

]2D f

]t2
5D f2

b

6
D2f , ~3.10!

which is well posed as an initial value problem. Naturally, its
energy functional

E5
1

2 E
2`

` F f t21~¹ f !21
b

2
~¹ f t!

21
b

6
~D f !2Gdx

~3.11!
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is positive definite and it is a conserved quantity due to Eq.
~3.10!.

In the literature Eq.~3.10! is called the regularized long-
wave equation~RLW! ~see,@23–25#! suggesting that some-
thing had to be regularized in the thin-film equations. RLW
is the natural equation that appears in Boussinesq’s type of
derivation~see. Sec. II C! and curiously enough some effort
is needed to ‘‘deregularize’’ it making it incorrect.

If an approximation valid only in the moving frame is
sought, then following Boussinesq@3–5# one can argue that
the time derivatives can be approximated by the spatial ones
for motions that evolve slowly in the coordinate frame mov-
ing to the right~with unit velocity!. Then upon replacing the
mixed fourth derivative in Eq.~3.10! by the fourth spatial
derivative one obtains

]2f

]t2
5

]2f

]x2
1

b

3

]4f

]x4
~3.12!

which apparently has a mathematically more pleasant form
lacking mixed derivatives. However, Eq.~3.12! is unstable to
short-length disturbances, as linear stability analysis shows.

Physically speaking this deficiency seems to be of no rel-
evance, because from the very beginning the equation was
derived to only account for the long-wave motions. This is
indeed the case when one can find an analytical solution~as
Boussinesq did!. Yet avoiding the short-wave-length insta-
bility is crucial when direct numerical simulations are at-
tempted because it can be triggered by the inevitable errors
~truncation, round-off, mismatch between analytical initial
conditions and finite difference solution for evolution, etc.!.
Note that here the mixed-derivative expression naturally ap-
pears while the purely spatial dispersion is an approximation.
It is opposite to the case of nonlinear chains where the
mixed-derivative expression is used to regularize the equa-
tion.

IV. THE 6GBE

A. Reformulating Boussinesq’s approach

Although Boussinesq arrived at an ill-posed problem
when replacing the mixed spatiotemporal derivative by the
purely spatial fourth derivative, getting rid of the mixed
fourth derivative might prove useful in the end. This idea
nowadays enjoys a revived actuality in the light of the quest
for conservation laws and integrability of the models. So far,
attempts to show integrability for models with mixed deriva-
tives have failed@9#. For this reason we reformulate the
Boussinesq derivation in a manner to have only spatial
higher-order derivatives, while avoiding the trap of ill pos-
edness.

Our approach requires inversion of infinite series and we
carry it on in an asymptotic manner up to terms of order of
b3 included.

The simplest way to avoid mixed derivatives is to use the
value of the original potential function at the surface~denote
it by c(x,y,t)[f[x,y,11h(x,t),t] ! rather than the Bouss-
inesq functionf[f(x,y,0,t) which is the restriction off to
the bottom boundary. We invert the Boussinesq series Eq.
~3.4! to expressf in termsc. To the orderO~b4! ~the fourth

order here secures the third order of the overall procedure! it
gives

f5c1
~11h!2

2
bDc1b2F ~11h!2

2
D

~11h!2

2
Dc

2
~11h!4

24
D2c G

1b3F ~11h!2

2
D

~11h!2

2
D

~11h!2

2
Dc

2
~11h!2

2
D

~11h!4

24
D2c2

~11h!4

24
D2

~11h!2

2
Dc

1
~11h!6

720
D3c G1O~b4!. ~4.1!

And upon introducing the last formula into expression~3.5!
we get

1

b

]f

]zU
z511h

52~11h!Dc2bH ~11h!DF ~11h!2

2
DcG

2
~11h!3

6
D2cJ

2bH ~11h!D
~11h!2

2
D

~11h!2

2
Dc

2~11h!DF ~11h!4

24
D2c G

2
~11h!3

6
D2F ~11h!2

2
Dc G

1
~11h!5

120
D3cJ 1O~b3!. ~4.2!

1

2b F ]f

]zU
z511h

G25b

2
@~11h!Dc#2

1b2~11h!2DcH DF ~11h!2

2
DcG

2
~11h!2

6
D2cJ 1O~b3!. ~4.3!

Introducing~4.2!, ~4.3! into Eqs.~3.2!, ~3.3! we arrive at a
system asymptotically correct to orderO~b3!, namely,

]h

]t
1¹c•¹h52~11h!Dc2bH ~11h!DF ~11h!2

2
Dc G

2
~11h!3

6
D2cJ

2b2H ~11h!D
~11h!2

2
D

~11h!2

2
Dc
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2~11h!DF ~11h!4

24
D2c G

2
~11h!3

6
D2F ~11h!2

2
Dc G

1
~11h!5

120
D3cJ 1O~b3!, ~4.4!

]c

]t
1
1

2
~¹c!21

b

2
@~11h!Dc#2

1b2~11h!2DcH DF ~11h!2

2
DcG2

~11h!2

6
D2cJ

1O~b3!52h, ~4.5!

which is complicated enough while being an approximate
model due to the very fact of employing the Boussinesq
series~3.4!. It seems reasonable to simplify~although as-
ymptotically inconsistently! the system and to retain only the
terms responsible for introducing the qualitatively new ef-
fects like the linear stability. For instance, the leading non-
linear terms could not be neglected, as well as the leading
dispersion terms, while their modifications of relative order
O~b! can be either neglected or reduced to simpler terms.
This kind of heuristic but not so arbitrary reduction is called
‘‘paradigmatic reduction’’ to distinguish it from other as-
ymptotically inconsistent reductions. Note that a true long-
wave-length solution can exist for the Boussinesq system
only if it is also weakly nonlinear~@26,36#!. As far as Bouss-
inesq seches are concerned, this is the case when the celeri-
ties are very close to the characteristic velocity of the system
@36# ~unity in the particular dimensionless form considered
here!. Thus in the process of reduction we envisage quanti-
tative applications to shallow-layer flows only for the case
c,h;O~b!. Yet, we obtain a system for investigating the
‘‘quasiparticle’’ behavior of the localized nonlinear waves.

Accordingly, we set

1

b

]f

]zU
z511h

52~11h!Dc2
b

3
D2c2

2b2

15
D3c,

1

2b F ]f

]zU
z511h

G2501O~b!,

where the sixth spatial derivative ofc is kept although it
contributes to the orderb2 at the time when all other terms of
the same order were neglected. As argued in Sec. III, the
only way to have a linearly stable system is to keep this term.
It is even more inconsistent with the nonlinear term where, in
fact, all the terms have been neglected. However, this allows
to derive a conservation law for energy, i.e., the simplifica-
tion is ‘‘paradigmaticly consistent.’’ Finally, we obtain

]h

]t
1

]

]x S h
]c

]x D52
]2c

]x2
2

b

3

]4c

]x4
2
2b2

15

]6c

]x6
, ~4.6!

]c

]t
1
1

2 S ]c

]x D 252h. ~4.7!

Hereafter we neglect the dependence on the variabley and
consider only 1D case. Thus we arrive at a system which we
shall call ‘‘sixth-order classical Boussinesq system’’~6CBS!.
A similar coinage was used in@28# for a system to which
~4.6! is reduced if the sixth derivative is neglected, which
was linearly unstable.

The system~4.6!, ~4.7! can be reformulated by introduc-
ing the auxiliary variablesqx[2h andu[cx , the latter be-
ing simply thex component of the velocity at the surface.
Then

]q

]t
1u

]q

]x
5u1

b

3

]2u

]x2
1
2b2

15

]4u

]x4
, ~4.8!

]u

]t
1u

]u

]x
5

]2q

]x2
, ~4.9!

where it is already integrated twice with respect tox using
qx5h50 for x52L1 .

B. Conserved quantities for 6CBS

Before turning to the integral characteristics we specify
the asymptotic conditions at both infinities. Since we are
concerned here with solitary waves, we set

h[2qx→h6 and u[cx→0 for x→6`.
~4.10!

These are asymptotic conditions that also imply decay of all
derivatives, namely@2#,

hx ,hxx ,...→0 and cxx ,cxxx ,cxxxx,cxxxxx,...

→0 for x→6`. ~4.11!

~In fact B.C. forh are not needed since no spatial derivatives
of h are present in the system. Due to the system one has
h→ct for x→6`.!

When a finite interval is considered, it does matter which
of the B.C.~4.11! are imposed. For some B.C. one can have
conservation of mass and energy in a finite interval. The
conserving B.C. that are compatible with the physical B.C.
~4.10! are the following:

cx5c3x5c5x50 for x52L1 ,L2 , ~4.12!

where2L1 andL2 are the boundaries of the spatial interval
under consideration.

The energy functional of system~4.6!, ~4.7! reads

E5
1

2 E
2L1

L2 Fh21hcx
21cx

22
b

3
cxx
2 1

2b2

15
cxxx
2 Gdx.

~4.13!

Note that the linear stability can be inferred either directly
from ~4.6! or from ~4.13! since for any wave numberk, the
form k22bk4/312b2k6/15 is positive definite. However,
the possibility of nonlinear blowup~see, e.g.,@29,30#! re-
mains due to the presence of the cubic termhc x

2 which may
happen not to be positive for certain transients.

Here one can see the difference between the fluid layer
and the nonlinear chain. In the lattice the possibility of non-
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linear blowup was introduced by the inadequate cubic ap-
proximation of the potential. In the fluid layer, the nondefi-
niteness of the energy functional is inherent, because of the
presence of free surface. The lack of positive definiteness
reflects the fact that Eulerian coordinates are used in which
the well known phenomenon of steepening of the surface
waves due to nonlinearity cannot be followed beyond the
instant in which the surface shape functionh becomes
double valued.

Now thepseudomomentumcan be defined as

P[E
2L1

L2
hcxdx, ~4.14!

and the balance law for it can be derived as follows. Equa-
tion ~4.6! is multiplied bycx ; thex derivative of Eq.~4.7! is
multiplied by h; the results are added to each other and in-
tegrated in the interval@2L1 ,L2#. Then we get

E
2L1

L2
~h tcx1cxth!dx5E

2L1

L2
@2cx~hcx!x2hhx

1cxcxxh#dx

2E
2L1

L2 Fcxx1
b

3
c4x

1
2b

15
c6xGcxdx

52
1

2 E
2L1

L2 d

dx F2hcx
21h21cx

2

2
b

3
cxx
2 1

2b

15
c3x
2 Gdx

or which is the same

dP

dt
5F[2

1

2 Fh2cx
212hcx

22
b

3
cxx
2 1

2b2

15
c3x
2 1h2G

2L1

L2

5
1

2 Fb3 cxx
2 2h2G

2L1

L2

, ~4.15!

whereF is calledpseudoforceand the last equality acknowl-
edges the conserving B.C.~4.12!.

In terms of functionsu,q, similar expressions are valid

P[2E
2L1

L2
uqxdx,

dP

dt
5F[Fb3 ux

22
1

2
qx
2G

2L1

L2

, ~4.16!

E5
1

2 E
2L1

L2 Fqx22qxu
21u22

b

3
ux
21

2b2

15
uxx
2 Gdx. ~4.17!

Due to B.C.~4.12! the only source forpseudoforcecould be
the differencesh2

2 2h1
2 of the fluid levels which drives the

unsteady waves. Only when this difference vanishes, are the
stationary propagating waves possible.

Like system ~2.14!, systems~4.6!, ~4.7! or ~4.8!, ~4.9!
may be reinterpreted in a field-theoretic framework by noting

that total energy~4.13!, on account of~4.10!, is associated
with the following Lagrangian:

L5E
2L1

L2
L dx, L5K~c t ,cx!2W~cx ,cxx ,c3x!,

~4.18!

where

K5
1

2
~c t

21cx
2c t!, W5

1

2 Fcx
22

1

4
cx
42

b

3
cxx
2

1
2b

15
c3x
2 G . ~4.19!

The general definition~2.21!, and appropriate boundary
conditions then yield the balance ofwave momentum@21#

Pw52E
2L1

L2
cx

dL
dc t

dx52E
2L1

L2
cxS c t1

1

2
cx
2Ddx

5E
2L1

L2
cxh dx. ~4.20!

While the Euler-Lagrange equation derived from~4.18!
by straightforward variation just yields the variant of~4.6!
obtained by taking~4.7! into account, the canonical quantity
~4.20! is the first of ~4.14! or ~4.16!. Furthermore, while
the Lagrangian~4.18! contains a term linear inct , this is
not the case of the associated Hamiltonian density
H5ct~]L/]ct!2L @this is the integrand in expression
~4.17!#. Thus we have succeeded in reinterpreting our fluid-
mechanics problem as afield-theoretical construct,namely,
the one-dimensional elastic crystalendowed not only with
nonlinearityanddispersion, but also with a Lagrangian con-
tribution of the so-called ‘‘gyroscopic’’ type, that does not
contribute to the total energy while altering the final expres-
sion of canonical momentum~this happens in spin systems
such as in ferromagnetics!.

C. Sixth-order corrections
to Boussinesq’s Boussinesq equation

It is instructive to add here the equation in the form ob-
tained by Boussinesq himself. For this reason, following
Boussinesq we neglect the nonlinear term in~4.9! as intro-
ducing ‘‘too much nonlinearity’’~see, also,@28#!. Bouss-
inesq’s conjecture was indeed physically sound and asymp-
totically correct since the long-wave assumption goes
together with the weakly nonlinear assumption. The second
Boussinesq conjecture was that in the nonlinear term of~4.8!
one can replaceqx by 2u as in the right-moving frame, the
derivativeut can be replaced approximately by2ux in ~4.9!
and to integrate the latter once with respect tox ~this inte-
gration is needed because we use here the auxiliary function
q!.

Apart from rendering the model linearly unstable, the
Boussinesq manipulations as a ‘‘byproduct’’ destroy also the
Galilean invariance. Thus the difference between the Eule-
rian and Lagrangian descriptions disappears and then the
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longitudinal coordinate can be thought of as a material coor-
dinate in the reference configuration@21#. We have already
demonstrated in a previous section that the pseudomomen-
tum formulation of BBE coincides with the field-theoretical
approach.

Finally, the sixth-order Boussinesq’s Boussinesq Equation
~6BBE! adopts the form

]2u

]t2
5

]2

]x2 Fu1u21
b

3

]2u

]x2
1
2b2

15

]4u

]x4G . ~4.21!

If we disregard the sixth derivative, we have exactly the
equation derived by Boussinesq himself~with the coefficient
of the nonlinear term rescaled!

]2u

]t2
5

]2

]x2 Fu1u21
b

3

]2u

]x2G . ~4.22!

This is an equation that contains both the nonlinearity and
approximate dispersion~fourth-order derivative!. This was
the main contribution of Boussinesq. He also found an ana-
lytical solution of his equation which in terms of the vari-
ables used here reads

h52u5
3

2
~c221!sech2Fx2ct

2 S 3 c221

b D 1/2G , ~4.23!

and represents ahump over the surface propagating with
phase velocityc. Thus Boussinesq put a full stop on the
discussion of whether a wave of permanent form is possible.
Explicitly obtaining the shape of the permanent form he vin-
dicated John Scott Russell whose discovery of the solitary
wave @1,2# was rejected by Airy@31# who did not consider
the appropriate contribution of dispersion. Independently of
Boussinesq, Lord Rayleigh@6# also found the permanent
wave. This point was further strengthened by Korteweg and
de Vries@7# who besides the Boussinesq sech found another
permanent wave—the cnoidal one—consisting of a periodic
train of crests. In the linear limit it gives the harmonic wave,
while for significant nonlinearity it is a train of shapes simi-
lar to sech, but we had to wait 50 years before it was under-
stood @32# ~see, also@33# for an illuminating discussion on
the cnoidal wave as ‘‘imbrication’’ of sech solitons!. A his-
torical account can be found in@34–36#, among others.

The dispersion is weak~of order of the small parameterb!
and hence the coefficient of the nonlinear term must also be
small ~i.e.,a;b! in order to have a balance between disper-
sion and nonlinearity while both being weak. At the time, the
famous Boussinesq sech solution~4.23! is formally valid for
all values of the parameters, which is a typical feature of a
paradigmatic derivation. The weakly nonlinear long-length-
scale solution is recovered only for phase velocities~celeri-
ties! c very close to the characteristic speed~unity in our
notation!. Then, indeed, the solution evolves slowly in the
moving frame, at least for overtaking interactions of seches.
This means that the physical validity of Boussinesq’s Bouss-
inesq equation is not wider than the validity of KdV equa-
tion, which is much simpler mathematically being merely an
evolution equation in the moving frame. Formally one can
solve one of the ‘‘improved’’ versions of Boussinesq equa-
tion for head-on interactions of seches but the result must be
appreciated mostly qualitatively rather than quantitatively.

The results of numerical simulations of head-on collisions in
RLW exhibit considerable inelasticity~see@37,38#!. The in-
elastic behavior was confirmed also by the calculations with
the conservative scheme@36# which makes us believe that it
is an innate property of the RLW rather than an artifact of the
numerics.

Finally, upon rescaling the variables of Eq.~4.21!, the
latter is recast in the form~2.13! which will be henceforth
referred to as the sixth-order Boussinesq equation~6GBE!.
In what follows we turn to the numerical investigation of
6GBE.

V. THE STATIONARY SHAPES

First we begin with the equation for the shapes that are
stationary in the moving framej5x2ct. Denoting by
primes the derivatives with respect to the variablej we arrive
at the following ordinary differential equation~ODE! for the
stationary shapes

05lu1au21bu91u99, l5~g22c2!, ~5.1!

which is the same ODE to which the fifth-order KdV
~FKdV! is reduced for solutions in the moving frame~see,
@39,49,58,35,60#. Apparently, the first numerical study of
~5.1! is due to the Kawahara@39#, which is the reason why
some authors call the oscillatory solutions of~5.1! ‘‘Kawa-
hara solitons.’’

Before embarking on numerical investigations we recall
here the results of the linear analysis of the tails of the soli-
tary waves. The linearized equation possesses harmonic so-
lutions of the typeekj. The dispersion relation for these
waves reads

k41bk21l50⇒k56S 2b6Ab224l

2 D 1/2. ~5.2!

For the sake of definiteness let us setubu51, g51. The
other cases can be obtained by rescaling the variables.

A. Monotone shapes

For negative dispersionb521 and subsonic celerities
l[12c2.0 one has

k1,256S 2b1Ab224ulu
2 D 1/2,

k3,456 i S b1Ab224ulu
2 D 1/2, ~5.3!

and two cases can be distinguished. In the first casec
.A120.25b'0.866 and we get two pairs of real roots. In
this case an analytical solution of~5.1! can also be found
@40# in the ubiquitous sech shape

u5
105

169

b2

2a
sech4S x2 F2b

13 G1/2D , ucu5S g22
36

169
b2D 1/2,

~5.4!

wherec is the phase velocity orcelerity of the wave. Note
that this is the subsonic case, hencec,g51. The difference
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with the fourth-order Boussinesq and the classical KdV
equations is that the analytical solution of sech type~5.4!
exists only for a single value of celerity. For the selected
parametersg51 andb521, the celerity of the analytical
solution isc'0.887 12 which falls in the rangec.0.866.

We start the numerical experiments with this case. The
difference scheme is given in the Appendix. The difference
solution we obtain for this particular value of celerity virtu-
ally coincides with the analytical solution. Table I shows the
maximal amplitude of the solutions obtained as a function of
the spacingh of the scheme. It is seen that the deviation from
the analytical solution is indeed of orderO(h2), which is the
accuracy of the scheme. It is no surprise that even the rough-
est meshh50.4 gives very good accuracy of 0.015%, since
the solution is very smooth.

It is hard to believe that~5.4! presents the only value of
celerity for which a solution of monotone shape is possible,
i.e., that the spectrum of the nonlinear eigenvalue problem
under considerations is discrete, and consists only of a single
value. What can indeed be unique is the analytical represen-
tation of the solution. So we treated numerically the whole
range of subsonic celeritiesc,g51 and obtained solutions
to ~5.1! for a continuous spectrum of celeritiesc. Similarly to
the case of the fourth-order proper Boussinesq equation~see,
@36# for details!, the subsonic humps have larger amplitude
when they are slower. In Fig. 1 the numerically obtained
shapes of the sechlike solutions for different celerities are
presented. The amplitude and the independent coordinate are
scaled by

105a~12c2!

72
and S 12c2

24 D 1/2,
respectively. Thus the normalized analytic solution has unit
amplitude and approximately unit space support. The figure
shows that there is a deviation from the sech shape.

For c<A0.75'0.866 a complex conjugate pair of roots
appears and the localized waves do have oscillatory damped
tails but of extremely low amplitude so that the fact that the
shapes are not strictly monotone cannot be discerned on the
graphs with normal scales for the variables. In order to show
that we present in Fig. 2 two successive zooms to illustrate
this statement. This means that the real pair of roots domi-
nates the behavior of the solution, as far as the steady propa-
gating waves are concerned. Note that for smallerb one can
find more intense oscillations of the outskirts of the ‘‘mono-
tone’’ shapes.

B. Damped oscillatory shapes„Kawahara solitons…

The algorithm developed is applied next to the case of
positive fourth-order dispersionb51. The difference here is
that the oscillatory shapes become stable in the iterative pro-
cess while the humplike shapes disappear. The upper graph
in Fig. 3 shows the result for different celerities where the
amplitudes are scaled by the Lorentzian factorA0.752c2

and the abscissa is not scaled. We have obtained the shapes
found by Kawahara for the continuous spectrum 0,c,c0
5A0.75.

An important feature of the case with positive fourth-
order dispersion is that the stationary shapes form bound
states. Depending on the amount of initial energy put into the
initial condition, the algorithm goes to different solutions.
The solutions containing more than one hump can be consid-
ered as bound states of solitons, i.e., wave trains of humps
separated by different distances between the main peaks. The
lower graph in Fig. 3 depicts the bound state of two solitons

TABLE I. Checking the algorithm for stationary shapes and
comparison with the analytical solution:c50.887 12,xP@280,80#.

analytical h50.1 h50.2 h50.4

amplitude 0.310 651 0.310 661 0.310 689 0.310 801
difference 0 0.000 010 0.000 038 0.000 150

FIG. 1. Normalizedus5[72/105a(12c2)]u, xs5x(24/12c2)1/2 subsonic humplike shapes forb521 and differentc.
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with the shortest distance between the peaks and it exists in
our numerical calculations for a continuous spectrum of ce-
lerity, i.e., the bound states are valid ‘‘quasiparticles.’’ Once
again the amplitude is scaled by the Lorentzian factor which
in this case isA0.752c2. We have also found bound states
with different separations of the centers of the solitons. How-
ever, to make a full taxonomy of those goes well beyond the
scope of the present paper. Bound states were briefly consid-
ered also in@47# where they were called multisolitons. We
believe that using such a terminology might prove mislead-
ing because multisoliton solutions~or N-soliton solutions!
are called dynamical structures in which the different humps
~solitons! may move with different celerities. In the bound
states discussed here the soliton train moves as a rigid body,
i.e., the bound state appears as a ‘‘frozen pattern’’!. Unfor-
tunately, Ref.@47# is very brief and it is not possible to make
quantitative comparison with the results reported there.

The four-soliton bound state presented in Fig. 4 deserves
a comment: two of the solitons form a tight bound state
like a ‘‘nucleus’’ and the other two appear as two electrons
in their lower orbit.

Needless to say, the results reported in the present subsec-
tion have been verified with the same scrutiny as in the pre-
ceding subsection, namely, the mesh size, the ‘‘actual infin-
ity,’’ and initial conditions have been varied and their
optimal values carefully chosen.

C. Weakly nonlocal solitons

In the supersonic casel,0 and regardless of the sign ofb
the dispersion relation~5.2! has two pairs of roots~a real pair
and a pair of imaginary and conjugate roots!. The presence
of the real pair of roots might give some expectation that a
localized humplike shape could be possible, while the imagi-
nary pair suggests that the solutions cannot be strictly local-
ized but rather acquire oscillatory nondecaying tails. This
case was thoroughly investigated by Boyd@48,33,49# who
found solutions with a main hump and small wings extend-
ing to infinity. He called themweakly nonlocal solutionsor
‘‘nanopterons’’ because of their wings. He also showed that
imbrication of nanopterons can form a periodic wave which
he callednanopteroidal wave. When the amplitude of the
wings is of the same order as the amplitude of the main

hump ~strongly nonlocal solutions! they can only be found
numerically. However, proceeding to the realm of strongly
nonlocal solutions needs some more systematic investigation
again beyond the scope of the present paper.

VI. PSEUDO-LORENTZIAN KINEMATICS
OF ‘‘QUASIPARTICLES’’

As we are interested in 6GBE from the point of view of
its field-theoretical interpretation and the ‘‘quasiparticles’’
we compile in this section the results for the three conserved
quantities characterizing the localized wave-quasi-particle,
namely, themass, energy, andpseudomomentum.

The kinematics of ‘‘quasiparticles’’ of 6GBE is domi-
nated by what can be calledpseudo-Lorentzian~in a sense
anti-Lorentzian! character. In the ‘‘real’’ Lorentzian dynam-
ics the mass and momentum of a particle increase with the
increase of velocity and eventually become infinite at the
characteristic speedc0 ~speed of lightin the case of trans-
verse vibrations orspeed of soundfor the case of longitudi-
nal vibrations!. Because of their subsonic nature, the local-
ized waves of 6GBE have amplitudes that decrease with the
increase of the phase velocity~celerity! c and eventually
decay to zero at the characteristic speedc0. Yet their kine-
matics resemble the Lorentzian in the sense that the factor

g5S 12
c2

c0
2D 1/2,

enters the picture. Contrary to Lorentzian dynamics, it enters
the formulas with positive powers, because forc→c0 all of
the quantities must decay to zero. This anti-Lorentzian be-
havior appears to be characteristic of all of the different
equations from the Boussinesq paradigm which contain only
spatial derivatives for the dispersion and are at the same time
linearly stable. In this section we perform systematic compu-
tations so as to obtain an extensive set of data for themass,
pseudomomentum, and energy of the stationary solitary
waves.

A. The monotone sech-like shapes
In Fig. 5 the point-wise~i.e., for set ofc’s! numerical

results for the mass, energy, and pseudomomentum are pre-

FIG. 2. Zooms of Fig. 1.
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sented. One sees that the three quantities do decay to zero for
c→c051.

Since there are no analytic expressions for the mass,
pseudomomentum, and energy we look for the best approxi-
mation containing the powers of celerityc and the ‘‘Lorent-
zian’’ factor g. Some preliminary experience with deriving
analytical expressions for the pseudomomentum for other
solitonic system teaches us that the expressions need not be
necessarily limited only to powers ofg, but may rather con-
tain also some transcendental functions~such as arctangent!.
Exhausting all the combinations with different functions is
impossible and for that reason we take the usual route in the
best-fit approaches resorting only to powers of the indepen-

dent variables. We further restrict ourselves taking only pow-
ers of g that are integer multiples of 1/2, 1/3, or 1/4. This
reduces somewhat the flexibility of the approximation. The
best fit obtained under these constraints~smooth curves in
Fig. 5! is

M5M0g
5/4, M057.4, ~6.1!

P5Mcg25M0cg13/4. ~6.2!

The agreement is quite good and justifies the choice for
powers ofg. We attempted some best fit approximations for
the energy too, but due to the nonconvexity of the latter the

FIG. 3. Normalized subsonic oscillatory shapes for positive dispersionb51 and different celerities.~a! Kawahara solitons;~b! two-hump
bound states.
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number of possible different combinations of powers ofc, g,
M , andP increases to such an extent that renders impossible
the task to choose one expression over another because quan-
titatively they fit equally well the data from numerical ex-
periments.

In the limiting case of slow celeritiesc!c0~g!1!, as far
as the mass and pseudomomentum are concerned, the dy-
namics of monotone shapes of 6GBE appears to be Newton-
ian, namely,M'M0, P'Mc.

B. Kawahara solitons

The shapes of the subsonic~or subluminous! solitary
waves of 6GBE can transform to damped oscillatory ones
when changing the coefficientb of the fourth-order disper-
sion. Increasingb one reaches a threshold above which the
localized waves acquire oscillatory tails~called Kawahara
solitons!. The said threshold is usually a negative value, so
that if one takesb.0 the shapes will be Kawahara solitons
for the whole range of admissible subluminous celerities. So
here we report the caseb51. There is a major difference
between this case and the previous one. Now the existence of
the quasiparticles is not limited by the characteristic speed of
the equation, but rather it isc0

250.75,c0'0.866.

Performing the calculations in the intervalc,c0'0.866
we obtain the numerical data for the quantities under consid-
eration. These data are presented in Fig. 6 with solid lines.
Once again we found a best-fit approximation guided by the
above described considerations. The result~dashed lines in
Fig. 6! is

M5M0g
7/4, M052.986, ~6.3!

P5Mcg5/45M0cg12/4[M0cg3. ~6.4!

Here also, the selected type of approximation secures quan-
titatively very good results for the best fit.

There are some differences in the powers ofg between
the two cases considered here. Yet, the general behavior is
similar. One is to expect different behaviors from a complex
system when one changes the sign of one of the dispersion
coefficients. In Kawahara’s case the two dispersions act
against each other and this can explain the different shapes
~damped and oscillatory! for the solitary waves and hence
the different powers ofg in the expressions for the mass and
pseudomomentum. The Newtonian limit isM'M0, P'Mc.

FIG. 4. A bound state of four
Kawahara solitons.

FIG. 5. Themass, pseudomomentum, andenergyfor sech shapes for negative fourth-order dispersionb521. Symbols: numerical result;
lines: best fit approximation~6.2!.
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VII. DYNAMICS OF SOLITONS IN 6GBE

To investigate the dynamics of interactions~collisions! of
the ‘‘quasiparticles’’ we employ here the conservative
scheme developed in@50# as a generalization of the scheme
devised for the fourth-order Boussinesq equation in@19# and
used for the RLW equation in@36#.

Before proceeding with the results some comments on the
limitations of the scheme are due. The implicit scheme em-
ployed here has a dispersion relation of the following type:

4t22sin2
vt

2
cos22

vt

2
526h26sin6

kh

2
, ~7.1!

wherev is the frequency,k the spatial wave number,t the
time increment, andh the spacing. Here we consider for the
sake of simplicity only the sixth-order spatial finite differ-
ence. At the same time the dispersion relation of the linear
part of 6GBE with only sixth-order derivatives present is
v25k6. It is clear that the dispersion relation~7.1! of the
scheme approximates reasonably well the dispersion relation
of the differential equation only whent.h3 and when, in
addition,tv is small enough in order to replace sin 0.5tv by
0.5tv. One should note here that the dispersion relation for
an explicit scheme is quite similar save the absence of the
term cos22~0.5tv!. The latter means that when the above
requirement for the time incrementt is not fulfilled then the
solution forv is imaginary, i.e., the scheme is linearly un-
stable. Naturally, the implicit scheme is always stable, but
then forhk.O~1! and whent@h3 ~which is the interesting
case from the point of view of efficiency of the calculations!,
then the phase speed of the waves with largek’s is grossly
misrepresented and exaggerated. This means that the implicit
scheme is efficient only forhk!1, i.e., the limitation is to
have a sufficient number of grid points per wavelength. We
have discovered that 20 points per wavelength~hk.p/10 is
the roughest resolution which can be employed without ir-
reparable distortion of the high frequencies of the solution!.
Rougher meshes would require very small time increments
and an intolerable amount of computational time although
there are no other limitations of a theoretical nature. We have
in fact selected an implicit scheme not because of the com-

putational efficiency, but rather because of the consistent
way to implement on the ‘‘difference’’ level the conserva-
tion and balance laws holding true for the differential equa-
tion.

As seen from the numerical results in Sec. V on stationary
shapes, the Fourier components with very large wave num-
bers are of negligible amplitude for the solitary waves under
consideration. However, after a collision of two solitons any
wave number could be excited at least in a small region.
Then due to the unfaithful dispersion relation, if a compo-
nent of very high wave number appears, it is propagated at
higher speed and escapes the region where the predominant
part of the energy of the wave system is located~e.g., the
collision site in case of multisolitons!. This is the only limi-
tation of the implicit scheme employed. In the numerical
experiments we did monitor the total energy of the system
before and after the collisions and found that the escape en-
ergy is negligible.

A. Humps „sech solitons…

First we begin with the case when the fourth-order disper-
sion term has a negative sign, i.e., the case when the fourth-
order Boussinesq equation would have been correct in the
sense of Hadamard. This is the case when humps of sech
shape can be found. For definiteness we chooseb521,a51
andg51. Our first objective is the head-on collision of two
sechlike humps~see Fig. 1!. The collisions of the analytical
seches~c50.887 12! were already investigated in@50# and
their solitonic behavior was confirmed. For 1.c>0.9 we
discovered a practically elastic collision with extremely
small transients excited in the site of collision. Respectively,
M and E are conserved with an accuracy of 10213, i.e.,
within the round-off error of the computer. For the balance
law scaled by the maximum of the solution we obtain a
quantity of order of 10212. There are only slight hints of two
radiative signals escaping ahead of the main two humps after
the collision. The situation sharply deteriorates with decreas-
ing celerity ~increasing the amplitude of the subsonic soli-
tons!. In Fig. 7 the head-on collision is shown forc50.86
where there appear considerable ‘‘pulses.’’ In factc50.86
was the smallest value for which we obtained a solution. For

FIG. 6. Themass, pseudomomentum, andenergyfor Kawahara solitons for positive fourth-order dispersionb51. Symbols: numerical
result; lines: best fit approximation~6.4!.
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c50.85 the nonlinear blowup took place in our calculations
~see,@29,30# for definition and theory and@36#—for numeri-
cal verification for BE and RLW!. The coincidence between
the threshold of the nonlinear blowup and the limit of exist-
ence of strictly monotone shapes is interesting and awaits its
explanation.

B. Pulse formation

We proceed further and investigate the long-time evolu-
tion of the transient excited after the collision of hump soli-
tons of 6GBE. For definiteness we consider only the solution
in the right-hand side of the interval. We cut the main hump
and investigate the evolution of the reminder~a pulse! in the
moving coordinate frame. Themassof the pulse appears to
be of the order of 1024 of the total initial mass and the
energy of order of 1025. In this sense themassandenergyof
thepulseare virtually equal to zero. Due to the nondefinite-
ness of the energy functional, however, its amplitude is al-
lowed to change while the energy remains fixed and that is
what happens. It is clearly seen in Fig. 8. Thepulsebroadens
with time ~it experiences a ‘‘red shift’’! and decreases in
amplitude, which we call ‘‘Big-Bang’’ property. It was ob-
served in@19,36# for the quadratic Boussinesq equation and

in @51,52,14#—for the case of cubic-pentic nonlinearity of
fourth-order BE. This behavior can also be traced back to the
relevant numerical calculations for KdV~see,@53,54,55# and
the works referred in@56#!. The asymptotic rate of expansion
t1/3 for KdV pulses was found in@54# ~see, also@57#!. The
same law was confirmed for the Boussinesq equation in the
numerical experiments@52#.

Now one can investigate the behavior of a pulse as a
solitary wave. Since it propagates with the characteristic
speed and with virtually zero mass and energy we may call it
pulse photonto distinguish it from the transient pulses gen-
erated by the dissipation in nonconservative systems. In fact,
the emission of a pulse in 6GBE is exactly the same process
of redistributing of the mass, energy, and pseudomomentum
as the splitting of the initial signal into several seches in
KdV. Then the question of solitonic nature and the ‘‘quasi-
particle’’ properties of the pulse photons is raised. To answer
this question we take as an initial condition a system of two
pulse photons propagating towards each other. We have
found that in the course of interaction they pass through each
other without qualitatively changing their shapes~save a red
shifting! and the mass and energy of the system of pulses are
conserved. This suffices to claim that the pulse photons are
also solitons.

FIG. 7. Negative dispersionb521. Head-on collision of two monotone solitons~humps! with cl52cr50.86. Time from 0 to 186.

FIG. 8. Long-time evolution of the pulse created after the collision shown in Fig. 7. Solid line: time5400; dashed line: time5600.
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The pulse formation has been observed for 6GBE in all
collisions of humps while in fourth-order BE, the formation
of pulses was observed only for significant enough mis-
matches between the initial condition and the stationary
shapes. This imperfect behavior of the quasiparticles is not
related to the conservativeness of the system. In all these
calculations the total energy and mass were conserved to the
last significant digit of the calculations. For collisionless
long-wave-length systems, the sixth derivative did not
change the quantitative and qualitative evolution. However,
if a short-wave disturbance appears at least once, then the
sixth derivative becomes the dominant feature—whence the
inelasticity, radiation, and pulse formation. This is always
what happens when a system is singularly perturbed~for a
discussion about this, see@58#!.

Paradoxically enough, the pulses can be suppressed if
dissipation is introduced. But then in order to have self-
sustained patterns one has to introduce energy input. The
dissipation will act to smooth the short-wave-length
pulses, while the energy input in the larger scales will sus-
tain the motion preventing its decay. Some steps were al-
ready undertaken in this direction in@59# where the KdV-
KSV ~Kuramoto-Sivashinsky-Velarde! equation was gener-
alized to a wave equation containing energy dissipation and
energy production and the coherent structures of the pro-
posed equation were investigated numerically. They turned
out to behave as quasiparticles and can be called ‘‘dissipative
solitons’’ with a proper justification@27#.

C. Kawahara solitons

Let us now consider the case of positive fourth-order dis-
persionb51 when the stationary shapes are not monotone.

In Fig. 9 a head-on collision is shown for a large deviation
from the characteristic speed. The intuitive expectation here
is that the improper sign of the fourth-order dispersion would
degrade the overall stability of the process. Contrary to this
expectation, the nonlinear blowup was not observed even for
c50.75 ~compare with the case of proper sign—preceding
subsection, when the blowup takes place forc<0.85!. Ap-
parently, the interaction of the monotone shapes produce
some unfavorable deformation of the signal, making part of
it a signal of zero or negative energy. Consecutively this part
of the signal blows up. The nonlinear blowup was observed

in our calculations forcl52cr50.7. The threshold is very
near that value, because as shown in Fig. 10, forcl50.8,
cr520.7 no blowup takes place. In fact, the last figure was
produced in our quest for a dynamical creation of quasipar-
ticles of type of resonances~bound states!. One sees that the
faster solitary wave reemerges from the collision consider-
ably changed in shape resembling rather a bound state of two
waves. We did pursue further the calculations in the moving
frame of the right-going soliton but the bound state dissolved
and finally the whole structure evolved into a pulse, i.e., it
did not survive the collision. At the same time the bigger
~left going in the figure! solitary wave did preserve its iden-
tity after the collision.

In Fig. 11 the evolution of the right-going soliton is fol-
lowed after it reemerges from the collision shown in Fig. 9.
Now the oscillatory soliton eventually recovers its identity
and pulses photons of virtually zero energy are emitted ahead
of it and propagate with the characteristic velocity. Once
again a bound state was not produced by the head-on colli-
sion of two Kawahara solitons.

Finally, let us mention that we actually studied an over-
taking collision for the casecl50.8, cr50.7. Once again a
bound state was not found and the smaller soliton did not
survive the collision.

VIII. CONCLUSIONS

The derivations of Boussinesq equations in shallow fluid
layers and in nonlinear chains have been revisited. It has
been shown that the correct truncation of the series repre-
senting the dispersion is after the sixth derivative. The non-
linear equation derived is called sixth-order generalized
Boussinesq equation~6GBE! for which conservation laws of
mass and energy and a balance law for the pseudomomentum
are shown to hold.

The stationary propagating localized solutions have been
investigated numerically and the two classes of solutions
corresponding to the two different signs of the fourth-order
dispersion term are obtained: monotone~sechlike! shapes
and shapes with oscillatory tails~Kawahara solitons!. These
two classes are subsonic as they propagate with phase speeds
slower than the characteristic speed of equation. The Kawa-
hara solitons can form bound states.

FIG. 9. Positive dispersionb51. Head-on collision of two Kawahara solitons withcl52cr50.75. Time from 0 to 200.
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The dynamics of collisions of the localized solutions has
been investigated numerically by means of a difference
scheme that faithfully represents the conservation and bal-
ance laws. An important feature of the collisions of solitary
waves in 6GBE is inelasticity, manifesting itself in the emis-
sion of a faster pulse photon of virtually zero mass and en-
ergy which propagates with the characteristic speed. The
pulse photon eventually escapes the lagging ‘‘hump’’ and
the latter practically resumes its original shape, phase speed,
mass, and energy. In this sense, the solitary waves of 6GBE
can be called solitons, since their behavior upon collision fits
well the expected behavior of the quasiparticles of the field
governed by the 6GBE equation.
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APPENDIX: DIFFERENCE SCHEME

We divide the intervalxP[2L1 ,L2] into N21 intervals.
The grid points are denoted byxi , i51,...,N. They are
equally spaced with spacingh5(L21L1)/(N21).

Upon introducing the auxiliary functionw5u9. Eq. ~5.1!
is recast to a system of two second-order equations. By
means of the standard central-difference approximation of
the second derivatives and Newton’s quasilinearization for
the nonlinear term we obtain the following difference
scheme for the functions on the ‘‘new’’ iterative stage~de-
noted by superscriptn11!:

1

h2
~ui11

n1122ui
n111ui21

n11!5wi
n11, ~A1!

1

h2
~wi11

n1122wi
n111wi21

n11!1bwi
n1112aui

nui
n111lui

n11

5aui
n2 ~A2!

FIG. 10. Positive dispersionb51. Head-on collision of two Kawahara solitons withcl50.8, cr520.7. Time from 0 to 150.

FIG. 11. Long-time evolution of thepulse photoncreated after the collision shown in Fig. 9~b521, cl5cr50.75!.
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for i52,...N21 and with B.C.

u1
n115uN

n115w1
n115wN

n1150.

Starting from a certain initial profileu i
0, w i

0, the iterations
are conducted until convergence is reached. The selection of
the initial condition turns out to be very important due to the
bifurcation nature of the problem. We consider a localized
initial input of triangular shape spanning approximately one-
fourth of the total grid points with various amplitudes~the
height of triangle!. The trivial solution to the problem always
exists and when the energy of the initial condition is suffi-
ciently small then the iterative process goes to the trivial
attractor. Nontrivial solutions are obtained for sufficiently
high energy levels~amplitudes! of the initial profile. Then a
typical phenomenon is observed: depending on the initial
energy one arrives to one-hump, two-hump, etc., localized
solutions, i.e., the one-hump shapes presented here were ob-
tained for quite narrow an interval for the amplitude of initial
conditions.

In order to check the performance of the simple scheme
implemented here we used also the spectral technique devel-
oped in@41–43#. The algorithm developed for the fifth-order
Korteweg–de Vries equation~FKdV! @43# has been applied
here without major changes save the fact that now a non-

trivial term containing the second derivative is present. Lim-
iting the number of terms in the spectral technique we
reached point-wise agreement with the difference soliton
within 1% from the amplitude of the soliton.

Another check was provided by the method of variational
imbedding ~MVI ! developed in @44# for identifying ho-
moclinic solutions~see, also@45,46#!. MVI is a difference
technique and if it gives a solution it must coincide with the
difference solution obtained here. This has been the case and
the two difference solutions agreed within the round-off error
of calculations with double precision~'10211!.

Note that the inverse nature of the homoclinic problem
does not show up for Eq.~5.1! and solutions have been ob-
tained here with a simple scheme without special techniques
for inverse problems, like the ones mentioned in MVI. It was
not the case, however, with the homoclinic solution of the
Lorenz system@44# and the Kuramoto-Sivashinsky equation
@45,46# where the inverse nature of the problem of ho-
moclinic identification showed up in a drastic form. The ex-
planation may be that here the problem is of even order
~linear part is self-adjoint! while in the mentioned cases the
linear part was of odd order~third order!. Thus the simple
scheme with Newton’s quasilinearization turns out to be in-
strumental in obtaining the numerical solution in the case
under study.
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